
Improving Top-N Recommendation with Heterogeneous Loss

Feipeng Zhao and Yuhong Guo
Department of Computer and Information Sciences
Temple University, Philadelphia, PA 19122, USA

{feipeng.zhao, yuhong}@temple.edu

Abstract
Personalized top-N recommendation systems have
great impact on many real world applications such
as E-commerce platforms and social networks.
Most existing methods produce personalized top-
N recommendations by minimizing a specific uni-
form loss such as pairwise ranking loss or point-
wise recovery loss. In this paper, we propose
a novel personalized top-N recommendation ap-
proach that minimizes a combined heterogeneous
loss based on linear self-recovery models. The
heterogeneous loss integrates the strengths of both
pairwise ranking loss and pointwise recovery loss
to provide more informative recommendation pre-
dictions. We formulate the learning problem with
heterogeneous loss as a constrained convex mini-
mization problem and develop a projected stochas-
tic gradient descent optimization algorithm to solve
it. We evaluate the proposed approach on a set of
personalized top-N recommendation tasks. The ex-
perimental results show the proposed approach out-
performs a number of state-of-the-art methods on
top-N recommendation.

1 Introduction
In the era of Internet, online shopping has become a close
part of people’s daily life. To facilitate consumers’ online
shopping experience, help consumers to find their interested
items from the huge amount of online items and hence en-
courage online item purchases, effective top-N commercial
recommendation systems, which suggest a small list of items
that best match each consumer’s taste from the large amount
of product items, have become increasingly important. Top-
N recommendation systems automatically predict the recom-
mendation scores over each item in the whole product item
pool for each consumer, and recommend the items with high
scores to the consumers. They can be widely used in many
real world applications. For example, Amazon.com has a
huge amount of online products, while consumers may not
know all the special items they would like. A top-N recom-
mendation system, which can effectively suggest a set of per-
sonalized selected products for each consumer, can signifi-
cantly increase the user-item purchase probability. Similarly,

Netflix Inc. has thousands of online movies and TV shows,
a personalized recommendation for users can help them to
find the videos they may like. Yahoo! and Apple Itunes have
millions of musics, Top-N recommendation systems can help
users to find the musics they may like and provide a recom-
mendation list to each user. In summary, an effective top-
N personalized recommendation system can have significant
real world commercial impacts.

Many methods have been developed in the literature
to build top-N recommendation systems [Ricci et al.,
2011]. One classical technique is collaborative filtering (CF)
[Schafer et al., 2007; Su and Khoshgoftaar, 2009], which
models the relationships between users and the correlations
between items to identify new user-items relationship scores.
Two main types of collaborative filtering methods include
neighborhood-based CF [Sarwar et al., 2000; 2001; Desh-
pande and Karypis, 2004; Verstrepen and Goethals, 2014]
and model-based CF [Rennie and Srebro, 2005; Rendle et
al., 2009; Cremonesi et al., 2010; Sindhwani et al., 2010;
Hu et al., 2008; Shi et al., 2012; Liu and Aberer, 2014]. Stan-
dard model-based CF methods perform matrix factorization
to complete the missing recommendation entries, which ex-
ploits the low-dimensional subspace representations of the
users and items [Hu et al., 2008; Weimer et al., 2008;
Yun et al., 2014b]. Besides CF, sparse aggregation meth-
ods that exploit the linear correlations between items have
also been explored in a few works [Ning and Karypis, 2011;
Cheng et al., 2014; Kabbur et al., 2013; Christakopoulou
and Karypis, 2014] to improve top-N recommendation per-
formance. These methods have mainly pursued recommen-
dation score recovery by minimizing the pointwise compari-
son loss between the reconstructed user-item matrix and the
observed incomplete user-item matrix.

Recently, pairwise ranking methods that directly capture
users’ pairwise preference structures on product items have
demonstrated good performance for top-N recommendation
[Weimer et al., 2008; Steck, 2010; Chen and Pan, 2013;
Aiolli, 2014; Park et al., 2015]. These methods have explored
different ranking losses as the optimization targets, including
the normalized discounted cumulative gain [Weimer et al.,
2008], the AUC scores [Aiolli, 2014] and the max-margin
loss [Park et al., 2015]. Nevertheless, different types of losses
have different strengths in producing the missing recommen-
dation scores. The pointwise losses enforce the entrywise



consistency between the reconstructed recommendation ma-
trix and the original matrix, while the pairwise ranking losses
enforce the preference structure consistency. Majority of the
existing methods however have focused on using a uniform
type of recovery loss, which limits their abilities of integrat-
ing the complementary strengths of different types of losses.

In this paper, we propose a novel personalized top-N rec-
ommendation approach that uses a combined heterogeneous
loss function based on linear self-recovery models. The het-
erogeneous loss integrates the strengths of pairwise rank-
ing loss and pointwise recovery loss to enforce both entry-
wise consistency and preference structure consistency be-
tween the recommendation recovery and the observations,
which leads to improved recommendation predictions. We
formulate the learning problem with this heterogeneous loss
as a constrained convex minimization problem and develop a
projected stochastic gradient descent optimization algorithm
to solve it. The proposed approach is evaluated on a set of
personalized top-N recommendation tasks. The experimental
results show the proposed approach outperforms a number of
state-of-the-art methods on top-N recommendation.

2 Related Works
Existing top-N recommendation methods have mostly fo-
cused on minimizing a uniform type of recommendation re-
covery loss to predict the recommendation scores. Based on
the type of the losses, these recommendation systems can be
categories into two main groups. The first group exploits
pointwise comparison losses and the second group exploits
pairwise ranking losses.

Pointwise comparison methods. Many traditional top-N
recommendation algorithms perform learning by minimizing
the pointwise (entrywise) divergence of the reconstructed rec-
ommendation matrix from the original observation matrix.
These include the collaborative filtering methods [Schafer
et al., 2007; Su and Khoshgoftaar, 2009; Hu et al., 2008;
Weimer et al., 2008; Yun et al., 2014b], and the sparse lin-
ear aggregation methods [Ning and Karypis, 2011; Cheng et
al., 2014; Kabbur et al., 2013; Christakopoulou and Karypis,
2014]. For example, a weighted regularized matrix factoriza-
tion (WRMF) model has been developed in [Hu et al., 2008],
which minimizes the pointwise difference between the recon-
structed matrix produced by the inner product of the user and
item latent representations and the training matrix. Similarly,
the work in [Yun et al., 2014b] enforces the pointwise simi-
larity between the training matrix and reconstructed matrix. It
uses a non-locking parallel computing algorithm to perform
matrix completion. In [Ning and Karypis, 2011], a sparse
linear method (SLIM) was proposed to recover the missing
recommendation entries. It exploits the item-item correla-
tions to reconstruct the incomplete recommendation matrix
and minimizes the pointwise reconstruction loss between the
reconstructed matrix and the input training matrix.

Pairwise ranking methods. Given a pair of items, a user
naturally will prefer one to another, which forms the im-
portant pairwise preference structure of the recommenda-
tion data. The pointwise comparison methods however ig-
nored this user personalized preference information. Re-

cently, pairwise ranking methods are proposed to produce
top-N recommendation systems by optimizing the preference
structure consistency between the original matrix and the re-
constructed recommendation matrix [Weimer et al., 2008;
Steck, 2010; Chen and Pan, 2013; Aiolli, 2014; Park et al.,
2015; Rendle et al., 2009]. Pairwise ranking methods treat
training data as a set of triplet instances; for example, the
triplet (i, j, k) is an instance that encodes the i-th user’s
preference to item j over item k. Different pairwise rank-
ing losses have been exploited in these works. For exam-
ple, the pairwise ranking methods in [Rendle et al., 2009;
Aiolli, 2014] optimize AUC scores; the work in [Weimer
et al., 2008] optimizes a normalized discounted cumulative
gain; Yun et al. (2014a) explored the connection between the
metric discounted cumulative gain and the binary classifica-
tion to change the ranking problem into binary classification
problems; Park et al. (2015) proposed a large-scale collabo-
rative ranking method that exploits a max-margin hinge rank-
ing loss to minimize the ranking risk in the reconstructed rec-
ommendation matrix. Nevertheless, these pairwise ranking
methods ignored the entrywise consistency between the re-
constructed matrix and the original matrix.

Different from all these existing methods, our proposed ap-
proach will perform top-N recommendations by optimizing
a heterogeneous loss that integrates the strengths of both a
pointwise comparison loss and a pairwise ranking loss.

3 Approach
In this section, we present a novel personalized top-N rec-
ommendation approach that minimizes a combined heteroge-
neous loss within a general learning framework. We assume
a partially observed user-item recommendation/purchase ma-
trix X ∈ Rn×m over n users and m items is given. For im-
plicit feedbacks, the recommendation/rating values are within
{0, 1}, where the entry Xij = 1 indicates a transaction or
purchase record for the i-th user on the j-th item. The en-
try Xij = 0 on the other hand means either the i-th user
never purchased the j-th item or the transaction record has
been removed and need to be predicted. We aim to identify
the most interesting items for each user from his unrecom-
mended/unpurchased list of items. Below we first introduce
the general learning framework for top-N recommendations
and then instantiate it with novel objective losses. We finally
present a stochastic gradient descent algorithm to solve the
recommendation problem formulated.

3.1 A General Learning Framework for Top-N
Recommendation

Given the input user-item recommendation/purchase matrix
X , a general framework for top-N recommendation per-
forms learning by minimizing a regularized reconstruction
loss function:

min
W
L(X, X̂(W )) +R(W ) (1)

where X̂ denotes the reconstructed recommendation matrix
with a parametric model with parameter matrix W , L(·) de-
notes a convex reconstruction loss function and R(·) denotes
a regularization function. By substituting L(·) with different



loss functions and employing different reconstruction models
(denoted by the parameterW ), many existing methods can be
produced from this general framework as specific examples.
For example, by using a matrix factorization model that re-
constructsX as X̂ = UV > and a least squares pointwise loss
function L(X, X̂) = ‖X − X̂‖2F , we can produce the sim-
ple pure singular value decomposition based (PureSVD) ma-
trix factorization method [Cremonesi et al., 2010] with proper
constraints. Similarly, by reconstructing X with a linear ag-
gregation model X̂ = XW> and using a least squares point-
wise loss function L(·) and an integrated `2 and `1 norm reg-
ularization function R(W ) = β‖W‖2F + λ‖W‖1, the sparse
linear method (SLIM) [Ning and Karypis, 2011] can be pro-
duced from the framework with additional proper constraints.

Moreover, the state-of-the-art pairwise ranking methods
can also be produced as specific examples from this frame-
work. For example, given the set of preference triplets Ω,
by using a matrix factorization model to reconstruct X as
X̂ = UV >, a max-margin hinge loss function Lrank(x) =
max(0, 1−x)2, and `2 norm regularizers on U and V , we can
produce the large scale pairwise ranking method (AltSVM)
in [Park et al., 2015] as below:

min
U,V

∑
(i,j,k)∈Ω

Lrank
(
Yijk · Ui(Vj − Vk)>

)
+
β

2
(‖U‖2F + ‖V ‖2F ) (2)

where Yijk is a function of X such that Yijk = 1 if user i
prefers item j over item k in X and Yijk = −1 otherwise;
‖ · ‖F denotes the matrix Frobenius norm; Ui denotes the i-th
row of U and Vj denotes the j-th row of V .

Our proposed approach can be conveniently formulated
within this general learning framework as well. We integrate
two types of losses into a novel heterogeneous loss based on
linear self-recovery models.

3.2 Novel Heterogeneous Loss
Pairwise ranking methods have demonstrated great top-N
recommendation performance in the literature [Park et al.,
2015]. However, with the matrix factorization reconstruction
function, the scalable learning problem produced in Eq. (2)
is a non-convex optimization problem. To introduce a con-
venient convex formulation with pairwise ranking losses, we
propose to adopt a linear self-recovery model to reconstruct
X . In particular, we use a linear reconstruction function
X̂ = XW> with constraints W ≥ 0 and diag(W ) = 0.
This linear function exploits the statistical positive item-item
correlations distributed among all the users to reconstruct the
missing recommendation scores. The constraints are used to
avoid trivial solutions. Then with a pairwise ranking loss
function Lrank(·), we can formulate the following convex
pairwise ranking problem to perform top-N recommendation:

min
W

∑
(i,j,k)∈Ω

Lrank
(
Yijk ·Xi(Wj −Wk)>

)
+
β

2
‖W‖2F

s.t. W ≥ 0, diag(W ) = 0 (3)

Note for each user i, if he/she purchased item j but there is no
purchase record for item k in the training matrix X , we say
that user i prefers item j over item k and we haveXij > Xik.
The set Ω in the formulation above contains all the triplets
(i, j, k) where Xij > Xik. To maintain the same pairwise
preference structure, we assume that ifXij > Xik in the orig-
inal matrix X , one should also have X̂ij > X̂ik in the recon-
structed matrix X̂ . The loss function Lrank(·) aims to encode
the pairwise preference ranking divergence between the given
matrix X and the reconstructed matrix X̂ . In our implemen-
tation, we use the max-margin squared hinge loss function as
the ranking loss, i.e., Lrank(x) = max(0, 1− x)2. By mini-
mizing such a ranking loss function, the model will increase
the consistency of the pairwise preference ranking between
the reconstructed matrix X̂ and the original matrix X . How-
ever, the consistency is only maintained at the pairwise rela-
tive level. It does not necessarily guarantee the good quality
of pointwise reconstruction, which might consequently ham-
per the accurate inference of unseen pairwise relationships.

We nevertheless have an easy solution. The linear self-
recovery model X̂ = XW> naturally allows one to en-
code the pointwise recovery loss between the entries of the
reconstructed matrix X̂ and the original matrix X , e.g.,
Lpoint(X, X̂) = ‖X − X̂‖2F . Previous works [Ning and
Karypis, 2011] have also demonstrated good top-N recom-
mendation performance with a least squares pointwise recov-
ery loss. Hence we propose to combine both the pairwise
ranking loss and the pointwise recovery loss to produce a new
heterogeneous loss function for top-N recommendation. Our
learning problem with the heterogeneous loss function can be
formulated as below:

min
W

∑
(i,j,k)∈Ω

Lrank
(
Yijk ·Xi(Wj −Wk)>

)
+
α

2
‖X −XW>‖2F +

β

2
‖W‖2F (4)

s.t. W ≥ 0, diag(W ) = 0

The heterogeneous loss function used in this formulation inte-
grates two different types of losses, and is expected to capture
both the pointwise similarity discrepancy and the pairwise
ranking consistency discrepancy to produce a better recon-
struction matrix. Moreover, the learning problem (4) remains
to be a convex optimization problem.

3.3 Optimization Algorithm
Due to the large size of the user-item matrix, standard gradi-
ent descent algorithms are not efficient for solving the mini-
mization problem in (4). Moreover, though the learning prob-
lem is convex, the hinge loss function for pairwise ranking
is non-differentiable and subgradients are typically needed.
Hence in this work, we develop a projected stochastic gra-
dient descent (SGD) algorithm to solve our target learning
problem. The SGD technique has been widely used in rec-
ommendation systems with pairwise ranking [Rendle et al.,
2009; Chen and Pan, 2013; Yun et al., 2014b], and it can also
be extended to perform parallel computations [Zinkevich et
al., 2011; Recht et al., 2011; Yun et al., 2014b].



With the pairwise ranking loss, we use the user-item-item
triplet (i, j, k) instances for the stochastic gradient descent
procedure. In each iteration, we randomly choose a triplet
(i, j, k) ∈ Ω and make a SGD update:

W>+
j ←W>j − η

{
L′

rank(W>j ) + β
|Ωj |W

>
j

+ α
|Ωj |X

>(XW>j −X:,j)

}
(5)

W>+
k ←W>k − η

{
L′

rank(W>k ) + β
|Ωk|W

>
k

+ α
|Ωk|X

>(XW>k −X:,k)

}
(6)

where |Ωj | and |Ωk| denote the number of comparisons in Ω

that involve item j and item k respectively. L′

rank(W>j ) and
L′

rank(W>k ) denote the derivations of Lrank(·) on W>j and
W>k respectively, such that

L
′

rank(W>j ) = 2X>i (Xi(Wj −Wk)> − Yijk)

if YijkXi(Wj −Wk)> ≤ 1 and L′

rank(W>j ) = 0 otherwise.
Similarly,

L
′

rank(W>k ) = −2X>i (Xi(Wj −Wk)> − Yijk)

if YijkXi(Wj −Wk)> ≤ 1 and L′

rank(W>k ) = 0 otherwise.
The η parameter in the SGD update is the stepsize of gra-

dient descent. We used a fixed small stepsize value in our
experiments. The overall learning algorithm is given in Algo-
rithm 1.

Algorithm 1 Projected Stochastic Gradient Descent
Input: α > 0, β > 0, η > 0; initialize W 0 as zeros.
Set W = W 0

for iter = 1 to MaxIter do
1. Randomly select (i, j, k) ∈ Ω
2. Update Wj by using (5)
3. Project the updated Wj into the feasible set:

Wj = max(Wj , 0), Wjj = 0;
4. Update Wk by using (6)
5. Project the updated Wk into the feasible set:

Wk = max(Wk, 0), Wkk = 0;
6. if converge then break-out end if

end for
return W

4 Experimental Results
In this section, we first present the experimental setting and
then report the empirical results.

4.1 Experimental Setup
Datasets. We used five datasets in our experiments: Yahoo!
music ratings v1.0 dataset, Yahoo! movie ratings v1.0 dataset,
MovieLens 100k (ml-100k) dataset, MovieLens 1M (ml-1m)
dataset and Netflix dataset. Yahoo!Music contains ratings for
songs, the ratings are supplied by users during normal inter-
actions with Yahoo! Music services. Similarly, Yahoo!Movie
contains ratings for different movies. In each dataset, we con-
verted the entries with positive values to 1 and converted the

Table 1: Statistic information of the datasets: The columns of
#user, #item and #transact show the numbers of users,items,
and non-zero transactions respectively in each dataset. The
columns of #rsize and #csize show the average number of
transactions for each user and each item respectively. The
column of density shows the density of non-zero transactions
in each dataset.

Dataset #user #item #transact density
Yahoo! Music 2689 994 86907 3.95%
Yahoo! Movie 2382 924 104459 4.75%
ml-100k 943 1682 100000 6.30%
ml-1m 3850 2273 315869 3.60%
netflix 2979 2544 114865 1.50%

user-item matrix to an implicit feedback matrix. Since the
original rating matrix is sparse, for Yahoo! Movie and Yahoo!
Music we kept the users with more than 20 ratings and items
with more than 5 ratings. For ml-100k we used original im-
plicit feedback matrix. For ml-1m and Netflix we used the
same datasets as [Aiolli, 2014]. The statistic information of
these datasets is reported in Table 1.

Evaluation Methods. For each dataset, we split it into a
training set and a test set. For each user, we randomly se-
lected ten feedbacks and placed them into the test set and the
rest were used as training set. After training, a ranked list of
top-N items can be returned for each user according to the re-
construction scores, which were compared to the test set for
performance evaluation.

We used two standard performance metrics, the top-N pre-
diction precision (Precision@N) and the mean average preci-
sion (MAP@N), to evaluate the test performance. The top-N
prediction precision for the i-th user is defined as

Precision@N(i) =
1

N

∑N

j=1
T (i, Pi(j)) (7)

where T denotes the test matrix and Pi denotes the index val-
ues of the top-N predicted items in the original matrix for the
i-th user. The overall Precision@N value is computed as the
average of Precision@N(i) over all users. MAP@N denotes
the mean average precision of the top-N predictions. The av-
erage precision (AP) of the top-N prediction for the i-th user
can be defined as

AP@N(i) =

∑N
j=1 Precision@j(i)× T (i, Pi(j))∑N

j=1 T (i, Pi(j))
. (8)

MAP@N can be computed as the mean of the average
precision of the top-N predictions for all users, such that
MAP@N= 1

n

∑
iAP@N(i).

In our experiment, we randomly split each dataset into
training and test matrices for five times and report the average
test results in terms of these two evaluation metrics.

Compared Methods. We compared the proposed method
with four methods developed in the literature: WRMF [Hu et
al., 2008], SLIM [Ning and Karypis, 2011], RobiRank [Yun
et al., 2014a] and AltSVM [Park et al., 2015].



Table 2: Average test results of top-N recommendations for all the comparison methods. The params columns contain the
parameter settings for each approach. WRMF, RobiRank and AltSVM have two parameters, the latent factor dimension and the
regularization parameter. SLIM has two parameters, `2 and `1 norm regularization parameters. The proposed approach has two
parameters, the weight control parameter and the regularization parameter. Bold-font indicates the best results.

method Yahoo! Music
params Precision@5 Precision@10 MAP@5 MAP@10

WRMF 200 100 0.282± 0.002 0.226± 0.001 0.521± 0.002 0.482± 0.002
SLIM 100 1 0.273± 0.002 0.213± 0.001 0.504± 0.003 0.472± 0.002
RobiRank 10 100 0.261± 0.001 0.209± 0.001 0.461± 0.002 0.430± 0.002
AltSVM 500 1000 0.275± 0.003 0.219± 0.002 0.504± 0.003 0.470± 0.002
Proposed 5000 0.01 0.318± 0.0010.318± 0.0010.318± 0.001 0.244± 0.0010.244± 0.0010.244± 0.001 0.572± 0.0020.572± 0.0020.572± 0.002 0.526± 0.0020.526± 0.0020.526± 0.002

method Yahoo! Movie
params Precision@5 Precision@10 MAP@5 MAP@10

WRMF 200 100 0.390± 0.001 0.316± 0.001 0.595± 0.003 0.554± 0.003
SLIM 100 1 0.378± 0.002 0.303± 0.001 0.577± 0.003 0.539± 0.003
RobiRank 10 100 0.358± 0.002 0.290± 0.002 0.520± 0.003 0.483± 0.002
AltSVM 500 1000 0.391± 0.002 0.316± 0.001 0.608± 0.003 0.561± 0.003
Proposed 5000 0.01 0.430± 0.0010.430± 0.0010.430± 0.001 0.337± 0.0010.337± 0.0010.337± 0.001 0.657± 0.0010.657± 0.0010.657± 0.001 0.606± 0.0010.606± 0.0010.606± 0.001

method ml-100k
params Precision@5 Precision@10 MAP@5 MAP@10

WRMF 200 100 0.299± 0.001 0.243± 0.001 0.515± 0.003 0.481± 0.002
SLIM 200 1 0.323± 0.002 0.247± 0.001 0.553± 0.003 0.516± 0.003
RobiRank 20 100 0.317± 0.003 0.254± 0.001 0.520± 0.003 0.477± 0.002
AltSVM 200 1000 0.316± 0.002 0.245± 0.002 0.552± 0.003 0.516± 0.003
Proposed 5000 0.01 0.342± 0.0010.342± 0.0010.342± 0.001 0.269± 0.0010.269± 0.0010.269± 0.001 0.574± 0.0020.574± 0.0020.574± 0.002 0.524± 0.0020.524± 0.0020.524± 0.002

method ml-1m
params Precision@5 Precision@10 MAP@5 MAP@10

WRMF 1000 100 0.193± 0.002 0.160± 0.002 0.365± 0.002 0.355± 0.002
SLIM 200 1 0.193± 0.003 0.156± 0.002 0.372± 0.003 0.359± 0.002
RobiRank 20 1000 0.188± 0.002 0.154± 0.002 0.358± 0.003 0.349± 0.002
AltSVM 200 1000 0.189± 0.002 0.159± 0.002 0.362± 0.002 0.352± 0.002
Proposed 5000 1 0.211± 0.0020.211± 0.0020.211± 0.002 0.167± 0.0010.167± 0.0010.167± 0.001 0.397± 0.0030.397± 0.0030.397± 0.003 0.382± 0.0020.382± 0.0020.382± 0.002

method Netflix
params Precision@5 Precision@10 MAP@5 MAP@10

WRMF 200 100 0.199± 0.002 0.163± 0.002 0.374± 0.002 0.364± 0.002
SLIM 100 0.1 0.192± 0.002 0.153± 0.002 0.372± 0.002 0.363± 0.002
RobiRank 20 100 0.143± 0.002 0.115± 0.001 0.261± 0.002 0.267± 0.001
AltSVM 500 1000 0.195± 0.003 0.159± 0.002 0.367± 0.002 0.358± 0.002
Proposed 5000 0.1 0.220± 0.0020.220± 0.0020.220± 0.002 0.173± 0.0020.173± 0.0020.173± 0.002 0.416± 0.0030.416± 0.0030.416± 0.003 0.396± 0.0020.396± 0.0020.396± 0.002

Parameters Selection. For the proposed method, we have
two parameters, α and β. We selected the weight con-
trol parameter α from {10, 100, 1000, 5000, 10000} and se-
lected the regularization parameter β from {0.001, 0.01,
0.1, 1, 10, 100, 1000}. For WRMF, the latent factor di-
mension f is selected from {10, 20, 50, 100, 200, 500, 1000}
and the regularization parameter λ is selected from
{0.1, 1, 10, 100, 1000}. For SLIM, `2 regularization parame-
ter β is selected from {1, 10, 100, 200, 500, 1000} and `1 reg-
ularization parameter λ is selected from {0.001, 0.1, 1, 10}.
For RobiRank, the latent feature dimension f is selected
from {10, 20, 50, 100, 200, 500, 1000} and the regularization
parameter λ is selected from {1, 10, 100, 200, 500, 1000}.
AltSVM also has two similar parameters; the latent dimen-
sion is selected from {100, 200, 500, 1000} and the regular-
ization parameter λ is selected from {100, 1000, 10000}. For
each approach, we report the best results and the correspond-

ing parameter settings.

4.2 Experimental Results
The selected parameter settings and the experimental results
in terms of Precision@N and MAP@N with N ∈ {5, 10} for
all the comparison approaches are reported in Table 2. We can
see that among the four comparison methods, {WRMF, SLIM,
RobiRank and AltSVM}, RobiRank has poor performance and
it produces the most inferior results on four datasets, Ya-
hoo!Music, Yahoo!Movie, Netflix and ml-1m. SLIM performs
much better than RobiRank and it even outperforms Robi-
Rank on the remaining dataset ml-100k across three measure-
ments except Precision@10. The pairwise preference ranking
method, AltSVM, produces the best results on Yahoo!Movie
in terms of all the measurements among the four methods,
and has similar performance as SLIM on other datasets. The
WRMF method, which uses regularization control and applies
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Figure 1: Parameter sensitivity analysis of α on Yahoo!Movie
and Yahoo!Music datasets

different weights for the entries, outperforms all the other
three methods on both Yahoo!Music and Nexflix in terms of
the four measurements. But it has poor performance on ml-
100k. Our proposed approach on the other hand outperforms
all these four methods with remarkable margins on all the
datasets across the four measurements. These results suggest
the proposed approach is indeed an effective method for top-
N recommendation.

4.3 Parameter Sensitivity Analysis
We have also conducted parameter sensitivity analysis for
the proposed method on Y ahoo!Movie and Y ahoo!Music
datasets. First, we tested different α values from
{0, 10, 100, 1000, 5000, 104} by setting β to the fixed value
used before. The experimental results are reported in Fig-
ure 1. We can see that for Yahoo!Movie dataset, the preci-
sion values increase when α increases from 0 to 5000. When
α = 5000, the model performs the best. Similar results can
be observed on Yahoo!Music dataset. According to our ob-
jective function in Eq. (4), if α = 0, the model will only use
the pairwise ranking loss and will not combine the pointwise
recovery loss. On the other hand, if α is too big, the con-
tribution of the pairwise ranking loss can be diminished and
the model will become a special version of the SLIM method.
Our parameter analysis results suggest that we need a parame-
ter in the middle to keep both types of losses, which indicates
the two types of losses can complement each other. To further
validate this, we have also compared our proposed approach
to its variants that only use each individual loss. We call the
variant that drops the pointwise recovery loss (α = 0) as pur-
eRanking and the variant that drops the pairwise ranking loss
as variant of SLIM. The comparison results are reported in
Figure 2. We can see that the proposed approach with inte-
grated heterogeneous loss outperforms both variants that only
use a uniform type of loss component. This validated our al-
gorithm design of using heterogeneous losses.

We also conducted parameter sensitivity analysis on the `2-
norm regularization parameter β. We fixed the value of α as
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Figure 2: Comparison of proposed method and its two com-
ponent variants, SLIM and pureRanking
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Figure 3: Parameter sensitivity analysis of β on Yahoo!Movie
and Yahoo!Music datasets

5000 and choose β value from {0, 10−3, 1, 103, 106}. The ex-
periment results with different β values are reported in Figure
3. We can see that the top-N recommendation performance is
not sensitive to the β values when β ≤ 1000.

5 Conclusion
In this paper, we proposed a novel personalized top-N recom-
mendation approach that exploits novel heterogeneous loss
functions based on linear self-recovery models. The hetero-
geneous loss integrates the strengths of both pairwise ranking
loss and pointwise recovery loss to enforce both entrywise
consistency and pairwise preference structure consistency be-
tween the reconstructed recommendation matrix and the orig-
inal observation matrix. We formulated the training problem
with the heterogeneous loss as a constrained convex mini-
mization problem and develop a projected stochastic gradient
descent optimization algorithm to solve it. The proposed ap-
proach was evaluated on a set of real world personalized top-
N recommendation tasks. The experimental results showed
that the proposed approach not only outperforms its two vari-
ants that only used either the comparison recovery loss or the
pairwise ranking loss, but also outperforms a number of state-
of-the-art methods on top-N recommendation.
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