
KNOWLEDGE REUSE AS A FOUNDATION FOR SECURITY
METRICS

by

Nilofar Mansourzadeh

Submitted in partial fulfillment of the requirements
for the degree of PhD of Computer Science

at

Carleton University
Ottawa, Ontario

May 2024

© Copyright by Nilofar Mansourzadeh, 2024

Table of Contents

List of Figures . iv

Abstract . v

Acknowledgements . vi

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Approach . 3

1.3 Contributions . 5

1.4 Chapter Outline . 7

Chapter 2 Background . 10

2.1 Threat Modeling . 11

2.2 Trust . 13

2.3 Cryptography . 14

2.4 Modeling Commonalities in Software and Systems 16

2.5 Security Metrics . 19

2.6 Moving Target Defense (MTD) . 20

2.7 Software Reuse . 21

2.8 Software Diversity . 21

Chapter 3 Motivation . 23

3.1 Knowledge and Attacks . 24

3.2 Epistemology and Software Development 27

3.3 Vulnerabilities and Exploits . 29

3.4 Modeling Knowledge Reuse Dynamics 30

3.5 Search and Knowledge in AI . 31

ii

3.6 Search and Security . 33

3.7 Formalizing Knowledge Reuse . 34

Chapter 4 Modelling Attack Difficulty Using Knowledge Reuse . 36

4.1 Definitions . 36

4.2 Two Security Metrics . 48
4.2.1 Knowledge Obfuscation Security Metric (KOSM) 49
4.2.2 Defense Evolution Security Metric (DESM) 52

Chapter 5 A Case Study Using Product Family Algebra 60

5.1 Intuition Behind Using Product Family Algebra 61
5.1.1 Product Family Algebra . 62
5.1.2 Products and Features . 62
5.1.3 An Example Population of Computer Systems 64
5.1.4 Specifying the Computer System Product Family using PFA . 65
5.1.5 Computing the Size of the Catalog of Products 65
5.1.6 Defining a Measure of the population fragility 69
5.1.7 Adding Variations to Exploitable Products 72
5.1.8 Adding Variations to Non-exploitable Products 76

Chapter 6 Knowledge Reuse and Security Analysis 81

6.1 Current Practice . 82

6.2 Best Practices and Knowledge Reuse 82
6.2.1 Population fragility . 83
6.2.2 Knowledge Obfuscation . 83
6.2.3 Defense Evolution . 84

6.3 Mitigating Knowledge Reuse in Practice 85

6.4 Limitations of Proposed Metrics . 86

Chapter 7 Conclusion . 88

Bibliography . 91

iii

List of Figures

Figure 5.1 Feature model for a computer system 64

Figure 5.2 A PFA specification of the computer system product family . 66

Figure 5.3 Revised PFA specification with new variations (emphasize in
boldface) in labeled product families that contain the exploitable
sub-product x = (Windows · intel · app1) 74

iv

Abstract

The recurring question within the cybersecurity landscape is—why do systems keep

getting successfully attacked? This relative ease of system breaches necessitates a

reevaluation of what it means for attacks to be “hard”. Existing security metrics

quantify narrow aspects of attack difficulty but do not give insight into why attacks

remain feasible. Diversity is frequently discussed as a strategy to mitigate the risks

associated with cybersecurity monoculture. However, determining the optimal level

and type of diversity in security presents complex challenges for which we have little

basis.

We propose a new way of conceptualizing attack difficulty in terms of knowledge

reuse. To this end, we present two models—one abstract model inspired by artificial

intelligence search and another model, product family algebra, inspired by software

components. Using these models we propose three new metrics: knowledge obfusca-

tion (KOSM), defense evolution (DESM), and population fragility. We then analyze

the practical implications of our proposed models for an information security ana-

lyst. By adopting these models, information security analysts can better navigate the

complexities of the cybersecurity landscape, tailor security measures more precisely

to their organization’s needs, and ultimately contribute to a more resilient and secure

digital environment.

v

Acknowledgements

This thesis is dedicated to two remarkable individuals who have been my pillars of

support, inspiration, and encouragement throughout this journey.

To Dr. Anil Somayaji, my esteemed supervisor, whose wisdom, guidance, and

unwavering belief in my potential have been instrumental in shaping not only this

research but also my growth as a scholar. Your mentorship has been a beacon of

light, guiding me through the challenges and celebrating the milestones. I am deeply

grateful for your invaluable contributions to my academic and personal development.

And to my husband, Dr. Amir Aghasharif, who has been my steadfast companion

in every sense. Your love, patience, and unwavering support have been my sanctuary.

Your belief in me and my aspirations has been a source of strength and motivation,

making this journey not only possible but also joyful. I am forever thankful for your

companionship, understanding, and endless encouragement.

This work is a testament to the profound impact you both have had on my life.

Thank you for being my guiding stars.

vi

Chapter 1

Introduction

This dissertation explores the premise that models of knowledge reuse can signifi-

cantly bolster the foundation of computer security. In an era where cyber threats

evolve with alarming speed and ingenuity, traditional defensive mechanisms often fall

short. Through this work, I endeavor to bridge this gap by presenting an analysis

that not only highlights the critical role of knowledge reuse in the persistence of cyber

threats but also proposing a novel framework for integrating this concept into the de-

velopment of more resilient security strategies. The motivation behind this approach

stems from the observation that despite significant advancements in defensive tech-

nologies, attackers continue to outpace these measures by leveraging and innovating

upon existing knowledge. By understanding and modeling this process of knowledge

reuse, we can anticipate and counteract emerging threats more effectively.

The dissertation unfolds this narrative through a detailed examination of the un-

derlying motivations, a strategic approach that leverages both theoretical and prac-

tical methodologies, significant contributions that push the boundaries of current

security paradigms, and a structured outline that guides the reader through the intri-

cate layers of this argument. This introductory chapter sets the stage for a deep dive

into these components, laying the groundwork for a nuanced discussion on enhancing

computer security in the face of evolving cyber threats.

1.1 Motivation

The persistent ease with which cyber-attacks are executed poses a formidable chal-

lenge in the realm of computer security, undermining the efficacy of even the most

advanced defense mechanisms. This paradoxical scenario, where significant techno-

logical advancements in security seem insufficient to deter attackers, forms the core

motivation for this dissertation. The question arises: why do these advancements fail

to make a substantial impact?

1

2

To understand this, we must consider the nature of the defenses deployed. Recent

years have seen the introduction of sophisticated encryption algorithms, intrusion

detection systems capable of real-time monitoring and response, and comprehensive

malware analysis tools that employ machine learning to predict and neutralize threats.

Yet, these measures often fall short. The reason lies not in their lack of sophistica-

tion, but in the adaptive and innovative capabilities of attackers. For every new

defense introduced, attackers find novel ways to circumvent it. For instance, against

advanced encryption, attackers have developed ransomware that encrypts user data

with their keys, effectively turning a defense mechanism against the user. Intrusion

detection systems are bypassed through the use of polymorphic malware that changes

its signature with each replication, making detection notoriously difficult.

The evolution of attack strategies further complicates this landscape. Cyber-

attacks have grown from simple viruses and worms to complex, multi-vector assaults

that exploit a range of vulnerabilities. Consider the progression from basic phishing

scams to spear-phishing and whaling, where attackers tailor their deception to spe-

cific targets with alarming precision. Similarly, distributed denial-of-service (DDoS)

attacks have evolved from mere bandwidth flooding to sophisticated application-layer

attacks that mimic legitimate user requests, making them harder to detect and miti-

gate.

This continuous innovation in attack strategies is fueled by a culture of knowledge

reuse among attackers. Once a new technique is developed, it doesn’t remain in

the shadows for long. Detailed analyses and proof-of-concept codes often find their

way into academic publications, hacker forums, and dark web marketplaces. This

information dissemination transforms singular innovations into reusable tools and

techniques that can be adapted and applied by a wide range of malicious actors.

Vulnerability marketplaces commodify exploits, making them accessible to anyone

willing to pay, while “as-a-service” models for deploying malware, such as botnets or

ransomware, offer turnkey solutions for inflicting damage.

This ecosystem of shared knowledge and tools underpins the concept of the “se-

curity arms race,” a never-ending cycle of action and reaction between defenders and

attackers. Recognizing this dynamic is crucial, but it also begs the question: how can

we break this cycle, or at least, gain the upper hand?

3

1.2 Approach

This dissertation proposes that the key to a more secure future lies in understanding

and modeling the knowledge reuse practices of attackers. By conceptualizing and

quantifying how attackers learn from each other and build upon existing techniques,

we can develop a foundation for computer security that not only anticipates emerging

threats but also evaluates the long-term efficacy of defense strategies. Such models can

offer insights into the most resilient forms of defense, those that not only block current

attacks but also inhibit the future reuse of knowledge, thereby elevating the cost and

complexity of launching successful cyber-attacks. Through this lens, we aim to shift

the balance of the security arms race, crafting a strategy that is proactive rather than

reactive, and grounded in a deep understanding of the adversary’s playbook.

In the pursuit of a more robust computer security framework, understanding and

modeling knowledge reuse becomes pivotal. Knowledge, in the context of cybersecu-

rity, is not monolithic; it is multifaceted, encompassing everything from theoretical

concepts and tutorials to practical applications like code snippets and fully-fledged

software tools. Each of these elements plays a role in how knowledge is transferred,

adapted, and applied in new contexts, particularly among attackers seeking to exploit

system vulnerabilities.

To grasp the complexity of knowledge reuse, we can draw parallels from the field

of artificial intelligence (AI), where knowledge generation is often conceptualized as a

search process. In AI, the search space represents the universe of possible solutions to

a problem, and the process of search involves navigating this space to find a solution

that meets the desired criteria. This solution, once found, constitutes the “knowledge”

that was sought. This fundamental concept is well-established in AI literature and

provides a useful framework for understanding knowledge reuse in cybersecurity.

Applying this framework, we can envision attackers as operating within a search

space defined by the system’s architecture and its defenses. Each layer of defense,

each algorithm, and each protocol sets boundaries for this search space, guiding or

constraining the attacker’s exploration. The effectiveness of these defenses, therefore,

can be assessed by how well they limit the attacker’s ability to navigate the search

space and identify exploitable vulnerabilities.

This concept is not entirely dissimilar to the principles of encryption, where the

4

search space is constituted by the possible keys, and the attacker’s goal is to find the

correct key that decrypts the desired information. In the broader context of system

security, however, the “key” is metaphorical, representing any potential vulnerability

or exploit that could be used to breach the system. This includes not just cryp-

tographic weaknesses but any aspect of the system that could be exploited, from

hardware and software vulnerabilities to human factors such as social engineering.

Within this extended search space, knowledge reuse among attackers becomes a

tool for efficiency. Rather than exploring the search space from scratch, attackers

build upon existing knowledge—be it conceptual theories that provide a deeper un-

derstanding of potential vulnerabilities, tutorials that guide less experienced attackers

through complex attack methodologies, or code examples and software tools that can

be directly employed or adapted for new attacks.

For example, a conceptual understanding of buffer overflow vulnerabilities might

be documented in academic papers or technical blogs, providing a theoretical foun-

dation that attackers can leverage to understand and identify similar weaknesses in

other systems. Tutorials available on various forums and websites might offer step-

by-step guides on executing a buffer overflow attack, reducing the barrier to entry

for less skilled attackers. Similarly, code examples shared in repositories or found in

malware databases can be repurposed with slight modifications to exploit the same or

similar vulnerabilities in different contexts. Fully-fledged software tools, like exploit

frameworks, offer a more direct application, enabling attackers to launch sophisticated

attacks without a deep understanding of the underlying vulnerabilities.

This process of knowledge reuse among attackers is facilitated by a variety of plat-

forms, from open academic publications and white-hat disclosures to darker corners of

the internet like hacker forums and dark web marketplaces. Each of these platforms

contributes to the shared pool of knowledge, making it easier for attackers to find

and apply information relevant to their current objectives.

By modeling this process of knowledge reuse, we can gain insights into how at-

tackers navigate the search space of system vulnerabilities and how they leverage

existing knowledge to expedite this process. Understanding these dynamics is crucial

for developing defenses that not only secure systems against known threats but also

anticipate and mitigate the ways in which attackers might adapt and apply existing

5

knowledge to circumvent new security measures. This approach calls for a security

paradigm that is dynamic and adaptive, capable of evolving in response to the chang-

ing landscape of threats and the continuous reuse of knowledge within the attacker

community.

1.3 Contributions

The key contributions of this dissertation are as follows.

The cornerstone of this dissertation is the development of a systematic model to

assess the difficulty of launching successful cyber attacks, a new approach that chal-

lenges traditional reactive security paradigms by proposing a proactive framework.

This model offers a dynamic perspective that captures the ongoing interplay between

attacker capabilities and system defenses, providing insights into how to understand

and mitigate threats effectively. It marks a shift from static to dynamic evaluations

of security, emphasizing the need for adaptive and forward-thinking defense strategies

in response to evolving cyber threats.

Central to our methodology is the introduction of an abstract model that concep-

tualizes attack strategies within the framework of search spaces—a novel idea adapted

from artificial intelligence. This model suggests that attackers navigate through a

“search space” of potential vulnerabilities and attack vectors, influenced by the sys-

tem’s architecture, security measures, and the attackers’ knowledge and resources. By

quantifying this search space, the model facilitates a structured analysis of potential

attack paths and evaluates the effectiveness of different defensive strategies in either

expanding or constraining these paths.

A significant contribution of this dissertation is the introduction of new security

metrics that provide a more nuanced and strategic assessment of security postures.

Traditional metrics often focus on easily quantifiable indicators such as the number

of vulnerabilities patched, mean time to detect (MTTD), or compliance checklists,

which do not fully capture the complexities and evolving nature of modern security

challenges. The proposed metrics in this research address these gaps by evaluating

not just the presence of vulnerabilities, but also the context in which security controls

operate and how changes in those controls impact the overall difficulty and dynamics

of potential attacks.

6

These metrics add substantial value by providing a multi-dimensional view of secu-

rity that considers factors like system adaptability, resilience, and the shifting nature

of threats. They allow organizations to measure how various defense mechanisms

contribute to reducing attack success rates, rather than merely counting occurrences

or events. This deeper insight helps to prioritize security investments and optimize

response strategies in ways that traditional metrics cannot.

Even if these new metrics cannot always be directly calculated due to the com-

plexity or dynamic nature of systems, they still offer critical benefits. They serve as

conceptual models that guide security decisions by highlighting areas where defenses

are most effective and where they might fail under evolving conditions. For instance,

they can be used to simulate potential outcomes, conduct what-if analyses, and antic-

ipate how attackers might adapt to new defenses. In cases where direct measurement

is impractical, the metrics provide a framework for estimating risk and resilience,

encouraging a proactive rather than reactive security posture.

Ultimately, these metrics push the boundaries of how we assess security by em-

phasizing the quality and effectiveness of security measures over simple quantita-

tive benchmarks. They shift the focus from just knowing the number of risks to

understanding the strategic implications of those risks and the effectiveness of the

mitigations in place. This approach not only fills a critical gap in current security

evaluations but also promotes a more adaptive and resilient defense strategy.

Further bridging the gap between theory and practice, this work presents a new

model using product family algebra (PFA) [35] to simulate how knowledge reuse,

specifically the reuse of exploits, impacts software ecosystems. This model offers

a concrete framework to understand the propagation of exploits through software

components and their potential mitigation. It provides crucial insights into the vul-

nerabilities of complex software systems and the interdependencies within software

ecosystems, aiding in the development of strategies to enhance overall security.

Finally, the dissertation proposes a novel methodology for security analysis that

leverages the developed models to assess the robustness of security measures. This

methodology offers a systematic approach to evaluate not just the immediate effec-

tiveness of security controls but also their long-term impact on the attack landscape.

7

It aims to equip security practitioners with tools for informed decision-making, effec-

tive resource prioritization, and the design of resilient security architectures that can

withstand evolving cyber threats.

Collectively, these contributions represent a significant advancement in the field

of computer security, offering new perspectives and tools for addressing the complex

and dynamic challenges posed by cyber threats. By integrating theoretical insights

with practical models and methodologies, this dissertation aims to pave the way for

more strategic, effective, and adaptive security practices.

1.4 Chapter Outline

The structure of this dissertation is designed to methodically unravel the complex-

ities of computer security through the lens of knowledge reuse and the innovative

modeling of attack difficulty. Each chapter builds upon the previous, creating a co-

hesive narrative that not only presents new concepts but also integrates them into a

comprehensive framework for understanding and addressing cyber threats.

The Background chapter lays the foundational knowledge necessary for navigating

the subsequent discussions. It provides an overview of existing computer security

paradigms, the history and evolution of cyber threats, and the traditional responses

to these threats. This chapter sets the stage by highlighting the limitations of current

approaches, thereby underscoring the need for new perspectives and methodologies

in tackling security challenges. It contextualizes the research within the broader field

of computer security, ensuring that readers have a firm grounding in the key concepts

and terminologies that underpin the dissertation’s arguments.

In the Motivation chapter, the focus shifts to the core issue that this dissertation

seeks to address: the seemingly effortless ability of attackers to circumvent advanced

defense mechanisms. By delving into the reasons behind the persistent success of

cyber-attacks, this chapter elucidates the critical role of knowledge reuse among at-

tackers and the consequent need for a paradigm shift in how defenses are conceptual-

ized and deployed. Through examples and analyses, it demonstrates how the current

reactive security measures fall short, setting the stage for the introduction of new

models and methodologies that aim to preempt and counteract the evolving threat

landscape.

8

The Modelling Attack Difficulty Using Knowledge Reuse chapter introduces the

dissertation’s central proposition: the modeling of attack difficulty through the frame-

work of AI-derived search spaces. This chapter breaks down the abstract model,

explaining how it represents the interaction between attackers and defenses as a nav-

igational challenge within a metaphorical search space of vulnerabilities and exploits.

It elaborates on how this model provides a structured method to analyze potential

attack paths and the effectiveness of defenses in constraining these paths. This chap-

ter is pivotal as it lays the theoretical foundation for the subsequent application and

analysis of the model in practical scenarios.

Building on the theoretical framework established in chapter 4, A Case Study

Using Product Family Algebra chapter presents a concrete application of these con-

cepts through the development of a probabilistic finite automata model for software

components. This chapter explains how the PFA model simulates the dynamics of

exploit propagation and mitigation within software ecosystems, offering insights into

the vulnerabilities and interdependencies that characterize these systems. It demon-

strates the practical utility of the abstract models in understanding and managing

the specific challenges posed by software vulnerabilities and exploit reuse.

The Knowledge Reuse and Security Analysis chapter outlines a novel approach to

evaluating the security of systems based on the previously introduced models. It de-

tails a structured methodology that allows for the assessment of defense mechanisms

not just in terms of their immediate efficacy but also their strategic impact on the

broader attack landscape. This chapter provides a bridge between theory and prac-

tice, offering guidelines for applying the dissertation’s concepts to real-world security

challenges and decision-making processes.

The final chapter, Conclusion, synthesizes the insights gained throughout the dis-

sertation, reflecting on the implications of the research findings for the field of com-

puter security. It evaluates the strengths and limitations of the proposed models

and methodologies, considering their practical applicability and potential areas for

further research. This chapter aims to encapsulate the dissertation’s contributions to

the ongoing discourse on computer security, highlighting how the new perspectives

and tools introduced can inform and enhance future security strategies.

Together, these chapters weave a narrative that progresses from identifying the

9

shortcomings of current security paradigms to proposing and elaborating on new

models and methodologies designed to address these challenges. The dissertation

culminates in a discussion that not only reflects on the journey but also looks forward

to the path ahead in the quest for more resilient and adaptive security frameworks.

Chapter 2

Background

In the evolving landscape of computer security, understanding and increasing the

difficulty of attacks has become a central theme. This chapter delves into the mul-

tifaceted approaches that security experts have adopted to fortify systems against

ever-more sophisticated threats. It begins with an exploration of threat modeling, a

foundational aspect where defenses are meticulously constructed around the potential

threats a system must withstand. This section discusses various threat modeling tech-

niques, including the use of attack trees, and underscores the inherent assumptions

about attacker strength and capabilities, which often overlook the dynamic nature of

threat actors’ adaptability.

Next, this chapter examines the role of trust in computer security and then

transitions into the realm of cryptography, where the quest for unassailable secu-

rity through mathematical proofs has led to the concept of provable security, aiming

for an ideal state where attack difficulty is theoretically infinite. This section eval-

uates the strengths and limitations of cryptographic defenses, from the reliance on

entropy as a measure of security to the practical challenges that arise when theoretical

security models meet the realities of implementation. It highlights the discrepancies

between the assumed and actual attack difficulties, exacerbated by advances in attack

methodologies and unforeseen vulnerabilities within cryptographic systems.

Following the discussion on cryptography, the chapter progresses to explore the

realm of software and systems modeling, specifically focusing on the concept of fea-

ture modeling. This methodology enables the identification and representation of

commonalities and variations between computer systems and their components, of-

fering a structured approach to understanding and managing the complexity inherent

in modern software systems.

The chapter then addresses the concept of security metrics, tools designed to quan-

titatively assess the security posture of a system. It critically examines the challenges

10

11

in developing metrics that accurately reflect the complexity of attack difficulty and

the limitations in using these metrics to achieve a comprehensive understanding of a

system’s security.

Finally, this chapter discusses software diversity and efforts to measure software

diversity for security. From this discussion it becomes clear that although diversity

has been identified as an important security strategy, past work has not established

viable metrics for security and indeed has not established precise rationale for when

diversity is a useful defense strategy.

Through this structured exploration, the chapter aims to provide a holistic view

of the strategies employed to enhance attack difficulty, highlighting the successes,

challenges, and ongoing efforts in the field of computer security.

2.1 Threat Modeling

In the intricate and ever-evolving realm of cybersecurity, the formulation of a detailed

and comprehensive threat model emerges as a cornerstone for establishing effective

and tailored defensive strategies [12, 81]. For example, consider a financial institution

facing threats from both sophisticated cybercriminals aiming to breach data and

insider threats from employees with access to sensitive information. This model is

paramount not only in pinpointing potential threats but also in serving as a criterion

for gauging the sufficiency and efficacy of the security measures that are put into

place. Taking this financial institution as an example, the threat model would need

to identify potential phishing attacks, DDoS attacks aimed at disrupting service, and

the risk of insider fraud or data theft.

The process is inherently iterative, demanding continuous reassessment and re-

finement of defenses to adeptly confront any new or inadequately mitigated threats.

For instance, after identifying a new malware variant targeting the banking sector,

the institution must update its threat model and enhance its antivirus and intru-

sion detection systems to counter this specific threat. This proactive stance fortifies

the system’s defenses, ensuring robustness against a dynamic array of cybersecurity

challenges.

The foundation of threat modeling lies in the assumptions made about potential

threats and the system’s inherent security features. These assumptions are critical for

12

simplifying complex security analyses but also introduce a risk of narrowing the focus,

potentially overlooking unconventional or evolving threats. The STRIDE framework,

for instance, offers a comprehensive categorization of threats but also acknowledges

the possibility of internal threats, emphasizing a holistic approach to threat modeling

that considers both internal and external threat vectors [35, 14].

The challenge lies in balancing the simplification of complex security analyses with

the need for a comprehensive view that accounts for the adaptability and sophisti-

cation of potential attackers. For cybersecurity professionals, leveraging models like

STRIDE while remaining vigilant to their limitations involves ensuring that threat

models are periodically revisited and updated in response to the changing threat land-

scape. As an example, a tech company may initially focus on protecting intellectual

property from external cyber-espionage but, upon reassessment, realize the growing

risk of supply chain attacks, prompting an update to their threat model to include

this vector.

The process of threat modeling is inherently based on a set of assumptions that aim

to simplify the threat landscape for more manageable analysis. These assumptions,

however, can sometimes inadvertently narrow the scope of the analysis, potentially

leaving certain vulnerabilities unaddressed. This limitation is particularly evident

in models like STRIDE, which, despite its comprehensive approach to categorizing

threats, may not fully account for the dynamic nature of insider threats or the evolving

tactics of sophisticated attackers. The challenge for cybersecurity professionals is to

leverage these models while remaining vigilant to the limitations imposed by their

underlying assumptions, ensuring that threat models are periodically revisited and

updated in response to the changing threat landscape [15, 42, 81].

The evolution of threat modeling reflects the cybersecurity community’s ongoing

efforts to enhance the efficiency and comprehensiveness of this critical process. The

advent of automated tools, such as the fuzzy logic-based technique and the SDL threat

model tool, represents a significant advancement in threat modeling methodologies.

These tools incorporate sophisticated concepts like uncertainty modeling and collabo-

rative analysis, aiming to broaden the scope of threat modeling beyond the limitations

of traditional manual processes. However, the reliance on automated tools introduces

new challenges, particularly in their ability to stay abreast of the latest threats and

13

attack vectors, underscoring the need for continuous refinement and adaptation to

ensure their effectiveness [59, 72, 12].

The proliferation of diverse threat modeling methodologies, such as Abuser Stories

and attack trees, highlights the cybersecurity community’s response to the complex

and evolving nature of cyber threats. For instance, an e-commerce platform might

use Abuser Stories to imagine scenarios where attackers exploit web application vul-

nerabilities to conduct SQL injection attacks [17], while utilizing attack trees to break

down the steps of a complex cross-site scripting (XSS) attack [82]. These method-

ologies offer perspectives on threat modeling, emphasizing the importance of under-

standing the system from an attacker’s viewpoint and breaking down complex attack

scenarios into manageable components. The challenge lies in leveraging these diverse

methodologies to construct a comprehensive threat model that accurately reflects the

multifaceted nature of the threat landscape, ensuring that security measures are both

relevant and robust [1, 34, 36, 46, 70].

2.2 Trust

In computer security, the concept of trust is used to discuss how security failures in

certain components can compromise the security of other parts of a system. Fragility

can be seen as a measure of trust arising from the use of shared components, and thus

can be seen as trust metric. Here we review different approaches to trust in computer

security.

Trust is a foundational concept in computer security, going back to the earliest

work in the field. Trust is used in many contexts; here we attempt to briefly survey

them in the context of our work by highlighting work on distinct areas related to

trust in security. For a more detailed review, see [31].

Trusted vs. Trustworthy: While the concept of trust is central, the term is

used in two distinct ways: components that are trusted, and components that are

trustworthy. While closely related, their definitions are often confused. A trusted

component is one whose failure will result in the failure of the entire security of the

system; however, a trustworthy component is one that does not fail [5].

Reference Monitors, TCB: Reference monitors, components that centralize

access control decisions, are a classic example of a trusted component. If a reference

14

monitor fails, all access control decisions are potentially invalidated. The Orange

Book [48] details strategies for making trusted components trustworthy. Specifically,

it details methodologies for assurance, i.e., assuring trusted components are trustwor-

thy. Because assurance is often expensive and requires a significant amount of effort,

the parts of the system that are trusted—the trusted computing base (TCB)—should

be minimized in terms of their size and complexity. The Orange Book defined six

evaluation classes that would give successively higher levels of assurance; the later

Common Criteria [61] offered a more flexible model of assurance, supporting different

predefined protection profiles. While the concept of a TCB has been criticized as be-

ing an inappropriate basis for designing secure systems [11], it remains a foundational

idea in the field.

Critical Infrastructure: Work on trust at an organizational level has been used

to better secure critical infrastructure [8, 10], secure access controls, and secure infor-

mation communications [52, 80]. These approaches focus on the idea that to maintain

computer systems trusted in an organization and to manage system disruptions, de-

pendencies and interdependencies should be secured. Otherwise, a successful attack

on one computer system could result in large numbers of consequences which could

severely affect the entire organization or network.

One of the key motivations for determining what components or systems are

trusted is to limit the scope of what needs to be secured. Today, however, systems

rarely have a small TCB and thus many components must be considered “trusted”

even when they may not be trustworthy. As a result, most of the time a full security

analysis has to consider most if not all of a system.

2.3 Cryptography

Cryptography, a cornerstone of modern digital security, intertwines the realms of

mathematics and computer science to safeguard communication and data against

unauthorized access and tampering. This intricate field is underpinned by a set of

rigorous assumptions—ranging from the complexity of mathematical puzzles to the

unpredictability of random number generation—forming the bedrock of its defen-

sive mechanisms. Over the years, the cryptographic landscape has been marked by

15

a dynamic evolution, characterized by the proposal, scrutiny, and eventual obsoles-

cence of various algorithms and protocols in response to the advancing capabilities of

adversaries and the relentless progress of computational technology.

This narrative not only delineates the contours of what it means to be secure

in a digital age but also reflects the profound impact of knowledge creation on the

very fabric of cybersecurity. As we delve into the cryptographic domain, we traverse

a journey from foundational principles and the quest for provable security to the

nuanced interplay between theoretical assurances and practical vulnerabilities, all

the while considering the pivotal role of entropy as a measure of attack difficulty and

the complexities that transcend apparent security measures.

At the heart of cryptographic security are mathematical challenges such as factor-

ing large prime numbers, which is central to RSA encryption, or computing discrete

logarithms used in elliptic curve cryptography (ECC) [58]. These tasks are deemed

difficult based on current mathematical knowledge and computational capabilities,

forming a solid wall against attackers. For example, RSA encryption relies on the

difficulty of factoring the product of two large prime numbers, a task that becomes

exponentially harder as the size of the numbers increases [58]. This mathematical

complexity ensures that, without the private key, decrypting the information becomes

practically impossible for the attacker.

Moreover, the integrity of cryptographic defenses is deeply intertwined with the

unpredictability inherent in random number generation, a critical element for key

generation processes, cryptographic protocols, and encryption schemes. The security

of numerous cryptographic algorithms is predicated on the premise that the random

generation or prediction of keys is beyond the reach of attackers, thus safeguarding

the confidentiality and integrity of encrypted data [2].

Another pivotal assumption underpinning these defenses is the impracticality of

inverting cryptographic functions without access to the corresponding secret keys.

Functions such as hash algorithms are engineered to be unidirectional, implying that

deducing the original input from the output should be computationally unfeasible,

thereby protecting data from unauthorized reversals and upholding its integrity.

These foundational principles underpin the cryptographic safeguards that enable

secure data exchange over vulnerable digital channels, ensuring the confidentiality,

16

integrity, and authenticity of communications. However, the quest for absolute secu-

rity is perpetual, as advancements in computational power and analytical techniques

pose continual challenges to cryptographic systems. This reality necessitates a re-

lentless cycle of assessment, refinement, and evolution of cryptographic practices,

with the goal of staying ahead of potential threats. The ongoing development and

adaptation of cryptographic algorithms and protocols are crucial for maintaining ro-

bust defenses against an ever-evolving array of cybersecurity threats, illustrating the

dynamic interplay between theoretical security models and practical cryptographic

applications [58, 2].

2.4 Modeling Commonalities in Software and Systems

Feature modeling enables us to represent the commonalities and variabilites between

computer systems and their components. In this section, we discuss different feature

modeling techniques and we discuss their strengths and weaknesses.

Feature models (FMs) were first introduced and used by Kang et al. in 1990 [44].

They have since become well accepted and applied in both academic and industrial

projects. A feature model represents a combination of system characteristics called

features such that each combination corresponds to a member in a product family. A

product family is a group of products that normally share common features. More-

over, it describes the commonalities, variabilities, and dependencies between features.

The main challenges of feature modeling include the development, maintenance, and

evolution of complex and large feature models. Specifically, it is difficult to handle

unanticipated changes in large feature models [19, 57, 84]. A number of notable fea-

ture modeling methodologies and notations have been proposed and are described in

detail below.

Feature Oriented Domain Analysis (FODA) was originally introduced by

Kang et al. in 1990 [44]. FODA made an important contribution to the popularity

of model-driven analysis by proposing to use several complementary perspectives of a

domain to transfer complete information about that domain. This method shows the

common functionality and architecture of applications in a domain that is related to

requirements analysis and high-level design.

Pohjalainen [64] explained that although it is a good method, it is unclear how

17

the FODA expressions must be expanded to solve real world problems. Moreover,

the main concern is how to express domain knowledge of particular configurations,

such as default values, configuration implications, and constraints while maintaining

the simplistic approach of the core FODA expression language.

Feature-Oriented Reuse Method (FORM), an extension of FODA, is based

on commonalities and differences of applications in a domain in terms of features and

employing the analysis results to develop domain architectures and components. A

domain is described and analyzed in terms of common and different units of compu-

tation to generate various feasible configurations of reusable architectures [45]. They

agree that FORM only provides language constructs to model architectures and inte-

grate architectural components, and rigorous analysis of models can not be performed

with the method.

Reuse-Driven Software Engineering Business (RSEB) is a systematic,

model-driven aspect for large-scale software reuse introduced by Griss et al. [32].

RSEB is based on Jacobson’s object oriented (OO) Software Engineering [39] and

OO Business Engineering [37], applied to an organization working with building sets

of related applications from sets of reusable components.

RSEB explains several model-driven software development processes including Ar-

chitecture Family Engineering (develops a layered architecture), Component System

Engineering (develops systems of reusable components), and Application System En-

gineering (develops selected applications). These processes optimize for robustness

and reuse [33]; however, RSEB does not provide required domain analysis methods

including domain scoping and feature modeling. In addition, it does not explain a

systematic way to accomplish the asset development [38].

Featured Reuse-Driven Software Engineering Business (FeatuRSEB) is

a combination of FODA and RSEB and a model-driven concept proposed by Griss et

al. [33], with domain information taken from several different models showing different

views of the domain. It has three extensions including that proposed by van Gurp et

al. [77], Product Line Use case modeling for System and Software (PLUSS) [25], and

that from Riebisch et al. [65].

Although FeatuRSEB provides a strong, and easy to use, way of characterizing the

many hundreds of reuse-oriented features and use case variants [33], its features have

18

a binding time flag showing whether or not a variation point is bound at runtime. In

addition, the FeatuRSEB method does not distinguish between various availability

sites, i.e., when, where, and to whom a feature can be available.

Generative Programming (GP) is a software engineering paradigm introduced

by Czarnecki et al. [18] based on modeling software system families. It can employ

configuration information to automatically build highly customized and optimized

intermediate and end-products from elementary reusable implementation components

if it has a specific requirements specification. GP does not compete with the current

paradigms, but instead supplements them [23].

Azimi and Hosseini believe it is not clear how GP works for concurrent and real-

time systems in which there are a lot of delicate timing limitations. Such limitations

are normally addressed by careful crafting the low-level facilities of the underlying

hardware and operating system. In addition, the integration of manually and au-

tomatically created code could become too complicated. Therefore, this might be

a particularly serious challenge in the maintenance phase in which new features are

expected to be added to the system that modifies the system model, and then modi-

fies the generated code that might be a mixture of automatically generated code and

manually developed software [7].

Product Line Use case modeling for System and Software (PLUSS)

proposed by Eriksson et al. [25] is a tool to visualize variants in abstract product

family use case models. One proper use case model for the entire system family is

kept and the feature model is employed as a tool for instantiating that abstract family

model into concrete product use case models for each system built within the family.

One issue of the PLUSS feature modeling notation, compared to Czarnecki and

Kim’s more expressive Cardinality-Based notation [20], is the inability to model n..m

multiplicity. Moreover, for PLUSS to be successfully used, stronger configuration

management and product planning functions are required.

Product Family Algebra (PFA) introduced by Hofner et al. [35] is a math-

ematical structure of product families. It focuses on the mathematical structure of

an idempotent and commutative semiring. It aims capturing and analyzing the com-

monalities and variabilities of a product family. In addition, it allows mathematical

description and manipulation of product family specifications.

19

Compared to other product family specification formalisms, such as FODA and

FORM, there is a large body of theoretical results for idempotent commutative semir-

ing, and for algebraic techniques in general, with strong impact for research related

to problems of consistency, correctness, compatibility and reusability.

Cardinality-Based Feature Modeling (CBFM) proposed by Czarnecki and

Kim is a hierarchical feature model integrates a number of extensions to the original

FODA notation and each feature has cardinality [21]. CBFM is an extension of origi-

nal FODA and is more expressive to describe commonality and variability in software

product lines (SPL) with introducing cardinality concept in feature models [13].

Gomez and Ramos [30] showed the classical definition of configuration of a feature

model is an issue since this definition tries to define the configuration as a copy

mechanism instead of as an instantiating mechanism. This definition can be intuitive

when working with traditional feature models; however it can be confusing when

dealing with cardinality-based ones. Moreover, the second challenge is how to deal

with model constraints when features can be cloned in the models and such features

can have an attribute type.

PFA can help taking and analyzing the commonalities and variabilities of a prod-

uct family and allows us to perform calculations on features, products, and product

families that is not provided by other feature models. In addition, by using PFA, it

is possible to build new families, find new products, and exclude unwanted combina-

tions [3].

In this research, we employ PFA as a way to capture patterns of component reuse

in populations, as described in Chapter 5.

2.5 Security Metrics

Security metrics is a complex topic, with books [41, 28] and surveys of different areas

including systems security metrics [63], network security metrics [78], embedded se-

curity metrics [50] among others. Despite this variety, the core objective of employing

security metrics within an organization is to establish a tangible and measurable way

to assess the cybersecurity posture. This quantification allows organizations to gauge

how secure their systems are, with a higher metric indicative of a robust defense

mechanism making cyber-attacks arduous.

20

The large number of metrics arises from the numerous ways security can be quan-

tified, capturing virtually any aspect of system configuration or history that could be

related to security. Some measures are historical, such as how often vulnerabilities

have been found, how long it took for vulnerabilities to be patched, and the time

between patches being made available to being applied to a given system. Some are

empirical, arising from lab or field studies where a defense system’s ability to de-

tect malware or intrusions are tested. Others are more theoretical, such as password

strength or address space randomization entropy, where the construction of the sys-

tem should give certain security properties, but its real-world security is impacted by

many external factors. (Cryptographic security measures are virtually all theoreti-

cal.) No matter the type of metrics, however, each is only capturing a small aspect

of system security.

2.6 Moving Target Defense (MTD)

Moving Target Defense (MTD) is an innovative cybersecurity strategy designed to

increase attack difficulty by continuously changing the attack surface of a system [40].

Unlike traditional static defenses that rely on fixed configurations and predictable

behaviors, MTD introduces variability and unpredictability, making it significantly

harder for attackers to gain a foothold.

MTD operates by dynamically altering system configurations, such as IP ad-

dresses, network ports, software versions, or even code execution paths at unpre-

dictable intervals. This continuous shifting of the defensive landscape disrupts the

attacker’s reconnaissance and exploitation phases, as previously gathered intelligence

quickly becomes obsolete. By forcing attackers to adapt their strategies in real-time,

MTD increases the time, effort, and resources required to launch successful attacks.

A common example of MTD is address space layout randomization (ASLR), which

randomizes memory locations of key data areas in a program, complicating buffer

overflow attacks. Another MTD technique is network address shuffling, where server

IP addresses are periodically changed to disrupt targeted attacks. The primary benefit

of MTD is that it reduces the window of opportunity for attackers, enhancing system

resilience. However, implementing MTD can also introduce complexity in system

management and potential performance overheads, necessitating careful planning and

21

execution.

Despite its advantages, current measures of MTD effectiveness often fail to capture

the dynamic and time-sensitive nature of its security benefits. This study extends the

understanding of MTD by proposing metrics that better reflect the evolving security

landscape. For instance, while techniques like ASLR can temporarily disrupt attack

strategies, they do not fully account for the adaptive capabilities of attackers who may

eventually overcome these defenses. Cases have shown how MTD can be bypassed,

such as targeted attacks adapting to randomized environments [74], highlighting the

need for metrics that can dynamically assess MTD’s security advantages over time,

providing a more realistic evaluation of its long-term effectiveness.

2.7 Software Reuse

In the context of software engineering, reuse is a widely adopted practice for improving

efficiency and reducing development costs [55]. However, this research addresses the

critical gap in how traditional software engineering metrics fail to capture the security

risks associated with software reuse. When components are reused across multiple

systems, vulnerabilities embedded in those components can propagate, increasing the

attack surface and risk exposure. Existing metrics often overlook these risks, focusing

instead on performance or maintainability. This work introduces new metrics that

specifically account for the hidden security liabilities of reused components, thereby

providing a more comprehensive assessment of software security.

2.8 Software Diversity

Software diversity has been researched since the late 1970s [49]. A key development

was N-version programming, a method where multiple functionally equivalent pro-

grams (the “N versions”) are developed from the same initial specification. The idea

is that, since the programs are developed independently, it is unlikely that they will

share the same faults. Diversity has also been proposed as a strategy for reducing the

impact of security vulnerabilities [27]. The idea is that if systems are different, then

vulnerabilities will only impact a subset of systems at any time.

22

Many researchers have criticized software monocultures—environments with min-

imal software diversity—as being especially insecure, especially in the context of

dominant operating systems [29]. Software monocultures, however, have significant

benefits in terms of development time and administrative overhead, as fewer types

of systems translates to fewer systems for administrators to learn how to configure,

maintain, and secure.

Most past work in metrics for software diversity is focused on diversity from the

perspective of fault tolerance [51]. Larsen (2014) noted that the field of automated

software diversity needed better metrics [47]. Subsequent to this we know of two works

that present diversity metrics for security, Zhang (2016) [83] and Tong (2019) [75].

Both works are inspired by diversity metrics used in ecology, unlike ours which is

inspired by work in software engineering. The focus of Zhang’s work is on network-

level diversity using an attack graph-related approach; however, their work, although

they also examine how to determine resource similarity using file and modification-

level similarity [83]. In contrast, Tong’s work presents an attribute matrix-based

metric that captures variations such as differences in hardware, operating system,

and applications [75].

Note that the metrics presented here are different from these past works in that

1) they are inspired by work in AI and software engineering, not biology, and 2) these

metrics have explicit connections to security rather than simply being measurements

of software and system diversity.

The motivation behind our study, as detailed in the following chapter, arises from

the gaps. We aim to build upon the foundation set by our predecessors, delve deeper

into specific areas that have been less scrutinized, and contribute novel insights to

the existing body of knowledge.

Chapter 3

Motivation

In the rapidly evolving domain of cybersecurity, understanding the multifaceted na-

ture of cyber threats and the strategies to mitigate them is crucial. This knowledge

forms the bedrock upon which robust security architectures are constructed. Tradi-

tional security models often fall short in capturing the nuanced interactions between

cyber attackers and defenders. Particularly, these models struggle in areas such as the

recycling of knowledge among attackers and the processes involved in vulnerability

discovery. This chapter underscores the need for a paradigm shift, advocating for a

nuanced approach that examines the complexity of cyber attacks through the lens

of knowledge reuse and advocates for a search-based framework to understand how

attackers systematically probe for system weaknesses.

The dynamic landscape of cybersecurity is marked by a constant tug-of-war be-

tween cybercriminals and defenders. Attackers continuously evolve their strategies,

leveraging sophisticated techniques and shared knowledge to identify and exploit sys-

tem vulnerabilities. In contrast, defenders endeavor to anticipate and counteract these

threats by fortifying their systems. This interaction underlines the importance of un-

derstanding the strategies and knowledge crucial to both launching and thwarting

cyber attacks. By delving into these aspects, this discussion seeks to reveal strategic

insights that can guide the development of stronger defenses, thereby making it more

challenging for attackers to breach systems.

This foundational perspective sets the stage for a comprehensive exploration of

the essential knowledge for conducting cyber attacks, highlighting the significance of

epistemological considerations in software development, and the intricate relation-

ship between vulnerabilities, exploits, and the broader cybersecurity landscape. It

is through this lens that the chapter aims to foster a deeper understanding of the

cyber threat ecosystem. This approach not only highlights the limitations of tra-

ditional defense models but also emphasizes the need for a more sophisticated and

23

24

knowledge-driven strategy in cybersecurity.

The concept of knowledge reuse among attackers is particularly noteworthy. It

suggests that attackers do not always need to invent new techniques; instead, they

often repurpose existing knowledge and tools to discover and exploit new vulnerabili-

ties. This efficiency in knowledge recycling underscores the necessity for defenders to

adopt proactive and innovative defense mechanisms that can adapt to the evolving

tactics of attackers.

Furthermore, the proposition of a search-based paradigm for understanding the

systematic exploration undertaken by attackers to find vulnerabilities introduces a

new perspective in cybersecurity defense strategies. This model implies a more dy-

namic and iterative approach to security, where the focus is not only on defending

against known threats but also on actively searching for potential vulnerabilities that

could be exploited in the future.

This chapter advocates for a shift towards a more informed and adaptive approach

to cybersecurity. By emphasizing the importance of understanding the complexities

of cyber attacks through knowledge reuse and a systematic exploration of vulner-

abilities, it sets the groundwork for developing more resilient and effective security

infrastructures. This perspective not only challenges conventional security models

but also encourages a deeper strategic engagement with the ongoing cyber warfare,

with the ultimate goal of staying one step ahead of attackers.

3.1 Knowledge and Attacks

The capacity of an individual or group to launch a cyber attack is intrinsically linked

to their knowledge and expertise in various technical domains [71]. In the context of

this work, knowledge refers to the information and skills required to identify, exploit,

and manipulate vulnerabilities within systems. This includes understanding specific

vulnerabilities, such as memory management flaws, as well as broader techniques

like social engineering, password cracking, or network intrusion methods. Knowledge

encompasses technical details, procedural steps, and contextual information that col-

lectively enable attackers to mount successful cyber attacks. In essence, knowledge

is the intellectual and practical content that drives the actions of both attackers and

defenders in the cybersecurity landscape.

25

Sophisticated cyber attacks, such as code injections, demand a comprehensive un-

derstanding of multiple aspects of computing and software engineering. For instance,

executing a successful code injection attack requires not just familiarity with program-

ming but a nuanced comprehension of CPU architecture to influence execution flows,

an intimate knowledge of low-level operating system APIs to run arbitrary code, and

advanced techniques to navigate around security measures like address space layout

randomization (ASLR) and protections against executable space exploitation.

When delving into a specific example, such as a buffer overflow attack [24], the

depth of knowledge required becomes even clearer. In these scenarios, attackers must

first identify a buffer overflow vulnerability within the target application. This step

alone requires a detailed understanding of the application’s memory layout and the

ability to recognize potential points of failure. Following this, crafting a payload

that, upon execution, confers unauthorized access or control over the system involves

sophisticated skills in manipulating stack or heap memory and utilizing shellcode or

return-oriented programming (ROP) techniques.

It’s important to highlight that while certain knowledge areas are specific to indi-

vidual attack types, much of this expertise is transferable and can be applied across

a range of cyber threats. Skills in bypassing ASLR, for example, or in executing

shellcode, are invaluable across many forms of exploits [73, 6]. Mastery in these areas

means that attackers can leverage their existing knowledge to facilitate new attacks,

streamlining the process for launching future exploits. This ability to apply knowl-

edge flexibly not only makes it easier for attackers to adapt but also increases the

challenge for cybersecurity professionals tasked with defending against these threats.

This concept of knowledge reuse among attackers emphasizes the critical need

for a dynamic and informed approach to cybersecurity defense. Understanding the

breadth and depth of knowledge that attackers bring to their efforts can guide the

development of more effective defense mechanisms. By anticipating the strategies

and techniques that attackers might employ, cybersecurity professionals can better

protect systems against a wide array of potential threats [43].

The relationship between knowledge reuse and attacks is fundamental in cyber-

security. Attackers often leverage existing knowledge—such as techniques, scripts,

and known vulnerabilities—rather than inventing new methods for each attack. This

26

knowledge reuse significantly lowers the barriers to executing attacks, allowing even

less skilled attackers to pose serious threats. For example, once a vulnerability like

a buffer overflow is understood and exploited, the specific exploit knowledge can be

reused across different systems with similar vulnerabilities. This reuse of knowledge

enables rapid and widespread exploitation, amplifying the impact of attacks.

Examples of knowledge reuse in attacks are prevalent across various threat land-

scapes:

• Script Kiddies: These are individuals with limited technical skills who rely on

pre-existing scripts or tools created by more knowledgeable attackers. Script

kiddies exemplify knowledge reuse by using publicly available exploits to launch

attacks, often without fully understanding the underlying vulnerabilities or

methods.

• Worms: A classic example of knowledge reuse is seen in worms, such as the

Morris Worm or WannaCry, which exploit known vulnerabilities to propagate

autonomously. These worms reuse exploit code and strategies to infect multiple

systems rapidly, demonstrating how prior knowledge is encoded into malware

that can operate without human intervention.

• Advanced Persistent Threats (APTs): APT groups often use previously suc-

cessful attack techniques across multiple campaigns. For instance, once an APT

discovers a zero-day vulnerability, they may continue to exploit that vulnera-

bility across different targets until it is patched, continuously reusing the same

knowledge to maximize their impact.

These examples illustrate that knowledge reuse is not confined to a single level

of sophistication; it is a strategic advantage that attackers at all levels exploit to

optimize their efforts and extend their reach.

In designing cybersecurity defenses, it’s crucial to consider not just the technical

countermeasures but also the human element involved in these attacks [71]. Educa-

tion and training in cybersecurity must, therefore, encompass a broad spectrum of

knowledge, from the specifics of coding and system architecture to the psychological

27

and strategic aspects of cyber warfare. Only through a comprehensive and multi-

faceted approach can the cybersecurity community hope to stay one step ahead of

those seeking to exploit technological vulnerabilities for malicious purposes.

This detailed exploration into the attacker’s knowledge base underscores the im-

portance of continuous learning and adaptation in the field of cybersecurity. As

attackers evolve and refine their techniques, so too must the defenses designed to

thwart them. This ongoing cat-and-mouse game between attackers and defenders

highlights the dynamic nature of cybersecurity and the constant need for innovation

and vigilance in the digital age.

A theoretical approach is reasonable and necessary for this work because it al-

lows us to abstract and generalize the dynamics of knowledge reuse in a way that

is not limited to specific technologies or fleeting vulnerabilities. By modeling the

attacker-defender interaction through formal frameworks, we can identify fundamen-

tal patterns and principles that apply across diverse contexts. This approach provides

a structured way to analyze how knowledge reuse affects attack strategies and defen-

sive postures, offering insights that are robust against the rapidly evolving nature of

technology. Theoretical models serve as a foundation for developing practical tools

and strategies that can adapt to new threats, guiding the design of resilient cyberse-

curity systems even as the landscape changes.

3.2 Epistemology and Software Development

Epistemology, or the philosophical study of knowledge, has a profound impact on

software development and cybersecurity, shaping how practitioners understand, uti-

lize, and protect information within digital systems [60]. In software development,

epistemology is central to the process of creating, testing, and maintaining software.

This field requires a deep understanding of abstract concepts such as algorithms,

data structures, and system architectures. Developers must navigate the intricate

landscape of existing codebases, anticipating how changes may affect overall system

behavior. This task is inherently epistemic, as it involves the manipulation and ap-

plication of knowledge in various forms.

The process of software testing serves as a clear example of applied epistemology

in technology [56]. It resembles the scientific method, involving hypothesis formation

28

about software behavior under diverse conditions, followed by systematic experimen-

tation to validate these hypotheses. Through unit testing, integration testing, stress

testing, and other methods, developers engage in an epistemic cycle of theory, ex-

perimentation, and revision. This iterative process is crucial for ensuring software

correctness, security, and performance, mirroring the broader scientific pursuit of

knowledge through empirical inquiry.

In the domain of cybersecurity, the significance of epistemology is magnified. Se-

curity experts must grapple with the knowledge embedded within software systems as

well as the tactics and strategies employed by attackers [54]. This dual focus requires

a comprehensive understanding of both the knowledge that constitutes a system (e.g.,

functionalities, vulnerabilities) and the ways in which this knowledge can be lever-

aged, altered, or compromised by potential attackers. Cybersecurity thus emerges as

a battleground over knowledge, with defenses designed around anticipatory knowledge

of potential attacks and attackers continuously seeking to extend their understanding

to circumvent these protections.

This epistemic perspective illuminates the continuous arms race between cyber-

security professionals and attackers. Defenders aim to build and maintain secure

systems by applying their understanding of potential vulnerabilities and attack vec-

tors, while attackers exploit gaps in this knowledge to breach defenses. The dynamic

and ever-evolving nature of this contest underscores the importance of ongoing edu-

cation and research in the field. For both sides, success is predicated on the ability

to acquire, apply, and innovate upon knowledge, making epistemology a foundational

aspect of cybersecurity [5].

Moreover, the epistemic challenges in software development and cybersecurity

highlight the importance of methodologies and tools that can aid in the acquisition

and application of knowledge [79]. From code analysis tools that help developers

understand complex systems to advanced threat intelligence platforms that enable

security professionals to predict and prevent attacks, technology plays a crucial role

in mediating the epistemic activities of professionals in these fields.

The intersection of epistemology and technology, particularly in software devel-

opment and cybersecurity, is a rich area of inquiry and practice [26]. By examining

the ways in which knowledge is created, shared, and contested within these domains,

29

professionals can gain deeper insights into the complexities of digital systems and the

ongoing efforts to secure them. This understanding not only enhances the effective-

ness of technical solutions but also contributes to the broader discourse on the nature

of knowledge and its role in the modern world.

3.3 Vulnerabilities and Exploits

Within the cybersecurity landscape, the understanding and management of vulner-

abilities and their associated exploits are of paramount importance. A vulnerability

represents a defect or weakness within a system that can be exploited by an at-

tacker to undermine the system’s integrity, availability, or confidentiality [73]. Con-

versely, an exploit is essentially a tool—whether it be software, data, or a series of

commands—that utilizes a vulnerability to induce undesired system behavior, often

resulting in unauthorized control over system resources or access to confidential in-

formation.

The journey of a vulnerability from discovery to resolution is complex and multi-

faceted. Initially, vulnerabilities may be unearthed by security researchers, malicious

attackers, or inadvertently by end-users during routine usage [68]. Upon identifica-

tion, the next step often involves the development of an exploit that can harness

the identified vulnerability to launch attacks. This phase of exploit development is

critical as it transforms theoretical vulnerabilities into practical tools for attackers.

Subsequently, these exploits may be disclosed publicly, prompting vendors to create

and disseminate patches or mitigation strategies. However, there exists a window of

opportunity for attackers between the disclosure of an exploit and the widespread

application of patches, during which the exploit can be used to target unpatched or

slowly updated systems [67].

An illustrative example of the significant impact that knowledge of vulnerabili-

ties and exploits can have in the cybersecurity realm is the Heartbleed bug. This

critical vulnerability in the OpenSSL cryptography library enabled attackers to read

the memory of affected servers [66]. This breach could reveal highly sensitive data,

including private keys, user passwords, and personal information. OpenSSL’s pivotal

role in securing web communications amplified the consequences of Heartbleed, high-

lighting the crucial nature of timely knowledge regarding vulnerabilities and the swift

30

development of working exploits.

Heartbleed exemplified the urgency and necessity of a proactive approach in the

cybersecurity community towards vulnerability management [9]. It underscored the

ongoing arms race between those seeking to protect digital assets and those aiming

to exploit vulnerabilities for malicious purposes. The incident also emphasized the

importance of rapid response mechanisms, the value of open communication between

vendors and the security community, and the critical need for regular system updates

and patches by end-users.

The dynamics surrounding the discovery, exploitation, and mitigation of vulner-

abilities underscore a fundamental aspect of cybersecurity: knowledge is power [76].

The timely identification of vulnerabilities, coupled with the swift development of

effective exploits or patches, can significantly influence the security posture of digital

systems. As such, continuous vigilance, research, and collaboration within the cyber-

security community are essential to defend against the ever-evolving threat landscape.

3.4 Modeling Knowledge Reuse Dynamics

In the ongoing battle between cybersecurity defenders and attackers, the strategic

reuse and adaptation of knowledge is a central tactic. This conflict is characterized

by a continuous cycle where both attackers and defenders leverage their cumulative

knowledge—attackers to find new vulnerabilities and defenders to seal these breaches

and fortify systems against future incursions. This iterative process can be concep-

tualized through the framework of search-based strategies, which encapsulates how

attackers methodically explore a system’s architecture for exploitable weaknesses—a

structure initially crafted by defenders to be as impenetrable as possible [69].

Attackers, drawing upon their experiences and the collective intelligence of their

communities, often recycle and refine tactics from past breaches. They employ a

variety of probing techniques akin to a sophisticated search algorithm, navigating

through the system’s architecture in search of any vulnerability that can be lever-

aged [62]. Each point of weakness, once found, provides a potential entry point or

method of attack. The evolution of these attack strategies is driven by a continuous

feedback loop, where each attempt, whether successful or thwarted, contributes to

the attacker’s knowledge base and strategic approach.

31

Conversely, defenders are tasked with the complex challenge of modifying the

search space—the theoretical landscape of potential attack vectors—by deploying se-

curity measures designed to obscure, relocate, or entirely eliminate vulnerabilities [5].

This not only makes the attacker’s search more arduous but also requires a deep un-

derstanding of potential attack methodologies and the foresight to predict where new

vulnerabilities may emerge.

The interplay between attackers’ search strategies and defenders’ architectural de-

signs can be analyzed and modeled using AI and machine learning techniques [16].

These technologies offer a sophisticated means of simulating potential attack paths

and identifying system vulnerabilities before they can be exploited. By applying ma-

chine learning models, defenders can gain valuable insights into likely attack vectors,

enabling them to reinforce system defenses preemptively. This approach facilitates a

more proactive defense posture, potentially staying one step ahead of attackers by an-

ticipating their moves and strengthening vulnerabilities before they can be exploited.

This modeling and anticipatory strategy underscore a crucial aspect of modern

cybersecurity: it is not enough to react to attacks as they occur. Instead, a pre-

dictive, knowledge-based approach is essential for maintaining robust security. By

understanding the cyclical nature of knowledge reuse among attackers and leveraging

advanced modeling techniques, cybersecurity professionals can better protect against

the dynamic and ever-evolving threats posed by malicious actors. This proactive

stance is critical in an era where the sophistication and frequency of cyberattacks

continue to escalate, demanding equally sophisticated and dynamic defense mecha-

nisms.

3.5 Search and Knowledge in AI

The concept of search AI offers a powerful framework for generating knowledge, es-

pecially in the domain of cybersecurity. AI search algorithms embark on a journey

through extensive spaces of possibilities, aiming to unearth solutions to complex prob-

lems. This process mirrors the approach of attackers who meticulously explore various

methods and strategies to identify vulnerabilities within systems.

The evolution of search in AI is highlighted by the development of sophisticated

algorithms designed to navigate complex problem spaces with efficiency and accuracy.

32

Notable examples include the A* algorithm, which is renowned for its effectiveness

in pathfinding and graph traversal problems, genetic algorithms that excel in solving

optimization issues by mimicking the process of natural selection, and deep learning

algorithms that have revolutionized pattern recognition through their ability to learn

from large datasets [53].

These advancements illustrate a fundamental principle of AI: by methodically

searching through a given space, it is possible to generate new knowledge and discover

solutions that might not have been immediately apparent. This capability of AI to

sift through vast amounts of data and identify patterns can be particularly beneficial

in the context of cybersecurity.

In cybersecurity, the search space encompasses an array of potential attack vec-

tors, system vulnerabilities, and techniques for exploitation. By leveraging AI-driven

search techniques, cybersecurity experts can effectively simulate the exploratory pro-

cesses employed by attackers. This proactive approach allows for the identification

and mitigation of vulnerabilities before they can be exploited, enhancing the security

of systems.

Moreover, AI-driven search methods in cybersecurity facilitate a more dynamic

and adaptive defense mechanism. For instance, machine learning models can con-

tinuously learn from new data, improving their ability to predict and prevent future

attacks [22]. This ongoing learning process ensures that cybersecurity defenses evolve

in tandem with emerging threats, maintaining a strong security posture against an

ever-changing landscape of vulnerabilities.

Furthermore, the integration of AI search techniques in cybersecurity tools en-

ables automated and efficient scanning of networks and systems for vulnerabilities,

reducing the time and resources required for manual testing. This automation not

only accelerates the vulnerability identification process but also allows cybersecurity

professionals to focus on developing and implementing robust defense strategies.

The application of AI search algorithms in cybersecurity represents a strategic

advancement in the fight against cyber threats. By harnessing the power of AI to

systematically explore and analyze potential security weaknesses, cybersecurity pro-

fessionals can stay ahead of attackers, securing digital infrastructures against an array

of vulnerabilities. This fusion of AI and cybersecurity underscores the critical role of

33

innovative technologies in safeguarding information and systems in the digital age.

3.6 Search and Security

In cybersecurity, the analogy of attackers as search algorithms provides a compelling

framework for understanding the dynamics of cyber threats. Attackers systematically

sift through the search space of a system’s architecture, employing their accumulated

knowledge and experience to uncover and exploit vulnerabilities. This methodical

search is not random but targeted, with attackers directing their efforts towards areas

most susceptible to compromise, thereby optimizing their chances of success.

On the flip side, defenders possess the capability to intricately alter this search

space through the deployment of various security measures. Techniques such as en-

cryption, which scrambles data into an unreadable format without a specific key;

obfuscation, which deliberately makes code or system configurations confusing to in-

terpret; and segmentation, which divides network resources into separate segments

to contain potential breaches, collectively serve to complicate the attackers’ search

efforts. These strategies effectively increase the cost of the search for attackers, neces-

sitating greater time, resources, and specialized knowledge to navigate and identify

exploitable weaknesses.

The strategic interplay between attackers’ search strategies and defenders’ modi-

fications to the search space underlines the importance of understanding the methods

and motivations behind cyber attacks. By comprehensively analyzing the tactics em-

ployed by attackers, cybersecurity professionals can more accurately predict potential

attack vectors and strengthen their defenses accordingly. This proactive and informed

approach to cybersecurity leverages the principles of search and knowledge dynamics,

granting defenders a strategic edge in safeguarding against cyber threats.

Moreover, the continuous evolution of both attack strategies and defense mecha-

nisms highlights the cat-and-mouse nature of cybersecurity. As attackers refine their

methods and discover new vulnerabilities, defenders must similarly advance their

techniques and tools to protect against these emerging threats. This ongoing cycle

necessitates a vigilant and adaptive security posture, emphasizing the critical role of

continuous learning, threat intelligence sharing, and the implementation of advanced

security technologies.

34

The conceptual framework of search in cybersecurity provides valuable insights

into the tactics and countermeasures at play in the digital security landscape. By

viewing attackers as sophisticated search algorithms and understanding the ways in

which the search space can be manipulated by defenders, cybersecurity professionals

can devise more effective strategies to thwart cyber threats. This understanding not

only enhances the security of individual systems but also contributes to the broader

goal of creating a safer and more resilient digital environment.

3.7 Formalizing Knowledge Reuse

To deepen our understanding of cybersecurity dynamics, the development and utiliza-

tion of formal models for knowledge reuse is pivotal. These models offer an abstract

yet precise representation of how knowledge, once acquired, can be repurposed and

applied to novel contexts, such as varying attack scenarios or defense strategies. This

abstract representation is crucial for encapsulating the essence of knowledge transfer-

ability within the cybersecurity domain.

One method to formalize knowledge reuse involves constructing models that de-

lineate the relationships between distinct pieces of knowledge and their potential ap-

plications across diverse situations. For example, a model could illustrate the process

by which understanding a particular exploit technique might be abstracted and then

applied to exploit analogous vulnerabilities in disparate systems or software. This

kind of modeling not only aids in generalizing specific knowledge for broader appli-

cations but also enhances the efficiency of both offensive and defensive cybersecurity

strategies by leveraging past insights for future engagements.

Moreover, an essential facet of formalizing knowledge reuse is the development

of models that encapsulate the progression of knowledge over time. This includes

how attackers and defenders adapt and evolve through continuous learning from each

cyber engagement. Such models are instrumental in forecasting the impact of newly

acquired knowledge from a cyber attack or defensive maneuver on subsequent actions

and strategies employed by both attackers and defenders. This predictive capability

is vital for preempting adversary moves and fortifying cybersecurity measures.

35

Formalizing the reuse of knowledge transitions intuitive understandings into ex-

plicit, actionable insights. These insights, encapsulated within models, become invalu-

able resources for security analysts. They enable the prediction of attacker behaviors,

the proactive identification of vulnerabilities, and the formulation of potent defense

mechanisms, thereby elevating the strategic planning and response capabilities within

cybersecurity operations.

The exploration into the dynamics of knowledge in cybersecurity, spanning from

the basic prerequisites of cyber attacks to the sophisticated formal modeling of knowl-

edge reuse, emphasizes the indispensable role of comprehending and anticipating ad-

versary strategies. As the cybersecurity landscape perpetually shifts, propelled by

technological progress and the creativity of attackers, possessing an in-depth under-

standing of these dynamics becomes increasingly crucial.

Leveraging AI and search-based models presents promising pathways to bolster

our defensive posture, offering structured methodologies for vulnerability detection

and defense strengthening. Embracing such innovative approaches and promoting

collaboration within the cybersecurity community are key steps towards constructing

more robust digital infrastructures. These infrastructures are better equipped to

withstand the dynamic threats posed by constantly evolving adversaries.

In essence, the cybersecurity arms race transcends the technological realm to

encompass an intellectual struggle where knowledge, its acquisition, refinement, and

strategic application, form the core of cybersecurity endeavors. Moving forward, our

effectiveness in protecting digital assets will depend on our vigilance, adaptability,

and informed strategic foresight, ensuring we remain a step ahead in the ongoing

dance between attackers and defenders.

In the upcoming chapter, we will delve into the formalization of exploring a domain

of possibilities, commonly referred to as a search space. We will elucidate the system-

atic approach of navigating this space to uncover solutions that effectively challenge

and invalidate the underlying assumptions. This detailed exploration will provide a

comprehensive understanding of the problem-solving process in this context.

Chapter 4

Modelling Attack Difficulty Using Knowledge Reuse

In this chapter, we present a model that shows the dynamics of computer security

are best understood as a pattern of knowledge reuse, one in which attackers develop

knowledge of how to compromise systems. Most importantly, we believe our model

can help us to understand why defenders continue to lose and what must change if

we are to thwart attackers.

An attacker has to create knowledge in order to develop an exploit and attack a

system, but how much knowledge has to be created and how we model the knowledge

creation? In AI knowledge creation is modeled as search over an appropriate search

space. Here, we are doing the same thing. Search leads to knowledge. We define

Attack as search for any form of malicious action and Attacker as an agent who

performs the search.

Attackers always build knowledge based on past knowledge like personal experi-

ence or some works someone else has been done. The more background they have the

easier knowledge creation is. Knowledge reuse becomes a restriction on the search

space. Search spaces are used in security most commonly in cryptography. In this re-

search, we are generalizing this to apply to all security things by using more abstract

search space.

We think it is an abstract search space because it has to represent all possible

attacks. For example, for buffer overflow attack, an attacker has to have the search

space of all possible address offset. Address space randomization does not increase

the search space, but it reduces the ability to do knowledge reuse because an attacker

cannot run it on one system and say I have the address and use it on next system.

4.1 Definitions

In this section, we begin by defining some terms that will be used in our model. We

begin by understanding the foundational concept of an attack search space.

36

37

Imagine you have a house. The attack search space for a burglar would be all

the possible entry points into your house—the front door, back door, windows, the

chimney, etc. In the context of cybersecurity, if your house is a computer system or

network, the attack search space would include vulnerabilities in the software, weak

passwords, open ports, and so on.

The attack search space is a term used in cybersecurity to describe all the possible

ways an attacker could attempt to compromise a system. It’s essentially the universe

of all potential avenues an attacker might explore to achieve their malicious intent.

Definition 4.1 (Attack Search Space). Let A be the attack search space. Each

element a ∈ A represents a possible attack vector. For instance, in our house analogy,

a1 might be the front door, a2 the back door, and so on.The size of this search space

is represented by |A|, which is the number of elements in the set A.

A = {a1, a2, ...} (4.1)

To better visualize the concept of the attack search space, let’s consider a practical

example.

Example 4.1 (Attack Search Space). Consider a simple login form. If an attacker

wants to brute-force the password, the attack search space consists of all possible pass-

word combinations. If the password is a 4-digit PIN, then |A| = 104 = 10, 000 possible

combinations.

Example 4.2 (Buffer Overflow Vulnerabilities). Consider a software application that

takes user input without properly limiting its size. The attack search space for exploit-

ing buffer overflow vulnerabilities in this application involves finding inputs that not

only exceed the buffer’s allocated space but also successfully execute arbitrary code.

Unlike a finite set of PIN combinations, this space includes a vast range of inputs

varying in length, content, and structure.

Example 4.3 (Authentication Verification Errors). Consider a web application with

multiple endpoints requiring user authentication. The attack search space related to

authentication verification errors encompasses all possible ways an attacker might

bypass authentication or escalate privileges without valid credentials. This space is

38

abstract and multifaceted, involving various methods such as session hijacking, forging

authentication tokens, exploiting logic flaws, and more.

The attack search space is a crucial concept in cybersecurity. By understanding

the size and scope of this space, defenders can better prepare and protect systems,

and attackers can determine the feasibility of their potential methods. The bigger the

attack search space, the harder (and often longer) it generally is for an attacker to

successfully compromise a system by brute force methods. However, attackers often

look for ways to reduce this space by finding vulnerabilities or using other intelligent

methods.

The mathematical assumptions underlying our model involve several key elements:

• Attack Search Space Assumption: We assume that the attack search space A

encompasses all possible attack vectors, represented as discrete elements within

the set. Each vector corresponds to a distinct combination of method, target,

and conditions. This abstraction helps generalize attack strategies beyond spe-

cific technical details, allowing us to model the difficulty of attacks in a broad,

systemic way.

• Independence of Vectors: The model assumes that each attack vector is inde-

pendent, meaning the success of one vector does not directly affect the others.

This independence simplifies calculations but also highlights a limitation—real-

world scenarios might have interdependencies between vulnerabilities, which

this model does not directly account for.

• Probabilistic Outcomes: Probabilities assigned to each vector reflect the like-

lihood of success given no prior knowledge, equating to a uniform distribution

without additional intelligence guiding the attacker. Adjustments in probability

due to knowledge reuse reflect a concentration of attack effort in known areas,

thus reducing the effective size of the attack search space.

These assumptions provide a foundational framework but also present boundaries

where real-world complexities might diverge from the modeled scenarios, particularly

in cases where dependencies between vectors or evolving attacker strategies might

play a significant role.

39

Building on the concept of the attack search space, we now delve into the specific

pathways or methods an attacker might employ, termed as attack vectors.

Definition 4.2 (Attack Vector). An Attack Vector is a representation of the way

or approach an attacker uses to exploit a system. It encapsulates three main elements

that are crucial to understanding the nature of the attack.

Given an attack vector a:

a = (M,T,E) (4.2)

Where

• M represents the method or technique used by the attacker. It’s the how of the

attack.

• T denotes the target of the attack. It’s the where or what of the attack.

• E encapsulates the conditions that need to be in place for the attack to be suc-

cessful. These could be vulnerabilities in the system, user behaviors that can be

exploited, or even external conditions like a natural disaster that an attacker is

taking advantage of.

To further illustrate this idea, let’s examine a real-world scenario involving an

SQL Injection attack.

Example 4.4 (Attack Vector). In the provided example, we are looking at one of the

most common web attack vectors: the SQL Injection attack.

• M: The method being used by the attacker is SQL Injection. This technique

involves injecting malicious SQL code into input fields to manipulate or query

the database in unintended ways.

• T: The target of this attack is the Web application’s user login page. This means

the attacker is specifically trying to exploit the login page of a web application,

possibly to gain unauthorized access.

40

• E: The exploit conditions here are that the application doesn’t sanitize user

input, and the database directly processes the raw input. This is a common

vulnerability in web applications where user inputs are not checked or sanitized

for malicious content before being processed. If an application doesn’t sanitize

inputs, it might execute malicious SQL code provided by the attacker.

For this particular attack vector, we can represent it as:

aSQLinjection = (SQL Injection,User login page, No input sanitation)

Understanding attack vectors is crucial in cybersecurity. It not only helps in

identifying how an attacker might exploit a system but also in devising strategies to

defend against such attacks. By breaking down an attack into its method, target, and

exploit conditions, defenders can better understand the threat and work on specific

countermeasures.

It is important to distinguish between different forms of attack vectors and how

they are represented in our model. Attack vectors are defined by their unique combi-

nation of method, target, and conditions rather than minute variations in execution,

such as different buffer overflow addresses. For instance, multiple buffer overflow ex-

ploits targeting different memory addresses are not considered distinct attack vectors

in this context; rather, they represent variations within a single vector defined by the

method (buffer overflow), the target (vulnerable application), and the exploit con-

ditions (input size and content). This distinction ensures that the model accurately

captures the strategic choices of attackers rather than inflating the search space with

variations that do not fundamentally change the attack pathway.

Now that we’ve explored the specifics of attack methods, it’s crucial to consider

the knowledge attackers might possess about vulnerabilities, and how they might

reuse this knowledge.

Definition 4.3 (Attacker’s Knowledge). The attacker’s knowledge about specific

vulnerabilities refers to the information they have about potential weaknesses in the

system. Let K be the set of vulnerabilities the attacker knows. Each vulnerability

k ∈ K represents a specific weakness in the system.

41

Definition 4.4 (Knowledge Reuse). Reusing knowledge means leveraging insights

or methods from past attacks for new attacks. Knowledge reuse can be formalized as a

function R, which maps a known vulnerability to potential attack vectors in the search

space.

K = {k1, k2, ...} (4.3)

R : K → A (4.4)

To contextualize the concept of knowledge reuse, let’s envision a scenario where

an attacker leverages vulnerabilities from past exploits.

Example 4.5 (Knowledge Reuse). Imagine a hacker who, in the past, exploited a

vulnerability in System A. Now, they come across System B and recognize that it

has the same vulnerability. Instead of starting from scratch, the hacker can reuse the

knowledge from their past exploit on System A to quickly and efficiently attack System

B.

This is analogous to a locksmith who knows how to pick a specific type of lock.

If they encounter the same lock type on a different door, they can use their prior

knowledge to open it without having to figure out the mechanism all over again.

The idea of an attacker’s knowledge and knowledge reuse underscores the impor-

tance of regularly updating systems and fixing known vulnerabilities. If attackers can

reuse their methods from past exploits, it makes their job easier and faster. On the

defense side, understanding these concepts helps in predicting potential threats and

deploying appropriate countermeasures. If a vulnerability is known and fixed in one

system, it’s essential to ensure that other similar systems are also patched to prevent

knowledge reuse by attackers.

With the understanding of how knowledge reuse functions, we now investigate its

direct implications on the nature of the attack search space.

Proposition 4.1 (Reduction of Attack Search Space via Knowledge Reuse). Knowl-

edge reuse reduces the size of the search space an attacker needs to explore.

42

Proof. Let A denote the full attack search space and K represent the set of known

vulnerabilities within this space. The application of knowledge reuse in identify-

ing attack vectors reduces the search space from A to a smaller subset A′, where

A′ = R(K) and R maps known vulnerabilities to their respective attack vectors.

This reduced search space A′ has a size that is less than or equal to the size of A,

formally expressed as |A′| ≤ |A|. Moreover, the subset A′, being informed by prior

knowledge (K), possesses a higher density of exploitable vulnerabilities compared to

the remaining portion of A not covered by K.

• Initial Assumption: Assume the full attack space A consists of all possible

attack vectors, whileK consists of known vulnerabilities. The mapping function

R : K → A′ translates these vulnerabilities into specific attack vectors, forming

the reduced attack space A′.

• Reduction of Search Space: By definition, A′ is constructed solely from the

known vulnerabilities K, which implies A′ is a subset of A. Thus, by construc-

tion, |A′| ≤ |A|.

• Inside K-informed Space (A′): By focusing on K, attackers leverage histor-

ical data and known vulnerabilities, which are inherently more likely to be

exploitable due to their established nature. Hence, the density of viable attack

vectors within A′ is higher, making the search more efficient and likely to yield

fruitful results.

• Outside K-informed Space: While vulnerabilities can indeed exist outside of K,

the absence of prior knowledge or evidence suggesting their exploitability means

that the search within A \A′ (the portion of A not included in A′) is more akin

to searching in the dark. The probability of discovering a new vulnerability in

this area is lower, given the lack of targeted direction, making this effort less

efficient and more time-consuming.

• Probabilistic Advantage: The choice to operate within A′ is not just about re-

ducing the search space but also about maximizing the probability of finding

exploitable vulnerabilities. The knowledge-driven approach inherently concen-

trates efforts where success is more likely, thus optimizing the search process.

43

Therefore, knowledge reuse effectively reduces the attack search space to a more

manageable and potentially more fruitful subset A′, where the efficiency of identifying

new vulnerabilities is enhanced due to the higher density of known vulnerabilities.

This strategic narrowing not only makes the attacker’s job quicker but also more

efficient, underlining the proposition’s premise.

To further emphasize the effects of knowledge reuse on the attack search space,

let’s consider an illustrative example.

Example 4.6 (Impacts of Knowledge Reuse). Imagine an attacker has previously

exploited 5 different systems. From these exploits, they’ve learned about 5 vulnerabil-

ities, each corresponding to a specific attack vector. When faced with a new system,

instead of considering every possible method of attack (the full search space A), they

can narrow their focus to just these 5 known vulnerabilities.

So, even if the total number of potential attack vectors in the full search space

A is, say, 1000, by relying on their previous knowledge, the attacker reduces their

search space to just 5. This is a drastic reduction and showcases the efficiency gained

through knowledge reuse.

The concept of knowledge reuse and its impact on the attack search space em-

phasizes the dynamic nature of cybersecurity. As attackers gain more experience

and knowledge, they can become more efficient in their malicious endeavors. For

defenders, understanding this dynamic is crucial.

Having established the foundational concepts of the attack search space and the

role of attacker’s knowledge, we now transition to understanding the mathematical

relationships governing these concepts, starting with the expected value of success in

a scenario where an attacker has no prior knowledge.

Proposition 4.2 (Expected Success Rate Without Prior Knowledge). If an attacker

selects vectors at random without any prior knowledge of their success rates, the ex-

pected success rate for a single random choice is 1
n
.

Proof. Consider an attack scenario with n distinct attack vectors. Let S(ai) denote

the success of selecting attack vector ai, with S(ai) = 1 if the attack is successful,

44

and S(ai) = 0 otherwise. The probability of any attack vector ai being successful, in

the absence of any prior knowledge, is uniformly distributed, such that P (ai) =
1
n
for

all i ∈ 1, 2, ..., n.

• Expected Value Calculation: The expected value of success, denoted as E(Success|K =

∅), can be calculated as the sum of the probabilities of success for all attack

vectors multiplied by their respective success values:

E(Success|K = ∅) =
n∑

i=1

P (ai)S(ai) (4.5)

Given that S(ai) = 1 for a successful attack and 0 for failure, and the probability

of any vector being successful is 1
n
, the formula simplifies to:

E(Success|K = ∅) = 1

n
× 1 + (n− 1)(

1

n
× 0) =

1

n
(4.6)

Simplifying further, we find that:

E(Success|K = ∅) = 1

n
(4.7)

Thus, it is proven that without any prior knowledge (K = ∅) to inform their

decisions, an attacker’s expected value of success when randomly choosing from n

attack vectors is 1
n
, highlighting the challenges faced when attempting to succeed

without targeted knowledge or strategies in a security context.

The Expected Value of Success without Knowledge quantifies the likelihood of an

attacker’s success when they’re just guessing. This concept underscores the impor-

tance of knowledge and strategy in both offensive and defensive cyber operations.

The more an attacker knows, the more they can refine their approach and increase

their chances of success. Conversely, the more defenders can obfuscate, vary, and

secure their systems, the closer they can push an attacker’s chances to this random

guessing scenario, making breaches less likely.

45

When an attacker possesses knowledge about the system vulnerabilities, the ex-

pected success rate changes. Let’s delve deeper into this scenario.

Proposition 4.3 (Expected Success Rate with Knowledge Reuse). If an attacker

knows one vector has a higher success rate than the uniform rate of the others, the

expected success rate is:

Eaj(Success|K ̸= ∅) = P (aj) + (1− P (aj))× E(Success|K = ∅) (4.8)

where E(Success|K = ∅) is the expected value of success without knowledge, as

defined previously.

Proof. Assume there are multiple attack vectors available to an attacker, among which

one specific vector aj has a known higher success rate, P (aj), compared to the others.

The rest of the vectors share the baseline success rate E(Success|K = ∅). Given that

the attacker has knowledge about aj’s higher probability of success:

• The attacker uses aj with probability P (aj). If aj is successful, the attack

succeeds.

• If aj fails, which occurs with probability 1−P (aj), then the attacker resorts to

using other vectors, and the success rate for these vectors is E(Success|K = ∅),
the average success rate without specific knowledge.

• The total expected success rate when choosing to start with aj can be modeled

as the sum of the success probability of aj itself and the probability that aj fails

multiplied by the average success rate of the remaining attack vectors. Formally,

this is written as:

Eaj(Success|K ̸= ∅) = P (aj) + (1− P (aj))× E(Success|K = ∅) (4.9)

This reflects the direct impact of choosing aj based on its known higher success

rate. The mention of reverting to random selection would only apply if considering

46

multiple attempts beyond the initial, informed choice of aj, which falls outside the

primary scope of enhancing expected success through specific knowledge.

Imagine you’re playing a game of darts. Without any knowledge, you’d just throw

darts randomly, hoping to hit the bullseye (which has a success rate of 1
n
, where n is

the total number of sections on the dartboard).

Now, let’s say someone gives you a tip that aiming at a specific section increases

your chances of hitting the bullseye. Armed with this knowledge, you’d focus on

that section, significantly increasing your success rate. This new success rate for that

section is P (aj).

However, if for some reason you decide to throw darts randomly at other sections

(not the one you have knowledge about), your success rate for those sections would

be the original 1
n
.

Combining the two strategies, your overall success rate becomes the sum of the

success rate from the tip (knowledge) and the success rate from random throws.

The Expected Value of Success with Knowledge highlights the power of informa-

tion. When an attacker has specific knowledge about a system, they can significantly

boost their chances of success. This is why, in cybersecurity, keeping vulnerabilities

secret or undisclosed can be dangerous. Once knowledge of a vulnerability becomes

public, it can be exploited by attackers who now have an increased expected success

rate.

In many scenarios, it is unlikely for an attacker to exhaustively search the entire

attack search space. Attackers often stop as soon as they find a successful vector. For

this, we need to consider the cumulative probabilities of finding at least one successful

vector as we go through n trials.

Proposition 4.4 (Expected Trials to Success Without Prior Knowledge). If an at-

tacker selects vectors randomly and without replacement, stopping upon finding a

successful vector, the expected number of trials before finding a successful vector is

approximately n
2
.

Proof. Assume an attacker operates within a search space of n unique attack vectors,

with each vector having an equal and independent chance of being successful. The

process of selection is random and without replacement, meaning each vector is only

47

tried once, and the sequence of selections does not influence the probability of success

for the remaining vectors.

• Average Effort Calculation: Since the attacker stops after finding a successful

vector, we can model this scenario as a uniform distribution of success across

all attempts, with the assumption that any vector has an equal chance of being

the successful one. This situation can be likened to the process of searching for

a specific item in a list of n items where the order is unknown.

• Probability of Success on a Given Trial: On any given trial, the probability of

success is evenly distributed across all remaining vectors. Therefore, the chance

of finding a successful vector on the first trial is 1
n
, on the second trial (after

one failure) is 1
n−1

, and so on, until a success is achieved.

• Expected Number of Trials: The expected number of trials before success can be

viewed as the average position of a successful vector in a randomly ordered list

of n vectors. Given the symmetry of the situation, with no vector being more

likely to be successful than any other from the outset, the expected position is

the middle of the list, yielding:

E(T) =
n+ 1

2
(4.10)

However, for large n, the difference between n
2
and n+1

2
becomes negligible,

allowing us to approximate E(T) as n
2
.

Thus, in the absence of specific knowledge guiding the selection of attack vectors,

an attacker randomly selecting attack vectors without replacement will, on average,

find a successful vector after approximately n
2
trials. This model assumes a uniform

distribution of success across the search space and reflects a realistic stopping condi-

tion where the search ends upon finding a success.

Imagine you’re searching for a particular card in a deck. If you have no clue where

that card is, you’d probably expect to find it around the middle of your search (after

looking through about half the deck). Similarly, in a cybersecurity context, if an

48

attacker is blindly looking for a way to exploit a system, they might, on average, find

it after trying about half of the possible attack vectors.

The Average Number of Trials with a Stop Condition offers a more practical view-

point on an attacker’s behavior. Instead of exhaustively trying every possibility, they

might cease their efforts once they achieve their goal. For cybersecurity professionals,

understanding this behavior can help in risk assessment and in deploying defenses

more strategically. If defenses can be structured such that commonly tried vectors

(those the attacker might try earlier in their efforts) are well-protected, it increases

the chances that the attacker might give up before finding a vulnerability.

We delved into the concept of the Attack Search Space, which encapsulates all

possible avenues an attacker might explore to compromise a system. We then touched

upon Attack Vectors and how, when combined with prior knowledge, these can sig-

nificantly narrow down this search space. The idea of an attacker leveraging prior

knowledge, either to efficiently exploit known vulnerabilities or to predict the probable

success of an attack, underscores the evolving nature of cyber threats. Furthermore,

the examination of expected efforts, both with and without knowledge, gives a nu-

anced perspective on the realistic behavior of attackers, emphasizing that they often

operate based on efficiency and probability rather than exhaustive efforts.

With a firm grasp on these foundational concepts, it’s crucial to measure and

quantify the security posture of systems. The next section will introduce two new se-

curity metrics. These metrics will serve as tangible indicators, providing insights into

a system’s vulnerability and the efficacy of its defenses. By quantifying security, we

can better strategize, prioritize, and allocate resources to fortify our digital fortresses.

4.2 Two Security Metrics

Navigating the intricate landscape of cybersecurity necessitates not just robust de-

fense strategies but also precise measures to gauge their efficacy. To rise to this

challenge, we must introduce metrics that encapsulate the nuances of our defense

mechanisms, offering tangible insights and benchmarks. In this section, we will eluci-

date two pivotal security metrics that stand at the forefront of evaluating a system’s

resilience against potential threats.

49

4.2.1 Knowledge Obfuscation Security Metric (KOSM)

The Knowledge obfuscation security metric (KOSM) is designed to assess how well a

system impedes attackers from effectively reapplying previously acquired knowledge.

KOSM quantifies the effectiveness of a system’s ability to obscure or distort previously

acquired knowledge by potential attackers. By making previously gained knowledge

unreliable or irrelevant, KOSM aims to deter attackers from reusing known strategies

or insights. A higher KOSM indicates that the system is better equipped at rendering

previously acquired attacker knowledge obsolete, thus increasing the cost and effort

required for an attack. This metric shines in two primary facets:

• Data Distortion: This facet focuses on intentionally modifying data to render

it meaningless or misleading without changing its original format or structure.

It’s about preserving the appearance of authenticity while removing or altering

the actual substance. For example, consider encrypted data. While it might

look genuine, without the correct decryption key, the content is incomprehen-

sible. Another example is data masking, where sensitive parts of data (like

Social Security Numbers) are replaced with placeholder characters, preserving

the format but obscuring the true value.

• System Behavior Randomization: This facet emphasizes changing the behavior

and responses of a system over time or per interaction to ensure that attackers

can’t reliably predict how the system will react. By adding unpredictability

to the system’s operations, attackers can’t effectively leverage their previous

experiences or insights. For instance, in a web application, the server might

randomly switch between different error messages for the same error condition.

An attacker trying to exploit a vulnerability by observing error messages would

find it challenging to determine the exact cause of an error due to the random-

ized responses. Another instance is changing API endpoints or URL structures,

making previously known paths invalid.

These two facets, when combined, offer a comprehensive approach to obfuscating

knowledge, making it challenging for attackers to apply prior insights or experiences

to current or future attack attempts.

50

With this conceptual backdrop in place, we can now detail the KOSM with a

precise mathematical characterization.

Definition 4.5 (KOSM). Let’s consider:

• K: The set of knowledge an attacker initially possesses about the system.

• K’: The perceived knowledge by the attacker after obfuscation strategies are ap-

plied.

• O: The obfuscation function that transforms K into K’.

For the sake of quantification, let’s associate a value with knowledge:

• Value V(K): The utility or effectiveness of the initial knowledge set K in terms

of aiding an attack.

• Value V(K’): The utility or effectiveness of the obfuscated knowledge set K’.

The effectiveness of KOSM can be represented by the reduction in knowledge utility:

∆V = V (K)− V (K ′) (4.11)

Where:

• A higher ∆V indicates a more effective knowledge obfuscation, implying that

the system’s security is enhanced by the obfuscation strategies.

• A ∆V close to zero would imply that the obfuscation strategies are not signif-

icantly impacting the utility of the attacker’s knowledge, suggesting a need for

stronger obfuscation measures.

The KOSM metric is then defined as:

KOSM =
∆V

V (K)
(4.12)

Where:

51

• KOSM = 1 implies maximum obfuscation, rendering the attacker’s prior knowl-

edge completely useless.

• KOSM = 0 indicates no obfuscation, meaning the attacker’s knowledge remains

fully effective.

In essence, the KOSM metric quantifies the security of a system by measuring the

reduction in the utility of attacker knowledge due to obfuscation strategies. A system

with a high KOSM value effectively neutralizes the advantage an attacker would have

from their prior knowledge.

Example 4.7 (KOSM). Imagine an e-commerce web application that has suffered

past breaches. Attackers, in their past exploits, have gained knowledge about the

application’s database structure, particularly the user table which contains sensitive

customer information. The attackers know the table name (users) and the field names

(username, password, email, address).

Initial State: In the initial state, the attackers have knowledge K about the

database structure, which has a certain utility value, V(K).

Implementation of Knowledge Obfuscation:

• Database Table and Field Name Randomization: Every month, the application

randomizes the names of database tables and fields. The table users might be

renamed to clients one month, customers the next month, and so on. Similarly,

the field username might be renamed to user id, user name, etc.

• Input Field Obfuscation: Input fields in forms are randomized in their nam-

ing. So, a field that was previously named username might now be user id or

user name entry. Attackers who have crafted scripts to exploit the username

field might find their scripts failing, as the field names have changed.

• Introduction of Dummy Fields: The application introduces dummy fields like

user ref, user code which don’t hold any real data but are designed to mislead

attackers.

After implementing these obfuscation measures, the attacker’s knowledge is trans-

formed. Their initial knowledge K becomes K’, which is now either partially incorrect

or incomplete. The utility of this new knowledge set, V(K’), is reduced.

52

Measuring KOSM:

Suppose initially, with knowledge K, the attacker had a 90% chance of successfully

querying the user table. This gives V(K)=0.9. After obfuscation, due to incorrect table

and field names and the confusion introduced by dummy fields, suppose the attacker’s

success rate drops to 30%. This implies V(K’)=0.3. The reduction in knowledge

utility is:

∆V = V (K)− V (K ′) = 0.9− 0.3 = 0.6

Thus, the KOSM metric is:

KOSM = ∆V
V (K)

= 0.6
0.9

≈ 0.67

A KOSM value of 0.67 indicates that the obfuscation strategies have effectively

reduced the utility of the attacker’s knowledge by 67%. The higher this percentage, the

more effective the obfuscation measures are in enhancing the system’s security.

4.2.2 Defense Evolution Security Metric (DESM)

The Dynamic Defense Evolution Security Metric (DESM) quantifies a system’s ability

to dynamically adapt and evolve its defenses in response to potential threats. A higher

DESM value indicates the system’s proficiency in altering its defenses to stay ahead

of attackers. This continuous evolution ensures that the system’s defenses remain

effective against the ever-evolving landscape of attacks. Primary facets of DESM

include:

• Real-time Adaptability: The system’s ability to adjust its defenses instantly

based on detected threats or vulnerabilities. For example, upon detecting an

abnormal surge in traffic, a system dynamically adjusts its firewall rules or

deploys additional resources to mitigate a potential DDoS attack.

• Predictive Evolution: The system’s capacity to anticipate potential future threats

and adjust its defenses accordingly. For instance, leveraging AI and machine

learning to analyze historical data and predict future attack patterns, then

proactively adjusting defenses before these attacks materialize.

53

To further elucidate the concept of DESM, let’s delve into its formal definition.

Definition 4.6 (DESM). Let’s consider:

• A: The initial set of attack vectors an attacker might employ.

• A’: The set of attack vectors after the system has evolved its defenses.

• D: The dynamic defense function that transforms A into A’.

For quantification, let’s associate a success rate with attack vectors:

• Success Rate S(A): The probability of a successful attack using vectors in A.

• Success Rate S(A’): The probability of a successful attack using vectors in A’

after defensive evolution.

The effectiveness of DESM is represented by the reduction in attack success rate:

∆S = S(A)− S(A′) (4.13)

Where:

• A higher ∆S indicates a more effective defense evolution, implying enhanced

system security.

• A ∆S close to zero suggests that the dynamic defenses have not significantly

impacted the effectiveness of the potential attack vectors.

The DESM metric is then defined as:

DESM =
∆S

S(A)
(4.14)

Where:

• DESM = 1 implies that the defenses have evolved to render all prior attack

vectors completely ineffective.

54

• DESM = 0 indicates no change in the effectiveness of the attack vectors, sug-

gesting no significant defense evolution.

Example 4.8 (DESM). Consider a cloud-based web service initially vulnerable to

certain known attack vectors, such as specific DDoS attack patterns or SQL injection

techniques.

Initial State:

With the attack vector set A, attackers have a certain success rate, S(A).

Implementation of DESM:

• Real-time Traffic Analysis and Response: The service uses real-time traffic mon-

itoring. When it detects patterns that resemble a DDoS attack, it dynamically

reroutes traffic, deploys additional resources, or introduces rate limiting for sus-

picious IP addresses.

• Predictive Database Security: The service employs machine learning to analyze

historical database queries. Over time, it learns to identify potentially harmful

query patterns and proactively adjusts its database firewall rules to block or

challenge these queries even before an actual attack.

After these measures, the effective attack vector set becomes A’. The new success

rate, taking into account the evolved defenses, is S(A’).

Measuring DESM:

Let’s say initially, with the attack vector set A, attackers had a 70% success rate.

This gives S(A)=0.7.

After the dynamic defense measures, the success rate drops to 20%, implying

S(A’)=0.2.

The reduction in success rate is:

∆S = S(A)− S(A′) = 0.7− 0.2 = 0.5

Thus, the DESM metric is:

DESM = ∆S
S(A)

= 0.5
0.7

≈ 0.71

55

A DESM value of 0.71 indicates that the dynamic defense evolution strategies have

effectively reduced the success rate of potential attacks by 71%. The higher this per-

centage, the more effective the system’s dynamic defenses are in mitigating potential

threats.

KOSM and DESM are pivotal metrics in the realm of cybersecurity, embodying

adaptive and proactive defensive strategies. KOSM focuses on the deliberate ob-

fuscation of genuine data and system behaviors, rendering any previously acquired

knowledge by attackers as unreliable or obsolete. By manipulating the perceived

landscape, KOSM ensures that attackers cannot comfortably rely on prior insights,

forcing them into a state of continuous discovery and adjustment. This not only

impedes their progress but also escalates their operational costs and efforts.

DESM, on the other hand, emphasizes the system’s ability to evolve and adapt

its defenses dynamically. Rather than solely relying on static defensive postures,

DESM encapsulates the system’s agility in responding to emerging threats, its abil-

ity to predict potential vulnerabilities, and its capacity to continually fortify itself

against a shifting threat landscape. By staying one step ahead of potential attackers

and ensuring that defenses are not only reactive but also anticipatory, DESM show-

cases a system’s resilience against the ever-evolving world of cyber threats. Together,

KOSM and DESM represent a holistic approach to security, marrying obfuscation

with evolution to ensure robust protection in an unpredictable digital age.

Having delved deeply into the foundational concepts of KOSM and DESM, we

stand at the precipice of a more intricate exploration. Theoretical underpinnings,

while abstract, provide the robust backbone upon which practical applications lean.

As we transition into the upcoming section, we’ll immerse ourselves in the rigorous

world of theorems and proofs. These mathematical constructs not only validate the

principles we’ve discussed but also pave the way for a comprehensive understand-

ing of their implications. Armed with the knowledge from our previous discussions,

let’s navigate the mathematical intricacies that solidify the concepts of knowledge

obfuscation and dynamic defense evolution.

Proposition 4.5 (Reduction in Successful Attacks with Increased KOSM). For a

system with applied KOSM, the expected number of successful attacks decreases as

KOSM increases.

56

Following our theorem’s proposition, we now present a proof, elucidating the con-

ditions under which one strategy outshines the other.

Proof. Let’s denote:

• Einitial: Expected number of successful attacks based on initial knowledge, K.

• Eobfuscated: Expected number of successful attacks based on obfuscated knowl-

edge, K’.

From our earlier definition of KOSM:

KOSM = ∆V
V (K)

Where:

∆V = V (K)− V (K ′)

Given that V(K) represents the utility or effectiveness of the knowledge set K for

an attack, a higher KOSM value implies a greater reduction in knowledge utility.

Thus, as KOSM increases, the difference between Einitial and Eobfuscated becomes

more pronounced:

Einitial − Eobfuscated ∝ KOSM

Hence, Eobfuscated < Einitial as KOSM increases, proving the theorem.

Proposition 4.6 (Increase in Time to Successful Attack with Increased DESM).

For a system with applied DESM, the time to a successful attack increases as DESM

increases.

Following our theorem’s proposition, we now present a proof, elucidating the con-

ditions under which one strategy outshines the other.

Proof. Let’s denote:

• Tinitial: Time taken for a successful attack based on initial attack vectors, A.

• Tevolved: Time taken for a successful attack based on evolved attack vectors, A’.

From our earlier definition of DESM:

DESM = ∆S
S(A)

57

Where:

∆S = S(A)− S(A′)

Given that S(A) represents the success rate of an attack using vectors in A, a

higher DESM value implies a greater reduction in attack success rate.

Now, if the success rate of an attack decreases, it implies that an attacker would

need to invest more time to achieve a successful breach.

Thus, as DESM increases, the difference between Tevolved and Tinitial becomes more

pronounced:

Tevolved − Tinitial ∝ DESM

Hence, Tevolved > Tinitial as DESM increases, proving the theorem.

These propositions highlight the practical benefits of implementing KOSM and

DESM strategies. By obfuscating knowledge and evolving defenses, systems can

significantly reduce the likelihood of successful attacks and increase the time and

resources attackers must invest to breach them.

While KOSM and DESM both serve to enhance a system’s security posture, they

address different aspects of defensive strategy:

• KOSM focuses on disrupting the attacker’s ability to reuse prior knowledge.

It measures how well a system makes previously acquired attacker knowledge

irrelevant through obfuscation techniques such as data distortion and behav-

ior randomization. KOSM’s primary goal is to confuse and mislead attackers,

reducing their efficiency by making past insights unreliable.

• DESM, on the other hand, measures a system’s capacity to adapt its defenses

dynamically in response to emerging threats. DESM reflects the system’s agility

and predictive capability in altering its defensive strategies, thus staying ahead

of attackers. Unlike KOSM, which disrupts knowledge reuse, DESM empha-

sizes continual adaptation and evolution of defenses to proactively counteract

evolving attack methods.

In essence, KOSM focuses on rendering past knowledge obsolete, while DESM

ensures that defenses do not remain static but evolve in line with changing threat

58

landscapes. Together, they form a complementary approach to robust security, ad-

dressing both the historical and future challenges of cyber defense.

In this chapter, we delved deep into the paradigm of understanding cyber-attacks

through the lens of knowledge reuse. We proposed that the recurring dynamics of

computer security incidents emanate from the patterns in which attackers recycle

their knowledge of system compromises. Through our model, we aimed to shed

light on the crucial question: Why do defenders often fall short against attackers?

By juxtaposing attack dynamics to knowledge creation in AI, we emphasized the

attacker’s journey as a search operation within a predefined space. This abstract

search space captures the myriad ways an attacker could potentially exploit a system.

Our study illuminated that attackers don’t operate in vacuums; their actions often

stem from prior experiences and previously acquired knowledge.

In our exploration of modern defensive metrics, KOSM and DESM emerge as

pivotal tools in the ever-evolving field of cybersecurity. The intricate dance between

attackers and defenders is one of continual adaptation, and the metrics we’ve delved

into offer a structured approach to staying ahead. KOSM emphasizes the power of

obfuscation, ensuring that the attacker’s gathered intelligence is continually rendered

ineffective or misleading. On the other hand, DESM champions the dynamic evolution

of defenses, ensuring that systems are not static targets but ever-shifting enigmas,

difficult to decipher and penetrate.

As we conclude this chapter, it’s evident that the cyber landscape demands more

than just reactive measures. The future of cybersecurity lies in proactive, adaptive,

and continuously evolving strategies. The formalisms, theorems, and practical im-

plications discussed herein underscore the importance of these metrics in real-world

scenarios. They serve as a testament to the need for innovative thinking and a

forward-looking approach in the face of ever-increasing cyber threats. As technology

progresses and attackers devise new strategies, KOSM and DESM stand as beacons,

guiding defenders towards a more secure and resilient digital future.

In the forthcoming chapter, we will delve deeper into the concept of knowledge

reuse, specifically examining its manifestation in the form of shared software com-

ponents. This exploration aims to provide a structured and formalized perspective

on how knowledge, particularly in the realm of software development, is perpetuated

59

and shared across various systems and platforms. By understanding the intricacies

of shared components, we can gain valuable insights into the vulnerabilities that may

arise and the potential implications for system security. This chapter will elucidate

these complexities, offering readers a comprehensive overview of how shared software

components play a pivotal role in the broader context of knowledge reuse.

While this chapter focused on understanding the complexities and challenges asso-

ciated with modeling attack difficulty, specifically leveraging the power of knowledge

reuse and the nuances of various defenses, it becomes imperative to explore more

comprehensive methods to understand and measure security. As our digital land-

scape grows, the diversity of systems and their configurations also expands, leading

to an intricate web of potential vulnerabilities and security measures. This sets the

stage for our next exploration—employing the concept of product family algebra.

This mathematical tool will aid in providing a more granular understanding of secu-

rity measures across a diverse range of system configurations.

Chapter 5

A Case Study Using Product Family Algebra

In Chapter 4, we talked about the attack search space, which means all the different

ways someone might try to attack a computer system. We also saw how using the

same knowledge over and over can change the number of these attack ways. We

found out that if attackers choose their methods randomly, it’s harder for them to be

successful because there are so many options.

Now, in Chapter 5, we’re going to look at this idea from a different angle. We’re

not just thinking about the number of attack methods, but also about how many

different ways a computer system can be set up. Each setup can have its own mix of

features and settings.

Think of it like a lock and keys. Just like a lock can have many key combinations,

a computer system can be set up in lots of different ways. Each setup is like a different

lock, with its own weak points and strong points. This makes it really hard to guess

where the system might be weak, because there are so many different setups.

We will also talk about how computer systems are always changing. They get

updates, fixes, and new settings all the time. This means that the way a system is

set up can keep changing, making it even harder to guess how to attack it. It’s like

the lock is always changing, so finding the right key gets even more difficult.

Chapter 5, is all about understanding that computer systems can be set up in

many different ways, and each way has its own security challenges. This chapter

builds on what we learned in Chapter 4, but goes deeper into how the different setups

of a system can make it hard to attack. It’s important for people who work in

cybersecurity to keep up with these changes and challenges to protect the systems

better.

60

61

5.1 Intuition Behind Using Product Family Algebra

In the realm of cybersecurity, understanding the knowledge dependencies within a

system is vital for assessing its vulnerability to attacks. Just as different types of

knowledge form the building blocks of understanding a subject, various components

within a system constitute the fundamental elements of its structure.

Product family algebra provides a powerful framework for analyzing dependencies

and relationships among components in a system. By categorizing components into

product families, which represent cohesive groups of interconnected elements, we can

gain valuable insights into the dependencies and potential attack vectors present

within the system.

The core intuition behind using product family algebra lies in its ability to capture

the intricate web of knowledge dependencies and unveil the critical components an

attacker must compromise to exploit vulnerabilities effectively. Just as understanding

the core concepts and foundational knowledge of a subject is essential for grasping

its complexities, identifying the central components and their dependencies is crucial

for comprehending the potential avenues an attacker may exploit.

In many systems, dependencies form a chain-like structure, where one component

relies on the availability or functionality of another component. This chain of de-

pendencies can create a ripple effect, wherein compromising a single component may

enable an attacker to exploit a series of interconnected vulnerabilities.

Product family algebra provides a systematic approach to unraveling these chain

dependencies and quantifying the number of components an attacker needs to exe-

cute an attack. By tracing the dependencies and analyzing the connections between

different product families, we can identify the critical components an attacker must

compromise to traverse the dependency chain and reach their ultimate target.

We see components as different types of knowledge required for understanding the

system. Just as knowledge builds upon foundational concepts, dependencies between

components create a hierarchical structure, where certain components act as prereq-

uisites for others. We can navigate the intricate web of dependencies, determine the

core components an attacker needs to compromise, and gain a deeper understanding

of the attack surface.

Utilizing product family algebra to answer the question of how many components

62

an attacker needs to execute an attack offers several benefits. It provides a sys-

tematic and structured methodology for analyzing dependencies, identifying critical

components, and prioritizing defense measures.

5.1.1 Product Family Algebra

Product family algebra (PFA) [35] is an algebraic feature modeling technique with the

power to describe product families precisely. It is based on the mathematical structure

of idempotent commutative semirings. In addition, it allows algebraic calculations and

manipulations of product families to generate new information about those product

families.

A semiring is a mathematical structure
(
S,+, ·, 0, 1

)
where

(
S,+, 0

)
is a commu-

tative monoid and
(
S, ·, 1

)
is a monoid such that operator · distributes over operator +

and element 0 is annihilates S with respect to ·. We say that a semiring is idempotent

if operator + is idempotent (i.e., x+ x = x). We say that a semiring is commutative

if operator · is commutative (i.e., x · y = y · x).

Definition 5.1 (Product Family Algebra). A product family algebra (PFA) is an

idempotent and commutative semiring
(
S,+, ·, 0, 1

)
where each element of the semir-

ing is a product family.

In the product family context, + can be interpreted as a choice or option between

two product families and · can be interpreted as a mandatory composition of two

product families. The constant 0 represents the empty family and the constant 1

represents the family that has one product without features. The term a + 1 is the

product family offering the choice between a and the identity product and indicates

that the feature a is optional.

With the above interpretations, other concepts in product family modeling can be

expressed mathematically. In general, each idempotent semiring
(
S,+, ·, 0, 1

)
has a

natural partial order ≤ on S defined by a ≤ b ⇐⇒ a+ b = b. Therefore, for product

families a, b ∈ S, a ≤ b indicates that a is a sub-family of b if and only if a+ b = b.

5.1.2 Products and Features

The basic building blocks of a product family in PFA are products and features.

63

Definition 5.2 (Product). We say that a is a product if it is different than 0 and

satisfies:

∀(b |: b ≤ a =⇒ (b = 0 ∨ b = a)) (5.1)

∀(b, c |: a ≤ b+ c =⇒ (a ≤ b ∨ a ≤ c)) (5.2)

Equation 5.1 shows that a product does not have a subfamily except the empty

family and itself. Equation 5.2 indicates that if a product a is a subfamily of a family

formed by c and b, it must be a subfamily of one of them. Intuitively, this indicates

that a product cannot be split using the choice operator +.

Definition 5.3 (Feature). We say that a is a feature if it is a proper product different

than 1 satisfying:

∀(b |: b ≤ a =⇒ (b = 1 ∨ b = a)) (5.3)

∀(b, c |: a|b · c =⇒ (a|b ∨ a|c)) (5.4)

where the division operator | is defined by a|b ⇐⇒ ∃(c |: b = a · c).

Equation 5.3 states that if we have a product b that divides a, then either b is 1

or b = a. Equation 5.4 states that for all product families b and c, if a is mandatory

to form b · c, then it is mandatory to form b or it is mandatory to form c. Intuitively,

this indicates that a feature cannot be split using the composition operator ·.
New product families can be derived from other existing product families by

adding features. The refinement relation captures such a relationship between two

product families.

Definition 5.4 (Refinement). The refinement relation on a PFA is defined as follows:

a ⊑ b ⇐⇒ ∃(c | c ∈ S : a ≤ b · c)

Informally, a product family a refines another product family b if a has the same

set of features as b and possibly more. For example, assume that we have a new mobile

that has screen, keypad, calling feature, and GPS. We have also an old mobile that

has screen, keypad, and calling feature. Therefore, new mobile refines old mobile

because every product in new mobile has all features of some products in old mobile.

When a product a refines a product b, we say that b is a sub-product of a.

64

Figure 5.1: Feature model for a computer system

Next, we develop a model of computer systems and their variants for different

distributions within a population of users. To achieve this, we use product family

algebra. PFA helps to capture and analyze the commonalities and variabilities of

a product family and allows mathematical description and manipulation of product

family specifications.

5.1.3 An Example Population of Computer Systems

For simplicity, suppose that a computer system is comprised of hardware (hw) and

software (sw). The hardware for the system involves only a central processing unit

(CPU), motherboard (mb), random access memory (RAM), and a hard drive (hd).

The software for the system involves only an operating system (OS) and an optional

application (app). For any computer system, there are two kinds of CPU, mb, RAM,

and hd, and three kinds of OS and three kinds of app. The product family of computer

systems can be visualized as a graphical feature model as shown in Figure 5.1.

To study populations of computer systems, we assume that we have a set of com-

puter system users. Each user operates a computer system that can be built from the

product family described above. In this research, we assume that the products that

can be built from this product family are distributed uniformly among the population

of users. This assumption enables us to focus on defining and presenting the main

conceptual model. We will use this computer system product family throughout the

following sections to illustrate various aspects of our model.

65

5.1.4 Specifying the Computer System Product Family using PFA

We use PFA to specify the product family described in Section 5.1.3 and illustrated

in Figure 5.1. We begin by declaring the basic features of computer systems. The

basic features represent all of the possibly components that can be used to build a

computer system. In our example, we have 14 basic features corresponding to the

specific kinds of CPU, mb, RAM, hd, OS and app. Then, using the basic features and

the operators of PFA, we define a labeled product family specifying the mandatory

and optional features of products. For example, as described in Section 5.1.3, the

software for a computer system requires only an operating system and an optional

application. This is represented as sw = OS · (app + 1) indicated that it is mandatory

to have an operating system and optional to have application. Subsequently, because

we have three kinds of operating system that we can choose from, we specify OS =

Windows +MacOS + Linux to show that an operating system is one of Windows,

MacOS or Linux. The complete PFA specification for our example computer system

product family is shown in Figure 5.2. We will use this PFA specification of the

computer system product family to evaluate the impact of a vulnerable component

on the security of an entire population of computer systems from this product family.

5.1.5 Computing the Size of the Catalog of Products

Given the PFA specification of a product family, such as that shown in Figure 5.2, we

can compute the total number of products that can be built from the specification.

Definition 5.5 (Catalog Size). Let C be a product family. Then, the number of prod-

ucts that can be built from C is called the catalog size (denoted |C|) and is computed

recursively on the structure of product family algebra:

|0| = 0

|1| = 1

|a| = 1

|a+ b| = |a|+ |b|

|a · b| = |a| × |b|

66

1 % Dec lara t i ons o f b a s i c f e a t u r e s
2 bf amd
3 bf i n t e l
4 bf ASRock
5 bf Asus
6 bf Kingston
7 bf Samsung
8 bf WD
9 bf LG
10 bf Windows
11 bf MacOS
12 bf Linux
13 bf app1
14 bf app2
15 bf app3

1 % De f i n i t i o n s o f l a b e l e d product f ami l y
2 Computer = hw · sw
3
4 hw = CPU · mb · RAM · hd
5 sw = OS · (app + 1)
6
7 CPU = amd + i n t e l
8 mb = ASRock + Asus
9 RAM = Kingston + Samsung
10 hd = WD + LG
11
12 OS = Windows + MacOS + Linux
13 app = app1 + app2 + app3

Figure 5.2: A PFA specification of the computer system product family

Example 5.1 (Computing the Catalog Size). Applying Definition 5.5 to the PFA

specification of our computer system product family in Figure 5.2, we have 192 possible

computer system products in the catalog.

|Computer| = |hw · sw|

= |hw| × |sw|

= |CPU ·mb · RAM · hd| × |OS · (app + 1)|

= [(1 + 1)× (1 + 1)× (1 + 1)× (1 + 1)]×

[(1 + 1 + 1)× (1 + 1 + 1) + 1]

= [2× 2× 2× 2]× [3× 4]

= 16× 12

= 192

67

For the sake of consistency we will refer to the set of products that can be built

from the specification of a product family as the catalog.

In Chapter 4, we discussed how attackers who reuse previous methods can narrow

down their options. They focus on what’s worked before or on known weak spots in

systems. This makes their job faster and easier because they’re not looking at every

single possible way to attack. It’s like having a smaller list of keys to try on a lock.

If an attacker knows about certain weak spots, they can focus just on those, reducing

their options from the huge list of all possible attacks to a smaller list.

Now, in Chapter 5, we’re going to see what happens when we change or add new

things to a computer system. Imagine a computer system is like a set of products in a

store. If you add new features or different versions of these products, you end up with

a lot more products in your store. This is like making the list of possible computer

setups much longer because you have more combinations of features to choose from.

The idea here is simple: when you add new stuff to the mix, you have more ways

to put things together. It’s like adding more pieces to a puzzle; the more pieces you

have, the more ways you can fit them together to make different pictures. In computer

terms, adding these variations means you can make lots of computer systems, each

with its own set of features.

This is really important for people who work in cybersecurity. It means that as

we keep adding new features or changing things in our computer systems, we’re also

creating new ways these systems can be set up. Each setup might have its own weak

points or strong points.

Chapter 5 shows us that just like adding new products to a store makes the store’s

inventory bigger, adding new features to a computer system makes the number of

possible system setups bigger. This means there are more points for attackers to try.

It’s a constant game of keeping up with these changes to make sure we stay one step

ahead of potential threats.

It is important to understand how the addition of new alternative products or

features (i.e., variations) in a product family affects the catalog size. The following

proposition shows that adding non-zero variations to a product family increases the

catalog size.

Proposition 5.1 (Variations Increase the Catalog Size). Adding non-zero variations

68

to a product family increases the size of the catalog.

Proof. Let C be the original product family and let C ′ be the product family after

adding a non-zero variation. A variation is the addition of an alternative feature that

allows two products to differ in the choice of that feature. Then,

|C| < |C ′|

⇐= ⟨ Hypothesis: C ′ is the product family C with an additional product or

feature v ̸= 0 ⟩
|C| < |C + v|

⇐⇒ ⟨ Definition 5.5 ⟩

|C| < |C|+ |v|

⇐⇒ ⟨ Arithmetic & |v| > 0 ⟩

true

Intuitively, Proposition 5.1 states that if we provide more choices to build a com-

puter system, we can build more products that can be distributed among our popu-

lation of users.

In Chapter 4, we assessed the difficulty of carrying out an attack by looking at

how likely it is to succeed, both with and without the reuse of known methods or

vulnerabilities. This approach helped us understand how using previous knowledge

can make an attack more likely to work. It was like estimating the chances of picking

the right key for a lock when you already know some keys that worked in the past.

Now, in Chapter 5, we’re going to look at this idea from a different angle. We’re

moving away from just thinking about the likelihood of an attack succeeding and

instead focusing on the concept of catalog size. Remember from the last section,

the catalog size is like the total number of different setups or versions of a computer

system we can have, especially when we keep adding new features or variations.

By measuring the difficulty of an attack based on the catalog size, we’re essentially

saying, ”How hard is it to find a weakness when there are so many different system

setups?” Imagine trying to pick the right key out of a huge pile of keys, where each

69

key is slightly different. The more keys there are, the harder it is to pick the right

one. In the same way, the bigger the catalog size, the more challenging it becomes

for an attacker to find a vulnerability that works across all these different setups.

This new measure is important because it reflects the real-world complexity of

modern computer systems. These systems are no longer simple and static; they’re

complex and constantly evolving. Each new feature or change adds another layer

to the puzzle. For attackers, this means they can’t just rely on old methods; they

have to constantly adapt and look for new weaknesses, which becomes harder as the

number of possible system configurations increases.

Chapter 5 introduces a new way to think about the difficulty of conducting an

attack. It’s not just about how likely an attack is to succeed, but also about how com-

plex and varied the target system is. The larger the catalog size, the more daunting

the task becomes for attackers. For cybersecurity experts, this means that continu-

ously updating and diversifying system features can be a powerful strategy to enhance

security. The goal is to make the catalog of possible system configurations so large

and diverse that finding a successful attack method becomes like finding a needle in

a haystack.

In the previous section, we developed a model of a product family of computer

systems that are distributed among a population of users. Using this model, we

now study the population fragility using these computer systems. In this section,

we define a measure of the population fragility with respect to a known exploitable

system component. Then, we study how increasing variability in the product family

can improve the population fragility.

5.1.6 Defining a Measure of the population fragility

Because products within a product family contain commonalities, there is a potential

that multiple products contain the same exploitable component or sub-product. To

study this phenomenon, we aim to define a measure to show how much of a population

is susceptible to an attack when we know that there exists an exploitable component

in the computer system product family. To do so, we need to identify which of the

products in a product family contain an exploitable sub-product; that is, the set

of products which contain a vulnerability that can be exploited by an adversary to

70

conduct an attack on the system. We call this set of products the set of exploitable

products.

To determine set of exploitable products, we assume that there is an exploitable

sub-product that we know about beforehand. Using this information, we find the

set of products in the catalog that contain these exploitable sub-products. By de-

termining the number of exploitable products with respect to the total number of

products that can be built from the product family (i.e., the catalog size as defined in

Section 5.1.5), we can determine the proportion the population1 that is susceptible to

an attack on the known exploitable sub-product. We call this measure the population

fragility. Formally, the measure of the population fragility is defined as follows:

Definition 5.6 (Fragility). Let C be a product family and let x be an exploitable

sub-product. Then, the fragility of C with respect to x is given by:

Fragility(C, x) =
|X|
|C|

where X = {c | c ∈ C ∧ c ⊑ x} is the set of exploitable products in the product

family C.

The relationship between trust and fragility is a crucial aspect of system security.

Trust in specific system components, such as widely used software or standardized

configurations, often leads to these components being reused across multiple systems

within a population. This widespread adoption creates a monoculture effect, where

vulnerabilities in trusted components can lead to large-scale exploitation. Trust, when

placed in homogeneous setups, inherently increases fragility because it encourages the

reuse of known configurations that attackers can predict and target. Consequently,

fragility rises as the attack surface becomes more uniform and predictable, making

it easier for adversaries to exploit shared weaknesses. Effective security, therefore,

requires a balanced approach that questions excessive trust in common solutions and

promotes variability and diversification to reduce overall fragility.

For the sake of our example, suppose that it has been revealed that there is an

exploitable vulnerability affecting computer systems containing the combination of

1Note that because we assume that the products in the catalog are uniformly distributed among
all users within a population, we can view the catalog size and the size of the population as being
equal.

71

Windows, intel, and app1. Because we do not know exactly which of the features

Windows, intel, and app1 has the exploitable vulnerability—it may be one of them

or any combination of them—we say that all computer systems that contain the ex-

ploitable sub-product (Windows · intel · app1) are vulnerable. Applying Definition 5.6

shows that, out of 192 possible computer system products, there are 8 products that

contain the known exploitable sub-product. This means that the population fragility

is 0.0417 as detailed in Example 5.2 below.

Example 5.2 (population fragility with respect to the exploitable sub-product Win-

dows ·intel · app1). Applying Definition 5.6, the set of exploitable products is given

by:

X = {(intel · ASRock ·Kingston ·WD ·Windows · app1),

(intel · Asus · Samsung · LG ·Windows · app1),

. . . ,

(intel · Asus · Samsung ·WD ·Windows · app1)}

Therefore, |X| = 8. Using the results from Example 5.1, we can compute the fragility

of C with respect to x:

Fragility(C, x) =
|X|
|C|

=
8

192
= 0.0417

Now that we are able to compute the population fragility, we turn our attention

to determining how we can improve the population fragility by adding variations to

the product family of computer systems distributed among the population.

In Chapter 4, we introduced two key security metrics: the KOSM and the DESM.

These metrics help us understand how well a system can adapt to potential threats.

KOSM focuses on how a system’s security adapts based on past knowledge, while

DESM measures how efficiently a system can dynamically defend against new threats.

These metrics offer valuable insights into a system’s overall security resilience.

Now, in Chapter 5, we shift our focus to examine the impact of adding variations

to products within a system, specifically contrasting the effects of these variations

on exploitable versus non-exploitable products. This comparison is crucial in un-

derstanding how changes in a system’s components can influence its overall security

posture.

72

First, consider adding variations to exploitable products. These are products or

components within a system that are known to have vulnerabilities or have been

exploited in the past. Introducing variations here can be a double-edged sword. On

one hand, it could potentially confuse attackers, as they now face a broader array of

targets, each slightly different from the others. On the other hand, each new variation

might introduce new vulnerabilities, potentially increasing the system’s overall risk.

Here, KOSM and DESM would help assess whether the added complexity actually

aids in defense or merely expands the attack surface.

In contrast, adding variations to non-exploitable products presents a different

scenario. These products are considered secure or haven’t been a target in the past.

Introducing variations in this category could bolster the system’s security, as it adds

complexity without significantly increasing vulnerability. The variations could act as

a form of defense in depth, creating additional layers that an attacker must navigate.

In this case, the DESM would likely show an improvement in the system’s ability to

dynamically defend against attacks, as the variations enhance the system’s complexity

without compromising its integrity.

Section 5.1.7 and Section 5.1.8 dive into the nuanced implications of adding vari-

ations to different types of products within a system. By comparing the effects on

exploitable and non-exploitable products, we gain a clearer understanding of how

these changes can either strengthen or weaken a system’s security. The key takeaway

is that while adding variations can be a powerful strategy for enhancing security, it

needs to be applied judiciously, considering the nature of the products being varied

and the overall impact on the system’s security metrics like KOSM and DESM.

5.1.7 Adding Variations to Exploitable Products

As shown in Proposition 5.1, adding variations to a product family specification can

increase the size of the catalog of products that can be built. This means that we can

have more products with more variability, meaning that it is less likely that products

share combinations of features. When considering how we can improve the population

fragility, there are several places where we can add variations. One of these places is

in the labeled product families that contain the exploitable sub-product. To illustrate

our intuition, we carry out a broad example of adding variations in this manner. The

73

details are described in Example 5.3 below.

Example 5.3 (Adding variation to labeled product families that contain the ex-

ploitable sub-product). We continue to assume that we have the exploitable sub-

product x = (Windows · intel · app1).Consider the addition of one more alternative

to each of OS, CPU, and app labeled product families in the PFA specification shown

in Figure 5.2. More specifically, suppose we add Unix as an alternative operating

system, Threadripper as an alternative CPU, and app4 as an alternative app. Note

that these additions yield new choices to avoid the features present in the exploitable

sub-product. The revised PFA specification for our example computer system product

family with the added variations is shown in Figure 5.3.

As a result, the set of exploitable products (i.e., X) is the same as in Exam-

ple 5.2. Therefore, |X| remains 8, while the catalog size (i.e. |C|), computed using

Definition 5.5, increases from 192 to 480. Thus, by applying Definition 5.6, the popu-

lation fragility is reduced to 0.0167 as a result of these added variations in the product

family.

The following proposition generalizes our intuition that adding variations to ex-

ploitable products reduces the population fragility.

Proposition 5.2 (Adding Variation to Exploitable Products). Adding non-zero vari-

ations in an exploitable product decreases the population fragility.

Proof. Assume an exploitable sub-product x. Let Fragility(C, x) be the original pop-

ulation fragility and let Fragility(C ′, x) be the population fragility after adding a

non-zero variation in an exploitable product.

Fragility(C, x) > Fragility(C ′, x)

⇐⇒ ⟨ Definition 5.6 ⟩
|X|
|C|

>
|X ′|
|C ′|

⇐= ⟨ Hypothesis: X ⊆ X ′=⇒|X ′| = |X ′\X|+ |X| ⟩
|X|
|C|

>
|X ′\X|+ |X|

|C ′|
⇐⇒ ⟨ Fraction Addition ⟩

|X|
|C|

>
|X ′\X|
|C ′|

+
|X|
|C ′|

74

1 % Dec lara t i ons o f b a s i c f e a t u r e s
2 bf amd
3 bf i n t e l
4 bf Threadripper
5 bf ASRock
6 bf Asus
7 bf Kingston
8 bf Samsung
9 bf WD
10 bf LG
11 bf Windows
12 bf MacOS
13 bf Linux
14 bf Unix
15 bf app1
16 bf app2
17 bf app3
18 bf app4

1 % De f i n i t i o n s o f l a b e l e d product f ami l y
2 Computer = hw · sw
3
4 hw = CPU · mb · RAM · hd
5 sw = OS · (app + 1)
6
7 CPU = amd + i n t e l +Threadripper
8 mb = ASRock + Asus
9 RAM = Kingston + Samsung
10 hd = WD + LG
11
12 OS = Windows + MacOS + Linux + Unix
13 app = app1 + app2 + app3 + app4

Figure 5.3: Revised PFA specification with new variations (emphasize in bold-
face) in labeled product families that contain the exploitable sub-product x =
(Windows · intel · app1)

⇐= ⟨ Hypothesis: Add variation in an exploitable sub-product =⇒ ¬ ∃(c |
c ∈ C ′\C : c ⊑ x) =⇒ |{c | c ∈ C ∧ c ⊑ x}| = |{c | c ∈ C ′ ∧
c ⊑ x}| =⇒ |X| = |X ′| =⇒ |X ′\X| = 0 ⟩

|X|
|C|

>
|X|
|C ′|

⇐⇒ ⟨ Proposition 5.1: |C| < |C ′| ⟩

true

Proposition 5.2 shows that if we can decrease the likelihood of an exploitable

75

sub-product being shared among a large proportion of the population, then we can

improve the population fragility. The results of Proposition 5.2 show that this can be

achieved by providing more alternatives to avoid known combinations of vulnerable

system components that so that a smaller proportion of the population shares these

vulnerabilities.

In the ongoing discourse of product family cybersecurity, we’ve recognized the

significance of fragility—a measure indicating the vulnerability of a population of

systems to specific exploits. This conversation is now furthered by examining how in-

troducing variations to a product family can influence this fragility. Adding variations

has a direct effect on the composition of the product family, altering the probability

that multiple products share a common vulnerability.

The concept of introducing variations is tightly coupled with the prior discussions

on the attack search space, catalog size, and the population fragility. By expanding

the variety of features within a product family, we inherently dilute the concentration

of any single point of failure, thereby reducing the overall fragility. This is a strategic

move that mirrors the defensive depth approach in cybersecurity, where diversity and

complexity are allies in stymieing the attacker’s path.

The fragility model closely relates to concepts of diversity, software, and knowledge

reuse. By modeling system configurations using product family algebra, the approach

highlights how diversity in software and hardware components disrupts an attacker’s

ability to consistently apply known exploits. The reuse of knowledge, such as pre-

viously successful attack methods, becomes less effective in a diverse environment

where no two systems are exactly alike. Introducing variations in software config-

urations, hardware components, or operational settings increases the complexity of

the attack landscape. This strategic diversification makes it harder for attackers to

leverage reused knowledge, thereby expanding the attack search space and lowering

the overall fragility of the system population. In this context, promoting diversity is

not just about adding more options but about strategically varying system setups to

minimize shared vulnerabilities and enhance security resilience.

The addition of new, non-zero variations into a product family is akin to introduc-

ing new genes into a biological pool. Just as biodiversity can lead to a more resilient

ecosystem, a diversified product family can result in a more robust system population

76

against cyber threats. The impact of this strategy is twofold: it not only decreases

the likelihood that any single vulnerability will be widespread but also increases the

complexity an attacker must navigate to find and exploit vulnerabilities.

In the context of the Knowledge Obfuscation Security Metric (KOSM) and the

Defense Evolution Security Metric (DESM), the introduction of variations serves as a

proactive measure to increase system security. KOSM benefits from these variations

by making the attack search space more complex and less predictable, which aligns

with its goal of making it harder for attackers to understand and navigate the system.

DESM, which is concerned with the evolution and adaptability of defensive measures,

leverages these variations to continually shift the security landscape, making it more

challenging for attackers to reuse their knowledge and tools effectively.

The proposition and its proof underscore an essential principle in cybersecurity:

complexity and change are adversaries of exploitation. By ensuring that no single vul-

nerability can affect a large portion of the system population, we increase the resilience

of individual systems and the population as a whole. This approach encourages the

adoption of a dynamic and varied defensive strategy, which is at the heart of both

KOSM and DESM, underscoring their relevance in modern cybersecurity practices.

5.1.8 Adding Variations to Non-exploitable Products

In the previous section, we added variations in the labeled product families that con-

tain the exploitable sub-product. Here we explore the affect that adding variations

in the non-exploitable sub-products has on the population fragility. As in the previ-

ous section, we being with a broad example of adding variations in this manner to

illustrate our intuition. The details are described in Example 5.4 below.

Example 5.4 (Adding variation to labeled product families that do not contain the

exploitable sub-product). Again we assume that we have the exploitable sub-product

x = (Windows · intel · app1). Consider the addition of one more alternative to each

of the labelled product families CPU, mb, RAM, hd, OS, and app in the PFA speci-

fication shown in Figure 5.2. The revised PFA specification is similar to that shown

in Figure 5.3. Note that that only do these additions overlap with the exploitable sub-

product x = (Windows · intel · app1), but also with the non-exploitable sub-products

in the product family.

77

As a result of the additions, the number of exploitable products (i.e., |X|) increases
from 8 to 27 and the catalog size (i.e., |C|) increases from 192 to 1620. Applying

Definition 5.6, we find that the population fragility is 0.0167 again.

In Example 5.4, the population fragility remains unchanged because the ratio

between the number of exploitable products and the catalog size remains same as

that in Example 5.3. Adding more variations to the non-exploitable products (e.g.,

mb, RAM, and hd), increases the number of products that contain the exploitable

sub-product while also increasing the catalog size; we can build new products, but

a subset of those new products inevitably contain the exploitable sub-product and

thus become exploitable products themselves. Therefore, increasing variations in the

non-exploitable sub-products does not help to reduce the population fragility. The

following proposition generalizes these observations:

Proposition 5.3 (Adding Variation to Non-exploitable Products). Adding non-zero

variations in a non-exploitable sub-product does not change the population fragility.

Proof. Assume an exploitable sub-product x. Let Fragility(C, x) be the original pop-

ulation fragility and let Fragility(C ′, x) be the population fragility after adding a

non-zero variation in a non-exploitable sub-product.

Fragility(C, x) = Fragility(C ′, x)

⇐⇒ ⟨ Definition 5.6 ⟩
|X|
|C|

=
|X ′|
|C ′|

⇐= ⟨ Multiply Both Sides by 2 ⟩

2
|X|
|C|

= 2
|X ′|
|C ′|

⇐⇒ ⟨ Multiply Both Sides by 1 = |C′|
|C′| =

|C|
|C| ⟩

2
|X||C ′|
|C||C ′|

= 2
|X ′||C|
|C ′||C|

⇐⇒ ⟨ Expand Multiplication: 2a = a+ a ⟩
|X||C ′|+ |X||C ′|

|C||C ′|
=

|X ′||C|+ |X ′||C|
|C ′||C|

⇐⇒ ⟨ Fraction Addition ⟩
|X||C ′|
|C||C ′|

+
|X||C ′|
|C||C ′|

=
|X ′||C|
|C ′||C|

+
|X ′||C|
|C ′||C|

78

⇐⇒ ⟨ Arithmetic ⟩
|X||C ′|
|C||C ′|

− |X ′||C|
|C ′||C|

=
|X ′||C|
|C ′||C|

− |X||C ′|
|C||C ′|

⇐⇒ ⟨ Subtract Both Sides by |C′||C|
|C′||C| ⟩

|X||C ′|
|C||C ′|

− |C ′||C|
|C ′||C|

− |X ′||C|
|C ′||C|

=
|X ′||C|
|C ′||C|

− |C||C ′|
|C||C ′|

− |X||C ′|
|C||C ′|

⇐⇒ ⟨ Arithmetic & Distributivity ⟩
|X||C ′|
|C||C ′|

−
(
|C ′| − |X ′|

)
|C|

|C ′||C|
=

|X ′||C|
|C ′||C|

−
(
|C| − |X|

)
|C ′|

|C||C ′|
⇐⇒ ⟨ Cancellation ⟩

|X|
|C|

− |C ′| − |X ′|
|C ′|

=
|X ′|
|C ′|

− |C| − |X|
|C|

⇐⇒ ⟨ Arithmetic ⟩
|X|
|C|

+
|C| − |X|

|C|
=

|X ′|
|C ′|

+
|C ′| − |X ′|

|C ′|
⇐= ⟨ Hypothesis: X ⊆ C =⇒ |C\X| = |C| − |X| ∧

X ′ ⊆ C ′ =⇒ |C ′\X ′| = |C ′| − |X ′| ⟩
|X|
|C|

+
|C\X|
|C|

=
|X ′|
|C ′|

+
|C ′\X ′|
|C ′|

⇐⇒ ⟨ Fraction Addition ⟩
|X|+ |C\X|

|C|
=

|X ′|+ |C ′\X ′|
|C ′|

⇐= ⟨ Hypothesis: X ⊆ C =⇒ |C| = |C\X|+ |X| ∧
X ′ ⊆ C ′ =⇒ |C ′| = |C ′\X ′|+ |X ′| ⟩

|C|
|C|

=
|C ′|
|C ′|

⇐⇒ ⟨ Cancellation & |C| ̸= 0 & |C ′| ̸= 0 ⟩

1 = 1

⇐⇒ ⟨ Reflexivity of = ⟩

true

Proposition 5.3 emphasizes the point that not all variations are effective at reduc-

ing the population fragility. This is important because a tendency may be to simply

add as many more variations that can be afforded into the product family. We need to

be careful to not simply build more products that contain exploitable sub-products.

79

The decision of where to introduce these variations needs to be much more strategic

as indicated by the results of Proposition 5.2.

Continuing from the insights gained in Chapter 4, Chapter 5 delves deeper into the

dynamics of cybersecurity through the lens of product family algebra. The chapter

opens by highlighting the complexity inherent in computer systems, comparing them

to a lock with many key combinations. Each setup of a computer system, like each

lock, has its vulnerabilities and strengths. The ever-changing nature of these systems,

with regular updates and modifications, further complicates the task for potential

attackers, akin to a lock that constantly changes its combination.

The heart of Chapter 5 lies in the application of product family algebra to cyber-

security. This approach allows for a detailed analysis of the dependencies and rela-

tionships among system components. By categorizing these components into product

families, cybersecurity professionals can identify critical components and potential

attack vectors, enhancing their understanding of the system’s vulnerabilities. This

method draws a parallel between the foundational knowledge of a subject and the

core components of a system, emphasizing the importance of understanding the fun-

damental elements to anticipate and counteract potential attacks.

In practical terms, the chapter discusses how the addition of new features or

variations to a computer system increases the catalog size, that is, the number of

possible system configurations. This expansion in variety makes it more challenging

for attackers to find a successful method of attack. For cybersecurity experts, this

means a constant effort is required to stay abreast of these changes and adapt defense

strategies accordingly. The chapter concludes with a critical analysis of how varia-

tions within a product family affect its overall security. While adding variations to

exploitable products can decrease population fragility, the same cannot be said for

non-exploitable products. This distinction underscores the need for strategic thinking

in cybersecurity measures, emphasizing that not all changes enhance security equally.

Ultimately, Chapter 5 builds on the concepts introduced in Chapter 4 and expands

them by applying product family algebra to the realm of cybersecurity. This approach

provides a nuanced understanding of how system configurations, their variations, and

interdependencies play a crucial role in defining a system’s security landscape. The

chapter serves as a crucial guide for cybersecurity professionals, offering insights into

80

how the strategic addition of features and variations can fortify systems against a

constantly evolving array of cyber threats.

In the upcoming chapter, we will explore “The Role of Information Security An-

alysts in the Era of KOSM and DESM.” This chapter promises to delve into the

evolving responsibilities and strategies of information security analysts in the con-

temporary cybersecurity landscape, particularly in the context of the KOSM and

the DESM. As these metrics become increasingly integral to cybersecurity practices,

the role of analysts is shifting towards a more dynamic, adaptive approach. We will

examine how these professionals are adapting their skills and methodologies to navi-

gate the complexities introduced by KOSM and DESM, ensuring robust and resilient

defense mechanisms in the face of sophisticated cyber threats. The chapter aims to

provide valuable insights into the strategic thinking, analytical skills, and innovative

approaches required for effective cybersecurity management in this new era.

Chapter 6

Knowledge Reuse and Security Analysis

In the field of cybersecurity, the necessity for improved defensive strategies is pressing.

Chapters 4 and 5 offered a perspective on how the reuse of known attack methods

shapes the attack search space and how software reuse impacts security.

This chapter aims to bridge the theoretical concepts introduced previously with

the world of practical security analysis. Here we will explore how the models and

metrics, KOSM, DESM, and fragility, can be employed by security analysts to bolster

defenses against cyber threats.

We will begin by examining how security analysts can adapt to changing threat

landscapes using product family algebra principles. This will include understanding

how system variations and configurations impact security and the application of so-

phisticated metrics like KOSM and DESM in crafting robust security strategies. The

chapter will also provide insights into the systematic analysis of system configurations

and dependencies, emphasizing the continuous learning and adaptation necessary in

the fast-paced world of cybersecurity.

In an era where cyber threats are becoming more sophisticated, and system archi-

tectures more complex, the need for a deeper, more analytical approach to security

is evident. This chapter is not just a theoretical exploration but a practical toolkit,

aiming to equip security analysts with the knowledge and skills to stay ahead in the

ever-evolving cybersecurity landscape.

As we transition into the main content of this chapter, let us keep in mind that the

goal is not just to understand these concepts in isolation but to integrate them into a

cohesive, strategic approach to information security analysis. With this perspective,

let’s embark on a journey that melds theoretical concepts with practical applications,

setting a new standard in cybersecurity analysis.

81

82

6.1 Current Practice

Although security analysis is complex, the process can be abstracted into three stages:

understand the threat model, study defenses, and search for threats in the threat

model that are not covered by the defenses. Defensive security analysts engage in

this process in order to find areas of potential vulnerability to be addressed, while

offensive analysts look for vulnerabilities to be exploited.

In most organizations, however, security analysts also have another role: ensur-

ing compliance. Virtually all large organizations have some regulatory requirements

to ensure security, and their business partners and customers often place additional

security requirements on them. While sometimes these requirements dictate peri-

odic security reviews, for the most part they take the form of lists of requirements:

authentication requirements, data handling and storage procedures, disaster recov-

ery procedures, anti-malware tools, and regular software update procedures, among

others. Ensuring compliance can require a lot of effort; further, potential security

improvements identified by an analyst may not get much buy-in from management

unless those improvements also fall under compliance requirements. Thus, the secu-

rity posture of many organizations is dictated by the compliance regimes they fall

under.

“Best practices” is a general term for the processes and tools that are consid-

ered by experts in an area to be the general way thing should be done. Security

best practices greatly inform compliance regulations, and as a result there is signifi-

cant commonality in the compliance requirements. This commonality, however, can

actually be a weakness, as we will explain.

6.2 Best Practices and Knowledge Reuse

Best practices can be seen as a form of knowledge reuse by defenders. Such reuse

means that attackers can also reuse their knowledge of best practices. We can see this

potential impact of attacker knowledge reuse by considering the effect of best practices

on our three metrics. As we shall see, current best practices do not optimize any of

our proposed metrics.

83

6.2.1 Population fragility

Population fragility is proportional to how often components and systems are reused—

the more reuse, the higher the fragility, as the impact of a vulnerability in any com-

ponent is proportional to how often that component is used. The question, then, is

to what degree do security best practices encourage reuse.

There do exist some requirements for some types of software diversity, e.g., n-

version programming for essential components as is done in aerospace—but these are

done more with reliability in mind, not security. In other words, the diversity is in

service of mitigating errors rather than attacks.

Best practices in security, however, often require the use of approved components

and systems. Cryptography is highly standardized, with standard cryptographic al-

gorithms and protocols and certified cryptographic libraries, rather than custom al-

gorithms and libraries. Well-known operating systems backed by strong companies

with standard update practices are preferred for secure commercial systems. Fire-

walls, anti-malware solutions, SIEMs, single sign-on solutions—these and more tend

to come from a few reputable vendors.

The tendency to use what is popular is a social risk mitigation strategy, captured

in aphorisms such as “Nobody got fired for buying IBM.” Popularity, however, can

lead to systemic risk, as show by the Solarwinds hack [4] among others. Population

fragility gives us a measure of how much risk is incurred by using what everyone else

is.

6.2.2 Knowledge Obfuscation

While software reuse is a kind of knowledge reuse, knowledge reuse is a much broader

concept and encompasses system design, configurations, administrative processes,

security policies, and more. The more attackers know about a target, the better able

they are able find and exploit security weaknesses. We refer to knowledge obfuscation

(as measured by KOSM) as the degree to which defenders take steps to obscure the

knowledge attackers need to conduct their attack, i.e., by expanding the search space

that the attacker must search.

Security best practices tend to reduce KOSM, as those best practices tend to be

known to both attackers and defenders. For example, compliance regulations often

84

require many kinds of events to be logged to a SIEM so that logs can be retained

and analyzed. Attackers thus know their targets often have SIEMs running, and

depending upon the targeted industry or organization, attackers can know which of a

small number of SIEMs are being used based on their relative market share. Further,

these SIEMs will tend to be configured in certain standard ways, because those are

the way the vendors and other experts recommend they be configured, meaning that

network topology, the kind of data stored, and even the access control methods can all

be determined by an attacker without surveiling a target simply because they know

that is how things are done. If required knowledge is not obscure (i.e., is well known

as a best practice), KOSM goes down.

To be sure, there are costs with obfuscating knowledge. Such costs are captured by

other metrics such as those around administrative costs due to increased training or

system complexity. KOSM, however, captures the security benefit of such obfuscation,

allowing appropriate trade-offs to be made.

6.2.3 Defense Evolution

Security best practices require that defenders respond to attacker innovation in certain

standard ways. In particular, defenders should keep their anti-malware signatures up

to date and patch their systems in a timely fashion. Failure to follow such practices

is uniformly derided as leaving systems insecure. Because best practices require de-

fenders keep their systems updated, in some ways following best practices leads to

increased DESM (defense evolution).

However, DESM is about much more than simply keeping systems up to date. The

idea behind DESM is the defender changes where the attacker must search because

the system has changed in some way. Patching a vulnerability means that a previously

developed exploit will no longer work—but this only invalidates a small amount of

the attacker’s knowledge. To really change the space, defenders need to make larger

moves. So long as defenders are purely reactive, attackers will be able to leverage the

knowledge they have to continue to develop successfull attack strategies.

85

6.3 Mitigating Knowledge Reuse in Practice

Given that existing best practices do not optimize for the proposed measures—KOSM,

DESM, and fragility—how can these practices be adapted to reduce the value of at-

tacker knowledge? A key strategy is to increase software diversity, which should

occur at the population level, ensuring that different systems behave differently. This

could involve building systems using sets of interchangeable components with similar

functionality, allowing for an exponential increase in configuration possibilities. This

approach, supported by the population fragility metric, would also enhance KOSM

and DESM if the configurations were periodically altered, preventing attackers from

adapting to specific system setups. However, this approach represents a significant

shift from conventional software engineering practices and would require substantial

effort to ensure novel configurations maintain acceptable functionality and perfor-

mance.

There are also less disruptive steps that defenders can implement to increase

security metrics. Adaptive defenses, such as those based on anomaly detection or

machine learning, dynamically respond to changing attack patterns, enhancing DESM

by evolving in response to new threats. However, these defenses improve KOSM

only if they generate site-specific profiles, creating a localized adaptation strategy.

This profile-level diversity ensures that a successful attack on one system does not

guarantee success on another, even with similar hardware and software, translating

to improved security with manageable overhead.

Security analysts should conduct detailed analyses of system configurations and

dependencies, applying KOSM and DESM to identify vulnerabilities and tailor de-

fenses accordingly. Making non-standard choices, such as altering typical configura-

tions or implementing obfuscation techniques like port knocking, can also invalidate

previously obtained attacker knowledge, enhancing KOSM and DESM without sig-

nificantly altering existing practices. For instance, even widely used security tools

like SIEMs can be configured in unique ways, such as running multiple independent

SIEMs with a unified read-only interface, complicating attacker efforts by introducing

unexpected monitoring layers.

While these efforts may challenge the principle of ”avoid security through ob-

scurity,” our research suggests that some level of obscurity is integral to effective

86

computer defense. In practical contexts, adaptive defenses and knowledge obfusca-

tion—though often viewed skeptically—can be strategically used to keep attackers at

a disadvantage. It is crucial, however, to recognize the limitations: increasing com-

plexity and non-standard configurations can introduce new vulnerabilities, such as

adversarial attacks targeting adaptation logic in machine learning systems. Security

analysts must balance these strategies against potential scalability issues and ensure

that the benefits of increased metric scores outweigh the operational impacts.

Thus, improving KOSM and DESM is achievable through adaptive, localized de-

fenses and deliberate configuration choices that make systems less predictable to

attackers. However, blindly following existing best practices will not enhance these

metrics, potentially leaving systems more vulnerable than they need to be.

6.4 Limitations of Proposed Metrics

While the strategies outlined can significantly enhance security metrics like KOSM

and DESM, they also come with inherent limitations that must be carefully managed

in practice:

• Complexity and Vulnerability: While increased complexity in security mea-

sures can enhance metrics like KOSM and DESM, it may also introduce new

vulnerabilities. Complex adaptive systems, especially those relying on machine

learning, can be susceptible to adversarial attacks targeting the adaptation logic

itself. For instance, attackers might manipulate inputs to train an adaptive de-

fense incorrectly, causing it to behave predictably or ineffectively.

• Scalability Issues: Adaptive defenses, particularly those that generate unique

profiles per site, can introduce significant overhead. The additional computa-

tional and maintenance burden may not scale well across large or highly in-

terconnected environments, where consistent performance and availability are

critical.

• Knowledge Sharing and Misuse: Adaptive defenses are most effective when

unique to each environment; however, this approach can be compromised if

attackers gain knowledge about adaptive mechanisms. The risk of attackers

87

learning and sharing insights about commonly used adaptive strategies remains

a challenge, potentially reducing the effectiveness of KOSM if defenses are not

sufficiently localized.

• Implementation Challenges: Practical application of the proposed metrics re-

quires careful consideration of system-specific constraints, such as resource avail-

ability, existing infrastructure, and organizational readiness for complex adap-

tive systems. Security analysts must evaluate whether the benefits of increased

metric scores outweigh the potential costs and operational impacts.

In conclusion, while the proposed metrics and adaptive strategies provide a promis-

ing pathway for enhancing cybersecurity, it is essential to carefully weigh these ap-

proaches against their potential drawbacks. The balance between increasing security

and avoiding new vulnerabilities is delicate, requiring ongoing assessment and tailored

implementation to ensure that the gains in resilience do not inadvertently compromise

system integrity.

Chapter 7

Conclusion

This chapter represents the culmination of a comprehensive exploration into the evolv-

ing landscape of cybersecurity. It synthesizes insights from the literature, the moti-

vation behind advanced security strategies, novel methodologies for modeling attack

difficulty, and the practical application of these concepts through a case study us-

ing Product Family Algebra. Here, we reflect on key findings, contextualize their

significance within the broader field of cybersecurity, and consider implications for

future research and practice. This chapter serves as both a reflection on the journey

undertaken and a forward-looking perspective on the path ahead.

The literature review laid the groundwork for understanding the evolution of cy-

bersecurity, tracing its trajectory from simple password protection to today’s complex,

multi-layered defense systems. It highlighted the escalating arms race between cyber

attackers and defenders, setting the context for the subsequent exploration of inno-

vative defense strategies. This foundational understanding was crucial in setting the

stage for the advanced methodologies and models introduced later in the dissertation.

Chapter 4 marked a significant shift in the cybersecurity discourse, moving from

a static understanding of threats to a dynamic, behavior-based perspective. It delved

into the concept of knowledge reuse among attackers, revealing how they adapt and

evolve their strategies based on past experiences. The introduction of KOSM and

DESM as metrics to quantify defense effectiveness against such adaptive threats was

a pivotal moment in the dissertation, providing not just theoretical insights but prac-

tical tools for enhancing system security and resilience against increasingly sophisti-

cated attacks.

Chapter 5 presented a deep dive into product family algebra as a novel approach

to dissecting and fortifying system architectures. It showcased how understanding the

intricate web of system dependencies can reveal potential vulnerabilities and strategies

for mitigation. This chapter effectively bridged the gap between theoretical concepts

88

89

and practical applications, demonstrating how abstract mathematical principles can

be applied to the real-world challenges of cybersecurity.

Chapter 6 synthesized the theoretical insights and methodologies from the pre-

vious chapters, illustrating their direct implications and benefits for information se-

curity analysts. It highlighted the real-world applicability of the research, validating

the proposed models against practical constraints, and demonstrating their potential

to significantly advance cybersecurity strategies.

This dissertation makes multiple contributions to the field of cybersecurity. It

provides a nuanced, multi-dimensional understanding of cyber threats and introduces

innovative tools and strategies for combating them. The introduction of KOSM and

DESM as quantifiable metrics offers a new lens through which to assess and enhance

system security, while the application of product family algebra provides a structured

method to dissect and mitigate complex system vulnerabilities.

However, the nature of cybersecurity is inherently dynamic; as new technologies

emerge and threat actors evolve, so too must our strategies for defense. The models

and methodologies proposed in this dissertation offer a robust framework, but they

must be continually adapted and evolved to remain effective. Future research should

focus on expanding these models, exploring new methodologies, and refining our

understanding of both the threats we face and the tools we use to combat them.

In conclusion, this dissertation is not just an academic contribution; it’s a roadmap

for the future of cybersecurity. It underscores the need for a proactive, adaptive, and

continuously evolving approach to security, one that anticipates and responds to the

ever-changing tactics of cyber adversaries. The insights and strategies presented

herein are a significant step forward, providing both a deeper understanding of the

cybersecurity challenges and innovative tools to address them. As the digital land-

scape continues to evolve, so too will the field of cybersecurity. With the foundation

laid by this research, the cybersecurity community is better equipped to navigate this

ever-changing terrain, ensuring a more secure and resilient digital future for all.

Future work on the concepts presented in this dissertation can be extended both

theoretically and practically. Theoretically, further formalization of the models in-

troduced, particularly PFA for security metrics, could provide deeper insights into

exploit propagation and vulnerability dynamics. Integrating AI techniques, such as

90

reinforcement learning, could enhance the search-based framework, enabling adaptive

defense mechanisms that evolve alongside emerging threats. Additionally, expanding

on the KOSM and exploring cross-disciplinary applications of the proposed metrics

can offer broader utility beyond cybersecurity, enriching fields like economics or be-

havioral sciences. Developing dynamic threat models that incorporate real-time data

could also improve proactive defense strategies by predicting potential exploits.

On the practical side, developing a prototype tool that implements the proposed

metrics would validate their effectiveness in real-world settings, offering a tangible

application of theoretical work. Empirical studies across diverse industries would fur-

ther demonstrate the metrics’ adaptability and impact. Collaborating with industry

partners for real-world validation and integrating these models into existing security

frameworks like NIST or ISO would bridge the gap between theory and practice. Fi-

nally, AI-driven threat mitigation systems could automate security adjustments based

on evolving threats, enhancing the adaptability of defense mechanisms in real-time.

These extensions collectively aim to refine, validate, and apply the proposed models,

contributing to more robust cybersecurity strategies.

Bibliography

[1] S. Ahmad and B. Ehsan, “The cloud computing security secure user authentica-
tion technique (multi level authentication),” IJSER, vol. 4, no. 12, pp. 2166–2171,
2013.

[2] M. Al-Shabi, “A survey on symmetric and asymmetric cryptography algorithms
in information security,” International Journal of Scientific and Research Publi-
cations (IJSRP), vol. 9, no. 3, pp. 576–589, 2019.

[3] M. Alabbad, “A feature modelling language based on product family algebra,”
Master’s thesis, McMaster University, Hamilton, ON, Canada, September 2013.

[4] R. Alkhadra, J. Abuzaid, M. AlShammari, and N. Mohammad, “Solar winds
hack: In-depth analysis and countermeasures,” in 2021 12th International Con-
ference on Computing Communication and Networking Technologies (ICCCNT).
IEEE, 2021, pp. 1–7.

[5] R. Anderson, Security engineering: a guide to building dependable distributed
systems. John Wiley & Sons, 2020.

[6] C. Anley, J. Heasman, F. Lindner, and G. Richarte, The shellcoder’s handbook:
discovering and exploiting security holes. John Wiley & Sons, 2011.

[7] R. Azimi and F. Hosseini, “Generative programming: A model driven approach,”
University of Toronto, Toronto, Canada, Expert Topic Report ECE1770, 2003.

[8] R. K. Baggett and B. K. Simpkins, Homeland security and critical infrastructure
protection. ABC-CLIO, 2018.

[9] R. Bejtlich, The practice of network security monitoring: understanding incident
detection and response. No Starch Press, 2013.

[10] B. Biringer, E. Vugrin, and D. Warren, Critical infrastructure system security
and resiliency. CRC press, 2013.

[11] B. Blakley and D. M. Kienzle, “Some weaknesses of the tcb model,” in Proceed-
ings. 1997 IEEE Symposium on Security and Privacy (Cat. No. 97CB36097).
IEEE, 1997, pp. 3–5.

[12] D. J. Bodeau, C. D. McCollum, and D. B. Fox, “Cyber threat modeling: Sur-
vey, assessment, and representative framework,” MITRE CORP MCLEAN VA
MCLEAN, Tech. Rep., 2018.

91

92

[13] E. K. Budiardjo, E. M. Zamzami et al., “Feature modeling and variability mod-
eling syntactic notation comparison and mapping,” Journal of Computer and
Communications, vol. 2, no. 02, p. 101, 2014.

[14] S. V. Casteele, “Threat modeling for web application using stride model,” MIS
Thesis, Information Security group, Royal Holloway, University of London, 2004.

[15] Y. Chen, B. Boehm, and L. Sheppard, “Value driven security threat model-
ing based on attack path analysis,” in 2007 40th Annual Hawaii International
Conference on System Sciences (HICSS’07). IEEE, 2007, pp. 280a–280a.

[16] C. Chio and D. Freeman, Machine learning and security: Protecting systems with
data and algorithms. ” O’Reilly Media, Inc.”, 2018.

[17] J. Clarke-Salt, SQL injection attacks and defense. Elsevier, 2009.

[18] K. Czarnecki, “Generative programming-principles and techniques of software
engineering based on automated configuration and fragment-based component
models,” Ph.D. dissertation, Verlag nicht ermittelbar, 1999.

[19] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski, “Cool
features and tough decisions: a comparison of variability modeling approaches,”
in Proceedings of the sixth international workshop on variability modeling of
software-intensive systems. ACM, 2012, pp. 173–182.

[20] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration using feature
models,” in International Conference on Software Product Lines. Springer, 2004,
pp. 266–283.

[21] K. Czarnecki and C. H. P. Kim, “Cardinality-based feature modeling and con-
straints: A progress report,” in International Workshop on Software Factories.
ACM San Diego, California, USA, 2005, pp. 16–20.

[22] D. Dasgupta, Z. Akhtar, and S. Sen, “Machine learning in cybersecurity: a
comprehensive survey,” The Journal of Defense Modeling and Simulation, vol. 19,
no. 1, pp. 57–106, 2022.

[23] U. W. Eisenecker and K. Czarnecki, “Generative programmierung: wie man
komponenten baut und nutzt,” iX, vol. 2, pp. 126–132, 1999.

[24] J. Erickson, Hacking: the art of exploitation. No starch press, 2008.

[25] M. Eriksson, J. Börstler, and K. Borg, “The pluss approach–domain modeling
with features, use cases and use case realizations,” in International Conference
on Software Product Lines. Springer, 2005, pp. 33–44.

[26] L. Floridi, The fourth revolution: How the infosphere is reshaping human reality.
OUP Oxford, 2014.

93

[27] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer systems,”
in Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat.
No. 97TB100133). IEEE, 1997, pp. 67–72.

[28] F. Freiling, I. Eusgeld, and R. Reussner, “Dependability metrics,” Lecture Notes
in Computer Science. Springer-Verlag, Berlin, Germany, 2008.

[29] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. Pfleeger, J. Querter-
man, and B. Scheier, “Cyberinsecurity: The cost of monopoly–how the
dominance of microsoft’s products poses a risk to security,” Computer
& Communications Industry Association Report, 2003. [Online]. Available:
http://www.ccianet.org/papers/cyberinsecurity.pdf

[30] A. Gómez and I. Ramos, “Cardinality-based feature modeling and model-driven
engineering: Fitting them together.” VaMoS, vol. 37, pp. 61–68, 2010.

[31] T. Grandison and M. Sloman, “A survey of trust in internet applications,” IEEE
Communications Surveys & Tutorials, vol. 3, no. 4, pp. 2–16, 2000.

[32] M. L. Griss, “Software reuse architecture, process, and organization for business
success,” in Proceedings of the Eighth Israeli Conference on Computer Systems
and Software Engineering. IEEE, 1997, pp. 86–89.

[33] M. L. Griss, J. Favaro, and M. d’Alessandro, “Integrating feature modeling with
the RSEB,” in Proceedings. Fifth International Conference on Software Reuse
(Cat. No. 98TB100203). IEEE, 1998, pp. 76–85.

[34] R. Heady, G. Luger, A. Maccabe, and M. Servilla, “The architecture of a net-
work level intrusion detection system,” Los Alamos National Lab.(LANL), Los
Alamos, NM (United States); New Mexico . . . , Tech. Rep., 1990.

[35] P. Höfner, R. Khedri, and B. Möller, “Feature algebra,” in Proceedings of the
14th International Symposium on Formal Methods (FM 2006), ser. Lecture Notes
in Computer Science, J. Misra, T. Nipkow, and E. Sekerinski, Eds., vol. 4085.
Springer, 2006, pp. 300–315.

[36] G. Irazoqui, M. S. IncI, T. Eisenbarth, and B. Sunar, “Know thy neighbor:
Crypto library detection in cloud.” Proc. Priv. Enhancing Technol., vol. 2015,
no. 1, pp. 25–40, 2015.

[37] I. Jacobson, “Business process reengineering with object technology,” Object
Magazine, vol. 4, no. 2, pp. 16–ff, 1994.

[38] I. Jacobson, M. Griss, and P. Jonsson, “Reuse-driven software engineering busi-
ness (RSEB),” 1997.

[39] I. Jacobson, Object-oriented software engineering: a use case driven approach.
Pearson Education India, 1993.

94

[40] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Moving target
defense: creating asymmetric uncertainty for cyber threats. Springer Science &
Business Media, 2011, vol. 54.

[41] A. Jaquith, Security metrics: replacing fear, uncertainty, and doubt. Pearson
Education, 2007.

[42] J. Jesan, “Threat modeling web-applications using stride average model,” in
Computer Security Conference, 2008.

[43] T. A. Johnson, Cybersecurity: Protecting critical infrastructures from cyber at-
tack and cyber warfare. CRC Press, 2015.

[44] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” Carnegie-Mellon Univ Pitts-
burgh Pa Software Engineering Inst, Tech. Rep., 1990.

[45] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “Form: A feature-;
oriented reuse method with domain-; specific reference architectures,” Annals of
Software Engineering, vol. 5, no. 1, p. 143, 1998.

[46] J. S. Keller and M. Monks. (2015) Morgan stanley says data stolen in insider
breach. [Online]. Available: https://www.bloomberg.com/news/articles/2015-
01-05/morgan-stanley-says-data-for-350-000-wealth-clients-stolen

[47] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated software
diversity,” in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp.
276–291.

[48] D. C. Latham, “Department of defense trusted computer system evaluation cri-
teria,” Department of Defense, 1986.

[49] B. Littlewood and L. Strigini, “Validation of ultra-high dependability
for software-based systems,” in Predictably Dependable Computing Systems.
Springer, 1995, pp. 473–493.

[50] Á. Longueira-Romero, R. Iglesias, D. Gonzalez, and I. Garitano, “How to quan-
tify the security level of embedded systems? a taxonomy of security metrics,”
in 2020 IEEE 18th International Conference on Industrial Informatics (INDIN),
vol. 1. IEEE, 2020, pp. 153–158.

[51] M. R. Lyu, J.-H. Chen, and A. Avizienis, “Software diversity metrics and mea-
surements,” in 1992 Proceedings. The Sixteenth Annual International Computer
Software and Applications Conference. IEEE Computer Society, 1992, pp. 69–
70.

[52] A. Manna, A. Sengupta, and C. Mazumdar, “A survey of trust models for en-
terprise information systems,” Procedia Computer Science, vol. 85, pp. 527–534,
2016.

95

[53] H. Marmanis, Algorithms of the intelligent web, 2009.

[54] L. Metcalf and W. Casey, Cybersecurity and applied mathematics. Syngress,
2016.

[55] H. Mili, F. Mili, and A. Mili, “Reusing software: Issues and research directions,”
IEEE transactions on Software Engineering, vol. 21, no. 6, pp. 528–562, 1995.

[56] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software
testing. Wiley Online Library, 2004, vol. 2.

[57] A. A. Neto, M. Kalinowski, A. Garcia, D. Winkler, and S. Biffl, “A preliminary
comparison of using variability modeling approaches to represent experiment
families,” in Proceedings of the Evaluation and Assessment on Software Engi-
neering. ACM, 2019, pp. 333–338.

[58] D. O’Brien, “Misconfigured firewall leads to la county health
data breach,” Infosecurity Magazine, April 2011. [Online]. Avail-
able: https://www.infosecurity-magazine.com/news/misconfigured-firewall-
leads-to-la-county-health-data-breach/

[59] L. O’Murchu and F. P. Gutierrez, “The evolution of the fileless chick-fraud mal-
ware poweliks,” Symantec, Tech. Rep., 2015.

[60] J. K. Ousterhout, A philosophy of software design. Yaknyam Press Palo Alto,
CA, USA, 2018, vol. 98.

[61] P. L. Overbeek, “Common criteria for it security evaluation-update report,” in
Information Security—the Next Decade. Springer, 1995, pp. 41–49.

[62] J. N. Pelton, I. B. Singh, and I. B. Singh, Digital defense: A cybersecurity primer.
Springer, 2015.

[63] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on systems
security metrics,” ACM Computing Surveys (CSUR), vol. 49, no. 4, pp. 1–35,
2016.

[64] P. Pohjalainen, “Feature oriented domain analysis expressions,” in InNordic
Workshop on Model Driven Software Engineering (NW-MoDE’08), Reykjavik,
Iceland, 2008.

[65] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow, “Extending feature
diagrams with uml multiplicities,” in 6th World Conference on Integrated Design
& Process Technology (IDPT2002), vol. 23, 2002, pp. 1–7.

[66] I. Ristic, Bulletproof SSL and TLS: Understanding and deploying SSL/TLS and
PKI to secure servers and web applications. Feisty Duck, 2014.

[67] R. C. Seacord, Secure Coding in C and C++. Addison-Wesley, 2013.

96

[68] A. Shostack, Threat modeling: Designing for security. John Wiley & Sons, 2014.

[69] H. J. Sienkiewicz, The art of cyber conflict. Dog Ear Publishing, 2017.

[70] A. S. Sodiya, S. A. Onashoga, and B. Oladunjoye, “Threat modeling using
fuzzy logic paradigm,” Informing Science: International Journal of an Emerging
Transdiscipline, vol. 4, no. 1, pp. 53–61, 2007.

[71] W. Stallings, Computer security principles and practice, 2015.

[72] M. Stevens, A. Lenstra, and B. De Weger, “Chosen-prefix collisions for md5 and
colliding x. 509 certificates for different identities,” in Advances in Cryptology-
EUROCRYPT 2007: 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007.
Proceedings 26. Springer, 2007, pp. 1–22.

[73] D. Stuttard and M. Pinto, The web application hacker’s handbook: Finding and
exploiting security flaws. John Wiley & Sons, 2011.

[74] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in
2013 IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 48–62.

[75] Q. Tong, Y. Guo, H. Hu, W. Liu, G. Cheng, and L.-s. Li, “A diversity metric
based study on the correlation between diversity and security,” IEICE TRANS-
ACTIONS on Information and Systems, vol. 102, no. 10, pp. 1993–2003, 2019.

[76] B. Valeriano and R. C. Maness, Cyber war versus cyber realities: Cyber conflict
in the international system. Oxford University Press, USA, 2015.

[77] J. Van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability in soft-
ware product lines,” in Proceedings Working IEEE/IFIP Conference on Software
Architecture. IEEE, 2001, pp. 45–54.

[78] L. Wang, S. Jajodia, and A. Singhal, Network security metrics. Springer, 2017.

[79] T. Winters, T. Manshreck, and H. Wright, Software engineering at google:
Lessons learned from programming over time. O’Reilly Media, 2020.

[80] W. Yang, C. Huang, B. Wang, T. Wang, and Z. Zhang, “A general trust model
based on trust algebra,” in 2009 International Conference on Multimedia Infor-
mation Networking and Security, vol. 1. IEEE, 2009, pp. 125–129.

[81] Y. Yarom and K. Falkner, “{FLUSH+ RELOAD}: A high resolution, low noise,
l3 cache {Side-Channel} attack,” in 23rd USENIX security symposium (USENIX
security 14), 2014, pp. 719–732.

[82] M. Zalewski, The tangled Web: A guide to securing modern web applications.
No Starch Press, 2011.

97

[83] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese, “Network diver-
sity: a security metric for evaluating the resilience of networks against zero-day
attacks,” IEEE Transactions on Information Forensics and Security, vol. 11,
no. 5, pp. 1071–1086, 2016.

[84] Q. Zhang, “Aspect-oriented product family modeling,” Ph.D. dissertation, Mc-
Master University, Hamilton, ON, Canada, June 2013.

