
Support Vector Machines
on General Confidence Functions

Yuhong Guo
University of Alberta

yuhong@cs.ualberta.ca

Dale Schuurmans
University of Alberta

dale@cs.ualberta.ca

Abstract

We present a generalized view of support vector machines that does not
rely on a Euclidean geometric interpretation nor even positive semidef-
inite kernels. We base our development instead on the confidence
matrix—the matrix normally determined by the direct (Hadamard) prod-
uct of the kernel matrix with the label outer-product matrix. It turns
out that alternative forms of confidence matrices are possible, and in-
deed useful. By focusing on the confidence matrix instead of the un-
derlying kernel, we can derive an intuitive principle for optimizing ex-
ample weights to yield robust classifiers. Our principle initially recov-
ers the standard quadratic SVM training criterion, which is only convex
for kernel-derived confidence measures. However, given our general-
ized view, we are then able to derive a principled relaxation of the SVM
criterion that yields a convex upper bound. This relaxation is always
convex and can be solved with a linear program. Our new training pro-
cedure obtains similar generalization performance to standard SVMs on
kernel-derived confidence functions, but achieves even better results with
indefinite confidence functions.

1 Introduction

Support vector machines were originally derived from purely geometric principles [10, 1]:
given a labeled training set, one attempts to solve for a consistent linear discriminant that
maximizes the minimum Euclidean distance between any data point and the decision hy-
perplane. Specifically, given (x1, y1), ..., (xt, yt), y ∈ {−1,+1}, the goal is to determine
a (w, b) such that mini yi(w

>
xi + b)/‖w‖ is maximized. Vapnik [10] famously proposed

this principle and formulated a convex quadratic program for efficiently solving it. With
the addition of slack variables the dual form of this quadratic program can be written

min
α

1

2

∑

ij

αiαjyiyjx
>

i xj −
∑

i

αi subject to 0 ≤ α ≤ β, α>y = 0 (1)

where the dual variables α behave as weights on the training examples.

One of the key insights behind the support vector machine approach is that the training
vectors appear only as inner products in both training and classification, and therefore can
be abstracted away by a general kernel function. In this case, the kernel function, k(xi,xj),

simply reports inner products 〈φ(xi),φ(xj)〉 in some arbitrary feature (Hilbert) space.
Combining the kernel abstraction with the ν-SVM formulation of [9, 2] one can re-express
(1) in the more general form

min
α

α>(K ◦ yy
>)α subject to 0 ≤ α ≤ β, α>y = 0, α>e = 1 (2)

where K is the kernel matrix, Kij = 〈φ(xi),φ(xj)〉, the matrix yy
> is the label ma-

trix, the vector e consists of all 1’s, and ◦ denotes componentwise matrix multiplication
(Hadamard product).

Although (2) appears to be a very general formulation of the weight training problem for
α, it is in fact quite restrictive: for (2) to be convex, the combined matrix K ◦ yy

> must
be positive semidefinite, implying that K itself must be conditionally positive semidefi-
nite.1 Thus, it is commonly assumed that support vector machines should be applied on
conditionally positive semidefinite kernels K.

Although the restriction to conditional positive semidefiniteness might not appear onerous,
it is actually problematic in many natural situations. First, as [8] notes, verifying that a
putative kernel function k(·, ·) is conditionally positive semidefinite can be a significant
challenge. Second, as many authors note [8, 7, 5] using indefinite kernels and only approx-
imately optimizing (2) can often yield similar or even better results than using conventional
positive semidefinite kernels. (A frequently used example is the hyperbolic tangent kernel
tanh(a〈xi,xj〉 + b).) Third, adding conditional positive semidefiniteness as a constraint
causes tremendous difficulty when attempting to learn a kernel (similarity measure) di-
rectly from data.

In fact, it is this third difficulty that is the main motivation for this research. We are in-
terested in learning similarity measures from data that we can then use to train accurate
classifiers. One can easily devise natural ways of doing this (we elaborate on one approach
below), but unfortunately in these cases ensuring positive semidefiniteness ranges from
hard to impossible. To date, most successful attempts at learning conditionally positive
semidefinite kernels have been reduced to taking convex combinations of known condi-
tionally positive semidefinite kernels [6, 3]. But we would like to consider a wider range
of techniques for learning similarities, and therefore seek to generalize (2). Our goal is
to develop an efficient weight optimization procedure for α that does not require a posi-
tive semidefinite matrix K ◦ yy

>, while still preserving the desirable generalization and
sparseness properties achieved by standard SVM training.

Below in Section 2 we show how the standard kernel classifier can be generalized to con-
sider more abstract confidence functions c(yiyj |xixj) that play the same role as the usual
kernel-label combination yiyjk(xi,xj). We then briefly outline some natural approaches
for learning confidence functions from data in Section 3. The approach we propose there
is very simple, but effective. Nevertheless, it suffers from the drawback of not being able
to ensure a positive semidefinite matrix for optimization. Section 4 then outlines our main
development. Given the general confidence function viewpoint, we derive an α-weight
optimization procedure from intuitive, strictly non-geometric first principles. The first pro-
cedure we derive simply recovers the classical quadratic objective, but from a new perspec-
tive. With this re-derivation in hand, we are then able to formulate a novel relaxation of
the standard SVM objective that is both principled while also being guaranteed to be con-
vex. Finally, in Section 5 we present experimental results with this new training principle,
showing similar performance to standard SVM training with standard kernel functions, but
obtaining stronger performance using indefinite confidence functions learned from data.

1A symmetric matrix K is conditionally positive semidefinite if z
>

Kz ≥ 0 for all z such that
z
>
e = 0. K need only be conditionally positive semidefinite to ensure K ◦yy

> is positive semidef-
inite because of the assumption α>y = 0. That is, if (α ◦ y)>e = α>y = 0, then we immediately
obtain α>(K ◦ yy

>)α = (α ◦ y)>K(α ◦ y) ≥ 0.

2 Confidence function classification

Our goal is to develop a learning and classification scheme that can be expressed more
abstractly than the usual formulation in terms of yiyjk(xixj). We do this via the notion of
a confidence function, c(yiyj |xixj), which expresses a numerical confidence that the label
pair yiyj is in fact correct for the input pair xi and xj . A large confidence value expresses
certainty that the label pair is correct, while a small value correspondingly expresses a lack
of confidence that the label pair is correct (or certainty that the label pair is wrong). We
make no other assumptions about the confidence function, although it is usually presumed
to be symmetric: c(yiyj |xixj) = c(yjyi|xjxi).

Although the notion of a pairwise confidence function might seem peculiar, it is in fact
exactly what the yiyjk(xi,xj) values provide to the SVM. In particular, if we make
the analogy c(yiyj |xixj) = yiyjk(xi,xj) and assume y ∈ {−1,+1}, one can see that
yiyjk(xi,xj) behaves as a simple form of confidence function: the value is relatively large
if either yi = yj and xi and xj are similar under the kernel k, or if yi 6= yj and xi and
xj are dissimilar under the kernel. We therefore refer to the matrix C = K ◦ yy

> as the
confidence matrix.

Proposition 1 If the entries of the confidence matrix K ◦ yy
> are strictly positive, then

the training data is linearly separable in the feature space defined by K.

This proposition clearly shows that high confidence values translate into an accurate clas-
sifier on the training data. In fact, it is confidences, not similarities, that lie at the heart of
support vector machines: The SVM methodology can be recast strictly in terms of confi-
dence functions, abstracting away the notion of a kernel entirely, without giving up any-
thing (except the Euclidean geometric interpretation). To illustrate, consider the standard
SVM classifier: Assuming a vector of training example weights, α, has already been ob-
tained from the quadratic minimization (2), the standard classification rule can be rewritten
strictly in terms of confidence values

ŷ = sign
((

∑

j

αjyjk(x,xj)
)

+ b
)

= arg max
y

(

∑

j

αjyyjk(x,xj)
)

+ by

= arg max
y

(

∑

j

αjc(yyj |xxj)
)

+ by (3)

Thus a test example x is classified by choosing the label y that exhibits the largest weighted
confidence when paired against the training data.

Quite obviously, the SVM training algorithm itself can also be expressed strictly in terms
of a confidence matrix over training data.

min
α

α>Cα subject to 0 ≤ α ≤ β, α>y = 0, α>e = 1 (4)

This is just a rewriting of (2) with the substitution C = K ◦ yy
>, which does not change

the fact that the problem is convex if and only if C is positive semidefinite. However, the
formulation (4) is still instructive. Apparently the SVM criterion is attempting to reweight
the training data to minimize expected confidence. Why? Below we argue that this is in fact
an incorrect view of (4), and suggest that, alternatively, (4) can be interpreted as attempting
to maximize the robustness of the classifier against changes in the training labels. With
this different view, we can then formulate an alternative training criterion—a relaxation of
(4)—that still attempts to maximize robustness, but is convex for any confidence matrix C.
This allows us to advance our goal of learning confidence functions from data, while still
being able to use SVM training of the example weights without having to ensure positive
semidefiniteness.

Before turning to the interpretation and relaxation of (4), we first briefly consider a natural
approach to learning confidence functions, which further motivates this research.

3 Learning confidence functions

There are many natural ways to consider learning a confidence function c(yiyj |xixj) from
training data. In [4] we investigated a particularly simple technique that achieves reason-
able results. Given training labels, one can just straightforwardly learn to predict label
pairs yiyj given their corresponding input vectors xi and xj . Concretely, given examples
(x1, y1), ..., (xt, yt), it is easy to form the set of training pairs {(xixj , yiyj)} from the orig-
inal data, which doubles the number of input features and squares the number of training
labels and classes. (Subsampling can always be used to reduce the size of this training set.)
Given such pairwise training data, standard probabilistic models can be learned to predict
the probability of a label pair given the input vectors.

In [4] we considered logistic regression and naive Bayes classifiers for learning pairwise
predictors. For example, the logistic regression classifiers were trained to maximize the
conditional likelihood P (yiyj |xixj) of the observed label pairs given the conjoined vector
of inputs xixj . Once learned, the pairwise model was used to classify test inputs x by
maximizing the product ŷ = arg maxy

∏

j P (yyj |xxj).2 Clearly, this is equivalent to
using a confidence function c(yiyj |xixj) = log P (yiyj |xixj) and classifying with respect
to uniform example weights α. Surprisingly, [4] obtained good classification results with
this simple approach. In this paper, we are interested in the connection to support vector
machines and attempt to improve the basic method by optimizing the α-weights.

Note that, as a confidence measure, using a log probability model, log P (yiyj |xixj), is a
very natural choice. It can be trained easily from the available data, and performs quite
well in practice. However, using a log probability model for a confidence function raises
a significant challenge: log P (yiyj |xixj) is always non-positive and therefore any confi-
dence matrix C it produces, since it is strictly non-positive, cannot be positive semidefinite.
Ironically, the very confidence functions that appear to be most natural in this context, are
precisely the ones ruled out by the positive semidefinite constraint. This problem motivates
us to reformulate the quadratic optimization criterion (4), so that convexity can be achieved
more generally while preserving the effective generalization properties.

4 Optimizing training example weights: An alternative view

Given a confidence classifier (3) it is natural to consider adjusting the training example
weights α to improve accuracy. At first glance, the quadratic minimization criterion (4)
used by SVMs appears to be adjusting the example weights to minimize the confidence of
the training labels yi. However, we can argue that this interpretation is misleading. In fact,
standard kernel-based confidence functions have a special property that masks a key issue:
how confidences change when a training label is flipped. For the classifier (3), it is not
the absolute confidence that counts, but rather the relative confidences between the correct
label and the incorrect label. That is, we would like the confidence of a correct label to be
larger than the confidence of a wrong label. For kernel-based confidence functions it turns
out that the relationship between the relative confidences is greatly restricted.

Observation 1 Let y denote a label flip, −y. If c(yiyj |xixj) = yiyjk(xixj) then
∑

j

αjc(yyj |xxj) + by = −
∑

j

αjc(yyj |xxj) − by (5)

2[4] also considered other techniques for classification, including correlating the predictions on
the test data in a transductive manner, but we do not pursue these extensions here.

However, the relationship (5) is obviously not true in general. For example, it is violated
by any probabilistic confidence function defined by c(yiyj |xixj) = log P (yiyj |xixj).

Thus for kernel-based confidence functions, the confidence in the opposite label is always
just the negation of the confidence in the current label.

We now show how the concept of minimizing sensitivity to label flips on the training data
recovers the classical SVM training criterion. Consider a training example (xi, yi) and an
arbitrary current set of weights α. The current confidence in the training label yi is

(

∑

j

αjc(yiyj |xixj)
)

+ byi

Now consider the change in the confidence in yi that would result if a single training label
yk was actually mistaken. That is, if the current value of yk is incorrect and should have
been given the opposite sign, then the mistake we are making in yi’s confidence is

∆kc(yi) = αkc(ykyi|xkxi) − αkc(ykyi|xkxi) (6)

= 2αkc(ykyi|xkxi) (7)

Note that (7) holds only under the kernel-based restriction (5), but in this special case the
confidence penalty is just twice the original confidence. If (5) does not hold, then (6) can
be used. The sum of the local confidence changes measures the overall sensitivity of the
classification of training label yi to possible mislabelings of other data points

∆c(yi) =
∑

k

∆kc(yi) (8)

The smaller this value, the less likely yi is to be misclassified due to a mislabeling of some
other data point. That is, the sensitivity to label flips should be minimized if the classifier is
to be made more robust. Nevertheless, there might be a tradeoff between the sensitivities of
different training examples. Therefore, as a final step, we consider minimizing the overall
weighted sensitivity of the training labels. This yields the minimization objective

∑

i

αi∆c(yi) =
∑

i

αi

∑

k

αk

(

c(ykyi|xkxi) − c(ykyi|xkxi)
)

(9)

= 2
∑

ik

αiαkc(ykyi|xkxi) (10)

Again, (10) only holds under the kernel-based restriction (5), but if this is violated, the
more general form (9) can be used.

Therefore, if we are using a kernel-based confidence function, we recover exactly the same
training criterion as the standard SVM (4). What is interesting about this derivation is that it
does not require any reasoning about Euclidean geometry or even feature (Hilbert) spaces.
The argument is only about adjusting the example weights to reduce the sensitivity of the
classifier (3) to any potential mistakes in the training labels. That is, from the perspective
of α-weight optimization, it is only the reflection property (5) and the desire to minimize
sensitivity to mislabeled training examples that yields the same minimization objective as
standard SVMs. The remaining constraints in (4) are also easily justified in this context:
It is natural to assume that the example weights form a convex combination, and therefore
0 ≤ α, α>e = 1. It is also natural to preserve class balance in the reweighting, hence
α>y = 0. Finally, as a regularization principle, it makes sense to limit the magnitude of
the largest weights so that too few examples do not dominate the classifier, hence α ≤ β.

Of course, rederiving an old criterion from alternative principles is not a significant contri-
bution. However, what is important about this perspective is that it immediately suggests

principled alternatives to the SVM criterion that can still reduce sensitivity to potential
training label changes. Our goal is to reformulate the objective to avoid a quadratic form,
since this prevents effective optimization on indefinite confidence functions, which are the
confidence functions we are most interested in (Section 3). It turns out that just a minor
adjustment to (10) yields just such a procedure.

Given the goal of minimizing the sensitivity to training label changes, previously we sought
to minimize the weighted sensitivity, using the same weights being optimized, which leads
to the quadratic form (10). However, instead of minimizing weighted sensitivity, one could
instead be more conservative and attempt to minimize the maximum sensitivity of any la-
bel in the training set. That is, we would like to adjust the example weights so that the
worst sensitivity of any training label yi to potential mislabellings of other examples is
minimized. This suggestion immediately yields our proposal for a new training criterion

min
α

max
i

∑

k

αk

(

c(ykyi|xkxi) − c(ykyi|xkxi)
)

(11)

subject to 0 ≤ α ≤ β, α>y = 0, α>e = 1

Once α has been optimized, the offset b can be chosen to minimize training error.

Proposition 2 The objective (11) is convex for any confidence function c, and moreover is
an upper bound on (4).

The proof of this proposition is obvious. The minimization objective is a maximum of
linear functions of α, and hence is convex. Given the constraints 0 ≤ α, α>e = 1 we
immediately have maxi f(i) ≥

∑

i αif(i).

As a practical matter, (11) can be solved by a simple linear program

min
α,δ

δ subject to δ ≥
∑

k

αk

(

c(ykyi|xkxi) − c(ykyi|xkxi)
)

∀i

0 ≤ α ≤ β, α>y = 0, α>e = 1 (12)

This formulation provides a convex relaxation of the SVM criterion for any confidence
function c(yiyj |xixj), including the probabilistic confidence functions discussed above.

5 Experimental results

We implemented the new weight optimization scheme based on linear programming (12)
and, where possible, compared it to standard SVM quadratic minimization (4) as well as us-
ing uniform weights. (Although using uniform weights appears to be naive, for high quality
confidence measures such as those learned by training reasonable probability models, uni-
form weighting can still achieve highly competitive generalization performance [4].) We
compared the different weight optimization schemes on a variety of confidence functions,
including those defined by standard positive semidefinite kernels (linear dot product and
RBF), as well as the sigmoid kernel tanh, and two probabilistic confidence models trained
using naive Bayes and logistic regression respectively. We compared the test accuracy of
these various algorithms on the set of two-class UCI data sets. All of our experimental
results are averages over 5 times repeats with training size =100 or 4/5 of the data size.

In the first study we compared how the different weight optimization schemes performed
using the positive semidefinite functions determined by the linear and RBF kernels respec-
tively. Table 1 shows that the new weight optimization scheme (12) achieves comparable
generalization performance to standard quadratic training. The uniform weighting strategy
is clearly inferior in the linear kernel case. Though it is better in the RBF kernel case, the

Table 1: Comparison of the test accuracy of different α-weight optimizers (α0: uniform
weighting; α1: linear optimization; α2: quadratic optimization) on UCI data sets, using
the positive semidefinite confidence functions defined by linear (L) and RBF (k(xi,xj) =
exp(−‖xi − xj‖

2)) kernels.

L-α0 L-α1 L-α2 RBF-α0 RBF-α1 RBF-α2
australian 0.6132 0.8149 0.8434 0.7288 0.7837 0.7132
breast 0.9280 0.9691 0.9698 0.9465 0.9712 0.9623
cleve 0.6173 0.7939 0.8020 0.8173 0.8194 0.7918
corral 0.5714 0.9000 0.9286 0.9071 0.9357 1.0000
crx 0.5461 0.8495 0.8373 0.6492 0.7696 0.6767
diabetes 0.6512 0.7542 0.7051 0.7410 0.7048 0.7299
flare 0.8292 0.8292 0.7602 0.7998 0.8151 0.8292
german 0.7000 0.7053 0.6660 0.4984 0.6280 0.7002
glass2 0.7556 0.7810 0.8190 0.8921 0.8667 0.8635
heart 0.7800 0.8235 0.8353 0.7635 0.7941 0.7741
hepatitis 0.8125 0.8625 0.8625 0.7250 0.8250 0.8250
mofn-3-7 0.7794 0.7814 0.8047 0.7038 0.7760 0.8565
pima 0.6512 0.7629 0.7359 0.7722 0.7009 0.6943
vote 0.6149 0.9307 0.9349 0.8806 0.9128 0.8752
average 0.7036 0.8256 0.8218 0.7732 0.8074 0.8066

results are still not comparable to the linear and quadratic weighting scheme. The problem
is that the confidence functions are only weakly informative here, and simply averaging
them still yields a sensitive classifier. It is encouraging to note that our convex relaxation
retains most of the benefit of the original quadratic objective in this case.

A more interesting test of the method is on indefinite confidence functions, such as those
determined by tanh and log P (yiyj |xixj). In these cases, the quadratic objective is non-
convex and cannot be solved by standard quadratic optimizers. However, as mentioned, our
relaxation remains convex in this case. [8] suggests more sophisticated approach to training
in these cases, but their methods are substantially more technical than the simple technique
proposed here. Table 2 shows the results of our linear weight optimization procedure and
the the uniform weighting on the indefinite confidence functions. Clearly the probabilistic
(trained) confidence functions yield effective classifiers, and they perform better than the
standard SVMs with both linear and RBF kernels. Even the results for the sigmoid kernel
with linear optimization weighting are comparable to the results of the standard SVM with
RBF kernel. Moreover, even uniform weighting already achieves good results for these
confidence functions.

The main benefit of the new approach is the ability to reliably optimize example weights
for a wider range of confidence functions. We believe this is a useful advantage over
SVM training because most natural confidence functions, in particular learned confidence
functions, are not usually positive semidefinite. Learned confidence functions have a wider
potential for generalization improvement over using fixed kernels, as our results suggest,
since the accuracies obtained by using the probabilistic confidence functions tend to exceed
those of other techniques in our experiments.

6 Conclusion

We have introduced a simple generalization of support vector machines based on the notion
of a confidence function c(yiyj |xixj). This view allows us to think of SVM training as at-

Table 2: Comparison of the test accuracy of different α-weight optimizers (α0: uniform
weighting; α1: linear optimization) on UCI data sets, using the indefinite confidence func-
tions tanh (k(xi,xj) = tanh(0.001 ·xixj −1)), naive Bayes (NB), and logistic regression
(LR).

LR-α0 LR-α1 NB-α0 NB-α1 tanh-α0 tanh-α1
australian 0.8502 0.8502 0.8461 0.8471 0.6488 0.8193
breast 0.9585 0.9328 0.9715 0.9691 0.9605 0.9684
cleve 0.8020 0.8041 0.8398 0.8459 0.7582 0.7622
corral 0.8714 0.8929 0.9000 0.9000 0.8786 0.7071
crx 0.8452 0.8452 0.8416 0.8347 0.6058 0.8365
diabetes 0.7440 0.7413 0.7605 0.7545 0.6512 0.7027
flare 0.8197 0.8199 0.8306 0.8207 0.8292 0.8273
german 0.7189 0.7182 0.7144 0.7133 0.7084 0.6969
glass2 0.8063 0.8127 0.8730 0.8952 0.7524 0.7683
heart 0.8129 0.8118 0.8224 0.8271 0.8200 0.8165
hepatitis 0.9000 0.9000 0.9250 0.9375 0.7750 0.8250
mofn-3-7 0.9111 0.9026 0.8873 0.9239 0.7794 0.7802
pima 0.7425 0.7425 0.7575 0.7587 0.6512 0.7156
vote 0.9176 0.9188 0.9194 0.9122 0.8669 0.9200
average 0.8357 0.8352 0.8492 0.8529 0.7633 0.7961

tempting to minimize the sensitivity of the classifier to perturbations of the training labels.
From this perspective, we can not only rederive the standard SVM objective without ap-
pealing to Euclidean geometry, we can also devise a new training objective that is convex
for arbitrary, not just positive semidefinite, confidence functions. Of course, other opti-
mization objectives are possible, and perhaps superior ones could still be developed. An
important research direction is to develop a generalization theory for our relaxed training
procedure that is analogous to the theory that has already been developed for SVMs.

References

[1] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Pro-
ceedings of the 5th Annual Conference on Computational Learning Theory (COLT-92), 1992.

[2] D.J. Crisp and C.J.C. Burges. A geometric interpretation of v-svm classifiers. In Advances in
Neural Information Processing Systems 13 (NIPS-00), 2000.

[3] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel target-alignment. In
Advances in Neural Information Processing Systems 14 (NIPS-01), 2001.

[4] Y. Guo, R. Greiner, and D. Schuurmans. Learning coordination classifiers. In Proceedings of
the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), 2005.

[5] B. Haasdonk. Feature space interpretation of svms with indefinite kernels. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27:NO.4, 2005.

[6] G. Lanckriet, N. Cristianini, P. Bartlett, L Ghaoui, and M. Jordan. Learning the kernel matrix
with semidefinite programming. Journal of Machine Learning Research, 5, 2004.

[7] H.-T. Lin and C.-J. Lin. A study on sigmoid kernels for svm and the training of non-psd kernels
by smo-type methods. 2003.

[8] C.S. Ong, X. Mary, S. Canu, and A.J. Smola. Learning with non-positive kernels. In Proceed-
ings of the 21st International Conference on Machine Learning (ICML-04), 2004.

[9] B. Schoelkopf, A. Smola, R. Williamson, and P. Bartlett. New support vector algorithms. Neural
Computation, 12(5):1207–1245, 2000.

[10] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

