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Introduction



Domain Adaptation/Transfer Learning

* Definition [Pan et al., IJCAI13 ]:
Ability of a system to recognize and apply knowledge and skills learned in
previous domains/tasks to novel domains/tasks
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Fig. 1. Learning process of transfer learning.

S. Pan, Q. Yang and W. Fan. Tutorial: Transfer Learning with Applications, IJCAI 2013.
Tan, Chuangqi, et al. "A survey on deep transfer learning." International Conference on Artificial Neural Networks. Springer, Cham, 2018.



Why Domain Adaptation

Successful Application of ML in industry depends on learning from large
amount of labeled data

Expensive, time consuming to collect labels

Difficult or dangerous to collect data in certain scenarios, e.g, auto driving

Domain Adaptation/Transfer Learning provides essential ability of
Reusing existing labeled resources
Adapting to changing environment

Learning from simulations



Transfer Learning vs Traditional ML

Traditional ML Transfer Learning/Domain Adaptation

(Semi-)Supervised Learning

Training
domain/task A

Training
domain/task A

= same feature space = different feature spaces
= same feature distribution = different feature distributions
___ same label space = different label spaces

Test Test
domain/task B domain/task B



Motivation Examples

Different feature distributions
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Applications in Computer Vision



Adapting to New Domains

= Reuse existing datasets, hence the annotation information

»Object Recognition

CUHKO3

»0Object Detection

PRID-cam|

» Person Re-ldentification

PRID-cam2

»Image Segmentation

-

Source image [GTAS) Adapted source image (Ours) Target image (CityScapes)

Adapted source images ({Ours) Target images [MNIST)

Source images (SVHN)

»Image Classification ... ...

o

Pixel accuracy on target
Source-only: 54.0%
Adapted (ours): 83.6%

Accuracy on target
Source-only: 67.1%
Adapted (ours): gg_g9

[J. HOtTTman et al, ILIVILLS|




Learning from Simulations

" Gathering data and training model are either too expensive, time-
consuming, or too dangerous

= Solution: create data, learning from simulations
»Auto driving

OpenAl's Universe will potentially allow us to train a
self-driving car using GTA 5 or other video games.

Udacity's self-driving car simulator (source: TechCrunch)

e L

»Robotic

Training models on real robotics
is too slow and expensive

Figure 8: Robot and simulation images (Rusu et al., 2016)


https://universe.openai.com/
https://techcrunch.com/2017/01/11/training-self-driving-cars-on-the-streets-of-los-santos-with-gta-v-just-got-easier/

Common Datasets

* Object recognition:

Office-31:

= Amazon (A)
= Webcam (W)
= DSLR (D)

ImageCLEF-DA:

= ImageNet ILSVRC 2012 (1)
= Pascal VOC 2012 (P)
= Caltech-256 (C)

= Digits: MINIST, SVHN, USPS

= Syn2Real dataset — a new dataset for object recognition

[Peng et al, 2018]
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Common Datasets

= Semantic Segmentation/object
detection:

»SYNTHIA/GTA5/SIM10K
» Cityscapes/Foggy Cityscapes/KITT]

»\Watercolor datasets constructed
using Amazon Mechanical Turk:

* Clipartlk, Watercolor2k, Comic2k

»Visual domain adaptation challenge
dataset VisDA-2017

»CVPR19 domain adaptation
challenge: BDD100K, D2-City
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(a) Clipartlk (b) Watercolor2k (c) Comic2k



Domain Adaptation Methods



Categories of DA Methods

Three main classes:
Reweighting/Instance-based Methods

Rewelight source labeled instances to match cross-domain feature distributions

Feature-based/Representation Learning Methods

Seek a good representation of data to minimize the gap between the source
and target distributions (via projection, deep learning, etc)

Parameter/Model- based Methods

Transfer models/parameters between source and target domains



Start with Instance Reweighting

Context

Domains share the same input space

Exist distribution shift across source and taraet domains, caused by sampling
bias / shift between marginals Ps(x) # Pr(x)

5 1 02

Idea

Reweight source labeled instances to reduce the discrepancy between the
source and target domains Pg(¢(x)) ~ Pr(é(x))



Simple Math Analysis

" h() — prediction function, x --- input, y — output

= Expected risk in target domain:

Rr(h) = E(xy)~p I[h(x) # Y]

Ps(x, y)
Bo(x,y) HX) # Y]

Pr(x,
= Ers pr g T 7

= Exy)~p;




Covariate Shift Shimodaira 00

= Assume shared conditional distribution Ps(y|x) = Pr(y|x)
Pr(x, y)
Ih
Ps(x, 1) Ilh(x) # y]
_E Pr(x)Pr(y|x)
O Pg(x)Ps(yx)
(

= E(x,y)~P5 I;z(:) I[h(x) = y]

_ Pr(x) Training in
=|Fx~Ds p s(x) By n(x) 7 1] Esource domain

Rr(h) = E(x y)~p.

I[h(x) # y]

= To minimize target risk, source instance can be reweighted:

Pr(x
w(x) - PH(S



Assumptions

= Assume shared conditional distribution Ps(y|x) = Pr(y|x)

= In addition, note w(x) = ?TEX%
gl X

#If Pg(x) = Pr(x), w(x) =1, need no adaptation } Matching
n

cross-domain
Marginal distributions

#If Pg(x) # Pr(x), o(x) # 1, adaptation across domai

= Assumption of support:
»However, problematic if 3x, PT(x) >0, but Pg(x) =0

s

»shared support in the source domaln. Pg(x) =0 iff Py(x) =0



Weight Estimation

Density ratio estimation [Sugiyama et a/, NIPS-07]

Estimate the density P(x) with some standard models, e.g., mixture Gaussian

Then compute the weight w(x)

Direct weight estimation

Learning weights with a binary domain discrimination function

w(X) = Pr(x) / Pg(x) x P(s =0|x)/P(s = 1|x) [Bickel et al., ICMLO7 ]

P(s = 0|x) : prob. of instance x belonging to target domain
P(s = 1|x) : prob. of instance x belonging to the source domain



Learning Weights Directly: MMD

Maximum Mean Discrepancy (MMD)  [Gretion etal. 2012

A test statistic for measuring the difference of two distributions p, Q.

MMD defined In Reproducing Kernel Hilbert Spaces [Gretton et al, 2012];

Lemma 4 Assume existence of the mean embeddings Hp: Kq

MMDZ[E’p’q] — ||}"P _angf '

Lemma 5 Let F be a unit ball in a universal RKHS H, defined on the
compact metric space X, with associated continuous kernel k(:, -). Then
MMD [F, p, g] = 0 ifand only if p = q.



Learning Weights Directly: MMD

MMD for domain adaptation

A widely used first order metric for matching the cross-domain
distributions

MMD* &%) = |I¢S|,|up<1 HEXS'\Ps[(ﬁ(xS)] - Extmpt[qb(xt)} H;

Learn weights by minimizing the empirical MMD

Pr(x) ~ @(X)Ps(x)



Extend to Representation Learning

= Extend MMD to learn representation function @(x)

~E.g., simple feature transformation [Long et

Conditional distribution adaptation (pseudo labels)

1 Mg 1 NgTNt . 2 .
—ZAlxi—— z AIXJ' =tI‘(AlXM0XIA)
L e j=ng+1 £
, g
5 X ATxi-—; ¥ ATxj| =tr(ATXM.X"A)
"5 xjeDl® "t xjeDl®

Long et al. " Transfer feature learning with joint distribution adaptation ”, CVPR 13

al. CVPR13]
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0
USPS vs MNIST MNIST vs USPS COIL1 vs COIL2 COILZ2 vs COIL1
Dataset



Recent Feature-based Methods

Representation learning methods present larger capacity in bridging
domain discrepancy

Widely applied in transfer learning for computer vision tasks

Recent development of representation learning based domain adaptation

Exploit adversarial loss
Use generative models

Exploit pseudo-labels



Adversarial Loss-based Adaptation Framework

Main idea:

Use adversarial loss to reduce cross-domain discrepancy
ming maxp Lggy(G,D) = Ey.p logD(G(x)) + E,-p,. log(1 — D(G(x)))
G (x) is a feature extractor; e.g., a deep network; or (Gs, G)

D(.) Is the domain discrimination function

Theorem 1 of [Goodfellow et al, 2014] suggests:

The global minimum is achieved if and only if ps (G(x)) = pr(G(x))

Goodfellow et al. " Generative Adversarial Networks ”, 2014



Theoretical Connection

[Kifer et al., VLDBO04]
= A-distance, measure of distance between probability distribution

da(D,D') = 2 sup [Prp [A] — Prp/ [4]|
Ae A

" Bound on target domain error Sample A-distance
between domains

» Theorem 2: [Ben-David et al., NIPS06 ]
A = ming [es (k) + €2(R)]

er(h) < és(h) + %\/(dlog ZeTm + log %) + A HdnUs, Up) |+ 4\/

dlog(2m’) + log(3)

m’

»Computing A-distance on real data

Binary classification error of
. _ ! discriminating points
da(Us,Ur) =2 (1 -2 min err(h’) sampled from two domains

Kifer et al. Detecting change in data streams. In Very Large Databases (VLDB), 2004.
Ben-David et al. "Analysis of Representations for Domain Adaptation”, NIPS 06



Adversarial Loss-based Adaptation Framework

Main idea:

Use adversarial regularized prediction loss for training

ming r maxp

source—»

target—>

Feature
extractor

L= Lpred(G»F) + A Lgqay(G,D)

Prediction
tasks

— label

prediction loss

Lpred

domain adversarial loss

Discriminator —

label Lygv




Domain Adversarial Neural Network (DANN)

“ DANN: Adversarialis
implemented via GRL (gradient
reverse layer)

: U,g)

domain classifier G (-
A

7 _ .
L'y (of, gy) = ( y(Gf(xu of) By) yz) “,\ N |
. 4
3 — ?-‘. ‘Sr'
Ed(Bfa ed) — (Gd(Gf (xu ef)r gd): d’t) Y Y ﬂ |:> ® domain label d
dL,
forwardprop  backprop (and produced derivatives) 0
2
E(efaeysad § :[’ (ef: ( § :Ed(afvgd) + = n, § :[’d(afsed))
i=n+1
Ganin et al. “Domain-adversarial training of neural networks” |, JMLR 2016
Ganin, Y. and Lempitsky, V. “Unsupervised domain adaptation by backpropagation” . ICML2015



Model Sharing and Adversarial Adaptation

Adversarial Discriminative Domain Adaptation (ADDA)

7Adversarial Adaptation

Pre-training

source images
+ labels

Classifier

class
label

[ source images

\ﬁ

r el

| S=s

1 I
I | | Source
] NN

="

target images

Discriminator

Target
CNN

domain
label

Testing

targetimage ~.._
|
|
I
|
I
I

source CNN is trained without sacrificing any discriminativity




Reweighted Adversarial Adaptation (cesees, cverag

Re-weight source domain label ys M—
distribution to help reduce domain e
discrepancy and adapt classifier x, B l_,, T,

Reweighted adversarial loss (RAAN) 51_’

Re
L ady
Domain Discriminator Loss

min max L | where @
T: DB
— t
= B BWD(TE) - B D(T())
st.|| V) D(Te(@)) ]2 < 1,
| V1. (@) D(Ts(x?))||2 < 1. (14)

Chen, et al. " Re-weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation ”, CVPR 18 +/-: with/without reweighting



[Saito et al, CVPR 18]

Alternative Adversarial Terms

Maximum Classifier Discrepancy (MCD):

Use multiple (two) classifiers F1, F2:
Exploit prediction disagreement in target domain as an adversarial term

Step A Step B : Maximize discrepancy on target (Fix G) 1 K
: . d(p1,ps) = — —
Train both classifiers and generator to Class Predictions (P1,p2) = D [pix = pay
. - Discrepancy Loss k=1
classify the source samples correctly [ Target sample o E NG
- - 1o ( - min E(Xsa Yq) - Eadv(Xt)-
min L(X,,Ys). Xt G - _ dpr{yixe), p: Fi,Fp
7, F, Fa - ) —
¢ Fy | mly xy”
B e Laay(Xt) = Ex,~x, [d(p1(y[xt), p2(¥[xt))]
L(Xs,Ys) = —E(x, y)n(xovs) O U=y, log p(y|xs) = d
k=
I = | Step C : Minimize discrepancy on target (Fix F, , F,)
Class Predictions
_ Discrepancy Loss
1 . — = adv t)-
Adversarial loss: e I3 o) ey G
Target domain — FQ]——E mlyixy”
L ] —
prediction discrepancy Udate!  Fix

K. Saito, et al. " Maximum Classifier Discrepancy for Unsupervised Domain Adaptation”, CVPR 18



Conditional Adversarial Domain Adaptation

Conditional Domain Adversarial Networks (CDANs) [NeurlPS 18]:

When feature distribution i1s multimodal under multi-class classification,
exploit classifier prediction for the domain adversarial discriminator

with multilinear map Ts (f g) if df ¥ d.. < 4096
—_— ‘ ? g =
T'(h) = {T® (f,g) otherwise,

Hgn E(Xf.yf)NDsL (G (x":) 7y:)

+ A (Exprs log [D (T' (h{))] + Ex¢~p, log 1-D(T (h;))])

max Ex;~p, log[D (T (h}))] + Extp, log [1 — D (T (h}))]

Long et al. “Conditional Adversarial Domain Adaptation ” . NeurlPS 2018



DA Recognition Results

Office-Home (Classification Accuracy (%) on Office-Home with 40% Mixed Corruption) Digit
Methods Ar9Cl | Ar9Pr | Ar9Rw | CIDAr | CI9Pr | CI9Rw | PrAr | ProCl | PrORw | RwDAr  RwDCl | RwDPr | Average Methods MNIST-USPS USPS>MNIST SVHN-MNIST | SYNSIGGTSRB
ResNet-50 271 50.7 61.7 41.1 538 56.3 409 | 280 618 51.3 33.0 65.9 416 Source only 752116 511417 601411
DANN(Ganin etal. IMLR16) | 329 = 50.6 60.1 86 | 492 | 506 | 399 | 326 604 50.5 384 67.4 476 | DANN(Caninetal JMLRIG) 711118 730402 s 88.65
ADDA(TzengetalCVPR17) | 326 = 520 60.6 26 | 535 | 543 | 430 | 316 63l 527 .7 6.5 493 | ADDA(TzengetalCVPRIT) 894102 %0.1108 %0118
ito et al. 240 140, 96.2+0.4 440,
TCL(Shu.ct.al AAAII9) 38.8 62.1 69.4 46.5 58.5 59.8 513 | 399 7.3 63.4 435 74.0 s6.6 | MCDRA(Saioctsl CVERIS) U207 izl B U403
RANN(-)(Chen et al CVPRIS) 88.3 915 80.7
. RANN(#)(Chen et al. CVPRIS) 89.0 92.1 89.2
VisDA-2017
+/- ¢ with/without reweighting
Methods Airplane | Bicycle Bus Car | Horse | Knife | motorcycle | Person | Plant | Skateboard | Train | Truck | Average
CDAN(Long et al. NeurIPS18) 939 96.9 88.5
ResNet101 55.1 533 619 | 591 806 179 79.7 312 810 26.5 735 85 524
CDAN+E(Long et al. NeurIPS18) 95.6 98.0 89.2
DANN(Ganin et.al. IMLR16 ) 81.9 777 | 828 | 43 812 295 65.1 286 @ 519 54.6 828 78 574
Office-31
MCD(n=4)(Saito et al. CVPR18) 87.0 609 = 837 | 640 889 796 84.7 769 | 88.6 403 83.0 258 719 Methods ow | pd>w | wep | adp DA WA | Aversge
CDAN (Long et al. NeurIPS18) 85.2 66.9 83.0 | 50.8 | 842 74.9 88.1 74.5 834 76.0 81.9 38.0 73.7 ResNet-50 (2016) 684102 | 967401 | 993+0.1 | 689402 | 62.5+03 | 60.7+03 76.1
DANN(Ganin et al JIMLR16 ) 79.3 973 99.6 80.7 65.3 63.2 80.9
ADDA(Tzeng et al.CVPR17) 86.2+0.5 96.210.3 98.410.3 778103 69.51+0.4 68.9+0.5 82.9
CDAN(Long et al. NeurIPS18) 93.110.2 98.21+0.2 100.0£0 89.8+0.3 70.1+0.4 68.010.4 86.6
CDAN+E(Long et al. NeurIPS18) | 94.1+0.1 98.6+0.1 100.01+0 92.910.2 71.010.3 69.310.3 87.7




Question Raised: Transferabiliy vs Discriminability

7] ResNet-50
.| = DANN

AtoWw
74 Wto A
4 AtoD
/ N L] DtoA

N

BSP+DANN[ICML19]:

ati

Error
o
&

In DANN, the top ZNN
eigenvectors of feature 12NN

DANN Source Target Aver

] i Re;C.Net-S(\)
matrix dominate the (b) Error Rate

transferability, at the cost
of discriminability

(a) max J(W)

Figure 1. Two experiments measuring discriminability of fe:
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[—' ' _—y cross-
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Figure 3. The architecture of BSP+DANN where BSP enhances discriminability while learning transferable features via domain adversarial
network (DANN). BSP is a lightweight module readily pluggable into any deep domain adaptation networks, which is end-to-end trainable
with the support of differentiable SVD in PyTorch. GRL denotes Gradient Reversal Layer widely used in adversarial domain adaptation.

Chen et al.

singular value

singular values )
—— ResNet_source
ResNet_target
—— DANN_source
DANN_target

o
&

051

“Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation ” . ICML2019



Batch Spectral Penalization (BSP)

= Batch Spectral Penalization (BSP): penalize the k largest singular

values of source and target feature matrix within each batch

k
min E(F,G) + ddistps(F, D) + BLpsp(F) Lsy(F) = Z(Ug,i +02,)
max distpeq(F, D), =

Table 3. Accuracy (%) on VisDA-2017 for unsupervised domain adaptation (ResNet-101).

Method plane bcybl bus car horse knife mcyle person plant sktbrd train truck mean

ResNet-101 (He et al., 2016) 55.1 533 619 59.1 80.6 17.9 79.7 312 B8l0 265 735 85 524
DAN (Long et al., 2015) 87.1 63.0 765 420 903 429 859 531 49.7 363 858 20.7 6l1.1
DANN (Ganin et al., 2016) 819 77.7 828 443 81.2 295 65.1 286 519 546 828 78 574
MCD (Saito et al., 2018) 87.0 609 837 64.0 889 796 847 769 88.6 403 830 258 719
CDAN (Long et al., 2018) 852 669 830 508 842 749 881 745 834 76.0 819 38.0 73.7
BSP+DANN (Proposed) 922 725 838 475 870 540 868 724 806 669 845 37.1 721
BSP+CDAN (Proposed) 924 61.0 810 575 89.0 80.6 9.1 77.0 842 779 821 384 759

Chen et al. “Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation ” . ICML2019



Multi-Level Adversarial Adaptation

[Chen et al, CVPR 18]

Object detection

DA-Faster-R-CNN

= Adversarial loss ( via GRL ) at both image level and instance level
= Consistent regularization at the two levels

cls. reg.

1

3 .
L .

Detection loss:
RPN and ROl loss

Lget = L-rp'n + Lyoi

==
'

ROIl-based
feature vectors

E‘ins -

instance-level
representation
(B. 1)

image-level
representation
(1)

Feature map

-y [D,-, log pi,; + (1 — D;) log(1 — m.J)]

“J . the j-th region proposal in the i-th ima

consistency
regularization

(s{ Z“‘IIZ (“!

w,v

— Pi,j ||2

£imy

_ Z [Di l()gpfj“'"’)

+ (1= D;)log(1 — p\"™™)

(b) Domain adaptation components

ge

Chen, etal. "

Domain Adaptive Faster R-CNN for Object Detection in the Wild:", CVPR 18




Multi-Level Adversarial Alignment

[Saito et al, CVPR 19]

Object detection: Strong-Weak  overview of Proposed Method

Source

= Domains can have distinct
scene layouts and different

Low-level
Features

High-level
Features

combinations of objects.

= Local features such as texture
and color do not change
category level semantics.

— -

Class

7S

i1

Local-Strong
Alignment

Global-Weak
Alignment

\/

U

o

Class

-

Extract global features just before the RPN Learn domain-invariant features that are

and local features from lower layers

* strongly aligned at the local patch level

Bbox

* weakly (partially) aligned at the global scene level.

Saito, et al. " Strong Weak Distribution Alignment for Adaptive Object Detection :”, CVPR 19



https://arxiv.org/pdf/1812.04798.pdf

Multi-Level Adversarial Alignment o cta cveris

Object detection Extract global features just before the RPN and local features from lower layers

Source Faster RCNN Module
RPN — Features of Context

each region Vector
Local Feature Global Feature

| 1 I 1
. L
(=lel=) |
3 Class Object
E @ I:> Detection

Local A4 Source Global
Alignment GR or [:> Alignment
Objective Target Objective

Domain prediction Domain prediction
Local Domain Classifier Network Global Domain Classifier Network

A 4

GR

GRL: Gradient Reversal Layer

Figure 3. Proposed Network Architecture. Our method performs strong-local alignment by a local domain classifier network and weak-
global alignment by a global domain classifier. The context vector is extracted by the domain classifiers and is concatenated in the layer

before the final fully connected layer. .
max min Leis(FyR) — ALgdy(F, D)

Saito, et al. " Strong Weak Distribution Alignment for Adaptive Object Detection :”, CVPR 19



https://arxiv.org/pdf/1812.04798.pdf

DA Detection Results

(Saito et al, CVPR 19)

Object detection
mAP SIM10K Cityscapes KITTI Cityscapes | PASCALVOC | PASCALVOC
{1 {3 b {3 U b
Cityscapes | FoggyCityscapes | Cityscapes | KITTI Clipart WaterColor
Faster R-CNN 34.6 20.3 30.2 53.5 27.8 44.6
DA-Faster 38.9 27.6 38.5 64.1 19.8 46.0
(Chen et al, CVPR 18)
Strong-Weak 47.7 34.3 . . 38.1 53.3




Generative Model based Methods

* Main idea:

»Use generative models to generate data in either domains, or

transform data to another domain

Source Image Source Image Stylized as Target

»The generated/transformed data can then be used to complement
existing data and align the domains



Cycle-Consistent Adversarial DA Hoffman et . ICML18

Limitation of domain alignment techniques:

aligning marginal distributions does not enforce semantic consistency

alignment at higher levels of a deep representation can fail to model aspects
of low-level appearance variance

CyCADA:

transform data from one domain to the other domain
adaptation at both pixel level and feature level
Integrate multiple Losses:

cycle-consistency loss, semantic consistency loss,

adversarial loss (pixel & ), prediction loss

Hoffman etal. " CyCADA: Cycle-Consistent Adversarial Domain Adaptation :”, ICML 18



Cycle-Consistent Adversarial DA Hoffman et . IML18

Reconstructed Source Image Source Prediction Source Label GAN
Task loss
loss

D
GAN

feat

Source Image Stylized as Target Target Image

Semantic
Consistency
loss

Source Image

image-level GAN loss (green), the feature level GAN loss (orange), the source and target semantic
consistency losses (black), the source cycle loss (red), and the source task loss (purple).

For clarity the target cycle is omitted.

Hoffman etal. " CyCADA: Cycle-Consistent Adversarial Domain Adaptation :”, ICML 18



Russo et al. CVPR18

Symmetric Bi-Directional Adaptive GAN

« SBDA-GAN: -

Target Images Target Images
Real | Generated 4‘
Source Discriminative <€—— | D,
Loss

ygﬂe;_f - a’rgma‘xy (OS (Gts (mg ))
pseudo-

Self-Labeled
Source-like Tugot
labels

Source
Classification Lou | I ¢
Sourco CIass
‘ Target-like

Source Images
Co(Gus(Gonlar 22),2)) ~ys |
DATA

* Real | Generated
Dy | — Target Discriminative
‘ Loss i

| Target-like |
C, > | Source
Classification
~ Loss

»combine bi-directional image transformation with target self-labeling

»use class consistency loss to align the generators in the two directions

Russo etal. " From source to target and back: Symmetric Bi-Directional Adaptive GAN”, CVPR 18



DA Recognition Results

Methods MNIST=>USPS USPS—=>NMNIST SVHN—=>MNIST SYNSIG=>GTSRB
DANN (Ganin et.al. IMLR16 ) 77.1+1.8 73.0+0.2 T3.85 88.65
ADDA (Tzeng et aLCVPRI17) 89.440.2 90.1+0.8 76.0+1.8
MCD_DA(Saito et alL,.CVPRI1E) 94.240.7 94.14+0.1 96.21+0.4 94.440.3
CDAN(Long et al. NeurIPS18) 93.9 96.9 88.5
CyCADA (Hoffman. et.al. ICMLI18) 95.61+0.2 96.54+0.1 90.41+0.4
GTA(Sankaranaravanan.et.CVPR1R) 92.84+0.9 90.8+1.3 92.44+0.9
SBAD-GAN (Russo et al. CVPRIE) 97.6 95.0 76.1 96.7
Office-31
Methods ADW D2>W W=D A=D D=2>A WA Average
ResNet-50 (2016) 68.41+0.2 96.7+0.1 99.3+0.1 68.9+0.2 62.5+0.3 60.7+0.3 76.1
DANN(Ganin et alLJMLR16) 79.3 97.3 99.6 80.7 65.3 63.2 80.9
ADDA(Tzeng et al. CVPR17) 86.21+0.5 96.2+0.3 98.4+0.3 77.8+0.3 69.5+0.4 68.9+0.5 82.9
CDAN(Long et al. NeurIPS1R) 93.1+0.2 98.2+0.2 100.0+0 89.8+0.3 70.1+0.4 68.0+0.4 86.6
GTA(Sankaranarayanan.et. CVPR18) 89.5+0.5 97.9+0.3 99.8+0.4 87.7+0.5 72.8+0.3 71.41+0.4 86.5




Pseudo-Label based Methods

= Use target domain
unlabeled data
with predicted
pseudo-labels to
augment labeled
training data In the
training process

It Is a general semi-
supervised learning
strategy; many
methods can be
extended to exploit
pseudo-labels

Some positive application in domain adaptation:

> Progressive domain adaptation for Object detection

Level of annotations

Image Instance
dog |chair person
Source
domain
horse

do erson |

Target
domain |© | IS

(S

»For recognition:

Domain transfer (DT)

Table 3: Results of our methods on the different baseline

erson

horse

FSDs in terms of mAP [%] in Clipartlk.

‘ persn" |

Method SSD300 YOLOv2 Faster R-CNN
Baseline 26.8 25.5 26.2
DT 38.0 315 321
PL 36.4 34.0 29.8
DT+PL 46.0 39.9 349
Ideal case 554 51.2 50.0

Model A—W W—A A—D D—A W—D D—-W Avg.
ResNet50[16] 73.5 598 76.5 567 99.0 93.6 765
DDC[27] 760 63.7 775 67.0 982 948 795
DAN[19] 805 628 786 636 996 97.1 B804
RTN[20] 845 648 775 662 994 968 8l.6
DANNJ[13] 793 632 80.7 653 996 973 809
JAN[21] 86.0 707 851 69.2 997 967 846
CAN(ours) 815 634 855 659 99.7 0982 824
iCAN(ours) 925 699 90.1 72.1 100.0 98.8 87.2

Table 1. Comparison of different methods for unsupervised do-

main adaptation on the Office-31 dataset.

Domain Discriminator Assisted
Pseudo-labelled Sample Selection

Score from
Domain Classifier

»

1 (Source) 4

(Doman Inv: anan(‘
Samples)

0 (Target)

= Source -
» Target H

Labelled
Source
Samples

Selected
Pseudo-
labelled
Target
Samples

| Classifier
\Threshold

»  Prediction Confidence

(High-Confidence Samples)

O(Negative)

1(Positive) from Image Classifier

Zhang et al. " Collaborative and Adversarial Network for Unsupervised domain adaptation :”, CVPR 18
Inoue et al. " Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation”, CVPR 18




Summary

e Unsupervised domain adaptation has received a lot of attention

* Open domain learning remains to be challenging, but starts drawing
attentions

* Most study has focused on classification problems

* Much less effort has been made on more complex tasks such as
object detection



