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Abstract

We consider the problem of learning Bayesian
network classifiers that maximize the mar-
gin over a set of classification variables. We
find that this problem is harder for Bayesian
networks than for undirected graphical mod-
els like maximum margin Markov networks,
since the parameters in a Bayesian network
must satisfy additional normalization con-
straints that an undirected graphical model
need not respect. Unfortunately, these nor-
malization constraints destroy the convexity
properties of the training problem and sig-
nificantly complicate the optimization task.
Nevertheless, we derive an effective train-
ing algorithm that solves the maximum mar-
gin training problem for a range of network
topologies, and otherwise converges to a lo-
cally optimal set of parameters for arbitrary
network topologies. Experimental results
show that the method has promise, although
the complexity of the optimization poses a
nontrivial barrier in practice. Our main in-
tent is simply to pose and investigate what
we believe is a natural machine learning ap-
proach, while also pointing out its difficulties.

1 INTRODUCTION

When training probability models for classification
tasks it is often recommended that the model param-
eters be optimized under a discriminative training cri-
terion such as conditional likelihood (Friedman et al.,
1997). However, general Bayesian network classifiers
have rarely, if ever, been trained to maximize the
margin—arguably the most discriminative criterion
available. Recently it has been observed that undi-
rected graphical models can be efficiently trained to
maximize the margin, even simultaneously over a set of

classification variables (Taskar et al., 2003). (An inter-
esting precursor is (Altun et al., 2003).) However, fol-
lowing SVMs, these training algorithms have adopted
the Euclidean normalization constraint of support vec-
tor machines, which can be accommodated in their
frameworks because they rely on an undirected graph-
ical model representation.

In this paper we consider applying the maximum mar-
gin methodology to Bayesian networks. Unlike Markov
network models, Bayesian networks require the strong
local normalization constraints be satisfied. These
constraints are at odds with the standard Euclidean
(or Lp) normalization constraints of SVMs. Neverthe-
less, our goal is to explore the possibility of learning
maximum margin classifiers while still being able to
represent the learned classifier as a Bayesian network.

There are several motivations for attempting to main-
tain a Bayesian network representation. First, the
classification problem could be a fragment of a much
larger probabilistic causal model, and maintaining a
Bayesian network representation will allow one to in-
tegrate the learned model with the rest of the model
seamlessly. Second, the normalization constraints as-
serted by a Bayesian network structure capture causal
knowledge about the domain. Respecting these con-
straints is one way to exploit the advantage of Bayesian
networks exhibit for intuitively modeling the causal
structure of a domain. Removing the normalization
constraints turns the Bayesian network into a Markov
network, and therefore must necessarily lose the orig-
inal causal knowledge that was encoded in the con-
straints.

The remainder of the paper is organized as follows.
First, after preliminary definitions, we investigate the
notion of margin for Bayesian network classifiers in
Section 3, and relate this both to the common con-
ditional likelihood criterion of graphical models, and
to the standard margin definition of SVMs. We then
derive an effective training algorithm in Section 4 that
solves a wide range of problems exactly, and otherwise



provides an effective heuristic for finding local solu-
tions. In Section 5 we present experimental results
which show some evidence that the causal information
in Bayesian networks can help maximum margin train-
ing. Finally, we extend the approach to multivariable
classification in Section 6.

In the end, we observe a few drawbacks of maxi-
mum margin Bayesian networks (including the fact
that they do not allow the kernel trick to be conven-
tiently applied), and thus the main message of this pa-
per is necessarily mixed: On the one hand, maximum
margin Bayesian networks allow one to exploit causal
prior knowledge effectively, but on the other hand they
create additional computational difficulty while block-
ing the standard kernel trick. Nevertheless, maximum
margin Bayesian networks are a natural combination
of two predominant current learning technologies, and
we feel this combination is worth study.

2 BAYESIAN NETWORKS

We assume we are given a Bayesian network which
is defined by a directed acyclic graph over variables
X1, ..., Xn where the probability of a complete config-
uration x is given by

P (x|θ) =

n
∏

j=1

P (xj |xπ(j))

= exp
(

∑

jab 1(xj=ab) ln θjab

)

(1)

Here θ denotes the parameters of the model, j ranges
over CPTs, one for each variable Xj , 1(·) denotes the
indicator function, xj denotes the local subconfigura-
tion of x on (xj ,xπ(j)), a denotes the set of values for
child variable xj , and b denotes the set of configura-
tions for xj ’s parents xπ(j). The form (1) shows how
Bayesian networks are a form of exponential model

P (x|w) = exp
(

δ(x)>w
)

(2)

using the substitution wjab = ln θjab, where δ(x) de-
notes the feature vector (...1(xj=ab)...)

> over j, a,b.
The key aspect of the exponential form is that it ex-
presses p(x|w) as a convex function of the parameters
w, which would seem to suggest convenient optimiza-
tion problems. However, Bayesian networks also re-
quire the imposition of additional normalization con-
straints over each variable

∑

a

ewjab = 1 for all j,b (3)

Unfortunately, these constraints are nonlinear, even
though the objective is convex in w. Removing these
constraints improves the computational difficulty of

training, but also removes the causal interpretability
of the model. In this paper, our goal is to stick with
the Bayesian network constraints and discover where
this leads.

3 DISCRIMINATIVE TRAINING

We initially assume there is a single classification vari-
able Y taking on values y ∈ {1, ..,K}. To make predic-
tions we will consider the maximum conditional prob-
ability prediction maxy P (y|x). Note that for graph-
ical models the conditional probability depends only
on variables that share some common function (CPT)
with Y (the Markov blanket of Y ), and therefore we
will restrict attention to this set of variables hence-
forth.

We are interested in learning the parameters for a
Bayesian network classifier given training data of the
form (x1y1), ..., (xtyt). Two standard training criteria
to maximize during training are the joint loglikelihood
and the conditional loglikelihood given by

logL(θ) =
t
∑

i=1

logP (yi|xiθ) + logP (xi|θ)(4)

logCLL(θ) =

t
∑

i=1

logP (yi|xiθ) (5)

Much of the literature suggests that the latter objec-
tive is better suited for classification (Lafferty et al.,
2001; Friedman et al., 1997), although recent studies
have identified conditions where the former objective
is advantageous (Ng & Jordan, 2001).

In this paper we consider two alternative criteria based
on the large margin criteria of SVMs, which we refer to
as minimum conditional likelihood (MCL) and mini-
mum conditional likelihood ratio (MCLR) respectively

logMCL(θ) = min
i
logP (yi|xiθ) (6)

logMCLR(θ) = min
i
logP (yi|xiθ)

−
1

K

K
∑

y=1

logP (y|xiθ) (7)

For the two class case, K = 2, these two criteria are
in fact equivalent. Also in this case, they are both
very similar to conditional loglikelihood (5), differing
only in taking a min instead of a sum across training
examples.

Now, by plugging in the exponential form of the defi-
nition of P (y|xw) into these criteria we will be able to
relate the resulting training problem to that of linear



SVMs

logMCL(w) = min
i
δ(xiyi)>w − log

∑

y

eδ(x
iy)>w(8)

logMCLR(w) = min
i

K
∑

y=1

[

δ(xiyi)− δ(xiy)
]>

w (9)

The goal here is to maximize these quantities with re-
spect to the weight vector w. Of course, maximizing
these inner products is trivial if w is not constrained.
At this point, the standard SVM formulation imposes
a Euclidean normalization constraint that ‖w‖2 = 1,
which sets the weights to maximize the Euclidean mar-
gin (Schoelkopf & Smola, 2002). For the second cri-
terion specifically, our formulation recovers standard
versions of multiclass SVMs proposed in (Crammer &
Singer, 2001) (ignoring slacks) expressed over features
determined by the Bayesian network.

This specific connection is the main observation of
(Taskar et al., 2003; Altun et al., 2003), who pro-
ceed to use standard SVM training criteria over these
features. (We consider multvariable classification in
Section 6 below.) Note however that the solution
weight vector for this problem cannot be substituted
into the Bayesian network representation, because it
will not satisfy the proper normalization constraints
(3). The previous techniques of (Taskar et al., 2003;
Altun et al., 2003) were able to proceed by using an
undirected graphical model which can accomodate un-
normalized weights in the potential function. However,
for Bayesian networks this is not sufficient, and there
is usually no way to represent the same classifier in the
original Bayesian network structure.

Our approach that we consider in this paper is to pre-
serve representability as a Bayesian network, which
requires one to solve the maximum margin training
criteria (8) and (9) with respect to the alternative
normalization constraints (3). Unfortunately, the con-
straints in w are highly nonlinear and this yields a
difficult optimization problem. Attempts to reformu-
late the problem according to standard transforma-
tions also fail. For example, the probability function
(1) is neither concave nor convex in the parameters θ,
even though the equality constraints are linear. The
standard trick to remove the normalization constraints
entirely also does not work in this case, since the stan-
dard reparameterization θjab = eωjab/

∑

a e
ωjab cre-

ates an objective

P (x|ω) = exp





∑

jab

1(xj=ab)

[

ωjab − log
∑

a

eωjab

]





that is neither convex nor concave over ω. Thus, if we
hope to solve the maximum margin Bayesian network

training problem exactly, even for special cases, we
require a more subtle approach.

4 A TRAINING ALGORITHM

Although solving for the maximum margin Bayesian
network parameters appears to be hard in general,
we can derive a practical training algorithm that still
solves the problem for a wide range of graph topolo-
gies, and otherwise provides a useful foundation for
heuristic approaches which seek local maxima.

The main idea is to try to exploit convexity in the
problem as much as possible, and identify situations
where the solutions to a convex subproblem can be
maintained. Below we will work with the MCL crite-
rion (8) although a similar derivation also works for
(9). Note first that (8) is a convex objective func-
tion in w. Unfortunately, we have to maximize (8)
with respect to the nonlinear equality constraints (3).
However, the basic observation is that the problem can
be made convex simply by relaxing these equality con-
straints to inequality constraints, and thus obtain a
simple relaxation of the problem which allows us to
obtain a global solution

argmax
w
min
i

δ(xiyi)>w − log
∑

y

eδ(x
iy)>w (10)

subject to
∑

a

ewjab ≤ 1 for all j,b

= argmin
w,β

−β subject to

β − δ(xiyi)>w + log
∑

y

eδ(x
iy)>w ≤ 0 ∀i

∑

a

ewjab − 1 ≤ 0 for all j,b (11)

The solution to this problem will of course be subnor-
malized. The key fact about the relaxed optimization
problem (11) however, is that it is convex in w and
this will permit effective algorithmic approaches. For
this problem we can obtain the Lagrangian

L0(w, β,µ,λ) = β +

∑

i

µi

(

β − δ(xiyi)>w + log
∑

y

eδ(x
iy)>w

)

+
∑

j,b

λjb

(

∑

a

ewjab − 1

)

This gives us an equivalent problem to (11)

min
w,β

max
µ,λ

L0(w, β,µ,λ) subject to µ ≥ 0, λ ≥ 0 (12)

First, it turns out to be easy to eliminate β from this
problem, since ∂L0/∂β = −1+

∑

i µi, and setting this



to 0 implies
∑

i µi = 1. If we enforce this constraint,
we can plug this equation back into the Lagrangian

L1(w,µ,λ) =
∑

i

µi

(

log
∑

y

eδ(x
iy)>w − δ(xiyi)>w

)

+
∑

j,b

λjb

(

∑

a

ewjab − 1

)

An equivalent optimization problem to (12) is there-
fore

min
w
max
µ,λ

L1(w,µ,λ) s.t. µ ≥ 0,
∑

i

µi = 1, λ ≥ 0 (13)

Because µ and λ are nonnegative, L1 is convex in w

and linear in µ and λ, and therefore this problem only
has global solutions.

We now attempt to solve for w for a given µ and λ.
Taking the partial derivative with repect to wjab and
setting this equal to 0 shows that we seek a w that
satisfies
∑

i

µi p(yjab|x
i) + λjb ewjab =

∑

i µi δjab(y
i,xi)(14)

for all j, a,b, where here we have used the substitution

p(yjab|x
i) =

∑

y

δjab(y,x
i) eδ(x

iy)>w/
∑

y

eδ(x
iy)>w

This primal problem can be solved in many ways,
including iterative proportional fitting. Thus, many
forms of primal-dual search algorithms are able to ef-
fectively solve the problem (10). We use a straightfor-
ward alternating gradient approach in our experiments
below.

Of course, the solutions obtained to (10) may not be
representable in a Bayesian network because the pa-
rameters w are sub-normalized, not normalized. The
main question that remains is when can these sub-
normalized solutions be converted into properly nor-
malized Bayesian networks obeying the correct equal-
ity constraints (3)? It turns out that a wide range
of network topologies admit a simple procedure for
renormalizing the local functions so that they become
proper CPTs, without affecting the conditonal proba-
bility of y given x. In fact, this observation has been
previously made by (Wettig et al., 2002; Wettig et al.,
2003). We present a simpler view here: It is easy
to characterize when an unnormalized Bayesian net-
work classifier can be renormalized to preserve P (y|x):
Consider an unnormalized local function f(x, z) in a
Bayesian network structure, and assume we want to
normalize it over x. Note that this function can al-
ways be multiplied by a factor ρz for each z, as long
as there is another local function f(z,q) that can be

divided by the same factor. (I.e. a local function that
contains all the parents z of x.) Thus, if an accompa-
nying f(z,q) always exists, we can always renormalize
f(x, z). Since the functions and variables follow an
acyclic ordering in a Bayesian network, child variables
can be sequentially renormalized bottom up without
affecting previous normalizations. Finally, the factor
containing the y variable can be renormalized to pre-
serve P (y|x).

The above renormalization strategy only fails if, at any
stage, the parent variable set z is not contained in a
single local function, but is instead split between sep-
arate local functions. In this case, there would be no
way to coordinate the compensation for ρz (without
adding a new local function over z). Thus, in the end,
we are left with an intuitive sufficient condition for
when a Bayesian network can be renormalized: Any
graph can be normalized without affecting P (y|xθ) if
the child variables can be eliminated without adding
any new edges. In these cases, we can recover a nor-
malized model without affecting the optimality of the
solution to (10), and therefore we obtain a global max-
imum of (8) with respect to (3).

5 EXPERIMENTAL RESULTS

To evaluate the utility of learning maximum margin
Bayesian networks, we conducted some preliminary ex-
periments on both real and synthetic data sets. In
the synthetic experiments, we fixed a Bayesian net-
work structure and parameters, and used it to generate
training and test data. We experimented with several
network topologies and parameterizations, and com-
pared maximum margin Bayesian networks trained ac-
cording to (8) s.t. (3) to several other approaches, in-
cluding: maximum margin Markov networks (SVMs)
trained according to (9) with slacks, maximum con-
ditional likelihood (5), and maximum joint likelihood
(4). The results are for 20 repetitions of the training
sample, for the networks shown in Figures 1 and 2.

Tables 1 and 2 show that the techniques behave sim-
ilarly, but show an advantage for maxmargBN over
maxmargMN. This makes sense given that the data
was generated from a Bayesian network with the same
structure considered for training. The results show
that the only technique which ignores the Bayesian
network normalization constraints, maxmargMN, is
slightly behind the other methods which respect these
constraints, vindicating somewhat the claim that the
normalization structure of a directed causal model can
impose an effective machine learning bias, beyond just
providing the features for a generalized linear model.

We also experimented with real data from the UCI
repository. In these cases, we formulated a Bayesian



Figure 1: 8-node chain augmented Naive Bayes model.
The classification variable y is shaded.

Table 1: Accuracy results for Figure 1

algorithm size of training set
20 50 100

maxL 0.7335 0.79085 0.82102
maxCL 0.71735 0.79242 0.82203
maxmargBN 0.73235 0.78637 0.80702
maxmargMN 0.68678 0.74098 0.78537

Figure 2: 8-node twin-parent Naive Bayes model. The
classification variable y is shaded.

Table 2: Accuracy results for Figure 2

algorithm size of training set
20 50 100

maxL 0.69462 0.7693 0.80235
maxCL 0.6887 0.76477 0.80383
maxmargBN 0.70073 0.7582 0.77245
maxmargMN 0.70782 0.72468 0.72138

network topology that was intended to capture the
causal structure of the domain, but in this case had
no guarantee that the presumed structure was correct.
These networks are much larger and cannot be easily
visualized here. We sampled 5 disjoint training sets
out of each data set, tested on the remainder, and re-
port average results.

Tables 3–7 show the results. Interestingly, these results
generally show an advantage for learning techniques
that respect the Bayesian network constraints, and a
disadvantage for those that ignore this information.
Surprisingly, maximum joint likelihood performed well
in our experiments. Unsurprisingly, maximum condi-
tional likelihood performed very well. MaxmargBN
performed best on one data set.

6 MULTIVARIABLE EXTENSION

Finally, we extend the maximum margin Bayesian net-
work approach to multivariable classification. This
was the main idea of (Taskar et al., 2003; Altun
et al., 2003). In this setting, we observe training data
(x1,y1), ..., (xt,yt). as before, but now the targets yi

are vectors of correlated classifications. Conceptually,
this extension causes no change in approach, and we
can seek to maximize the criteria (8) and (9) as before.
The only new challenge is coping with the exponential
sum over y. However, the derivation of our training
algorithm in Section 4 is not significantly affected by
this extension. In fact, we find that the derivative
∂L1/∂wjab now computes the marginal probability
over the local y values yjab that match the local func-
tion j on pattern ab. We use standard probabilistic
inference techniques (for example, forward-backward)
to calculate these marginals, which then allows us to
calculate the gradients for the primal-dual optimizer.

We implemented this approach and tested it on a syn-
thetic HMM model, where the classification variables
y play the role of the hidden state sequence, and the
input variables x play the role of the observations. We
sampled (x,y) from a 10 variable HMM and repeated
the experiment 20 times to obtain the final results.

Table 8 shows that the maximum margin approach is
competetive with maxL and maxCL, and outperforms
them at sample size 100. Unfortunately, at the time
of submission we did not have a multivariable version
of maximum margin Markov networks available for a
comparison. This will be added. Nevertheless, the
preliminary results show credible performance for max
margin Bayesian networks.



Table 3: Accuracy on UCI data sets

Australian Breast Chess

maxL 0.85906 0.95539 0.6875
maxCL 0.85145 0.95137 0.7465
maxmargBN 0.77065 0.9521 0.6875
maxmargMN 0.80072 0.93163 0.721

Table 4: Accuracy on UCI data sets

Corral Crx Diabetes

maxL 0.75146 0.69637 0.77138
maxCL 0.81748 0.7044 0.77138
maxmargBN 0.75922 0.63327 0.74667
maxmargMN 0.68738 0.52352 0.7239

Table 5: Accuracy on UCI data sets

Flare MofN Vote

maxL 0.8211 0.893 0.94943
maxCL 0.8211 0.9915 0.9477
maxmargBN 0.8211 1.0 0.94483
maxmargMN 0.8211 0.762 0.94138

Table 6: Accuracy on UCI data sets

Iris Vehicle Glass

maxL 0.9267 0.5479 0.6511
maxCL 0.9267 0.5494 0.6128
maxmargBN 0.9333 0.4686 0.6340
maxmarginMN 0.5267 0.5216 0.6106

Table 7: Accuracy on UCI data sets

Lymphography Waveform-21

maxL 0.7900 0.5552
maxCL 0.7905 0.5785
maxmargBN 0.8033 0.5696
maxmarginMN 0.7414 0.6663

Table 8: Accuracy on an 8 node HMM model

algorithm size of training set
20 50 100

maxL 0.7354 0.7951 0.7946
maxCL 0.7249 0.7765 0.7856
maxmargBN 0.6863 0.7541 0.8103

7 CONCLUSION

We have investigated what we feel is a very natural
question; whether a Bayesian network representation
can be combined with discriminative training based
on the maximum margin criterion of SVMs. We have
found that the outcome of this investigation are mixed:
Training Bayesian networks under the maximum mar-
gin criterion is a hard compuation problem—harder
than the standard quadratic program of SVM train-
ing. However, reasonable training algorithms can be
devised which optimize the margin exactly in special
cases, but only heuristically in general cases.

On the other hand, our preliminary experiments show
that there might be an advantage to respecting the
causal model constraints embodied by a Bayesian net-
work, if indeed these constraints were present during
the data generation. In this sense, max margin Bayes
nets offer a new way to add prior knowledge to SVMs.
Unfortunately, this opportunity also comes with a cost:
max margin Bayes nets do not conveniently allow the
kernel trick, which loses one of the biggest advantages
of SVMs.

In the end, it appears that maximum margin Bayesian
networks might be a viable learning technique in mul-
tivariable classification problems where there is strong
prior causal knowledge. However, their utility my be
limited by computational intractability and lack of a
kernel extension.
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