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Abstract

Cross language text classification is an important leartagkin natural language
processing. A critical challenge of cross language learaiises from the fact that
words of different languages are in disjoint feature spatrethis paper, we pro-
pose a two-step representation learning method to bridgie#iure spaces of dif-
ferent languages by exploiting a set of parallel bilinguatuiments. Specifically,
we first formulate a matrix completion problem to produce eptete parallel
document-term matrix for all documents in two languagesd,then induce a low
dimensional cross-lingual document representation byyapplatent semantic
indexing on the obtained matrix. We use a projected gradieatent algorithm
to solve the formulated matrix completion problem with cergence guarantees.
The proposed method is evaluated by conducting a set of iexgets with cross
language sentiment classification tasks on Amazon pro@uaws. The experi-
mental results demonstrate that the proposed learningothettperforms a num-
ber of other cross language representation learning metlesgecially when the
number of parallel bilingual documents is small.

1 Introduction

Cross language text classification is an important natarajlage processing task that exploits a
large amount of labeled documents in an auxiliary sourcguage to train a classification model for
classifying documents in a target language where labeledislacarce. An effective cross language
learning system can greatly reduce the manual annotatfort &f the target language for learning
good classification models. Previous work in the literahas demonstrated successful performance
of cross language learning systems on various cross largaggclassification problems, including
multilingual document categorization [2], cross langufige-grained genre classification [14], and
cross-lingual sentiment classification [18, 16].

The challenge of cross language text classification liekénlanguage barrier. That is documents
in different languages are expressed with different worchbollaries and thus have disjoint feature
spaces. A variety of methods have been proposed in thetliteréo address cross language text
classification by bridging the cross language gap, inclydiansforming the training or test data
from one language domain into the other language domain img usachine translation tools or
bilingual lexicons [18, 6, 23], and constructing crossylial representations by using readily avail-
able auxiliary resources such as bilingual word pairs [t6mparable corpora [10, 20, 15], and
other multilingual resources [3, 14].

In this paper, we propose a two-step learning method to mdauweoss-lingual feature representa-
tions for cross language text classification by exploitirggtof unlabeled parallel bilingual docu-
ments. First we construct a concatenated bilingual doctiieem matrix where each document is
represented in the concatenated vocabulary of two langudgesuch a matrix, a pair of parallel



documents are represented as a row vector filled with obdeveed features from both the source
language domain and the target language domain, while garailel document in a single lan-
guage is represented as a row vector filled with observed featdres only from its own language
and has missing values for the word features from the otheguage. We then learn the unobserved
feature entries of this sparse matrix by formulating a matdmpletion problem and solving it us-
ing a projected gradient descent optimization algorithrg.dBing so, we expect to automatically
capture important and robust low-rank information basedhenword co-occurrence patterns ex-
pressed both within each language and across languageswilgerform latent semantic indexing
over the recovered document-term matrix and induce a lemedsional dense cross-lingual repre-
sentation of the documents, on which standard monolingaastifiers can be applied. To evaluate
the effectiveness of the proposed learning method, we atradset of experiments with cross lan-
guage sentiment classification tasks on multilingual Amgzmduct reviews. The empirical results
show that the proposed method significantly outperformsaban of cross language learning meth-
ods. Moreover, the proposed method produces good perfaerewen with a very small number of
unlabeled parallel bilingual documents.

2 Related Work

Many works in the literature address cross language tessifieation by first translating documents
from one language domain into the other one via machine latms tools or bilingual lexicons
and then applying standard monolingual classificationrétlyos [18, 23], domain adaptation tech-
niques [17, 9, 21], or multi-view learning methods [22, 2,13, 12]. For example, [17] proposed
an expectation-maximization based self-training metkdudch first initializes a monolingual clas-
sifier in the target language with the translated labeleduamnts from the source language and
then retrains the model by adding unlabeled documents fnertarget language with automatically
predicted labels. [21] proposed an instance and featureelgihting method by first translating
documents from one language domain to the other one and imeftaneously re-weighting in-
stances and features to address the distribution differanmoss domains. [22] proposed to use
the co-training method for cross language sentiment dieaon on parallel corpora. [2] pro-
posed a multi-view majority voting method to categorize wtoents in multiple views produced
from machine translation tools. [1] proposed a multi-viewatassification method for multilingual
document categorization, which minimizes both the trajrimss for each view and the prediction
disagreement between different language views. Our peapagproach in this paper shares similar-
ity with these approaches in exploiting parallel data poedlby machine translation tools. But our
approach only requires a small set of unlabeled parallalghents, while these approaches require
at least translating all the training documents in one laggudomain.

Another important group of cross language text classificatinethods in the literature con-
struct cross-lingual representations by exploiting kilial word pairs [16, 7], parallel corpora
[10, 20, 15, 19, 8], and other resources [3, 14]. [16] propgosecross-language structural cor-
respondence learning method to induce language-indepefeigures by using pivot word pairs
produced by word translation oracles. [10] proposed a devgguage latent semantic indexing
(CL-LSI) method to induce cross-lingual representatioppérforming LS| over a dual-language
document-term matrix, where each dual-language docunwntaios its original words and the
corresponding translation text. [20] proposed a crogguith kernel canonical correlation analysis
(CL-KCCA) method. It first learns two projections (one forchdanguage) by conducting kernel
canonical correlation analysis over a paired bilingualpasrand then uses them to project doc-
uments from language-specific feature spaces to the shautingual semantic feature space.
[15] employed cross-lingual oriented principal comporemilysis (CL-OPCA) over concatenated
parallel documents to learn a multilingual projection bygitaneously minimizing the projected
distance between parallel documents and maximizing thegqemd covariance of documents across
languages. Some other work uses multilingual topic modeth as the coupled probabilistic latent
semantic analysis and the bilingual latent Dirichlet adiban to extract latent cross-lingual topics
as interlingual representations [19]. [14] proposed tolasguage-specific part-of-speech (POS)
taggers to tag each word and then map those language-sg&0ifidags to twelve universal POS
tags as interlingual features for cross language fine-gdagrenre classification. Similar to the mul-
tilingual semantic representation learning approachek ag CL-LSI, CL-KCCA and CL-OPCA,
our two-step learning method exploits parallel documeBts.different from these methods which
apply operations such as LSI, KCCA, and OPCA directly on thgimal concatenated document-



term matrix, our method first fills the missing entries of ttecwiment-term matrix using matrix
completion, and then performs LSI over the recovered lawkraatrix.

3 Approach

In this section, we present the proposed two-step learniethhaal for learning cross-lingual docu-
ment representations. We assume a subset of unlabeletépdogiuments from the two languages
are given, which can be used to capture the co-occurrenegroétacross languages and build con-
nections between the vocabulary sets of the two languagedir§¥construct a unified document-
term matrix for all documents from the auxiliary source laage domain and the target language
domain, whose columns correspond to the word features fneranified vocabulary set of the two
languages. In this matrix, each pair of parallel documentgpresented as a fully observed row
vector, and each non-parallel document is representedatially observed row vector where only
entries corresponding to words in its own language vocapaee observed. Instead of learning a
low-dimensional cross-lingual document representatiomfthis matrix directly, we perform a two-
step learning procedure: First we learn a low-rank docurtemmt matrix by automatically filling the
missing entries via matrix completion. Next we produce s#asgual representations by applying
the latent semantic indexing method over the learned matrix

Let M° € R**4 be the unified document-term matrix, which is partially fillgith observed nonneg-
ative feature values, whetds the number of documents ardds the size of the unified vocabulary.
We use2 to denote the index set of the observed feature th such thati, j) € Q if only if Mi‘?j

is observed; and us@ to denote the index set of the missing featureaf, such that(i, j) € Q
if only if Mg is unobserved. For theth document in the data set from one language, if the doc-

ument does not have a parallel translation in the other lagguthen all the features in roi
corresponding to the words in the vocabulary of the otheguage are viewed as missing features.

3.1 Matrix Completion

Note that the document-term matd®® has a large fraction of missing features and the only bridge
between the vocabulary sets of the two languages is the setadif parallel bilingual documents.
Learning from this partially observed matrix directly bgating missing features as zeros certainly
will lose a lot of information. On the other hand, a fully obgsd document-term matrix is naturally
low-rank and sparse, as the vocabulary set is typically lange and each document only contains
a small fraction of the words in the vocabulary. Thus we peaptm automatically fill the missing
entries of M° based on the feature co-occurrence information expresstiitiobserved data, by
conducting matrix completion to recover a low-rank and seamnatrix. Specifically, we formulate
the matrix completion as the following optimization pratle

min rank(M) + p|| M|y subjecttoM;; = M}, V(i,j) € Q; M;; >0,(i,5) € Q (1)
where|| - || denotes &; norm and is used to enforce sparsity. The rank function hewisvnon-
convex and difficult to optimize. We can relax it to its coneswelope, a convex trace not/|| ...
Moreover, instead of using the equality constraints in (¢, propose to minimize a regulariza-
tion loss function¢(M;;, M), to cope with observation noise for all the observed featniteies.

Meanwhile, we also add regularization terms over the mis&aturesc(M;;,0),V(i,5) € Q, to

avoid overfitting. In particular, we use the least squared fanctionc(z,y) = 1|z — y|[. Hence
we obtain the following relaxed convex optimization prabléor matrix completion

min | M. + pl M|+ > oM, M) +p > ¢(M;;,0) subjecttoM >0 (2
(2,7)€EQ (1,])69

With nonnegativity constraintd/ > 0, the non-smootli; norm regularizer in the objective function
of (2) is equivalent to a smooth linear functiga/|[, = >_,. M;;. Nevertheless, with the non-
smooth trace norn{||., the optimization problem (2) remalns to be convex but noioath.
Moreover, the matriX\/ in cross-language learning tasks is typically very largel, thus a scalable
optimization algorithm needs to be developed to conduatiefit optimization. In next section, we
will present a scalable projected gradient descent algarib solve this minimization problem.



Algorithm 1 Projected Gradient Descent Algorithm

Input: M°, v, p<1, 0 <7 < min(2, %), L.
Initialize M as the nonnegative projection of the rank-1 approximatfoh/é.
while not convergedio
1. gradient descenft/ = M — 7Vg(M).
2. shrinki M = S (M).
3. project onto feasible sed = max(M, 0).
end while

3.2 Latent Semantic Indexing

After solving (2) for an optimal low-rank solutiof/*, we can use each row of the sparse matrix
M* as a vector representation for each document in the coratatémocabulary space of the two
languages. However exploiting such a matrix represemtaticectly for cross language text clas-
sification lacks sufficient capacity of handling featureseoand sparseness, as each document is
represented using a very small set of words in the vocabsktryWe thus propose to apply a latent
semantic indexing (LSI) method alW* to produce a low-dimensional semantic representation of
the data. LSI uses singular value decomposition to discneimportant associative relationships
of word features [10], and create a reduced-dimension ffieaipace. Specifically, we first perform
singular value decomposition ov&f*, M* = USV T, and then obtain a low dimensional represen-
tation matrixZ via a projectionZz = M*V}, whereV}, contains the tog right singular vectors of
M*. Cross-language text classification can then be condustadZzousing monolingual classifiers.

4 Optimization Algorithm

4.1 Projected Gradient Descent Algorithm

A number of algorithms have been developed to solve matnrptetion problems in the litera-

ture [4, 11]. We use a projected gradient descent algorithsolve the non-smooth convex opti-
mization problem in (2). This algorithm takes the objecfiwaction f (M) in (2) as a composition

of a non-smooth term and a convex smooth term sugh{ A8) = || M ||. + g(M ) where

g(M) = pl|M|s + Y e(Mij, M) +p Y c(M;;,0). 3)

(i,7)€Q (4,)€Q
It first initializes M as the nonnegative projection of the rank-1 approximatibi/d, and then
iteratively updates\/ using a projected gradient descent procedure. In eachidgierave perform

three steps to updafd . First, we take a gradient descent sfép= M — 7V g(M) with stepsizer
and gradient function

Vg(M)=pE+ (M —M") oY +pMoY (4)

whereF is at x d matrix with all 1s; Y andY aret x d indicator matrices such thaf; = 1if

and only if (¢, j) € Q andY = E — Y; and ‘" denotes the Hadamard product. Next we perform a
shrinkage operatiod = S, (M) over the resulting matrix from the first step to minimize ask.
The shrinkage operator is based on singular value decotigposi

S,(M)=US,,)V', M=UZV', %) =max(Z —1,0), (5)

wherev = 7. Finally we project the resulting matrix into the nonnegatieasible set b/ =
max (M, 0). This update procedure provably converges to an optimatisal The overall algorithm
is given in Algorithm 1.

4.2 Convergence Analysis

Let h(-) = I(-) — 7Vg(-) be the gradient descent operator used in the gradient destepn and
let P-(-) = max(-,0) be the projection operator, whil&,(-) is the shrinkage operator. Below we
prove the convergence of the projected gradient descentith.



Lemmal. Let E'beatxdmatrixwithall 1s,and @ = E—T(Y+p}7). For 7 € (0, min(2, )) the
operator h(-) isnon-expansive, i.e., for any M and M’ € R4, ||h(M)—h(M')||r < || M — M’HF
Moreover, [|h(M) — h(M")||lr = |M — M| ifand onlyif A(M) — h(M') = M — M'.

Proof. Note that forr € (0, min(2, p)) we have—1 < @;; < 1,¥(4,7). Then following the
gradient definition in (4), we have

IR(M) = B(M") | = ||(M = M") 0 Q|lr = (Y (Mi; — M[;)*Q%)? < ||M —M'|p
ij
The inequalities become equalities if onlyuifM) — h(M') = M — M. O
Lemma 2. [11, Lemma 1] The shrinkage operator S, (-) is non-expansive, i.e, for any M and
M’ € RS, (M)~8,(M") || < || M—M'|| . Moreover, |[S,(M)~S,(M")|[r = [|M~M'|
ifandonlyif S, (M) — S, (M') =M — M'".

Lemma 3. The projection operator P (-) is non-expansive, i.e., ||Pe(M) — Pe(M')||r < ||M —
M'|| . Moreover, || Pe(M)—Pe(M')||r = |M—M'||r ifand onlyif Pe(M)—Pe(M') =

Proof. For any given entry indegi, j), there are four cases:
e Case 1:M;; > 0, M]; > 0. We have(Pe(M;;) —

e Case 2:M;; > 07Mi’j < 0. We have( P (M;;) — Pe(M];
e Case 3:M;; < 0, M]; > 0. We have(Pc(M;;) —
(M;5) —

Pe(M[;))? = M';; < (My; — M};)?
e Case 4:M;; < 0, M]; < 0. We have(Pc(M;;) — Pe(M]; 2=0< (M M{j)2
Therefore,
[Pe(M) = Pe(M")[|r = (D _(Pe(Mi;) - PC(Mi/j))Q)% < (D (My; — M)? )i =M - M5
17 (%)
and|| Pe(M) — Pe(M')||r = [[M — M'||p ifonly if Pe(M) — Pe(M') =M — M. O

Theorem 1. The sequence {M*} generated by the projected gradient descent iterations in Algo-
rithm1 with 0 < 7 < min(2, %) convergesto M*, which is an optimal solution of (2).

Proof. Sinceh(-), S,(-) and P¢(-) are all non-expansive, the composite operdtefS, (h(-))) is
non-expansive as well. This theorem can then be provediitp[11, Theorem 4]. O

5 Experiments

In this section, we evaluate the proposed two-step leanmiathod by conducting extensive cross
language sentiment classification experiments on mugtiléh Amazon product reviews.

5.1 Experimental Setting

Dataset We used the multilingual Amazon product reviews datase}l, [Miich contains three
categories (Books (B), DVD (D), Music (M)) of product revisim four different languages (English
(E), French (F), German (G), Japanese (J)). For each catefjtire product reviews, there are 2000
positive and 2000 negative English reviews, and 1000 pesithd 1000 negative reviews for each
of the other three languages. In addition, there are an@®@0 unlabeled parallel reviews between
English and each of the other three languages. Each revipiepgocessed into a unigram bag-of-
word feature vector with TF-IDF values. We focused on clogpdal learning between English and
the other three languages and constructed 18 cross langeatjment classification tasks (EFB,
FEB, EFD, FED, EFM, FEM, EGB, GEB, EGD, GED, EGM, GEM, EJB, JEBD, JED, EJM,
JEM), each for one combination of selected source languagget language and category. For
example, the taskEFB usesEnglish Books reviews as the source language data and Esaxch
Books reviews as the target language data.



Table 1: Average classification accuracies (%) and standiaritions (%) over 10 runs for the 18

cross language sentiment classification tasks.

TASK TBOW CL-LSI CL-KCCA  CL-OPCA TSL

EFB | 67.310.96 79.560.21 77.560.14 76.550.31 81.92£0.20
FEB | 66.82£0.43 76.660.34 73.4%0.13 74.4%0.53 79.5H0.21
EFD | 67.80£0.94 77.820.66 78.1920.09 70.54-0.41 81.9A40.33
FED | 66.15:0.65 76.63%0.25 74.930.07 72.4%0.47 78.09£0.32
EFM | 67.84:0.43 75.3%0.40 78.240.12 73.62%0.49 79.30+0.30
FEM | 66.08£0.52 76.33%0.27 73.3&0.12 73.46:0.50 78.53+0.46
EGB | 67.23t0.68 77.5%0.21 79.140.12 74.720.54 79.22£0.31
GEB | 67.16+0.55 77.64:0.19 74.13-0.09 74.780.39 78.65:0.23
EGD | 66.79£0.80 79.220.22 76.730.10 74.5%¢0.66 81.34:0.24
GED | 66.2A0.69 77.7&0.26 74.26:0.08 74.830.45 79.34+-0.23
EGM | 67.65£0.45 73.810.49 79.180.05 74.450.59 79.39+0.39
GEM | 66.74:0.55 77.280.51 72.31#0.08 74.150.42 79.02:0.34
EJB 63.15-0.69 72.68:0.35 69.46:0.11 71.410.48 72.5%40.52
JEB 66.85£0.68 74.630.42 67.990.18 73.4%0.41 77.1A40.36
EJD 65.4740.50 72.530.28 74.7%0.11 71.840.41 76.6G+0.49
JED 66.42-0.55 75.180.27 72.440.16 75.420.52 79.010.50
EJM | 67.62£0.75 73.44-0.50 73.54:0.11 74.96:0.86 76.21-0.40
JEM | 66.510.51 72.380.50 70.06:0.18 72.64-0.66 77.15-0.58

Approaches We compared the proposed two-step learnifig_j method with the following four
methods: TBOW, CL-LSI, CL-OPCA and CL-KCCA. The Target BafWord (TBOW) baseline
method trains a supervised monolingual classifier in thgimai bag-of-word feature space with the
labeled training data from the target language domain. Tos<Lingual Latent Semantic Indexing
(CL-LY) method [10] and the Cross-Lingual Oriented Principal Congnt Analysis CL-OPCA)
method [15] first learn cross-lingual representations \alttdata from both language domains by
performing LS| or OPCA and then train a monolingual classifigh labeled data from both lan-
guage domains in the induced low-dimensional feature spdte Cross-Lingual Kernel Canonical
Component AnalysisGL-KCCA) method [20] first induces two language projections by using
labeled parallel data and then trains a monolingual clasifn labeled data from both language
domains in the projected low-dimensional space. For alegrpents, we used linear support vector
machine (SVM) as the monolingual classification model. Rgslementation, we used the libsvm
package [5] with default parameter setting.

5.2 Classification Accuracy

For each of the 18 cross language sentiment classificastn,teve used all documents from the two
languages and the additional 2000 unlabeled parallel dentsrfor representation learning. Then
we used all documents in the auxiliary source language amtbraly chose 100 documents from
the target language as labeled data for classification niaeing, and used the remaining data in
the target language as test data. For the proposed methbdwESety = 10-% andr = 1, chose

~ value from{0.01,0.1, 1,10}, chosep value from{10=°,10%,10~2,10-2,10~ !, 1}, and chose
the dimensiork value from{20, 50, 100, 200, 500}. We used the first task EFB to perform model
parameter selection by running the algorithm 3 times basethodom selections of 100 labeled
target training data. This gave us the following paramegétingy: v = 0.1, p = 1074,k = 50. We
used the same procedure to select the dimensionality oftlreeéd semantic representations for the
other three approaches, CL-LSI, CL-OPCA and CL-KCCA, whicbducedk = 50 for CL-LSI
and CL-OPCA, and: = 100 for CL-KCCA. We then used the selected model parameterslfor a
the 18 tasks and ran each experiment for 10 times based oomaselections of 100 labeled target
documents. The average classification accuracies andasthdeviations are reported in Table 1.

We can see that the proposed two-step learning method, Theidorms all other four comparison
methods in general. The target baseline TBOW performs paorlall the 18 tasks, which implies
that 100 labeled target training documents are far from ghdéoi obtain a robust sentiment classifier
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Figure 1: Average test classification accuracies (%) antsta deviations (%) over 10 runs with
different numbers of unlabeled parallel documents for fidgfa classification system from English
to French, German and Japanese.

in the target language domain. All the other three croggulith representation learning methods,
CL-LSI, CL-KCCA and CL-OPCA, consistently outperform thisiseline method across all the
18 tasks, which demonstrates that the labeled training fuama the source language domain is
useful for classifying the target language data under aathdiata representation. Nevertheless, the
improvements achieved by these three methods over thermaset much smaller than the proposed
TSL method. Across all the 18 tasks, TSL increases the ageesy accuracy over the baseline
TBOW method by at least 8.59 (%) on the EJM task and up to 144 b the EFB task. Moreover,
TSL also outperforms both CL-KCCA and CL-OPCA across all1Bdasks, outperforms CL-LSI
on 17 out of the 18 tasks and achieves comparable performaiticeCL-LSI on the remaining
one task (EJB). All these results demonstrate the efficadyraloustness of the proposed two-step
representation learning method for cross language tessifieation.

5.3 Impact of the Size of Unlabeled Parallel Data

All the four cross-lingual adaptation learning methodsICRI, CL-KCCA, CL-OPCA and TSL,
exploit unlabeled parallel reviews for learning crosgilial representations. Next we investigated
the performance of these methods with respect to differemtbers of unlabeled parallel reviews.
We tested a set of different numbers, € {200, 500, 1000, 2000}. For each numbet,, in the set,
we randomly chose,, parallel documents from all the 2000 unlabeled paralleleres to conduct
experiments using the same setting from the previous axpeaits. Each experiment was repeated
10 times based on random selections of labeled targetritadata. The average test classification
accuracies and standard deviations are plotted in Figunel Fgure 2. Figure 1 presents the results
for the 9 cross-lingual classification tasks that adaptsdiaation systems from English to French,
German and Japanese, while Figure 2 presents the resultefother 9 cross-lingual classification
tasks that adapt classification systems from French, Geamédapanese to English.
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Figure 2: Average test classification accuracies and sterviations over 10 runs with different
numbers of unlabeled parallel documents for adapting @ifieetion system from French, German
and Japanese to English.

From these results, we can see that the performance of alifethods in general improves with the
increase of the unlabeled parallel data. The proposed mefffel, nevertheless outperforms the
other three cross-lingual adaptation learning methodssadhe range of different, values for 16
out of the 18 cross language sentiment classification tdaksthe remaining two tasks, EFM and
EGM, it has similar performance with the CL-KCCA method vehsignificantly outperforming the
other two methods. Moreover, for the 9 tasks that make atlaptiiom English to the other three
languages, the TSL method achieves great performance mlitf200 unlabeled parallel documents,
while the performance of the other three methods decreageificantly with the decrease of the
number of unlabeled parallel documents. These results dgtnmate the robustness and efficacy of
the proposed method, comparing to other methods.

6 Conclusion

In this paper, we developed a novel two-step method to leassdingual semantic data representa-
tions for cross language text classification by exploitingabeled parallel bilingual documents. We
first formulated a matrix completion problem to infer unatvee feature values of the concatenated
document-term matrix in the space of unified vocabulary mehfthe source and target languages.
Then we performed latent semantic indexing over the coregletw-rank document-term matrix to
produce a low-dimensional cross-lingual representatfdhedocuments. Monolingual classifiers
were then used to conduct cross language text classifidasisad on the learned document repre-
sentation. To investigate the effectiveness of the praptessaning method, we conducted extensive
experiments with tasks of cross language sentiment clest$ifn on Amazon product reviews. Our
experimental results demonstrated that the proposed tepotearning method significantly out-
performs the other four comparison methods. Moreover, tbpgsed approach needs much less
parallel documents to produce a good cross language tessifitation system.
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