
Chapter 0: Review of Relational
Data Management and Databases

(and a bit more)

Leopoldo Bertossi

Data Models, Models in General

To understand/manipulate/transform/update/extract/process
... data, we need to create the right models of data

What is a model?

An abstraction, a simplified description or representation of an
external reality, phenomenon
A physical phenomenon? A company? etc.

The model explicitly captures some salient, relevant aspects of
the external reality; others are left implicit

We may be interested in extracting from the model both
explicit and implicit information

2 / 85

There is nothing like a universal modeling language

If we want to represent mathematical relationships between
numerical variables, we may use mathematical equations
(they come in different flavors)

If we want to model data, we may (and usually) create
mathematical models of data

In data management those models are directly based on set
theory and symbolic logic

Different ways of modeling data depending on the application
and the (mathematical) elements we use to represent data

3 / 85

Examples of Models (among many ...)

Example from (very basic) Physics

The model is formed by the motion equation, for the position as a
function of time:

p(t) = 0.5× t + p(0)

plus the initial observation: p(0) = 2
This is the model
We do not explicitly include all possible pairs (position, time)
That is implicit
We can obtain from the model: p(6) = 5

4 / 85

Example from Logic
Consider the Aristotelian argument:

“If Socrates is a man, then Socrates is mortal. Socrates is a
man. Then, Socrates is mortal.”

It is expected to be a valid argument, i.e. always true
Actually more due to its logical structure than to the particular
properties, e.g. being mortal, and individuals involved, e.g.
Socrates
All this could be expressed in propositional logic, as follows:

1 Denote the most basic and atomic propositions involved, i.e.
not decomposable in sub-propositions, by means of
propositional variables
P: “Socrates is a man” Q: “Socrates is mortal”

2 Use symbolic logical connectives to combine the propositional
variables, to symbolically express the first statement above
(among many other possible statements): (P → Q)

5 / 85

The model in this case becomes the following knowledge base
expressed in propositional logic:

((P → Q) ∧ P)

Or, equivalently, the set of formulas {(P → Q), P}
The implicit knowledge should be Q, in the sense that

((P → Q) ∧ P) → Q)

is an always true formula, i.e. a tautology,
In fact, this formula is always true, for any truth values (0 or 1)
assigned to P and Q
This can be easily checked with a truth table (Do it!)

6 / 85

Or by expressing it in an logically equivalent formula:

≡ ¬((P → Q) ∧ P) ∨ Q ≡ (¬(P → Q)) ∨ ¬P) ∨ Q
≡ (¬(¬P ∨ Q)) ∨ ¬P) ∨ Q ≡ ¬(¬P ∨ Q) ∨ (¬P ∨ Q)

The last formula is of the form ¬p ∨ p, which is clearly always true,
the most common form of tautology!

7 / 85

Now consider the argument:
“All men are mortal. Socrates is a man. Then, Socrates is

mortal.”
It should be again a valid argument, but it cannot be expressed as
such in propositional logic
Let’s try as above

1 Propositional variables: P: “All men are mortal”
Q: “Socrates is a man” R: “Socrates is mortal”

2 The argument in propositional logic?
(P ∧ Q)→ R

No longer a tautology: It is logically equivalent to
¬(¬P ∨ Q) ∨ R ≡ (P ∧ ¬Q) ∨ R

If R is false and Q true, the formula becomes false

8 / 85

We need a more expressive logic: predicate logic
The argument above involves general, non-instantiated concepts
(properties, predicates, attributes), e.g. “being mortal”

1 Now start by introducing symbolic predicates: Ma(·), Mo(·)
A constant to denote (name) Socrates: s
Variables: x , y , ... (implicitly ranging over the underlying
domain of discourse)
A universal quantifier: ∀

2 Now the argument as a formula of predicate logic:
(∀x(Ma(x)→ Mo(x)) ∧Ma(s)) → Mo(s))

This logic is more expressive than propositional logic, and the one
we use in databases and many areas of data management!

9 / 85

Data Models, ER, Relational Model

A model of data has to capture the characteristics of data:

kinds of data items

associations/relationships between data items

associations between classes of data items

dependencies between data items

natural organization of data items (if any), etc. etc.

10 / 85

Data Models, ER, Relational Model

Example:

“Peter spends $23 on a CD at CDWarehouse”

“Mary spends $30 on a book at Chapters”

Here “Peter” is a data item, the same applies to “$23”,
“$30”, “book”, “Chapters”, ...

Not only that: “Peter” is of the kind, say “Customer”, “CD”
of the kind “Article”, ...

We have categories (or concepts, classes, entities) of data
items

The concept “Customer” is related to the concept “Article”

The data item “Peter” is related to data item “CD”, but not
to “book”, etc.

How can we capture all this?

11 / 85

Data Models, ER, Relational Model

An Entity/Relationship (ER) Model:

A graphical “language” that
uses diagrams to model data

Entities: represented by
boxes; they correspond
to classes of data items
of a same kind

Teaching Professor

Student
Course

Enrolling

Tof

(1,1)

Tby

(1,inf)

Eof

(3,6)

Ein

(10,50)

Degree
DegreeLevel

Relationships: by diamonds;
they relate (data items from) different entities

Attributes: by ovals hanging from entities; representing
properties (of elements) of an entity

May also hang from relationships

Cardinality constraints: label links between relationships and
entities

12 / 85

Do not take edge (link) names too seriously for now

They become relevant when ER is translated to an ontology

Intuitively, for entity Course, and through the relationship
Teaching, the entity Professor becomes an ”attribute” of
Course
Hence the ”TBy” (taught by). Etc.

13 / 85

Data Models, ER, Relational Model

Teaching Professor

Student
Course

Enrolling

Tof

(1,1)

Tby

(1,inf)

Eof

(3,6)

Ein

(10,50)

Degree
DegreeLevel

Entities: Course, Professor, Student

Relationships: Teaching, Enrolling

Course represents courses, where students from ...

Students are enrolled, and are taught by professors from ...

Professors

Attributes: Degree, Level

We could also have an attribute Term hanging from the
Enrolling relationship

... an attribute of the relationship between students and
courses

14 / 85

Data Models, ER, Relational Model

Course, Professor, Student are also called “concepts” and the
model above is also called a “conceptual model of data”

An ER model is close to the outside (data) reality that is
being modeled, close to how a user or modeler sees the world

An ER model does not fully represent how data are
represented, organized, structured, handled, ...

ER is a high-level model that does not show much about the
details of data

An ER model, being a model, is expected to stay close to the
outside reality that is being modeled

That external reality gives a meaning (semantics) to the model
And the model is modeling the external reality
The more elements (that semantically correct wrt. the
external reality) we add to the model, the closer we are to the
external reality

15 / 85

Data Models, ER, Relational Model

Teaching Professor

Student
Course

Enrolling

Tof

(1,1)

Tby

(1,inf)

Eof

(3,6)

Ein

(10,50)

Degree
DegreeLevel

Cardinality constraints are used to capture more meaning

For a better representation with the ER model of the external
reality

They are a kind of semantic constraints

In the example, they capture:

The (external) limit on the number of students that may
register in a course (between 10 and 50)
The limit on the number of courses that each student can take
(between 3 and 6)
That each course is taught by exactly one professor, who has
to teach at least one course

16 / 85

Data Models, ER, Relational Model

Cardinality constraints can be understood as restrictions on
the mappings between entities through the relationship

Item Class
Articles

(0,1)

O.K.

In particular, label (0,1) imposes that “at most one entity in
Class is associated to each entity in Item”
A very common constraint ...
(1,1) indicates “exactly one ...”
(1,N) indicates “at least one ...” (with N standing for a
generic, arbitrary number)

ER models can be extended by means of notation for
indicating sub- or super-entities (i.e. subclasses, subconcepts,
etc.), e.g. GradCourse can be defined as a subentity of Course

With inheritance of relationships and attributes ...

17 / 85

Data Models, ER, Relational Model

Relational Model of Data: (back to example on page 11)

Notice that this data set is (seems to be) quite “structured”
What about this tabular representation?

Sales Customer Price Article Store ParHood Parent Child
peter $23 cd cdWarehouse peter mary
mary $30 book chapters john stu

Indeed a simplified representation
It captures the relationships between data items through a
same row in the table
And the fact that data items are of different kinds

Is this a mathematical model?

It can be the tabular presentation of a mathematical model

Based on set-theory and predicate logic, consisting of:

18 / 85

Data Models, ER, Relational Model

(A) The Schema:

An underlying data domain (data items/values as elements)

U = {peter ,mary , $23, $30, cd , book, cdWarehouse, chapters,
john, ...} (usually implicit, and possibly infinite)

A binary (relational) predicate, ParHood, used to denote
properties of two individuals at a time

Its arguments are called “attributes”, and usually have names:
ParHood(Parent,Child)

Attributes have (sub)domains, e.g. for ParHood :

Dom(Parent) = Dom(Child) = {peter ,mary , sue, stu, joe, . . .}
⊆ U

Sales(Customer ,Price,Article,Store), a 4-ary relational
predicate (represents the structure of the table on page 18)

A name for a property that applies to 4 individuals at a time

19 / 85

Relational Databases

Up to here, no data!

(B) The Relational Instance: D for (compatible with) the schema

D is a structure with domain U

With finite extensions for the predicates in the schema, i.e.

For each n-ary predicate P(A1, . . . ,An) in the schema, a finite
n-ary relation PD

That is, PD ⊆ Dom(A1)× · · · × Dom(An)

The extension of predicate ParHood is exactly the relation
shown in the table on page 18

The extension of predicate Sales is given by the table above,
i.e. a finite set of 4-tuples:

SalesD ⊆
Dom(Customer)×Dom(Price)×Dom(Article)×Dom(Store)

20 / 85

Relational Databases

Both relations are usual, classical, set-theoretic relations as
seen in a discrete math course!

The relational model can be provided in set-theoretic and
logical terms

21 / 85

Relational Databases

Notice the separation between the relational schema and the
relational database itself

The schema does not have data, but it is metadata, i.e. data
about the data

In this case, how the data is organized and structured
The schema specifies the domain, relation names (database
predicates), attributes (and other things ...)
The schema can be seen in some sense as the conceptual
model of data
The extensions for the predicates in the schema provide,
together, an instance for the schema
The database (instance) is said to be compliant with the
schema if it has the structure specified by the schema
Page 11 shows a database instance for the schema defined on
page 19

22 / 85

Relational Databases

The relational database provides a clear and nice “logical view
of data”

The user should be confronted with that logical view
Without having to care much about how the material, physical
data is really stored in the computer
Nor about what internal data structures and access methods
are used

23 / 85

Relational Databases

Relational databases are computationally represented and
processed through relational database management systems

Data are organized and represented in terms of relations
Relations of fixed format (schema)
Appropriate for representing highly “structured data”
Data are processed via set-theoretic operations on relations
Through the set-theoretic algebra of relations, aka. relational
algebra
Languages of predicate logic, say relational calculus, are used
to express relational predicates, schemas, constraints, queries,
etc.

24 / 85

Relational Databases

Query: “Want the customers who have bough a CD”

Relational algebra: Π
Customer

σ
Article = ‘CD’

(Sales)

Algebraic, imperative

Relational calculus: ∃y∃z Sales(x , y , ‘cd’, z)

Logical, declarative

Variable x is not quantified (it’s free), and its possible values
are the query answers

Variables y , z are existentially quantified, they matter as long
as there are values for them, but we do not care about the
values themselves ...

Positions of variables stay in correspondence with the relation
schema

(More examples coming ...)

25 / 85

Relational Databases

Example:

Supply Company Receiver Item Articles Item Class
C D1 I1 I1 K
D D2 I2 I2 K

A schema with an underlying domain, two relational
predicates, of arities 3 and 2, resp.; and four attributes

The extensions for the relational predicates are the relations
shown in the tables

Is this model capturing our outside reality?

The “meaning” of the data as found in the application
domain?

If we understand that every item in relation Supply always
belongs to a class in relation Articles, then our model is
correctly reflecting this

26 / 85

Relational Constraints

We cannot emphasize enough: A database is a model of an
external reality

Database with relations

Outside world

(model)

correspondence

As a model it can be good or bad according to how it
represents and captures the external reality

ICs help capture the meaning, the semantics, of data

ICs (are intended to) keep the semantic correspondence
between the world and the model of the world (the database)

27 / 85

Relational Constraints

In the example, if we perform the update “insert tuple
(C ,D3, I4) into Supply”, we obtain

Supply Company Receiver Item Articles Item Class
C D1 I1 I1 K
D D2 I2 I2 K
C D3 I4

This may not be admissible as a model of the real world
Not every supplied item is an official item ...
How can we prevent this from happening?

The data model, i.e. the given relational schema, is not
prohibiting this behavior

We need more ...

28 / 85

Relational Constraints

We have add integrity constraints (ICs) (aka. consistency or
semantic constraints)

Conditions that instances of the schema should satisfy

In this case we need an IC that is a referential IC:

“items in table Supply refer to items in table Articles”

Or better:

“every item appearing in table Supply appears in table
Articles (assigned to some class)”

There are languages for expressing ICs as a part of the
relational schema

In the example, if this IC is a part of the schema and has to
be satisfied, the update should not be accepted

Usually (some kinds of) ICs become part of the schema

29 / 85

Relational Constraints

Same example, but now with the extensions

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K

I2 H

If in the outside world every item belongs to at most one
class, this is not a correct model

If we want “every item belongs to at most one class” to hold,
it has to be stated as an IC, with the schema

A form of cardinality constraint, namely a functional
dependency:

classes are a function of the items, or, equivalently
items functionally determine the classes

Notation: Articles : Item→ Class (not logical implication)

30 / 85

Relational Models

The data model usually created before the DB is created

Usually design of a database starts with a conceptual model in
ER form

More intuitive, closer to the outside reality, and in more
general terms

Considering the participating elements in it to which data is
associated

It is less of a model of the DB to come, but of the external
reality

A conceptual abstraction that allows to understand, visualize,
describe, ..., how data are organized

It describes the conceptual structure of the data stored in the
DB: the concepts (classes, entities) and their relationships

This part does not involve the specific, raw data

31 / 85

Relational Models

Later, in the DB design phase, the conceptual model is
transformed into a logical model, usually a relational model

Some techniques are used to produce a set of relational
predicates from the ER model

A description of the relations (tables), etc., that will be
created in the DBMS

The relational schema emerges from the data model, before
creating the DB

A relational model can also be seen as a conceptual model

But concepts and and relationships are rather implicit

The schema is (represents) data of a different kind: data
about data, i.e. metadata

Metadata (schema, etc.) are stored in the DB and can be
accessed (queried)

32 / 85

Relational Models

The initial set of obtained relational predicates is “improved
by additional transformations”

A new, right collections of tables and their logical connections
A normalization process via ICs
Avoiding, e.g. redundancy of data or updates anomalies
Obtaining a second set of tables

Next, the resulting relational model is implemented in a
RDBMS

By creating the schema

Finally, the database is populated (with data)

Obtaining an instance

Instances change frequently

Schemas not so much

When they do, we have the problem of “schema evolution”

33 / 85

Relational Models

design

implementationRDB

RDBMS

relational

model

(logical)

ER model

(conceptual)

34 / 85

Example: From an ER model to a relational schema

Drinker WineDrinks

date quantity

drinker#

surname

fname

type

wine#

grape

vntage

percent

In this ER model the attribute dinker# appears underlined

This expresses a new kind of semantic constraint: this
attribute becomes a unique identifier

In the sense that any two instances of entity Drinker share
the same value for attribute dinker#, then they have to share
the same values for all the other attributes of Drinker

Similarly for Wine# in entity Wine

35 / 85

The ER model above is transformed into the relational schema:
12

DRINKER DRINKER# SURNAME FNAME TYPE

↑
DRINKS DRINKER# WINE# DATE QUANTITY

↓
WINE WINE# GRAPE VINTAGE PERCENTAGE

We have seen similar relational schemas before, they are com-
mon

E.g. in a data warehouse with a central table with numerical
values that are given context by dimensions, which in their turn
are further described in separate tables

The arrows indicate referential integrity constraints introduced
into the schema

E.g. any drinker number in relation Drinks must appear also
in relation Drinker

Attribute Drinker# appears underlined in relation Drinker,
indicating a relational semantic constraint (inherited from the
one in ER)

In this case, a key constraint: that attribute functionally
determined the others in the relation (more on this coming)

36 / 85

Queries

For the the instance
Deposit

branch acc# clientn balance
Carleton 101 Jim 500
Downtown 215 Sandy 700
Barrhaven 304 Alvin 1300

Client
clientn cladd neighcl
Jim 101 Queensbury Barrhaven

Sandy 40 Stone Nepean
Hernandez 15 Laurier Downtown

Alvin 17 Clyde Altavista
John 89 Case Centrepoint

“give me the addresses with balances of the clients who have a
balance higher than 600”

Answer:
40 Stone 700
17 Clyde 1300

The answer is a set of tuples, a new relation (extension)
We can say that a query is a mapping that sends DB instances to
new DB instances (possible with a different schema)

37 / 85

Several issues:

How to specify a query?
How to write it?
In what language?

How expressive is the chosen query language? Can it
capture/represent any reasonable query?

What is the precise meaning of a query?

What is the precise meaning of a query answer?

How to compute the answer?

There are several query languages for RDBs
Some more used in practice than others
But those of a more theoretic nature are the basis for the
languages most used in practice

38 / 85

The distinction between declarative vs. procedural query languages
is always relevant
The former express what the user wants to obtain from the
database, the latter express a particular way to compute the answer

39 / 85

Queries: Relational Algebra

Idea: Relations are sets (subsets of cartesian products)
constructed on top of other sets (domain or subdomains)
Query answers are new relations
Thus, in order to obtain new relations (e.g. query answers) do
set-theoretic algebra on existing relations
Operate on sets and relations in order to obtain new sets or
relations

40 / 85

The Relational Algebra (RA)

Provides algebraic operations over relations that produce new
relations

Operations based on set-theoretic operations

Some of those operations come directly from set theory
Others are specific, ad hoc, for the RA
The latter are applicable to relations (as opposed to sets in
general)

Provides a procedural query language for RDBs (because it is
based on explicit operations)

The RA is one of the strengths of the relational model

RA can be used to give a precise, set-theoretic semantics to
other query languages

41 / 85

Queries in RA:

It is possible to answer the query by applying a sequence of
algebraic (relational) operations starting from the original
database instance

The query in RA becomes a finite sequence of algebraic
operations to be executed (in sequence) on the given instance,
i.e. an algebraic formula

Even if the RDBMS offers a different query language, e.g. a
declarative one, a query will be compiled into a sequence of
algebraic operations on the DB

42 / 85

Summary of basic operations of RA:

Union and Intersection: R1 ∪ R2, R1 ∩ R2

Can be applied to similar relations (i.e. with the same
(sub)schema; in particular, same arity and data types) as
usual sets

Difference: R1 r R2

Again, for similar relations, as normal sets

Product: R1 × R2

This is essentially the cartesian product of two relations taken
as normal sets; not necessarily with the same schema
E.g. for R = {(a, b), (c , d)}, S = {(1, 2), (2, 3)}
R × S = {(a, b, 1, 2), (a, b, 2, 3), (c , d , 1, 2), (c , d , 2, 3)}

43 / 85

D

D
R1

R2

D

D R2
R1 U R2

R1 R2

R1

44 / 85

D

D
R1 R2

R1 \ R2

45 / 85

Projection: Π
A
R(· · · ,A, · · ·), i.e. the projection of relation R

on attribute A

A

B

R

R

A(R)

B(R)

a

here because Exists y in B

A × B

U
|

Here, A is one of the attributes of R
The projection could be on several attributes of R
This is a unary operation: takes one relation as input (the
previous ones are binary)

46 / 85

This is an operation special for relations
It deletes, ignores, filters out entire “columns” from a relation
Projects R over one (or several) “coordinates” (attributes)
It generates a new relation, with a subset of the attributes
(columns)
Its logical counterpart is the existential quantification
For the relation in the figure:
Π

A
R(A,B) = {a ∈ A | it exists b ∈ B such that

(a, b) ∈ R}
Similarly, we can use ΠABR(A,B,C), dropping attribute
(column) C

47 / 85

Selection: σ<condition>(R)
Unary operation, special for relations
Selects the tuples of the relation R that satisfy the condition
The condition can be expressed in a (limited) logical language
It generates a new relation, with the same attributes, but
possibly fewer tuples (rows)
Example: σBalance>3K (Deposit) keeps only those tuples of
Deposit that show a balance greater than 3K

48 / 85

Join: R1 ./ R2

A binary operator, essential in RA
In its simplest form it allows to compose two relations through
the values in common taken by a distinguished attribute that
is shared by the two relations
(Or two different attributes, one in each relation, but with
same data type or domain)
Similar in spirit to the operation of composition of two
relations as in set theory:
R ◦ S := {(a, b)| there is c with (a, c) ∈ R and (c , b) ∈ S}
It is essential for combining tables in natural way, without
appealing to the possibly large and computationally expensive
product of them

49 / 85

This is the basic, natural join; for which there are generalizations

A
B

C

R S

a
b

c

a b b c

a

b c

a ca b c

50 / 85

Example: Again: “give me the addresses with balances of the
clients who have a balance higher than 600”

Deposit

branch acc# clientn balance
Carleton 101 Jim 500
Downtown 215 Sandy 700
Barrhaven 304 Alvin 1300

Client
clientn cladd neighcl
Jim 101 Queensbury Barrhaven

Sandy 40 Stone Nepean
Hernandez 15 Laurier Downtown

Alvin 17 Clyde Altavista
John 89 Case Centrepoint

It can be expressed in RA through the formula:

Πcladd, balance(σbalance > 600(Deposit) ./
clientn

Client)

=
40 Stone 700
17 Clyde 1300

The RA formula
Πcladd, balance(σbalance > 600(Deposit ./

clientn
Client)) also works,

but its evaluation is less efficient

51 / 85

Notice: There is no (set-theoretic) Complement operation in RA
(as found in set theory)

D

D

R
R = ???

c

In principle, there could be, given that relations are sets, but
What is the “meaning” of the complement of a relation?
Actually, it could be infinite, because the DB domain is possibly
infinite
The difference (r) is only a relative complement, relative a given
relation

52 / 85

Deposit

branch acc# clientn balance

Carleton 101 Jim 500
Downtown 215 Sandy 700
Barrhaven 304 Alvin 1300

Which could be the tuples that are not in Deposit?
Which of those make sense?
This query is not admissible in relational databases

53 / 85

Example: Relational schema:
Frequents(Drinker ,Bar), Serves(Bar ,Beer), Likes(Drinker ,Beer)
Express in RA the query about the drinkers who do not frequent
any bar that serves some beer they like

1 R1 = Serves 1Beer Likes

2 R2 = R1 1Drinker,Bar Frequents

3 R3 = ΠDrinker (R2)

Up to here those drinkers who frequent bars that serve beer they like

4 R4 = ΠDrinker (Likes)

5 R5 = ΠDrinker (Frequents) (having just this one was also O.K.)

6 R6 = R4 ∪ R5

With these last three steps, we collect all drinkers

7 R7 = R6rR3 (the only form of “negation” we have in RA)

Exercise: Put some data in the schema and check it works!
Notice: the query is general, independent from any specific
instance, and depending only on the schema

54 / 85

Queries: Relational Calculus

The relational model of data provides a declarative query
language

It allows us to tell the DB what data we want, without having
to specify how to get it

A simple query language is based on predicate logic

A logic-based query language for relational databases is called
the relational calculus

From the example DB in page 28, we want to obtain the
classes of articles that are provided by company D

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K
C D3 I4

query7→ Answer Class

K

A query is a mapping that sends instances to single-table
instances, with a possibly different schema

55 / 85

Queries: Relational Calculus

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K
C D3 I4

query7→ Answer Class

K

Is there a language to specify (write) the query?

Something that can be processed by the DBMS?

Different languages ...

General issue: Given a specific query, can it be captured by
(expressed in) a given query language?

The query above can be expressed as a formula of predicate
logic

In DBs, it takes the form of a relational calculus query:

∃y∃z(Supply(D, y , z) ∧ Articles(z , x))

56 / 85

Queries: Relational Calculus

∃y∃z(Supply(D, y , z) ∧ Articles(z , x)) (*)

This is a query Q(x), with single free variable, x (variables y , z
are bound due to the existential quantifiers)
The values for x that make the condition (expressed by the
query) true on the given instance are the answers to the query
The other variables are existentially quantified

Their specific values do not matter as long as they exist (and
satisfy the condition of the query)
The double occurrence of z captures the fact that we combine
the two tables through values in common for items
The answers are the values that can take the variable x when
the the formula is true in the database

K is an answer, because (*) is true in the instance: there is
an item value for z , e.g. I2, and there is a receiver value for y ,
e.g. D2, such that

Supply(D,D2, I2) ∧ Articles(I2,K)
becomes true in the instance

57 / 85

Queries: Relational Calculus

A completely declarative query!

Also symbolic, follows a precise syntax (grammar), and
machine processable!

The relational model also offers imperative, algebraic,
set-theoretic query language: the relational algebra (RA)

The same query now in RA:
Π

Class
σ
Company=‘D′ (Supply 1

Item
Article)

RA and relational calculus are provably equally expressive

Both of them are the basis for the common language offered
by RDBMSs: SQL (Structured Query Language)

As an SQL query:
SELECT Class
FROM Supply, Article
WHERE Supply.Company = ‘D’ AND Supply.Item = Article.Item

58 / 85

Queries: Relational Calculus

Another SQL query, for the schema
Accounts(Account#,Name,Balance):

SELECT Name
FROM Accounts
WHERE Balance > 10,000

asking for the values of attribute Name in relation Accounts
of those customers who have a balance greater than 10,000

In relational calculus (predicate logic):

Q ′(x) : ∃u∃z(Accounts(u, x , z) ∧ z > 10, 000)

SQL can also be used to create, modify and access metadata,
e.g. to retrieve elements of the schema

59 / 85

Example: (continued from page 54)

The query expressed in SQL

SELECT F.Drinker
FROM Frequents F
WHERE F.Bar NOT IN (SELECT S.Bar

FROM Serves S, Likes
WHERE Likes.Drinker = F.Drinker AND S.Bar = Likes.Bar)

- Also general: we do not “see” the (whole) contents of the
DB before posing the query

- Queries provide the way to obtain values from the DB

How can we express the same query in Relational Calculus?

60 / 85

Queries: Evaluation

A RDBMS is able to take a query (say in SQL) and develop
an internal query evaluation plan:

Which tables to access?, When?, How?, Order?,
Combining partial results? Which ones? How? ...

Query evaluation can be optimized:

By making use of statistics, indices, etc.

Syntactic query optimization: syntactically rearrange the
query making it easier to compute (compare page 51)

E.g. if possible, better apply a selection before a join, because
the join -an expensive operation- is reduced

Usually done automatically and internally by the DBMS

61 / 85

Semantic query optimization:

Take advantage of explicit ICs to optimize query answering

Hence “semantic QO”: ICs convey semantics

If we want the addresses of a given client, and the former
functionally depend upon the latter, return the first address
found (no need to search for more)

If an IC says managers make at least 100K, a query asking for
managers making less than 80K can get empty answer w/o
checking the table

Some systems provide basic SQO

Others also on the basis of ICs provided by the user as
“informational ICs” (e.g. IBM DB2) that are not necessarily
checked by the DBMS (warning! more on this coming)

How can SQO automated? → Use logic to express queries
and ICs, and combine them symbolically

62 / 85

Integrity Constraints (revisited)

The logic-based language (say, relational calculus) can also be
used to state ICs

E.g. functional dependencies (FDs):

“items cannot be associated with more that one class”

∀x∀y∀z(Articles(x , y) ∧ Articles(x , z) → y = z)

This is a sentence, i.e. a formula without free variables

A declarative IC! Again, symbolic!

Evaluated as a query in a consistent instance, the answer
should be: Yes!

63 / 85

Integrity Constraints (revisited)

Example: As before

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K

↓ ↑

We can express the referential IC from Supply to Articles:

“every item value in the former must appear in the latter
(the official list of items)”

∀x∀y∀z(Supply(x , y , z)→ ∃wArticles(z ,w))

Notice that the schema determines the logical language
This same language can be used to express queries and ICs
Since both are symbolic, they can also be symbolically (i.e.
syntactically) and automatically combined, e.g. for semantic
query optimization
It could also be expressed in RA as a containment of
projections (but much less common) Do it!

64 / 85

Example continued

We can also impose the condition that Item is a key for
relation Articles
I.e. all attributes of Articles functionally depend upon Item
(Articles : Item→ Class)

Symbolically as on page 63

Exercise: Give another example of a key and its logical
formulation

The combination of the two is a foreign key constraint on
Supply : Its attribute Item is the key in a foreign relation

65 / 85

Interlude on keys vs. functional dependencies (FDs):

ArticlesNew Item Class Price

I1 K 10
I2 H 20

Key Constraint is satisfied

Here, two FDs: Item→ Class and Item→ Price

Key: minimal set K of attributes of a relation R(K ,Y), such that
all the other attributes of R, i.e. those in Y , functionally depend
upon, i.e. R : K → Y

ArticlesNew Item Class Price

I1 K 10
I2 H 20
I2 H 30

O.K. if only FD: Item→ Class

Item is not a key for the relation

66 / 85

Integrity Constraints (revisited)

Database maintenance is the problem of keeping an instance
consistent

I.e. satisfying the specified ICs when it undergoes updates

Many issues around this problem ...

Example: As above, with foreign key constraint on Supply

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K

↓ ↑

If (C ,D3, I4) inserted into Supply , FKC not satisfied anymore

DB may enforce satisfaction, e.g. by automatically inserting
(I4,NULL) into Articles

This NULL (a null value) represents an uncertain data value

A full, precise logic of the combination of certain and uncertain
values has not been implemented in commercial DBMSs, yet (this
applies to the SQL Standard too)

67 / 85

Main ways to maintain (the consistency of) the DB:

Some limited mechanisms provided by the DBMS, e.g.
rejection of updates

Some limited mechanisms the user can specify together with
the declaration of the IC, e.g. cascaded deletion for ref. IC, or
insertion of null (as on this page)

User-defined triggers that are stored in the DB; they react
spontaneously (coming)

Through application programs

DBs are seldom used in isolation

Users run programs that interact with the DB, querying it,
massaging and inspecting data outside the DB, i.e. at the
program level, putting new data inside the DB, etc.

Verification and maintenance of ICs can be done from the
application program

68 / 85

Views

A view is a relation defined in terms of the base, material
relations

We introduce a new relation name (i.e. a new predicate), and
its extension is defined by a query

A query with a name ...

The extension can be computed from the definition, but it
does not make it into a permanent table

The extension is commonly virtual, and computed upon
request and for a session

For the database on page 28, we may introduce a new predicate,
whose extension is defined by:

CompItem(x , z) : ∃y Supply(x , y , z)

(More precisely, the definition is: ∀x∀z(CompItem(x , z) ↔ ∃ySupply(x , y , z)))

69 / 85

Views

This view is a particular perspective (view) of table Supply

We do not care about the recipients, as long as they exist

That is our view of the database (of the relation)

A view of the database from the perspective of a particular
user or group thereof

We can use this relation name in queries

E.g. for those providers of item I4:
Q ′′(x) : CompItem(x , I4)

Data in a DB can be seen in different ways by different users,
by different specialized (sub)databases

For example, starting from the DB on slide 28, a particular
user may only see “receivers together with the classes of
articles they receive” (see def. on page 73)

70 / 85

Views

Shipment Receiver Class

D1 K
D2 K
D2 H

This particular user does not see the entire database, because
it is not useful, relevant, allowed, ...

Or the user considers the new relationship as particularly
relevant

Usually virtual relation

It will last for a session with the DBMS where it was defined

Unless it is stored as a physical relation, i.e. materialized

During the session, its contents will be kept in a temporary
table

71 / 85

Many other uses of views:

Privacy, security (give access to views of DB, not the whole
DB)
Query optimization: Reuse cached contents of view to answer
new queries (whenever possible)

“Query answering using views” (coming)
Catch potential inconsistencies wrt. ICS (coming)
Data integration (coming)

72 / 85

Views

How to specify the view?

There is not much difference between a view and a query

We can define it by means of a query in predicate logic
(relational calculus)

Shipment(x , y) : ∃u∃v(Supply(u, x , v) ∧ Articles(v , y))

(free variables x , y receive the answers as values)

SQL allows to pose such a query and introduce a name for the view (i.e.
the answer set) into the DB

CREATE VIEW Shipment AS
SELECT Receiver, Class
FROM Supply, Articles
WHERE Supply.Item = Articles.Item

A query with a name! Containing a join and a projection
Notice that existential quantifiers capture relational algebra projections

73 / 85

The view can be used in queries, e.g. about receivers of items in
class K :

SELECT Receiver
FROM Shipment
WHERE Shipment.Class = ‘K’

74 / 85

Views

A relation R with attributes A and B with the following
extension in instance D:

A

B

R

R

A(R)

B(R)

a

here because Exists y in B

A × B

U
|

R A B
a b
c b
a d

A view that is the projection of R on A: PA(x) : ∃yR(x , y)

A view that is the projection of R on B: PB(y) : ∃xR(x , y)

Their extensions on D: PA(D) = {(a), (c)}
PB(D) = {(b), (d)}

Their definitions in SQL, resp.:

CREATE VIEW P-A AS

SELECT A

FROM R

CREATE VIEW P-B AS

SELECT B

FROM R

Projection is on attribute in SELECT; the others, the omitted
ones, are filtered out

75 / 85

Active Rules

Commercial DBMSs offer little support for database
maintenance, i.e. for keeping ICs satisfied

Only a limited class of ICs can be defined with the schema,
and automatically maintained satisfied by the system

E.g. key constraints, not-NULL constraints, referential ICs, ...

But not arbitrary FDs, etc.

Also very limited in terms of how to maintain those that can
be declared/maintained

What to do then?

Keep our pet ICs satisfied via application programs that
interact with the DB

Store in the DB (stored) procedures that do the job

81 / 85

Active Rules

Stored procedures can be quite general, not only for IC
maintenance

They can be explicitly invoked or executed automatically when
something happens in the DB

Active rules, aka. triggers, are of the latter kind

In abstract terms, active rules have three consecutive
components: Event-Condition-Action (ECA) rules

When an Event happens, e.g. an (intended) update of a
certain kind on the DB, and

A Condition is true at the current DB state (e.g. an IC is
violated, which can be detected through an internal query)

Then, an Action is automatically executed, e.g. a
compensating DB update or a rejection/warning message to
the external world

A more complex stored procedure could be invoked by the rule
action

82 / 85

Active Rules

For example, to keep the referential IC on page 29 satisfied:

∀x∀y∀z(Supply(x , y , z)→ ∃wArticles(z ,w))

Assumption: the IC is satisfied so far (before the update)
An inductive process to check IC and keep it satisfied
Based on analysis of relevant updates (as already seen)

(Relevant) Event: insertion of 〈a, b, c〉 into Supply

Condition: V (x , y , z) : Supply(x , y , z) ∧ ¬∃wArticles(z ,w)
true for 〈a, b, c〉?
Violation view (VV) for the IC becomes non-empty

IC satisfied iff associated VV is empty

Action: (If yes,) insert 〈c ,NULL〉 into Articles (as
compensating update); uses information from VV (or
Condition, in general)

Exercise: Not the only way to violate the IC. Design an ECA rule for the

other cases.

83 / 85

Active Rules

In this example, relevant events are:

Insertions into Supply , and
Deletions from Articles
Changes of attribute values (some)

Being those relevant updates part of the Event, the Condition
asks if a violation is produced

It catches violations through a violation view

If yes, the Action could be “reject the update” or issue a
compensating update (to satisfy the IC)

The relevant updates (events), conditions, and actions for a
given IC can be computationally derived from the syntactic
form of the IC

84 / 85

Active Rules

Triggers can be shared by users and applications

They are useful for, among other things, IC maintenance, view
maintenance, etc.

Active rules can be used also for business applications

Capturing business rules for/from the application domain

Exercise: If the stock (or inventory as shown in a table) goes
below a certain pre-specified threshold, insert a request for
resupply into the Orders table

Create a small DB with its schema to make this more concrete

Indicate the ECA components

85 / 85

