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Abstract. In regression learning, it is often difficult to obtain the
true values of the label variables, while multiple sources of noisy
estimates of lower quality are readily available. To address this prob-
lem, we propose a new Bayesian approach that learns a regression
model from data with noisy labels provided by multiple oracles. The
proposed method provides closed form solution for model parame-
ters and is applicable to both linear and nonlinear regression prob-
lems. In our experiments on synthetic and benchmark datasets this
new regression model was consistently more accurate than a model
trained with averaged estimates from multiple oracles as labels.

1 INTRODUCTION
In regression learning, it is usually assumed that true labels are read-
ily available to train the learner. However, recent advances in corrob-
orative technology have given rise to situations where the true value
of the target is unknown. In such problems, multiple sources or or-
acles are often available that provide noisy estimates of the target
variable. The amount of noise inherent to these estimates may range
from slight to high. For example, opinions of human experts about
the diameter of a lesion appearing in an x-ray image [11] may be con-
sidered slightly noisy, whereas the opinion of a layman is expected
to be highly deviant from the actual value. Another example is Ama-
zon’s Mechanical Turk [16] (on-line labeling marketplace) where la-
bels for a particular supervised learning task are provided by humans
(for a small fee). In this situation human variability in subject matter
expertise causes different noise levels in labels. In many other cases
obtaining the true value of the label is expensive, whereas obtaining
lower quality estimates of the target may be cheap.

In this paper, we address the question of whether it is possible
to learn a regression model when provided with multiple noisy la-
bels instead of a single golden standard. We propose a probabilistic
Bayesian solution to this question. The Bayesian approach estimates
the model parameters as well as the oracle precisions by maximiz-
ing the marginal log-posterior of the observed noisy labels and input
features. Our approach can be applied to both linear and non-linear
regression problems by exploiting the kernel tricks.

The remaining part of this paper consists of the review of related
work, followed by presentation of the methodology and derivations,
the summary of experimental results, conclusions and discussions of
future work.

2 RELATED WORK
Almost all of the previous work related to our problem is devoted
to binary classification. In machine learning, this problem first ap-
peared in reference to labeling volcanoes on Venus’ surface [15]. In
[8] authors provide a preliminary analysis on evaluating classifiers
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with test data having noisy labels and try to analyze the bounds of
the error rate for the classification problem. Their conclusion is that
error bounds assuming independence of oracles are not the same if
the independence assumption is relaxed. The problem of noisy labels
is also considered in a more recent paper [10] where the authors at-
tempted to build a probabilistic model of the classifier in absence of
a true label using a latent variable model. There are some recent arti-
cles in natural language processing [12] and the computer vision [16]
domain where it is shown that using multiple noisy labelers can result
in a classifier as good as one trained with labels provided by experts.
There are also some theoretical studies [9][13][14] that investigate
learning with noisy labels.

A more recent work [4] concerned with multiple noisy oracles
provides a simple iterative solution for evaluating the labeler accu-
racy and fitting a logistic regression model for a binary classification
task in absence of the true labels using an exploration-exploitation
approach. The assumption in this article is that majority vote is a
close approximation of the true label. This idea is further studied by
considering a cost-sensitive approach and assuming budgetary con-
straints [5].

Another important paper [11] published very recently presents an
elegant way of solving the problem using a probabilistic approach.
This method derives the likelihood observations given the parame-
ters and then uses expectation-maximization to estimate parameter
values that maximize the likelihood. Our proposed approach is sim-
ilar to [11] but with critical differences. First, the proposed method
is targeted on regression problems with continuous targets, where
one faces new computational challenges that can not be solved by a
straightforward extension of the existing methods developed for bi-
nary classification. Second, the new method can address both linear
and non-linear regressions. Third, unlike [11] we show that closed
form solution can be obtained for model weights.

In statistics, Repeated Measurement Regression (RMR) is con-
cerned with making a model for the population observed over time
where one measurement is available for each subject at a particular
time point [3]. We consider multiple measurements for each point
where measurements are of different quality unknown in advance
which RMR does not consider. In [6] nonlinear regression is fitted
through the means of subjects at each time point which is reasonable
for the population but not for our problem.

3 PROBLEM FORMULATION

Let us assume that at the same time for the particular observation
vector x,K oracles provide us with the noisy targets y1, . . . yK
where noise is unknown. Each data point is given by D(i) =

{x(i), y
(i)
1 , ..y

(i)
K } where i = 1, . . . ,N. Our goal here is to derive the

regression function f(x, w) that maps the inputs x to target variable
y representing estimated golden standard along with the estimate of



precisions of each oracle. It will be shown later that oracle precisions
must be estimated very well in order to obtain an accurate estimation
of the regression function. Before we start deriving the expressions
for f(x, w) and precisions of oracles, in this section, we introduce
the basic assumptions we made and the graphical presentation of the
regression problem based on these assumptions.

3.1 Basic Assumptions
First, we assumed the regression to be a linear function in some
higher dimensional feature space F. We have to choose a fixed map-
ping from the original space x to the feature space F, ϕ(x): x → F.
The regression function is given as

f(x,w) = wTϕ(x) (1)

With this assumption we avoid the limitation of a linear model and
preserve the computational tractability of the model at the same time.

Second, we assume that the regression errors are normally inde-
pendently distributed with a zero-mean Gaussian distribution. Thus,
ground truth label and its probability distribution can be modeled as

y = f(x,w) + ϵ, ϵ ∼ N(0, σ2
y) (2)

P (y|x,w) = N
(
f (x,w) , σ2

y

)
(3)

Moreover, given the true label y, we assume all oracles independently
provide noisy estimates of the true label. We also assume that the
noise intrinsic to each oracle is a Gaussian with different unknown
variances.

P (yk|y) = N
(
y, σ2

k

)
, k=1, . . . ,K (4)

Furthermore, we assumed that oracle noise does not depend on input
and that oracles provide labels independently from each other. Both
these assumptions we intend to relax in our future work.

3.2 Graphical Representation
Upon the assumptions presented above, The Conditional Probability
Distributions (CPD) defined by equations (3) and (4) can be repre-
sented by a graphical model shown in Figure 1. Here x denotes the
inputs, the hidden node at the center corresponds to the unobserved
true label, and the yk nodes represent the noisy labels provided by
each oracle.

Figure 1. Graphical representation of a regression problem with multiple
oracles

4 BAYESIAN ESTIMATE OF LIKELIHOOD
Our goal is to estimate the model parameters (regression weights w,
oracle precisions 1/σ2

k (k = 1. . . K) and model noise variance σ2
y).

For convenience, we will denote σ2
y by σ2

K+1 and denote f (x, w) by
yK+1. We then use θ to denote the whole set of parameters that need
to be estimated.

Thus the joint probability over oracle labels for a particular in-
stance i and for given x(i) and θ can be written as

P
(
y
(i)
1 , . . . , y

(i)
K |x(i), θ

)
=
∫
y
P
(
y
(i)
1 , . . . , y

(i)
K |y, x(i), θ

)
P
(
y|x(i), θ

)
dy

(5)

Using the independencies between yk’s and x given y we can rewrite
(5) as

P
(
y
(i)
1 , . . . , y

(i)
K |x(i), θ

)
=
∫
y
P
(
y
(i)
1 , . . . , y

(i)
K |y, θ

)
P
(
y|x(i), θ

)
dy

(6)

Again using the independencies among yk’s given y we have

P
(
y
(i)
1 , . . . , y

(i)
K |y, θ

)
=
∏K

k=1 P
(
y
(i)
k |y, σ2

1, ..σ
2
K

)
= 1

(2π)K/2 ∏K
k=1 σk

exp

(
−
∑K

k=1

(
y
(i)
k −y

)2

2σ2
k

)
(7)

Substituting (7) and (3) into (6) we obtain

P
(
y
(i)
1 , . . . , y

(i)
K |x(i), θ

)
=
∫
y

1

(2π)(K+1)/2 ∏K+1
k=1 σk

exp

 −
K∑

k=1

(
y
(i)
k −y

)2

2σ2
k

−(y−f(x(i),w))
2

2σ2
K+1

 dy

= C
∫
y

exp
(
−C1y

2 + C2iy − C3i

)
dy

= C
√

π
C1

exp
(

C2
2i

4C1
− C3i

)
(8)

where

C = 1

(2π)(K+1)/2 ∏K+1
k=1 σk

, C1 =
∑K+1

k=1
1

2σ2
k

C2i =
∑K+1

k=1

y
(i)
k

σ2
k

, C3i =
∑K+1

k=1

(
y
(i)
k

)2

2σ2
k

(9)
Now the joint probability over all N instances is given by

P (y1, . . . , yK|X, θ) =
∏N

i=1 C
√

π
C1

exp
(

C2
2i

4C1
− C3i

)
(10)

where X is the input matrix of all instances given by

X =


1 . . . 1

x11 x1N

...
...

xM1 . . . xMN


((M+1)×N)

and M is the number of features in the input vector X. The initial row
of 1’s is added to accommodate the bias term w0.

Then the conditional log-likelihood can be written as

l (y1, . . . , yK,X, θ) = logP (y1, . . . , yK|X, θ)
= N logC + N

2
log π

−1
2
N logC1 +

N∑
i=1

C2
2i

4C1

−
N∑

i=1

C3i

(11)



We further consider a regularization term −λwT w/2 which corre-
sponds to isotropic Gaussian prior over w [2]. In that way we obtain
log-posterior

l′ (y1, . . . , yK,X, θ)
= logP (θ|X, y1, . . . , yK)
∝ logP (y1, . . . , yK|X, θ)

+ logP (θ)

= N logC − 1
2
N logC1 +

N∑
i=1

C2
2i

4C1

−
N∑

i=1

C3i − λ
2
wTw + const.

(12)

5 MAXIMUM A-POSTERIORI PARAMETER
ESTIMATES

In order to find the Maximum A-Posteriori (MAP) estimates of
model weights and oracle precisions to maximize the log-posterior
given in equation (12), We first derive the gradients of log-posterior
l’ with respect to 1/σ2

k and w, respectively. Let us denote

Y =


y
(1)
1 . . . y

(1)
K y

(1)
K+1

...
...

...
y
(N)
1 . . . y

(N)
K y

(N)
K+1


S =

[
1
σ2
1

. . . 1
σ2
K

1
σ2
K+1

]T
Then

∂l′(y1,...,yk,X,θ)

∂(1/σ2
k)

= Nσ2
k

2
− N

4C1

+
ST Y T (2ykC1− 1

2
YS)

4C2
1

−1
2
yT
k yk

(13)

where yk is the k-th column of Y. By setting the derivative equal to
zero we obtain

σ2
k =

1

2C1
−

STY T
(
2ykC1 − 1

2
YS
)

4C2
1

+
1

N
yT
k yk (14)

Now, to estimate w, we choose to minimize l” = −l’ instead of maxi-
mizing l’ (see equation (12) ) for convenience. After some rearrange-
ments l” can be expressed in the following convenient form.

l′′ = A

1

2

N∑
i−1

{
wTϕ(x(i)) − ti

}2

+
L

2
wTw

+B (15)

where

L =
2λC1σ

4
y

2C1σ2
y − 1

, ti =

K∑
k=1

yi
k

σ2
k

/
K∑

k=1

1

σ2
k

(16)

and A and B are constants independent of w. Again minimizing l”
with respect to w is equivalent to minimizing

J(w) =
1

2

N∑
i−1

{
wTϕ(x(i)) − ti

}2

+
L

2
wTw (17)

The expression in (17) is very similar to regularized sum of squares
with the target variable ti being the sum of all labels weighted by
respective oracle precisions.

After differentiating J(w) with respect to w, equating to zero, and
rearranging we found expression for w in the form

w = 1
L

[∑N
i=1

(
ti − wTϕ(x(i))

)
ϕ(x(i))

]
=
∑N

i=1 aiϕ(x
(i)) = ΦT a

(18)

Here, Φ is the design matrix, whose i-th row is given by ϕ (x(i))T ,
and a is given by a = [a1 . . . aN ]T where

ai =
1

L
(ti − wTϕ(x(i))) (19)

Substituting value of w from (18) into the expression of J(w) in (17)
we obtain

J(a) = 1
2
aTΦΦTΦΦT a − aTΦΦT t

+1
2
tT t + L

2
aTΦΦT a

(20)

where t = [t1 . . . .tN ]T . Now we introduce the Gram Kernel ma-
trix defined as K= ΦΦT .This is an N × N symmetric matrix with
elements

Kij = ϕ(x(i))Tϕ(x(j)) = k(x(i), x(j)) (21)

where k(x(i), x(j)) is determined by a kernel function. In terms of
K, the expression for J(a) becomes

J(a) =
1

2
aTKKa − aTKt +

1

2
tT t +

L

2
aTKa (22)

Setting the gradient of J(a) with respect to a to zero, we obtain

a = (K + LIN)−1t (23)

So, if we substitute this value of a into (1), we get

f (x(i),w) = wTϕ(x(i))

= aTΦϕ(x(i))

= k(x(i))T (K + LIN)−1t

(24)

And for a new input x,

y(x) = k(x)T (K + LIN)−1t (25)

where k(x) is the vector with elements ki(x) = k(x(i), x). The
kernel function we used in this work is the Gaussian Kernel given
by,

k(x(i), x(j)) = e
−
(x(i)−x(j))2

2σ2 (26)

In our experiments, we set the regularization parameter λ and the
kernel parameter σ experimentally.

The closed form solutions we derived for σ2
k and f(x(i), w) are

interdependent. From equation (14), we see that the value of σ2
k de-

pends on itself (through S) and on f(x(i), w) (through Y). Also, From
equation (24), we see that the values of f (x(i), w) depend on σ2

k

(through L and t). Finding independent solutions analytically is dif-
ficult. So, we use an iterative optimization method to find the values
of σ2

k and f(x(i), w). To achieve this objective, we start from a rea-
sonable guess of σ2

k and use equation (24) to determine f(x(i), w).
Then we use the obtained values of f(x(i), w) to recompute σ2

k us-
ing equation (14). We proceed iteratively until convergence, i.e. until
there is no more significant change in values of σ2

k.



6 SPEEDUP FOR LINEAR REGRESSION
Nonlinear regression using the Kernel trick as described in the previ-
ous section is also applicable to linear regression problems. In these
situations we can use linear kernels, but this approach has some dis-
advantages. As evident from equation (23) and equation (24) the pro-
posed approach for estimating model weights includes inversion of a
N × N matrix which would increase the time complexity for solving
linear regression problems. Thus we solve linear regression problem
by setting

f(x,w) = wTx, x = [1 x1 . . . xM ]T (27)

In such case the expression for the oracle accuracies is the same while
expression for the weights can be estimated as

w =
(
XXT

)−1

Xt (28)

In this case we need to invert an (M+1)×(M+1) matrix. In cases
where M ≪ N (which is very common in reality) equation (28) will
provide a much faster solution than equation (23).

7 EXPERIMENTS
7.1 Data and Experimental Setup
We have tested the performance of our method on both artificial
and six benchmark datasets. Five of the test datasets chosen from
UCI repository [1] have nonlinear behaviours, while the houseprice
dataset chosen from statistics [7] is a linear regression problem. The
datasets and their properties are summarized in Table 1. A linear syn-
thetic dataset is used to make sure that experimental data really has
linear behaviour.

Target values that appear in the datasets have been considered as
ground truth. In order to validate the proposed algorithm we simu-
late multiple noisy oracles by adding a different amount of Gaussian
noise to actual labels. Based on these simulated targets we can si-
multaneously learn regression model and estimate oracle precisions.
Since a priori information about oracles is unknown we treat them
equally important in the baseline method. Therefore, the regression
model trained on the average of labels was our baseline. For the pur-
pose of better insight in quality of the proposed method we will re-
port prediction accuracies of the models trained on the ground truth
as well as on the each oracle separately.

If all oracles are experts (small noise level), then it would be ex-
pected that our method performs almost the same as the baseline
which makes the case rather uninteresting. In our experiments three
oracles were used to assign three target values to each instance and
for each dataset, and the following three scenarios were considered:

• Experiment I: one oracle is expert (small noise) and other two are
inexperienced (larger noise level).

• Experiment II: all oracles are inexperienced.
• Experiment III: two oracles are inexperienced and one is totally

random (huge level of noise)

Accuracies of the models are reported using coefficient of deter-
mination (R2) defined as:

R2 = 1 −
∑

i (y
(i) − f(x(i),w))

2∑
i (y

(i) − ȳ)
2 (29)

Values of R-square closer to 1 are better. In all experiments
R2 values were calculated using predictions of particular method

Table 1. Benchmark dataset description

Dataset No. instances No. features

Houseprice 107 4
Automobile 159 18
Breast Cancer W.P 194 34
Auto MPG 392 7
Housing 506 13
Concrete 1030 8

Table 2. Accuracy (R2) on Automobile dataset

True Orac.I Orac.II Orac.III Baseline Prop.

Exp I 0.81 0.80 0.71 0.66 0.78 0.80
Exp II 0.80 0.78 0.70 0.65 0.77 0.78
Exp III 0.81 0.78 0.71 -1.29 0.52 0.79

Table 3. Accuracy (R2) on Breast Cancer W.P. dataset

True Orac.I Orac.II Orac.III Baseline Prop.

Exp I 1.00 0.98 0.77 0.54 0.90 0.98
Exp II 1.00 0.86 0.76 0.55 0.90 0.93
Exp III 1.00 0.86 0.76 -0.31 0.78 0.93

Table 4. Accuracy (R2) on Auto MPG dataset

True Orac.I Orac.II Orac.III Baseline Prop.

Exp I 0.87 0.87 0.75 0.66 0.82 0.87
Exp II 0.87 0.81 0.74 0.65 0.81 0.84
Exp III 0.87 0.81 0.75 -0.92 0.58 0.84

Table 5. Accuracy (R2) on Housing dataset

True Orac.I Orac.II Orac.III Baseline Prop.

Exp I 0.87 0.86 0.80 0.73 0.83 0.86
Exp II 0.86 0.79 0.79 0.73 0.82 0.85
Exp III 0.87 0.80 0.80 0.26 0.75 0.85

Table 6. Accuracy (R2) on Concrete C.P. dataset

True Orac.I Orac.II Orac.III Baseline Prop.

Exp I 0.87 0.86 0.73 0.66 0.82 0.86
Exp II 0.87 0.83 0.72 0.66 0.81 0.84
Exp III 0.87 0.82 0.72 -5.29 -0.03 0.83



(a)

(b)

(c)

Figure 2. Results on Housing dataset for experiments 1,2 and 3 are shown
in panels a,b and c respectively.

f(x, w) and the ground truth y. Here, each data set is partitioned
into 70%/30% train/test sets and the average results on test sets over
200 runs are reported.

7.2 Nonlinear Regression Results
Results for experiments performed on five datasets with nonlinear
behaviour are presented in Tables 2-6. We can notice that for a par-
ticular dataset accuracies of the true model vary slightly in multiple
experiments. This occurs due to randomness in choosing training and
test sets. However, in all experiments the R-square value for the pro-
posed method was better than for the baseline method. In presence
of an almost random oracle (3rd experiment) on all five datasets our
method was a lot better than the baseline method. A predictor trained
on true labels performs the best as expected. Accuracies for this pre-
dictor and the proposed method were slightly different even when the
proposed method was trained on very noisy labels used in the third
experiment. Moreover, the proposed method performed the same or
better than the predictor trained on labels from the best oracle. In
presence of one expert oracle and two inexperienced oracles (exper-
iment I) a huge weight was assigned to the expert by our method
appropriately. The obtained results show that in those situations ac-
curacy of our model was as good as the accuracy of the expert. On the
other hand, when learning without an expert among oracles (experi-
ments II and III) our model took into account information provided
by all oracles, which caused the accuracy of our model to be better
than the accuracy of the best oracle.

Estimates of accuracies for three oracles obtained by our algorithm
over experiments 1-3 on housing data are shown in Figure 2. These
results are reported in the form of standard deviation of noise in la-
bels and are compared to the corresponding true values. As evident
from Figure 2, in experiments on housing data estimated standard de-
viations of noise level were almost the same as the true values. Essen-
tially identical findings were observed in the corresponding experi-
ments on the remaining datasets (figures omitted for lack of space).

7.3 Linear Regression Results
For evaluation of linear regression, we have constructed a synthetic
linear dataset using the following equation to generate true targets

y = x1 − 3.5x2 + 4x3 + 5x4 + 2x5 + N(0, σ2
y) (30)

where σ2
y represents model variance introduced in order to avoid

perfect linearity. In our experiments value of σ2
y was set to one while

values of the features (x values) were sampled from Normal distri-
bution.

Experimental results for synthetic and linear dataset are presented
in Tables 7 and 8. They show the same behaviour as in nonlinear
case. Linear model is also able to estimate accuracies of each oracle
quite well which is shown in Table 9.

Table 7. Accuracy (R2) on Synthetic dataset

True Orac.I Orac.II Orac.III Baseline Prop.

Exp I 0.98 0.98 0.84 0.76 0.94 0.98
Exp II 0.98 0.92 0.86 0.79 0.94 0.95
Exp III 0.98 0.92 0.86 -1.93 0.64 0.94



Table 8. Accuracy (R2) on Housprice dataset

True Orac.I Orac.II Orac.III Baseline Prop.

Exp I 0.76 0.76 0.67 0.54 0.72 0.76
Exp II 0.77 0.71 0.69 0.54 0.73 0.74
Exp III 0.76 0.71 0.65 -1.84 0.44 0.72

Table 9. True and estimated oracle precisions for Housprice dataset
represented as standard deviation of noise in labels

Oracle I Oracle II Oracle III

True Est. True Est. True Est.

Exp I 50 163 400 424 600 612
Exp II 300 326 400 423 600 610
Exp III 300 329 400 416 2000 1984

8 CONCLUSION AND FUTURE WORK
The kernel method for nonlinear regression can be time-consuming
in applications to datasets in which the number of instances is much
larger than the number of features. Because of that, we also offered
a special solution for linear cases. The use of kernels requires reg-
ularization and kernel parameters to be properly adjusted.Therefore,
development of a method that uses a neural network as a nonlinear
model is a part of the future work. The assumption that an oracle
maintains uniform precision over all instances will be relaxed in a
follow up article where a generalized model with input-dependent
oracle accuracy will be considered.
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