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Abstract. Computing utilities are emerging as an important part of
the infrastructure for outsourcing computer services. One of the major
objectives of computing utilities is to maximize their net profit while
maintaining customer loyalty in accordance with the service level agree-
ments (SLAs). Defining the SLAs conservatively might be one easy way
to achieve SLA compliance, but this results in underutilization of re-
sources and loss of revenue in turn. In this paper, we show that inducting
unreliable public resources into a computing utility enables more com-
petetive SLAs while maintaining higher level of runtime compliance as
well as maximizing profit.

1 Introduction

Constant improvements in computer communications and microprocessor tech-
nologies are driving the development of new classes of network computing sys-
tems. One such system is the computing utility (CU) that brings large number of
resources and services together in a virtual system to serve its clients. Typically,
CUs are built by connecting the resources or services to a resource management
system (RMS) that itself is implemented either centrally or federally. The RMS
allocates resources to the client requests such that some measure of delivered
performance is maximized subject to fairness constraints. The organization of
the RMS, which impacts the scalability, extensibility, and fault tolerance of the
CU is a key consideration in CU design. Support for services with quality of
service (QoS) assurances is another important design issue in order to attract
business critical applications.

This paper is concerned about augmenting CUs using “public” resources
(i.e., resources that wish to contribute their computing, storage, and network
capacities without subjecting themselves to any contractual agreements). Sev-
eral large-scale network computing systems such as Gnutella, SETI@home have
demonstrated the tremendous potential of using public resources. Our proposed
CU architecture augments the deployed dedicated resources with public resource
for additional capacity and we refer to it as a public computing utility (PCU).

Although different applications can potentially use a PCU, here we consider
only high-throughput computing applications. In this situation, job requests be-
longing to different clients arrive at the PCU at arbitrary times. In a practical
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PCU setting, the RMS has to take the allocation decision as soon as the jobs
arrive.

In this paper, we devise an online scheduling heuristic for the RMS of the
PCU. The PCU online heuristic needs to decide what class of resources (public or
private) should be used for servicing a given request. Because the PCU is bound
by the SLAs when delivering services to the clients, we need to consider the SLAs
in the resource allocation process as well. Section 2 of the paper discusses the
related results found in the literature. Section 3 explains the proposed system
architecture in detail. Section 4 defines the resource scheduling problem being
dealt with in the PCU. Section 6 discusses the results from the simulations
performed to evaluate the resource allocation alternatives.

2 Related Work

Multiprocessor job scheduling is a well-studied problem in operations research
and computer science. Although several optimal algorithms are available [1] for
simpler scheduling problems, most of the interesting and practical scheduling
problems are computationally intractable. Scheduling jobs with arrival time and
deadline constraints is proven to be a NP-hard problem for more than two proces-
sors [2]. In fact [3] proved that optimal scheduling of jobs in multiple processors
is impossible if any of the 3 parameters - arrival time, execution time or deadline
is unknown. Because in an online scheduling scenario, resource allocations have
to be carried out with incomplete information regarding jobs, heuristic solutions
are appropriate for this situation. A good survey of online scheduling heuristics
can be found in [4].

One major goal of the RMS of a PCU is to enforce QoS according to the
SLAs signed up with its clients. Architectures of SLA compliant resource man-
agement for cluster of dedicated machines has been studied in several research
projects like Oceano [5], Globus Grid [6][7], etc. However, study of scheduling
algorithms with detailed performance evaluations were not carried in the above
works. Performance evaluation of scheduling heuristics for cluster based hosting
centers are found in [8][9][10] with different optimization goals in different cases.

The Condor project [11] focuses on harvesting unused resources from hetero-
geneous public machines, but their resource management mainly emphasizes on
discovery and co-allocation of resources through matchmaking and gangmatch-
ing. They do not support SLA driven QoS aware resource management on the
public resource pool.

One work that is very close to our work is [12], which examines stochastic
QoS on a similar architecture using dedicated private resource and stochastic
public resources. Nevertheless, our work is significantly different from theirs in
several dimensions. Instead of modelling the public resources with homogeneous
performance and stochastic idle times, we have modelled their throughput to
be stochastic which captures the real behavior more closely. They have assumed
the QoS requirement (cycle length) of applications has distribution identical
to that of underlying public reources, but we have relaxed that assumption.
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Furthermore, their scheme does not have any long term SLA with the clients,
whereas Our scheduling heuristic is devised to simultaneously maximize the net-
profit of the service provider and the level of compliance with the long term
SLAs. Our investigation also includes job streams arriving from multiple clients
that have different SLAs with the PCU.

3 The PCU System Model and Assumptions

The underlying substrate of the PCU is a proximity aware planetary scale P2P
network such as the Pastry [13] that connects all the resources that participate
in the system. The public resources are expected to be dispersed throughout
the network and the private resources can be concentrated as clusters at certain
locations. The P2P network enables efficient discovery of the public resources.

Several issues like resource co-allocation, trust and incentive management,
load-balancing, etc. should be addressed in developing the resource allocation
process in a PCU system. As a first cut at the problem, we consider allocation
of only one resource – the processors. The allocation decisions of the RMS are
influenced by several parameters including: (a) current utilization of the private
resource pool administered by the PCU, (b) current load offered by the different
clients, (c) current value of the expected performance of the best-effort resources,
and (d) throughput guaranteed to the particular client by the PCU in its SLA.
In our current PCU RMS design, there is no progress monitoring of public re-
sources, omly process completions are notified. Inclusion of progress indicators
can improve the contribution from public resources towards overall throughput,
albeit at the cost of high communication overhead.

4 The Resource Management Problem

Computational jobs arrive from each client of the PCU service provider at ar-
bitrary points in time with each job consisting of arbitrary number of mutually
independent parallel components of possibly different but known sizes. An over-
all deadline is defined for the job before which all the components must finish
their execution.

The SLA that is signed off-line between the provider and a client reserves
a throughput guarantee for the corresponding client. The SLA defines various
parameters including:

– ρ, the ratio of the client-offered workload that is guaranteed to be carried
out by the PCU service provider.

– V , the maximum limit on the workload that can be offered by the client.

From these parameters it can be deduced that when the offered load is v ≤ V ,
the delivered throughput should be ≥ ρv to be compliant with the SLA. If offered
load v is greater than V , it is sufficient for the PCU to deliver ρV amount of
throughput.
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The PCU provider earns revenue in proportion to the total delivered compu-
tational work for the jobs that finish completely within their deadline (with all of
its components). There is penalty for violation of the SLA terms and the penalty
is proportional to amount of deviation of the delivered throughput from guaran-
teed throughput, measured over a specified time window. The optimization goal
of the job scheduler is to maximize the net revenue (i.e., revenue − penalty) of
the PCU service provider.

5 Heuristic Solutions for Resource Management

In this section, we present three heuristic solutions to resource management in
a PCU environment. The first solution, the PCU heuristic, is proposed as part
of this work. The next two solutions are adopted from the scheduling literature
for the PCU environment for comparison purposes.

5.1 PCU Heuristic: An Online Resource Allocator

The scheduler of the RMS uses an online heuristic to take decisions about allo-
cating available resources to incoming jobs. To reduce the scheduling overhead,
the RMS executes the scheduling rules at discrete points of time (i.e., at the end
of each scheduling epoch δ). Another component of the RMS, the SLA mon-
itor measures the current deviation Dc of delivered throughput from required
throughput for each client c, according to the SLA specified time-window τc and
moving average factor αsla. Say the total arrived workload in a time-window is
Wa and total completed and delivered workload is Wd, both Wa and Wd being
smoothed by moving average with the past values. Then,

Dc = max(Vc, Waρc) − Wd

In the above equation, Vc and ρc are SLA defined maximum load and acceptance
ratio for client c. The current value of Dc is available to the scheduler at the end
of every epoch. There are two parts of the decision taken by the scheduler at the
end of every epoch (i) accept newly arrived jobs and start them on public and/or
private resources, and (ii) relocate and restart the deadline vulnerable jobs from
public resource to the private resource pool (in absence of checkpointing and
progress monitoring, it is impossile to migrate without restarting).

Acceptance of jobs For each client, the scheduler maintains a priority queue
for newly arrived jobs, ordered by highest contributing job first. For a job with
total workload W and total available time Ta before deadline, the throughput
contribution is W

Ta
. Every time the foremost job from the queue of the client

having highest Dc −Wc value is chosen, where Wc is is the amount of workload
so far accepted for client c in current SLA window.

All the jobs are ultimately accepted, and each of them are assigned one of the
two different levels of launch-time-priority, which is used for restarting decisions.
The jobs are accepted according to the following rules:
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1. As long as available dedicated resources allow, schedule jobs with high launch-
time-priority with critical components on dedicated and the rest on public
resources. The components that are expected to violate deadline if scheduled
on a public resource according to its currently estimated expected through-
put µ, are identified as critical components. Among the M private resources,
Mr are reserved for restarting phase (the ratio Mr

M is a design parameter).
If Mo resources are already occupied and the selected job has m critical
components, this phase continues as long as Mo + m ≤ M − Mr,

2. For the rest of the enqueued jobs all components are scheduled on public
resources. For any client c, as long as total accepted workload in the current
SLA window is below ρcVc, the launch-time-priority of the accepted job is
high, otherwise it is low.

Restart jobs At the end of every epoch, the scheduler restarts some dead-
line vulnerable job-components from public resources. The job-components that
have reached a point where it can be completed before deadline only if run on
a dedicated machine, is identified as vulnerable. A priority queue is maintained
for all the vulnerable components. The queue is ordered desceding primarily
by launch-time-priority (explained earlier) and secondly by violation probablity
(pv). pv is computed at the job-launch time from the available information (dis-
tribution of the public resource throughput, component size and the deadline).
From the queue, high launch-time-priority components are restarted as long as
any dedicated resource is available. Low launch-time-priority are restarted as
long as available dedicated resource is > Mr. The rest of components are left on
public resource.

5.2 Least Laxity First and Greedy Heuristics

For performance evaluation we compare our PCU heuristic with the well known
Least Laxity First (LLF) [4] heuristic and a Greedy heuristic. We use the LLF
heuristic to schedule the jobs only in the private pool of resources. The laxity
is the slack between possible execution finish time and deadline. New jobs form
each client enter a separate priority queue ordered by laxity and at every epoch
jobs popped from the queue that fits in available dedicated resources are started
there, otherwise the job is deferred until it becomes infeasible to execute before
deadline. As a fairness scheme the queue of the client with highest deviation
from SLA is favored when choosing every job.

The Greedy heuristic, another one that we used for comparison, works on
the same PCU architecture with a combination of private and public resource
pools. The greedy scheduling policy chooses jobs from the arrival queues in every
scheduling epoch in the order of highest contributing job of the highest deviating
client first. It schedules all components of incoming jobs on private resources in
the order of longer component first, as long as there is spare capacity in the
private resource pool. All the remaining job-components are scheduled on public
resources until all the arrival queues are exhausted.
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6 Simulation Results

Here we evaluate the performance of the PCU heuristic through a simulator
written in Parsec [14] by changing different parameters and comparing it with
the Greedy and LLF heuristics. In our simulation setup, the service provider had
a pool of 100 dedicated machines and an infinite pool of public machines. There
were five independent clients each feeding a stream of parallel jobs that should
be completed within the given deadlines and having its own SLA. Jobs arrival
is a Poisson process, with each job having a random number (k) of parallel
components (geometrically distributed). Each component of a job also has a
random workload that is from a geometric distribution. Each job has a feasible
deadline, i.e., it can always be completed if all the parallel components run on
dedicated machines. Unless stated otherwise, the deadline was computed with
a uniform random laxity between 0.5 and 2 times the mean component length,
from the longest component. This tight deadline allows one trial on the public
pool and failing that it should be restarted on a private resource.
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Fig. 1. Variation of mean throughput
with offered load values for mean public
resource throughput µ = 0.80, mean num-
ber of parallel components P = 25, total
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Fig. 2. Variation of penalty per unit rev-
enue with offered load for µ = 0.80, P =
25, M = 100, and

∑
ρV = 100.

All private machines have homogeneous throughput, completing 1 unit of
workload of a component per second. The public resource throughput is sampled
from Lognormal distribution with standard deviation 1.0 and mean less than
1.0. Justification behind using lognormal distribution is that being left skewed
it closely resembles the behavior of the resources in a PCU setting, where most
of the public resources may have very low or even 0 throughput.

In the first set of experiments the PCU heuristic is compared with LLF and
Greedy using throughput (Figure 1), SLA compliance (measured using penalty
per unit revenue in Figure 2). The PCU heuristic delivers better throughput than
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LLF, which implies it useful to augment public resource in a CU. Also the PCU-
heuristic is superior in performance to the greedy heuristic in similar setting.
Figure 3 shows that a much higher gain in throughput is achievable, if the exact
knowledge of throughput of each public machine is available at schedule time,
because then there is no need for restarting jobs. How far of this gain can be
achieved without apriori knowledge remains a problem for future research.
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Demonstrating the fairness of PCU heuristic figure 4 shows that for 2 different
clients, who offers load at the same rate, but has SLA maxload (V ) defined at
2 : 1 ratio, the delivered throughput is proportional to the maxload of the clients
for overloaded situations.

The penalty is higher with the LLF algorithm on private pool only system
than the PCU heuristic, because jobs are not deprioritized when the client is
offering more workload than the SLA upper bound. In case of the greedy al-
gorithm, penalty grows even higher when the client is overloading, because the
dedicated pool gets fully occupied and most of the newly arriving jobs are put
on public resources. Consequently, only a small portion of the newly arriving
jobs can finish before their deadlines.

As Figure 5 shows, the utilization of dedicated resources is higher for the
greedy policy. This is because Greedy uses the dedicated resources exhaustively.
The PCU heuristic tries to execute a job-component primarily using public re-
sources unless it becomes vulnerable for deadline violation. Also, in PCU, to
allow the restarting of vulnerable components, it reserves a portion of the dedi-
cated resources (25%) as contingency resources. These factors lower the utiliza-
tion of dedicated resources in the PCU heuristic. Greedy’s utilization is even
more than LLF, because, in LLF jobs are not allocated unless the all the com-
ponents fit in the private resources, whereas, Greedy may put part of a job in
private pool and rest in public pool.
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To consider the flexibility in SLA overbooking, if and total agreed upon
deliverable throughput (ρV ) is higher than the maximum system capacity, the
SLA deviation goes very high leading to correspondingly high penalties. This in
turn reduces the net profit earned by the service provider. From Figures 6 it can
be observed that SLA booking should be at 140% of the dedicated pool capacity
to maximize the performance for the given PCU configuration.
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Figure 7 shows that use of PCU-heuristic brings gain in delivered throughput
in most region of the spectrum of public resource behavior. It should be noted
that with lognormal distribution, even if the mean throughput is equal to that of
a dedicated machine, 62% of the public resources have throughput less than that
of a dedicated machine. For very low public ressource throughput, almost all of
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the jobs scheduled there needs restart, and since restart is subject to availability
in the limited capacity private pool, many jobs get discarded. This explains the
less than one throughput-gain with poor quality of public resources. Figure 8
shows that PCU-heuristic outperforms the greedy heuristic accross the whole
spectrum.
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Studying the effect of parallelism figure 9 shows that the effect is insignificant
in underloaded situations, but when the system is overloaded, high number of
parallel components increase the probability of failure of a whole job due to fail-
ure of only one or few components which could not be restarted when necessary.
Hence, the total delivered throughput becomes low.

Study on the effect of laxity before deadline (Figure 10)f shows that through-
put gain is much higher with relaxed laxity jobs. This is because with relaxed
laxity the probability of getting a job component completed before deadline on
a public resource increases, which incurs less restarts and better contribution
from public resources.

7 Conclusion

In this paper, we presented the idea of creating a public computing utility by
augmenting computing utilities of dedicated resources with public resources. A
resource management strategy for such an augmented system was presented.
We proposed a resource allocation heuristic that uses the public and private
(dedicated) pools of resources in an efficient manner. We carried out extensive
simulations to evaluate the performance of the proposed heuristic and compare
it with two other heuristics.

The results indicate that the use of public resources can lead to significant
performance improvements both in terms of obtainable throughput and the com-
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pliance with client SLAs. Further, the results indicate that the performance gain
from PCU increases if the job has fewer components or relaxed deadlines. The
performance of the PCU heuristic may be further improved by incorporating
these parameters in the decision process.

One of the significant features of our PCU architecture is the minimal mon-
itoring on the public resources. Because public resources are plenty this helps
to keep the overhead low. It might be possible to selectively enable performance
monitoring for high capacity public resources and increase the delivered perfor-
mance levels even further.
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