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Abstract. Multi-label classification is a central problem in many appli-
cation domains. In this paper, we present a novel supervised bi-directional
model that learns a low-dimensional mid-level representation for multi-
label classification. Unlike traditional multi-label learning methods which
identify intermediate representations from either the input space or the
output space but not both, the mid-level representation in our model has
two complementary parts that capture intrinsic information of the input
data and the output labels respectively under the autoencoder principle
while augmenting each other for the target output label prediction. The
resulting optimization problem can be solved efficiently using an itera-
tive procedure with alternating steps, while closed-form solutions exist
for one major step. Our experiments conducted on a variety of multi-
label data sets demonstrate the efficacy of the proposed bi-directional
representation learning model for multi-label classification.

1 Introduction

Multi-label classification is a central problem in many areas of data analysis,
where each data instance can simultaneously have multiple class labels. For ex-
ample, in image labelling [3, 13], an image can contain multiple objects of interest
and thus have multiple annotation tags; in text categorization [20], a webpage
can be assigned into multiple related topic categories; similarly, in gene or protein
function prediction [4], a gene or protein can exhibit multiple functions. More-
over, in these multi-label classification problems, strong label co-occurrences
and label dependencies usually exist. For example, an object “computer” often
appears together with the object “desk”, but is rarely seen together with the
object “cooking pan”. Hence different from the standard multi-class problems
where each instance is mapped to a single class label, multi-label classification
needs to map each instance to typically a few interdependent class labels in a
relatively large output space.

One straightforward approach for multi-label classification is to decompose
the multi-label learning problem into a set of independent binary classification
problems [16], which however has the obvious drawback of ignoring the interde-
pendencies among multiple binary prediction tasks. Exploiting label prediction



dependence is critical for multi-label learning, especially when the label infor-
mation is sparse. A group of methods in the literature explore label prediction
dependencies or correlations by identifying mid-level low-dimensional represen-
tations shared across labels from the input data [8, 21, 26, 22, 14, 23]. Many other
methods exploit the label dependency information directly in the output space
[4, 6, 12, 24, 25]. Moreover, a number of recent works perform label space reduc-
tion to produce a low-dimensional intermediate label representation to facilitate
multi-label classification with many labels [1, 11, 19, 25]. They demonstrate that
even simple label space reduction can capture intrinsic information in the output
space for multi-label classification tasks while reducing the computational cost.

In this paper, we propose a novel bi-directional model for multi-label classi-
fication, which introduces a compact mid-level representation layer between the
input features and the output labels to capture the common prediction repre-
sentations shared across multiple labels. The mid-level representation layer is
constructed from both input and output spaces, and it has two complementary
parts, one of which captures the predictive low-dimensional semantic representa-
tion of the input features and the other captures the predictable low-dimensional
intrinsic representation of the output labels. These two parts augment each other
to integrate information encoded in both the feature and label spaces and en-
hance the overall multi-label classification.

This bi-directional model exploits the autoencoder principle [9] to generate
the mid-level representation from two directions, while extending this principle
by promoting the discriminability of the mid-level representation for predicting
the target output labels. We formalize this model as a joint optimization prob-
lem over all the encoding/decoding/prediction parameters. We show that this
optimization problem can be solved using an iterative optimization algorithm
with alternating steps, in which one major step has efficient closed-form solu-
tion. We conduct experiments on a variety of multi-label classification data sets.
The results show the proposed model outperforms its one-directional component
models, and a number of multi-label classification methods.

The remainder of the paper is organized as follows. We review related works
in Section 2 and present the proposed model in Section 3. The experiments are
reported in Section 4. We finally conclude the paper in Section 5.

2 Related Work

Multi-label classification has received significant attention from machine learning
community in recent years. There is a rich body of work on multi-label learning
in the literature. In this section, we present a brief review over existing methods
that are closely related to the proposed work.

One direction of multi-label learning research exploits bottom-up learning
schemes that induce intermediate layers from the inputs to bridge the gap be-
tween the input features and output labels. For example, [10] trained multiple
base models on randomly selected subsets of the input features and then com-
bined the multiple models. This method however ignores label dependencies.



To amend this drawback, [26] proposed a multi-label dimensionality reduction
method, which induces a low-dimensional feature space by maximizing the de-
pendence between the original feature description and the class labels. [5] first
augmented the original input features with the output of base binary classi-
fiers and then performed multi-label learning on the augmented representation.
A few other methods perform feature selection for multi-label learning [23, 15].
[23] used a combination of PCA and genetic algorithms to search for the best
feature subset. [15] proposed a feature selection algorithm that takes feature-
label correlation into account based on a symmetrical uncertainty measure. A
more advanced method [8] performs sparse feature learning with sparsity induc-
ing norms to capture common predictive model structures across labels. The
methods in [21, 22, 14] explore common subspaces shared among multiple labels.

Another set of methods exploit top-down learning schemes and induce alter-
native label representations from the original label space to facilitate multi-label
learning. [24] applied canonical correlation analysis to extract error-correcting
code words as intermediate prediction outputs between the input features and
the original output labels. The work in [25] further enhanced this output cod-
ing learning scheme with a maximum margin output coding (MMOC) method,
which formulates the output coding problem in a max-margin form to capture
both discriminability and predictability of the output codes. [7] extended the ker-
nel techniques widely used in the input feature space into the output label space
to induce kernelized outputs in a large margin multi-label learning framework.

Moreover, a number of works pursue label space dimensionality reduction
to produce intermediate low-dimensional label representations. An early work
in [11] employs random label projection to address multi-label classification with
a large number of labels. It first projects the high-dimensional label vectors to
a low-dimensional space using a random transformation matrix, and then learns
a multi-dimension regression model with the transformed labels. For a test in-
stance, the estimated label vector from the regression models is then projected
from the low-dimensional space back to the original high-dimensional label space.
Following this work, a number of improvements have been proposed. [19] pro-
posed a principal label space transformation method, which employs the princi-
pal component analysis to reduce the original label matrix to a low-dimensional
space. Unlike random projections, the PCA dimensionality reduction minimizes
the encoding error between the projected label matrix and the original label
matrix. Subsequently, [1] proposed a conditional principal label space transfor-
mation method. It is a feature-aware method, which simultaneously minimizes
both the label encoding error and the least squares linear regression error in the
reduced label space. [27] proposed a Gaussian random projection method for la-
bel space transformation. Though these label space transformation methods have
demonstrated that the intrinsic information of output labels can be captured in a
low-dimensional output space, they mainly focus on reducing the computational
cost without much loss of the multi-label classification performance.

Different from these existing methods, the proposed bi-directional model in
this paper integrates the strengths of both bottom-up and top-down interme-



Fig. 1. The proposed bi-directional model. X denotes the input features and Y de-
notes the output labels. The mid-level latent layer has two parts, S and Z. S is the
low-dimensional representation of the input features, and Z is the low-dimensional rep-
resentation of the output labels. Both S and Z contribute to the decoding of the target
output labels.

diate representation learning schemes in a complementary structure, aiming to
improve multi-label classification performance. Our learning framework is not
about producing any ad-hoc latent representations from the inputs and outputs,
but aims to augment each other from two directions. Our model extends the gen-
erative autoencoder principle [9] in a discriminative way, sharing some similarity
with the multi-class zero-shot learning approach in [18]. The work in [18] nev-
ertheless is still a one-directional method that learns low-dimensional semantic
representations from the inputs.

3 A Bi-Directional Model for Multi-label Classification

Traditional multi-label models typically learn a mapping function from the input
space to the output space directly. Recent studies show that an intermediate
representation can be very useful for bridging the original inputs and outputs,
as we discussed in Section 2. Nevertheless, all these previous works have focused
on one-directional representation learning using either bottom-up or top-down
schemes. In this section, we present a novel bi-directional representation learning
model for multi-label classification, which has a hybrid mid-level representation
layer that captures both feature-sourced and label-sourced intrinsic information
of the data in a complementary way, aiming to boost the learning performance.

Figure 1 shows the proposed bi-directional model. In this model, X and Y de-
note the input features and the output labels respectively. The latent mid-level
layer has two parts, S and Z, which encode information from two directions
in a low-dimensional space. The low-dimensional representation code S is con-
structed from the input X using the autoencoder principle such that S can be
produced from X with an encoding function and X can be reconstructed from S
with a decoding function. This mechanism ensures that S captures the intrinsic



information stored in the input features. The latent representation code Z is
produced from the output Y with an encoding function, while its predictability
from the input X is simultaneously promoted with a prediction function. To
ensure the informativeness of the latent layer for the target output prediction,
both S and Z are used to predict the output Y with a joint decoding function.
With such a learning structure, we expect S and Z can contribute complemen-
tary information for accurate identification of Y. Moreover, in the test phase,
multi-label classification can be naturally achieved by first following the dou-
ble line information flow from X to S and Z, and then decoding Y from the
concatenation of S and Z.

Below we will introduce the components of the proposed model and the
training algorithm in detail. The following notations will be used. We assume a
set of t training instances, (X,Y ), is given, where X ∈ Rt×d is the input data
matrix and Y ∈ {0, 1}t×k is the label indicator matrix. The low-dimensional
representation matrix of X is denoted as S ∈ Rt×m for m < d, and the low-
dimensional representation matrix of Y is denoted as Z ∈ Rt×n for n < k. We
use 1 to denote any column vector with all 1 values, assuming its length can
be determined from the context; use It to denote an identity matrix with size t;
and use “◦” to denote the Hadamard product operator between two matrices.

3.1 Framework: Encoding, Prediction and Decoding

The learning framework on the proposed model involves three major compo-
nents: encoding, prediction and decoding, which follows but extends the standard
autoencoder models. We will introduce each of them below.

Encoding. We propose to use typical sigmoid based functions to perform non-
linear encoding over the input data matrix X and the output label matrix Y ,
which map X to the low-dimensional latent representation matrix S and map
Y to the low-dimensional latent representation matrix Z respectively. The two
encoder functions are compositions of the standard sigmoid function and linear
functions:

S = σ(XWx + 1b>x ), (1)

Z = σ(YWy + 1b>y ) (2)

where (Wx ∈ Rd×m,bx ∈ Rm) and (Wy ∈ Rk×n,by ∈ Rn) are the linear model
parameters for the two encoder functions respectively; σ(x) = 1/(1 + exp(−x))
is a sigmoid function that encodes entry-wise nonlinear transformation of the
input. Moreover the sigmoid functions in the two encoder functions also put the
values of S and Z in a comparable range.

A linear version of the encoder functions can be obtained by simply dropping
the outer sigmoid functions.

Prediction. The encoder function over Y produces a low-dimensional mid-level
prediction target Z for the input data. To ensure the information flow from the



input data to the output labels, we consider a prediction function, f : X → Z,
that maps X to the low-dimensional representation code Z. In particular, we
consider the following linear regression function:

Ẑ = f(X) = XΩ + 1q> (3)

where Ω ∈ Rd×n and q ∈ Rn are the prediction model parameters, and Ẑ
denotes the prediction value matrix. This prediction function will be learned by
minimizing a prediction loss `p(Z, Ẑ) between the low-dimensional matrix Z and

the prediction value matrix Ẑ produced by the predictor over the input data.
It thus enforces the predictability of Z from the inputs. This component is also
necessary for exploiting the latent representation part Z in the test phase. In the
test phase, where Y is unknown, one can produce Z from the input data using
this prediction function and then use Z and S to reconstruct Y .

Decoding. There are two decoder functions, g(·) and h(·), in our model to
reconstruct the observed data X and Y from the latent low-dimensional code
matrices S and Z. The decoder function g : S → X reconstructs the input data
X in its original space from its low-dimensional representation S. We consider
a linear decoder function:

X̂ = g(S) = SU + 1d> (4)

where U ∈ Rm×d and d ∈ Rd are decoding parameters, and X̂ is the recon-
structed data matrix in the original input space. This decoder function and the
encoder function from X to S in Eq. (1) together form an autoencoder model.
An autoencoder in general is a two-layered construction, in which a first layer en-
codes the input data into the latent low-dimensional representation and a second
layer decodes this representation back into the original data space. The autoen-
coder is trained to minimize the reconstruction error in the original data space.
In our model, the two-layered constructions of the autoencoder correspond to
the encoding from X to S and the decoding from S to X̂ respectively. We will
minimize a decoding loss `d(X, X̂) between the original input data X and the
reconstructed data X̂ in the training process.

The reconstruction of Y however is not a standard decoding problem in an
autoencoder, since it is the key step for the overall multi-label classification and
information from the input data should be taken into account. Hence instead
of reconstructing it from its low-dimensional representation Z, we consider a
decoder function h : S × Z → Y that reconstructs Y from a concatenated low-
dimensional space of the latent representation codes S and Z. Specifically, we
use the following linear decoding function:

Ŷ = h(S,Z) = SAs + ZAz + 1a> (5)

where As ∈ Rm×k, Az ∈ Rn×k and a ∈ Rk are the decoder parameters, and
Ŷ is the reconstructed data matrix in the original output label space. We will
minimize a decoding loss `d(Y, Ŷ ) between the original Y and the reconstructed



Ŷ in the training process. Since the latent representation matrices, S and Z,
will be simultaneously induced in the training process, we expect the latent S
and Z identified will complement each other in this final decoder function to
accurately reconstruct the output label matrix Y . The encoding and decoding
process between the output layer and the mid-level representation layer can be
viewed as an augmented autoencoder.

3.2 Optimization Formulation

Given the framework introduced above, we formulate the bi-directional model
training as a joint optimization problem over all the model parameters that
minimizes a regularized linear combination of the prediction loss and the two
decoding losses:

min
Wx,bx,Wy,by,As,Az,a,U,d,Ω,q

L(X,Y ) (6)

such that

L(X,Y ) = `p(Z, Ẑ) + η`d(Y, Ŷ ) + ρ`d(X, X̂)+ (7)

αxR(Wx) + αyR(Wy) + αuR(U) + αsR(As) + αzR(Az) + αoR(Ω)

where the trade-off parameters η and ρ are used to adjust the relative degrees
of focus on the three different loss terms; all the other α∗ trade-off parameters
adjust the degrees of regularization over the model parameter matrices; R(·) de-
notes the regularization function. Note with the encoding parameters, (Wx,bx)
and (Wy,by), the latent representation matrices S and Z are directly avail-
able through the nonlinear functions in Eq. (1) and Eq. (2) respectively. This
objective function expresses the following properties we expect from the latent
representations: 1) S and Z should be low-dimensional (enforced by the encod-
ing model parameters); 2) S should preserve as much information as possible
from X (enforced by `d(X, X̂)); 3) Z should preserve information from Y that
is complementary to S for the reconstruction of Y (enforced by `d(Y, Ŷ )), while
being predictable from X (enforced by `p(Z, Ẑ)); and 4) the concatenation of S
and Z should be discriminative for the target output label matrix Y (enforced
by `d(Y, Ŷ )).

To produce a concrete training problem, we use least squares loss functions
for both the prediction loss and the two decoding losses, such that

`p(Z, Ẑ) = ‖Z − Ẑ‖2F = ‖Z − f(X)‖2F (8)

`d(X, X̂) = ‖X − X̂‖2F = ‖X − g(S)‖2F (9)

`d(Y, Ŷ ) = ‖Y − Ŷ ‖2F = ‖Y − h(S,Z)‖2F (10)

where ‖ · ‖F denotes the Frobenius norm of a matrix. We use the square of
Frobenius norm as the regularization function R over the parameter matrices,
such that R(·) = ‖ · ‖2F .

Moreover, among the three loss terms in the objective function (7), the de-
coding loss `d(X, X̂) in (9) is used to ensure the input data can be reconstructed



from its low-dimensional representation S with a small error by using the decoder
function g(·). The decoder function g(·) is not directly involved in the overall
target label prediction process, since S can be produced from the original input
matrix X with the encoding function. The necessity of having this decoding com-
ponent in the framework, hence the decoding loss `d(X, X̂) in the optimization
objective, can be questioned. In our empirical study later, we investigated this
issue by dropping g(·), hence `d(X, X̂) and R(U), from the optimization prob-
lem. Our results suggest the decoder component g(·) is useful and the decoding
loss `d(X, X̂) should be included in the learning process.

3.3 Optimization Algorithm

The minimization problem in (6) involves two sets of parameters, the encoder pa-
rameters, {Wx,bx,Wy,by}, and the decoder and prediction model parameters,
{As, Az,a, U,d, Ω,q}. We develop an iterative optimization algorithm that con-
ducts optimization over these two groups of model parameters in an alternating
way in each iteration.

We first randomly initialize the model parameters. Then in each iteration,
we perform the following two steps.

Step I. In this step, given the current encoder parameters, {Wx,bx,Wy,by},
to be fixed, we optimize the decoder and prediction model parameters to mini-
mize the objective function in (7). We first compute the latent matrices S and
Z according to Eq. (1) and Eq. (2) respectively. Given S and Z, the joint mini-
mization problem in (6) can be decomposed into the following sub-optimization
problems over the decoder and prediction model parameters:

min
As,Az,a

η‖Y − h(S,Z)‖2F + αs‖As‖2F + αz‖Az‖2F (11)

min
Ω,q

‖Z − f(X)‖2F + αo‖Ω‖2F (12)

min
U,d

ρ‖X − g(S)‖2F + αu‖U‖2F (13)

which have the following three sets of closed-form solutions respectively:

As = (S>HS + αs

η Im)−1S>H(Y − ZAz)
Az = (Z>HZ + αz

η In)−1Z>H(Y − SAs)
a = 1

t (Y − SAs − ZAz)
>1

 (14)

Ω = (X>HX + αoId)
−1X>HZ

q = 1
t (Z −XΩ)>1

}
(15)

U = (S>HS + αu

ρ Im)−1S>HX

d = 1
t (X − SU)>1

}
(16)

where H = It − 1
t11> is a centering matrix of size t.



Algorithm 1 The Bi-Directional Learning Algorithm

1: Initialize all the model parameters.
2: repeat
3: Step I: given current encoder parameters {Wx,bx,Wy,by}, update the decoder

and prediction model parameters, {As, Az,a, U,d, Ω,q}, with closed-form solu-
tions in Eq. (14)–(16).

4: Step II: given current {As, Az,a, U,d, Ω,q}, perform optimization over encoder
parameters {Wx,bx,Wy,by} to minimize the objective J in (18) using gradient
descent with line search.

5: until Convergence or maximum number of iterations is reached

Step II. In this step, given the current decoder and prediction model param-
eters, {As, Az,a, U,d, Ω,q}, to be fixed, we optimize the encoder parameters,
{Wx,bx,Wy,by}, to minimize the objective function in (7). This leads to the
following minimization problem:

min
Wx,bx,Wy,by

`p(Z, Ẑ) + η`d(Y, h(S,Z)) + ρ`d(X, g(S)) + αxR(Wx) + αyR(Wy)

(17)

where Ẑ is pre-computed with the fixed parameters via Eq. (3). By expressing
S and Z in terms of the encoder functions in Eq. (1) and Eq. (2), the objective
function in (17) can be written as

J = ‖Ẑ − σ(YWy + 1b>y )‖2F
+ η‖σ(XWx + 1b>x )As + σ(YWy + 1b>y )Az + Ỹ ‖2F
+ ρ‖σ(XWx + 1b>x )U + X̃‖2F + αx‖Wx‖2F + αy‖Wy‖2F (18)

where Ỹ and X̃ are defined as

Ỹ = 1a> − Y, X̃ = 1d> −X. (19)

We use a gradient descent algorithm with line search [17] to solve the minimiza-
tion problem in (17), which requires computing the gradients of the objective
function J regarding the decoder parameters {Wx,bx,Wy,by}.

The overall optimization algorithm for training the bi-directional model is
summarized in Algorithm 1.

Test Phase: In the test phase, given a new instance x, we first produce the latent
representations, s = σ(xWx + 1b>x ) and z = f(x). Then the final output can be
computed by y = h(s, z). The labels of x can be determined by simply rounding
the entries of y to 0s or 1s.

4 Experimental Results

Data Sets. To evaluate the proposed bi-directional model for multi-label clas-
sification, we conducted experiments on 5 different types of real-world data sets:



Table 1. The statistic information of the data sets used in the experiments.

Data set corel5k delicious yeast genbase mirflickr

Num. of Instances 4999 5000 2417 662 5000

Num. of Features 512 500 103 1186 512

Num. of Labels 209 918 14 15 38

Label Cardinality 3.32 18.72 4.24 1.16 4.71

two image data sets (corel5k [3] and mirflickr [13]), one text set (delicious [20]),
and two biology data sets (yeast [4] and genbase [2]). For each big data set with
more than 10k instances, we randomly sampled a 5000-instance subset to use.
We conducted experiments with 5-fold cross-validation and dropped the labels
that do not appear in at least one of the five fold partitions. The statistic infor-
mation of all 5 data sets used is summarized in Table 1, where label cardinality
denotes the average number of labels assigned to each instance.

Methods. We compared the proposed bi-directional multi-label learning method
with the following multi-label learning methods:
– Binary relevance (BR). This baseline method decomposes multi-label clas-

sification into a set of independent binary classification problems via the
one-vs-all scheme. We used linear SVM classifiers for the binary problems.

– Multi-label Output Codes using CCA (MOC-CCA) [24]. This method per-
forms error-correcting coding for the labels based on canonical correlation
analysis (CCA).

– Multi-Label Learning using Local Correlation (ML-LOC) [12]. Instead of as-
suming global label correlations, this method separates instances into differ-
ent groups and allows label correlations to be exploited locally.

– Calibrated Separation Ranking Loss (CSRL) [6]. This method performs large
margin multi-label learning based on a novel loss function.

Experimental Setting. In each iteration of the 5-fold cross-validation, the
training set is further randomly divided into two parts for parameter selection:
80% for model training and 20% for parameter evaluation. For the proposed
method, there are a number of parameters need to be determined. We fixed
the regularization parameters as relatively small values, such as αx = αy =
αo = 0.05, αs =αz = 0.05η, and αu = 0.05ρ. The trade-off parameters, ρ and
η, and the dimensions of latent representations, m and n, are automatically
selected in the learning phase. The values of ρ and η are both selected from
{0.1, 1, 10, 100}. The candidate values for m and n however vary across data sets
since the feature and label dimensions are different for different data sets. We
used m ∈ {20, 50, 100} and n ∈ {20, 60, 80} on corel5k ; used m, n ∈ {20, 50, 100}
on delicious; used m ∈ {20, 50} and n ∈ {5, 10} on yeast ; used m ∈ {20, 50, 100}
and n ∈ {5, 10} on genbase; and used m ∈ {20, 50, 100} and n ∈ {5, 15, 25}
on mirflickr. For the comparison methods, we performed parameter selection
using the same scheme. For BR, the trade-off parameter C is selected from



Table 2. The average and standard deviation results in terms of Hamming Loss(%).
Lower values indicate better performance.

Data set BR MOC-CCA ML-LOC CSRL Proposed

corel5k 0.9 ± 0.03 0.6 ± 0.02 0.6 ± 0.01 0.4 ± 0.02 0.4 ± 0.02
delicious 7.2 ± 0.04 10.3 ± 0.06 17.5 ± 0.07 4.5 ± 0.03 3.9 ± 0.03
yeast 8.6 ± 0.03 4.1 ± 0.03 14.2 ± 0.05 6.7 ± 0.04 4.1 ± 0.04
genbase 0.6 ± 0.01 0.5 ± 0.02 1.2 ± 0.01 0.5 ± 0.03 0.3 ± 0.01
mirflickr 3.2 ± 0.02 3.1 ± 0.04 8.1 ± 0.05 2.3 ± 0.03 2.5 ± 0.02

Table 3. The average and standard deviation results in terms of Macro-F1 measure(%).
Larger values indicate better performance.

Data set BR MOC-CCA ML-LOC CSRL Proposed

corel5k 2.1 ± 0.02 5.6 ± 0.01 3.9 ± 0.02 5.3 ± 0.05 8.0 ± 0.02
delicious 6.5 ± 0.04 13.9 ± 0.04 10.0 ± 0.09 14.1 ± 0.03 15.3 ± 0.02
yeast 30.1 ± 0.14 38.1 ± 0.17 39.7 ± 0.18 39.3 ± 0.12 40.6 ± 0.15
genbase 46.4 ± 0.08 61.3 ± 0.05 55.1 ± 0.07 61.5 ± 0.12 63.8 ± 0.05
mirflickr 18.1 ± 0.14 22.5 ± 0.19 21.2 ± 0.16 24.9 ± 0.20 25.6 ± 0.13

{0.1, 1, 10, 50, 100}; for MOC-CCA, the number of canonical components d is se-
lected from [1,min(#features, #labels)] and the trade-off parameter λ is selected
from {0.25, 1, 4}; for ML-LOC, the parameters are selected as λ1 ∈ {0.1, 1, 10},
λ2 ∈ {1, 10, 100}, and m ∈ {10, 15, 20}; for CSRL, the trade-off parameter C is
selected from {0.1, 1, 10}.

4.1 Multi-label Classification Results

We evaluated the performance of each comparison method with three criteria:
Hamming Loss, Macro-F1, and Micro-F1. These three criteria measure the multi-
label classification performance from different aspects. The 5-fold cross validation
results for all comparison methods over the five data sets are reported in Table 2
– Table 4 in terms of the three evaluation criteria respectively. Both the average
result values and their standard deviations are reported.

From the results in Table 2, we can see that the multi-label comparison
method MOC-CCA does not show consistent advantages over the baseline BR
in terms of hamming loss, ML-LOC even has inferior performance on most data
sets comparing to BR, while CSRL and the proposed approach outperform BR
across all data sets. Moreover, the proposed approach produces the best results
among all the comparison methods on four out of the total five data sets. Ham-
ming loss however may prefer extreme prediction results without balancing the
prediction recall and precision. Table 3 presents the comparison results in terms
of Macro-F1 score which takes both prediction recall and precision into account.
In terms of Macro-F1, the proposed approach consistently outperforms all the
other methods across all the five data sets. In particular, on corel5k, the proposed



Table 4. The average and standard deviation results in terms of Micro-F1 measure(%).
Larger values indicate better performance.

Data set BR MOC-CCA ML-LOC CSRL Proposed

corel5k 7.6 ± 0.09 11.1 ± 0.10 9.3 ± 0.14 10.6 ± 0.10 11.1 ± 0.08
delicious 16.5 ± 0.07 23.8 ± 0.07 16.1 ± 0.08 22.9 ± 0.03 23.2 ± 0.03
yeast 52.4 ± 0.22 64.8 ± 0.20 67.7 ± 0.25 60.1 ± 0.16 68.2 ± 0.17
genbase 54.8 ± 0.12 71.4 ± 0.17 71.1 ± 0.21 65.3 ± 0.17 70.9 ± 0.18
mirflickr 24.1 ± 0.45 32.1 ± 0.49 36.7 ± 0.69 31.5 ± 0.32 36.8 ± 0.25

method produces incredible improvement over the other comparison methods. It
improves the performance of MOC-CCA by more than 40%, improves the perfor-
mance of CSRL by more than 50%, and improves the performance of ML-LOC
by more than 100%. Moreover, all the four multi-label learning methods greatly
outperform the baseline BR across all the data sets in terms of Macro-F1. Table
4 presents the comparison results in terms of Micro-F1 score. We can see that
the four multi-label learning methods again outperform the baseline BR across
all the data sets, except on delicious where ML-LOC has slightly inferior re-
sult. Among the multi-label learning methods, the proposed approach produces
the best results on three data sets, while presenting results very close to the
best ones on the remaining two data sets. It demonstrates more consistent good
performance across different types of data sets. All these results suggest our pro-
posed bi-directional model is effective for multi-label classification by capturing
complementary information from both inputs and outputs.

4.2 Study of the Bi-Directional Model

To gain a deeper understanding over the novel bi-directional learning scheme, we
have also conducted experiments to investigate the influence of different compo-
nents in the proposed bi-directional model.

First, we investigated the capacity of the bi-directional model by comparing
the full model to its two essential one-directional components, the bottom-up
component and the top-down component. The mid-level representation of the
bi-directional full model has two complementary parts, S and Z. The bottom-
up component and the top-down component consider solely the feature-sourced
mid-level representation S and the label-sourced mid-level representation Z re-
spectively, by deactivating the other component. We denote the full model with
S + Z and denote the two component models with S and Z respectively. Pa-
rameter selection for the two component models is conducted using the same
procedure introduced before. The comparison results for these three models are
reported in Table 5. We can see that the two one-directional component models
have strengths on different data sets. The label-sourced one-directional model Z
performs better than the feature-sourced one-directional model S on corel5k and
delicious where the label space is large, while model S performs better on the
other three data sets. Nevertheless, the proposed bi-directional model greatly



Table 5. Comparison results over the bi-directional model and its two one-directional
components. S+Z denotes the proposed bi-directional model, S denotes the bottom-up
one-directional model and Z denotes the top-down one-directional model.

Measure Method corel5k delicious yeast genbase mirflickr

Hamming
Loss

S + Z 0.4 ± 0.02 3.9 ± 0.03 4.1 ± 0.04 0.3 ± 0.01 2.5 ± 0.02
S 0.7 ± 0.03 5.0 ± 0.05 5.8 ± 0.03 0.5 ± 0.04 2.9 ± 0.05
Z 0.6 ± 0.05 4.4 ± 0.02 7.2 ± 0.02 2.4 ± 0.05 2.6 ± 0.05

Macro-F1
S + Z 8.0 ± 0.02 15.3 ± 0.02 40.6 ± 0.15 63.8 ± 0.05 25.6 ± 0.13
S 4.1 ± 0.05 8.8 ± 0.04 34.2 ± 0.12 48.4 ± 0.17 18.2 ± 0.18
Z 6.2 ± 0.05 11.8 ± 0.03 26.6 ± 0.12 44.1 ± 0.10 19.1 ± 0.13

Micro-F1
S + Z 11.1 ± 0.08 23.2 ± 0.03 68.2 ± 0.17 70.9 ± 0.18 36.8 ± 0.25
S 8.5 ± 0.12 17.1 ± 0.05 60.2 ± 0.11 58.3 ± 0.14 28.7 ± 0.21
Z 9.8 ± 0.10 21.8 ± 0.06 55.6 ± 0.14 50.5 ± 0.17 28.4 ± 0.44

outperforms both one-directional component models across all the five data sets
in terms of all the three measures. This suggests that the proposed bi-directional
model can successfully integrate the strengths of its one-directional components
in a complementary way and has capacity of capturing useful information from
both the input and output spaces.

Next, we have also compared the proposed approach with two of its alterna-
tive versions: one drops the decoder component g(·) and is denoted as “Proposed
w/o g”; the other removes the nonlinear σ(·) function from encoding and uses
linear encoder functions, which is denoted as “Proposed w/o σ”. We conducted
the comparison experiment using varying latent dimension sizes, m and n, on
the corel5k data set. We first set n = 20 and studied the performance of the
three methods by varying the m value within the set {20, 50, 100, 300}. Then we
set m = 50 and vary the n value within the set {20, 60, 100, 140}. The experi-
mental results are presented in Figure 2, in terms of the logarithm of the three
evaluation criteria. We can see that the proposed full model clearly outperforms
the other two variants across all learning scenarios, which suggests that both
the decoder component g(·) and the nonlinear encoders are important in our bi-
directional model. From Figure 2 (a)-(c), we can see that with fixed n value, the
performance of all the three methods becomes stable when the m value reaches
50. This suggests that with even a reasonably small m value such as m = 50,
our model can already capture the intrinsic information from the input data.
On the other hand, from Figure 2 (d)-(f), we can see that the performance of all
the three methods deteriorates when the n value becomes larger than 60. This
suggests that if the latent representation size of the output labels is too large,
noise may be introduced in augmenting the latent component produced from the
input data and hence harm the performance.

In summary, all these experimental results demonstrated the compactness
and effectiveness of the novel bi-directional model for multi-label classification.
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Fig. 2. Impact of the latent dimension sizes m and n over the model performance on
corel5k. In the top row, n is fixed to 20, and m varies from 20 to 300. In the bottom
row, m is fixed to 50, and n varies from 20 to 140. The first column shows the results
in terms of log hamming loss, the middle column shows the results in terms of log
Macro-F1, and the right column shows the results in terms of log Micro-F1.

5 Conclusion

In this paper, we proposed a novel bi-directional representation learning model
for multi-label classification, which has a two-part latent representation layer
constructed from both the input data and the output labels. The two latent parts
augment each other by integrating information from both the feature and label
spaces to enhance the overall multi-label classification. We formulated multi-
label learning over this model as a joint minimization problem over all parameters
of the component functions, and developed an iterative optimization algorithm
with alternating steps to perform optimization. We conducted experiments on
five real world multi-label data sets by comparing the proposed method to a
number of previously developed multi-label classification methods and a few
variant models. Our experimental results suggest that our proposed model is
compact and showed that it outperformed all the other comparison methods.
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