Markov Networks

- MNs belong to the class of probabilistic graphical models Undirected, acyclic graphs of random variables
- Example: Random variables: $X_{i}, i=1, \ldots, 5$
- Cliques (usually, maximal) in the graph have associated potential functions Non-negative real functions

- No conditional probabilities, but initially, local, joint marginal potentials
- Here, three maximal cliques, and three nntentials
- Combination of potentials define defines $\bar{j} 0$ int probability distribution

Cliques' potentials become factors of the global joint distribution

- Here, three potentials for three cliques:

$$
\psi_{1}\left(x_{1}, x_{2}, x_{3}\right), \psi_{2}\left(x_{2}, x_{3}, x_{4}\right), \psi_{3}\left(x_{3}, x_{5}\right)
$$

- Potentials may have parameters, possibly unknown, so as probability distributions
They could be learned from data

- Joint probability distribution (density) for variables in MN:
$P\left(x_{1}, \ldots, x_{5}\right):=\frac{1}{Z} \times \psi_{1}\left(x_{1}, x_{2}, x_{3}\right) \times \psi_{2}\left(x_{2}, x_{3}, x_{4}\right) \times \psi_{3}\left(x_{3}, x_{5}\right)$
- Z is the "partition function", a normalization factor to obtain a probability distribution
It has to be: $\sum_{x_{1}, \ldots, x_{5}} P\left(x_{1}, \ldots, x_{5}\right)=1$
- Then: $Z:=\sum_{x_{1}, \ldots, x_{5}} \psi_{1}\left(x_{1}, x_{2}, x_{3}\right) \times \psi_{2}\left(x_{2}, x_{3}, x_{4}\right) \times \psi_{3}\left(x_{3}, x_{5}\right)$

Z for "Zustandsumme" in German: "sum over states" (roots in Statistical Mechanics, initially largely developed by German speaking scientists)

- RVs X_{i} take values on their domains $\operatorname{Dom}\left(X_{i}\right)$

They reflect outcomes from a real-valued random experiment They are defined on the sample space Ω in common

- Example: (cont.) Assume Bernoulli RVs:

$$
\operatorname{Dom}\left(X_{i}\right)=\{0,1\}
$$

Random propositional features

- Potentials:

1. $\psi_{1}\left(x_{1}, x_{2}, x_{3}\right):=$ total number of 1 s taken by the variables
E.g. $\psi_{1}(1,0,1)=2$
2. $\psi_{2}\left(x_{2}, x_{3}, x_{4}\right):=x_{2}+x_{3}+x_{4}$
E.g. $\psi_{2}(1,0,0)=1$
3. $\psi_{3}\left(x_{3}, x_{5}\right):=x_{3} \times x_{5}$
E.g. $\psi_{3}(0,1)=0$

- Exercise: Compute Z above, the density value $P(1,0,0,1,1)$, and the marginal value $P_{x_{1}}(1)$
For Z, compute the terms of the summation: (2^{5} products)

$$
\begin{aligned}
& \text { 1. } \psi_{1}(0,0,0) \times \psi_{2}(0,0,0) \times \psi_{3}(0,0)=0 \times 0 \times 0=0 \\
& \text { 2. } \psi_{1}(0,1,1) \times \psi_{2}(1,1,1) \times \psi_{3}(1,1)=2 \times 3 \times 1=6 \\
& \text { 3. } \psi_{1}(0,1,0) \times \psi_{2}(1,0,0) \times \psi_{3}(0,0)=1 \times 1 \times 0=0, \quad \text { etc. } \\
& P(1,0,1,0,1):=\frac{1}{Z} \times \psi_{1}(1,0,1) \times \psi_{2}(0,1,0) \times \psi_{3}(1,1)=\frac{2 \times 1 \times 1}{Z}
\end{aligned}
$$

- There could be unknown parameters, to be learned, e.g. $\overline{\text { ® }}$

$$
\psi_{2}^{\prime}\left(x_{2}, x_{3}, x_{4}\right):=\alpha \times x_{2}+(1-\alpha) \times x_{3}+\theta \times x_{4}
$$

- We have heard about the "Markov Condition", Markov Processes, etc.
- Main idea and intuition behind MNs:

The probability distribution of a particular variable (possibly with others in the net) depends only on a "small neighborhood" of the variable

There are implicit independence assumptions in place that "isolate" it from a large portion of the net

- The way MNs are constructed, via factorized representations, allows to identify certain stochastic (in)dependencies
- There are criteria to identify and exploit them
(notion of "d-separation")

Criteria also applicable to BNs

- A common class of MNs comes from Statistical Mechanics (SM): Boltzmann-Gibbs Distribution

$$
P(\bar{x}):=\frac{1}{Z} \times \exp \left(-\sum_{c} E\left(\bar{x}_{c}\right)\right)=\frac{1}{Z} \times \Pi_{\bar{x}_{C}} \frac{1}{e^{E\left(\bar{x}_{C}\right)}}
$$

Here, \bar{x} represents the variables in the graph, and the \bar{x}_{C} those in clique C

A joint probability distribution from potentials: $\psi_{c}:=\frac{1}{e^{E(\overline{(x)})}}$

- Think of $E\left(\bar{x}_{c}\right)$ as an energy function of the variables of sub-state \bar{x}_{C}

This distribution makes low energy configurations (states) more likely

It penalizes high energy states
It favors higher entropy states (we will come back to this)

- Energy function E may come in different forms

Energy-based models are common in SM, Biochemistry, ML Whole families of distributions depending on the classes to which potentials belong

- MNs may be easier or more natural to use in some applications than BNs
- Choosing a direction between two variables may not be reasonable
E.g. in image analysis, with variables representing pixels of a same image
Also with relational data (think of attributes in a table)
- MNs have symmetries that BNs do not have, and can be exploited
- Inference with MNs tends to be more complex than with BNs

Some More Inference

- Let us see in more general terms what we did on page 12
- Idea: exploit distributive law $a \times b+a \times c=a \times(b+c)$

Three operations versus two

- Example: A chain model: $\quad X_{1}-X_{2}-\cdots-X_{N-1}-X_{N}$ With potentials: $\psi\left(x_{i}, x_{i+1}\right)$ Joint distribution: $\quad P(\bar{x})=\frac{1}{Z} \Pi_{i=1}^{N-1} \psi\left(x_{i}, x_{i+1}\right)$ Marginal of $X_{1}: \quad P_{X_{1}}\left(x_{1}\right)=\frac{1}{Z} \sum_{x_{2}, \ldots, x_{N}} \Pi_{i=1}^{N-1} \psi\left(x_{i}, x_{i+1}\right)$
- Computed naively like this, the computation cost is proportional to $\Pi_{i=1}^{N}\left|\operatorname{Dom}\left(X_{i}\right)\right|$
- By distributivity:
$\left.\left.P_{x_{1}}\left(x_{1}\right)=\frac{1}{Z} \sum_{x_{2}}\left[\psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{2}, x_{3}\right) \cdots \sum_{x_{N-1}} \psi\left(x_{N-2}, x_{N-1}\right) \sum_{x_{N}} \psi\left(x_{N-1}, x_{N}\right)\right]\right]\right]$
Now cost proportional to $\sum_{i=1}^{N-1}\left|\operatorname{Dom}\left(X_{i}\right)\right| \times\left|\operatorname{Dom}\left(X_{i+1}\right)\right|$
- Exercise: Consider the MN

Verify that:

$$
\begin{aligned}
P_{A}(a) & :=\frac{1}{Z} \sum_{b, c, d, e, f} \psi(a, b) \psi(a, c) \psi(b, d) \psi(c, e) \psi(b, e, f) \\
& =\frac{1}{Z} \sum_{b} \psi(a, b) \sum_{c} \psi(a, c) \sum_{d} \psi(b, d) \sum_{e} \psi(c, e) \sum_{f} \psi(b, e, f)
\end{aligned}
$$

- This variable elimination algorithm uses distributivity Good for marginal of one variable
- Example:
$P\left(x_{2}\right)=\frac{1}{2} \sum_{x_{1}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \psi\left(x_{1}, x_{3}, x_{5}\right) \psi\left(x_{1}, x_{2}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{4}\right)$
$O\left(2^{5}\right)$ operations in the naive way with binary variables
However:

$P\left(x_{2}\right)=\frac{1}{Z} \sum_{x_{1}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{3}} \psi\left(x_{3}, x_{4}\right) \underbrace{\sum_{x_{5}} \psi\left(x_{1}, x_{3}, x_{5}\right)}_{m_{5}}$

$$
=\frac{1}{Z} \sum_{x_{1}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \underbrace{\sum_{x_{3}} \psi\left(x_{3}, x_{4}\right) m_{5}\left(x_{1}, x_{3}\right)}_{m_{3}}
$$

$$
=\frac{1}{Z} \sum_{x_{1}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) m_{3}\left(x_{1}, x_{4}\right) \quad\left(m_{i} \text { are marginals per clique or joins thereof }\right)
$$

$$
=\frac{1}{Z} \sum_{x_{1}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{1}, x_{2}\right)=\frac{1}{Z} m_{1}\left(x_{2}\right) \quad O\left(2^{3}\right) \text { now }
$$

Summing over x_{2} gives Z (LHS is 1) ("messages" m_{i} could be reused, c.f. below)
Not more that 3 variables appear together in any term of a summation

- In general, the maximum number of variables that appear together in a summation term depends on the elimination order
- The lowest complexity is obtained by the order that minimizes this maximum number
It is related to the tree-width of the graph
- Unfortunately, finding the optimal elimination order is NP-hard
Reduction from SAT
- What about more than one marginal?

If we want more marginal distributions, we will be repeating operations

- The algorithm above can be adapted via reuse of precomputations
- There is a lot more about inference in PGMs ...

Tree-Width of a Graph

- The tree-width (TW) of a graph becomes relevant in many problems of data management and Al
- The TW of a graph measures how close a graph is to a tree
- It is commonly the case that graph problems become easier when the input graph has small TW
- Undirected graph $\mathcal{G}=\langle V, E\rangle$

A tree-decomposition of \mathcal{G} is a tree $\mathcal{T}=\left\langle\left\{S_{1}, \ldots, S_{n}\right\}, E^{\prime}\right\rangle$, such that:

- $S_{1}, \ldots, S_{n} \subseteq V$, i.e each node in \mathcal{T} is a subset of V
- $S_{1} \cup \cdots \cup S_{n}=V$
- $(u, v) \in E \Rightarrow\{u, v\} \subseteq S_{i}$, for some i
- If for $v \in V, v \in S_{j} \cap S_{k}, i \neq k$, then $v \in S_{i}$, for every S_{i} in the unique
 (simple) path between S_{j} and S_{k}
- Width of tree decomposition $\mathcal{T}:$ width $(\mathcal{T}):=\left(\max _{i}\left|S_{i}\right|\right)-1$
- The tree-width of graph $\mathcal{G}: \operatorname{tw}(\mathcal{G}):=\min _{\mathcal{T}} \operatorname{width}(\mathcal{T})$ With \mathcal{T} ranging over all tree decompositions of \mathcal{G}
- When \mathcal{G} is already a tree, the edges in E become the S_{i}

The S_{i} are connected by E^{\prime} when they share a node in V

Chapter 6: Logical + Probabilistic KR

Leopoldo Bertossi

Probabilistic Approaches to KR

- Many logic-based approaches to KR\&R have a probabilistic counterpart
- For example, a default rule (as in ASP) may be treated as a probabilistic/statistical statement
As a conditional probability: $\quad P($ flies \mid bird $)=0.95$
"the probability of flying being a bird is 0.95 "
- Consequences may be probabilistic too
- Diagnosis can be stated using conditionals: (by Bayes formula)

$$
P(f l u \mid \text { fever })=\frac{P(f l u) \times P(\text { fever } \mid f l u)}{P(\text { fever })}
$$

(a priori vs. a posteriori)

- More generally: $P($ cause \mid symptom $)=\frac{P(\text { cause }) P(\text { symptom } \mid \text { cause })}{P(\text { symptom })}$
P (symptom|cause) easier to estimate by experts than P (cause|symptom)

Probabilistic Reasoning Problems

- We can have PGMs or other probabilistic models With features that are random variables subject to some sort of uncertainty
- There are probabilistic approaches that favor representation of:
- Joint distributions \leadsto "generative models"
- MNs
- Conditional distributions \leadsto "discriminative models"
- BNs
- Regression models: $Y=\alpha \times X+\beta+\epsilon$

Basically modeling $P(Y \mid X)$

- In principle, one can pass from one to the other, but there is complexity involved (remember inference)
We did this with BNs, using the "chain rule" or Bayes formula
- Conditional probabilities allows us to attack several problems in uncertain knowledge representation and reasoning
- Probabilistic versions of diagnosis?

Consider an underlying probabilistic model \mathcal{K} (background knowledge) with an associated probability distribution $P_{\mathcal{K}}$
An observation O (or evidence), and a set of possible hypothesis (basic admissible explanations) $\mathcal{E}=\left\{E_{1}, \ldots, E_{n}\right\}$
O is the value of a random variable (or several of them) in \mathcal{K}, and each E_{i} is (the value of) a random variable in \mathcal{K}

- We can attempt to find the best explanation $E^{b} \in \mathcal{E}$

$$
\begin{equation*}
E^{b}:=\arg \max _{E \in \mathcal{E}} P_{\mathcal{K}}(E \mid O) \tag{1}
\end{equation*}
$$

The most probable explanation given the evidence

- Usually called MAP-inference: maximum a posteriori

After (conditioned on) the observation ...

- A different form of probabilistic reasoning: prefer an explanation E^{\star}

$$
\begin{equation*}
E^{\star}:=\arg \max _{E \in \mathcal{E}} P_{\mathcal{K}}(O \mid E) \tag{2}
\end{equation*}
$$

The explanation that maximizes the (conditional) probability of the observation
Which is what we observed after all ...

- This is similar to maximum-likelihood reasoning in Statistics
- Exercise: Verify that under the assumption that the explanations are equally likely (a priori), (1) reduces to (2)

Hint: use Bayes formula

- There are model-dependent techniques for these reasoning tasks

Logic + Probability in AI

- Traditionally, the "logical-" and "probabilistic schools" have been separate and competitors
- In the last few years they have become complementary approaches
- Today, KR problems are attacked with mathematical models/techniques that involve simultaneously logic and probability
- Different forms of KR combine logic and probability for KR\&R Different formalisms, models, underlying assumptions, etc.
- These combined representations (models) can also be learned We will see some of them ...
- Conditional KBs: Knowledge base $K B$ with
- Hard knowledge, e.g. $\quad e m u \rightarrow$ bird
- Soft, conditional, probabilistic rules, of the form $r:(\alpha \mid \beta)[p]$ E.g. $\quad r_{v}:($ flies \mid bird $)[0.9] \quad$ (a "probabilistic conditional")
- Semantics? Logical consequences of/from $K B$?
- Possible-worlds semantics: Collection \mathcal{W} of worlds W
- W is a set of propositional (or ground) atoms assumed to be true (Herbrand structures, as usual)
- W must satisfy the hard knowledge in $K B$ (as usual)
- W does not have to satisfy $\beta \rightarrow \alpha$, i.e. the conditional as a classical implication
- For this we need the probabilistic component ...
- We start considering a probability distribution P on \mathcal{W}, the outcome space: $\quad W \in \mathcal{W} \mapsto P(W)$
- Which probability distribution P ?
- Since all the worlds in \mathcal{W} satisfy the hard knowledge, consider one that satisfies the conditionals:

For $r:(\alpha \mid \beta)[p]$, it must hold: $\underbrace{P(\alpha \mid \beta)}_{\text {meaning? }}=p$ (and $P(\beta)>0$)
\equiv
defines an event

$$
\begin{equation*}
P(\alpha \mid \beta):=\frac{P(\overbrace{\alpha \wedge \beta})}{P(\beta)}:=\frac{P(\{W \in \mathcal{W} \mid W \models \alpha \wedge \beta\})}{P(\{W \in \mathcal{W} \mid W \models \beta\})} \tag{**}
\end{equation*}
$$

- Pick such a distribution P^{\star}
- Boolean query \mathcal{Q} (expressed in the logical language): It may be true or false in an outcome world W

It becomes a Bernoulli RV: $\quad P^{\star}(\mathcal{Q}(=1)):=\sum_{\substack{w \in \mathcal{W} \\ w \neq \mathcal{Q}}} P^{\star}(W)$

- Example: Propositional variables: yellow, fly, bird, emu, canary, ... $K B=\{$ bird, emu \rightarrow bird,,$($ flies \mid bird $)[0.9]$, canary \rightarrow yellow,,$\ldots\}$
- \mathcal{W} contains worlds satisfying the hard knowledge:
(logical constraints)
$W_{1}=\{$ yellow, bird, canary $\}$,
$W_{2}=\{$ yellow, bird, fly, canary $\}$,
$W_{3}=\{$ yellow, emu, bird, fly, canary $\}$, etc.
- Assume there is a distribution P on \mathcal{W}
- Query \mathcal{Q} : yellow \wedge bird \rightarrow fly?

It is true in W_{2}, W_{3}, \ldots

- Event associated to the query: $E(\mathcal{Q}):=\left\{W_{2}, W_{3}, \ldots\right\}$

$$
P(\mathcal{Q}):=P\left(\left\{W_{2}, W_{3}, \ldots\right\}\right)=P\left(W_{2}\right)+P\left(W_{3}\right)+\cdots
$$

- More generally: We obtain formulas as consequences with associated probabilities
- We could also define the logico-probabilistic consequences of $K B$ as those with high probability
- For a logical sentence φ (or query):

$$
K B \models_{P} \varphi: \Longleftrightarrow P(\varphi)>1-\epsilon
$$

As in the previous example, φ defines an event

- ϵ can be pre-specified (and small)
- Which is a good distribution P on \mathcal{W} ?

A preferred P^{\star} ?
Some may be "better" or more justified than others

- ME $\overline{\text { 而stributions: Prefer a distribution that does not make }}$ unjustified, arbitrary assumptions
- One that does not impose unnecessary "structure or complexity" on the model
- Think of Statistical Mechanics: the contents of a gas container tends to reach a state of equilibrium of maximum disorder, with low complexity or structure
- The notion of Entropy comes in ...

Systems tend to reach equilibrium states of maximum entropy (maximum disorder)
To impose order, structure, complexity, one needs extra energy

(an unlikely state)

- Choose a distribution that maximizes the entropy?
- Entropy: Probability space $\langle\Omega, P\rangle$, with $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$,

$$
p_{i}:=P\left(\omega_{i}\right)
$$

(finite case for simplicity)

- Entropy of the distribution:

$$
\begin{align*}
\operatorname{Entropy}(P) & :=-\sum_{i=1}^{n} p_{i} \times \log \left(p_{i}\right) \tag{*}\\
& =\sum_{i=1}^{n}\left(p_{i} \times \log \left(\frac{1}{p_{i}}\right)\right) \quad(=H(P))
\end{align*}
$$

- Entropy is interpreted as a measure of the level of uncertainty captured by the distribution
A measure of the degree of disorder it attributes to the system
- This "measure" can be derived from some desirable properties As the only function that satisfies them (a theorem)
- Furthermore, one can prove: The uniform distribution maximizes the entropy, i.e. $p_{i}=\frac{1}{n}$
When there is no extra constraint to satisfy or knowledge to consider
- Back to our problem, it makes sense to choose P^{\star} as the maximum-entropy distribution:

$$
\begin{aligned}
P^{\star}: & =\arg \max _{P \in \mathcal{P}} \operatorname{Entropy}(P) \\
& =\arg \max _{P \in \mathcal{P}}-\sum_{W \in \mathcal{W}} P(W) \times \ln (P(W))
\end{aligned}
$$

- Conditioned maximization problem over the class \mathcal{P} of probabilities that satisfy the conditions above (c.f. page 8)
- Distribution without arbitrary assumptions/structure, maximum disorder, maximum independence
- Choose a distribution that is as close to the uniform distribution as possible given the conditions The one that is the least unjustified ...

- One can define query answering and logico-probabilistic consequences from KB as on pages 8 and 12
- Example: Consider a box containing balls and cubes, which can be white or green. We know that all balls are white. Possible distributions?
- We can think this scenario as involving a draw from the box, whose observation gives rise to 2 random variables (features) Shape, Color, each taking two values
- Joint distribution P (Shape, Color) under conditional $P($ Color $=g \mid$ Shape $=b)=0$?

1. | Dist | w Bs | g Bs | w Cs | g Cs | Entropy (in bits) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\frac{1}{5}$ | 0 | $\frac{2}{5}$ | $\frac{2}{5}$ | ? (compute) |

Assuming that 20% of objects are balls
This entails a lot about color, and shape given color: (check!)

$$
\begin{aligned}
& w=\frac{3}{5}, g=\frac{2}{5}, b\left|w=\frac{1}{3}, c\right| w=\frac{2}{3}, b|g=0, c| g=1 \\
& P(g, b)=0, P(w, b)=\frac{1}{5}, P(g, c)=\frac{2}{5}, P(w, c)=\frac{2}{5}
\end{aligned}
$$

2.

Dist	w Bs	g Bs	w Cs	g Cs	Entropy (in bits)
2	$\frac{2}{5}$	0	$\frac{2}{5}$	$\frac{1}{5}$	$?$ (compute)

Assuming 20\% of objects to be green, which leads to: (check!)

$$
w=\frac{4}{5}, g=\frac{1}{5}, b\left|w=\frac{1}{2}, c\right| w=\frac{1}{2}, b|g=0, c| g=1
$$

3.

Dist	w Bs	g Bs	w Cs	g Cs	Entropy (in bits)
3	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$? (compute)

No assumption determining other properties

Dist	w Bs	g Bs	w Cs	g Cs	Entropy (in bits)
1	$\frac{1}{5}$	0	$\frac{2}{5}$	$\frac{2}{5}$	1.522
2	$\frac{2}{5}$	0	$\frac{2}{5}$	$\frac{1}{5}$	1.522
3	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	1.585

Last row corresponds to maximum entropy distribution ...

Markov Logic Networks

- MLNs combine FO logic and Markov Networks (MNs) in the same logico-probabilistic representation
- They are used for uncertain Knowledge Representation and Reasoning, and also in Machine Learning
Networks can be learned from data for producing KR models, with new forms of inference
- MLNs belong to Statistical Relational Learning (SRL) Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems

Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases, and programming languages to represent structure

- We have a knowledge base $K B$ in FO logic, but formulas have "weights" (eventually leading to probabilities)
- Ground atoms of the logical language become the nodes in an undirected graph that is handled as a MN
- The formulas can be used to define cliques, and their weights to define potentials on cliques, and so on ...
- Example: (a simplified form of MLN)

Consider the implicitly universally quantified constraint
(w/variables)

$$
\begin{equation*}
\text { 3.9: } \operatorname{Manager}(M, E) \rightarrow \text { HighlyCompensated }(M) \tag{*}
\end{equation*}
$$

- Consider all possible ground atoms built with underlying domain Dom

$$
\text { Atoms }_{\text {Dom }}=\{\operatorname{Man}(m, e) \mid(m, e) \in \operatorname{Dom} \times \operatorname{Dom}\} \cup\{H C(m) \mid m \in \operatorname{Dom}\}
$$

- Each of these ground atoms becomes a node in a MN
- More precisely, each atom $A \in$ Atoms $_{\text {Dom }}$ becomes a Bernoulli random variable X_{A} in the MN (it can be true or false)
- These variables are stochastically and mutually dependent with (some of the) other variables $X_{A^{\prime}}$
This will be determined by the edges and potentials in a MN
- The MN has a set of nodes V of size $M=4^{2}+4$ nodes
- The groundings of the MLN are: (4^{2} of them)

$$
\begin{align*}
& \text { 1. } \neg M\left(d_{1}, d_{1}\right) \vee H C\left(d_{1}\right) \\
& \text { 2. } \neg M\left(d_{1}, d_{2}\right) \vee H C\left(d_{1}\right) \tag{2}\\
& \\
& \cdots \\
& \text { 16. } \neg M\left(d_{4}, d_{4}\right) \vee H C\left(d_{4}\right)
\end{align*}
$$

\equiv

- Each grounding represents a factor in the underlying MN:
- The instantiations 1.-16. of $\left({ }^{*}\right)$ become the factors
E.g. the factor or clique $F_{2}: M\left(d_{1}, d_{2}\right)-H C\left(d_{1}\right)$ in the MN

This will be a (mini) clique which will have an associated potential depending on its weight

- Weight $w\left(F_{2}\right)=3.9$ (inherited from weight for original formula)
- We do not have potentials yet, only the graph
- Weight of a factor determines potential of associated clique
- Similarly for the other 15 factors (original weight inherited by factors)
- Product of potentials defines distribution P^{m} over possible worlds Indirectly over the Bernouilli RVs X_{i} (normalized product of their potentials)
- A possible world $W_{1}=\left\{M\left(d_{1}, d_{2}\right), M\left(d_{3}, d_{1}\right), H C\left(d_{1}\right), H C\left(d_{4}\right)\right\}$
- W_{1} makes true all factors, except for $\neg M\left(d_{3}, d_{1}\right) \vee H C\left(d_{3}\right)$
- In compatibility with MNs, its weight (or joint potential):

$$
\text { weight }\left(W_{1}\right):=\Pi_{F: W_{1} \models F} w(F)=(3.9)^{15}
$$

Product of the weights of the factors that are true in W_{1}

- Probability of $W_{1}: \quad P^{m}\left(W_{1}\right):=\frac{\text { weight }\left(W_{1}\right)}{Z} \quad$ (also from $(*)$)
- Normalization denominator: $Z=\sum_{\text {worlds } w}$ weight (W)
- Exercise: How large is the number M of nodes in the MN depending on the size n of Dom and the predicates?
- Let see now a more common way of presenting MLNs
- Example: Real-valued weight $w(\varphi)$ assigned to formulas $\varphi \in K B$

Formula	Weight
$\forall x(\operatorname{Steal}(x) \rightarrow$ Prison $(x))$	3
$\forall x \forall y($ CrimePartners $(x, y) \wedge$ Steal $(x) \rightarrow$ Prison $(y))$	1.5
\ldots	\cdots

- Fixed, finite domain, e.g. $\operatorname{Dom}=\{b o b, a n n a, \ldots\}$
- Producing ground atoms, e.g. CrimePartners(bob, anna), and instantiated formulae, e.g. Steal(bob) \rightarrow Prison(bob)
- Edge between two nodes (ground atoms) if they appear in a same instantiated formula

A (local, mini) clique for one instantiation of the second formula

- As on many occasions so far, a world is a set of ground atoms A Herbrand structure indicating what is true (and indirectly what is not)

$$
\begin{gathered}
\left.W_{1}=\{\text { CrimePartners }(\text { bob }, \text { anna }), \text { Steal(bob })\right\} \\
\left.W_{2}=\{\text { CrimePartners }(\text { bob }, \text { anna }), \text { Steal (bob) }) \text { Prison }(\text { anna })\right\}
\end{gathered}
$$

- A world may satisfy an instantiation of a formula or not For example, W_{2} satisfies "the clique" above, but W_{1} not
- The higher the weight, the higher the difference between a world that satisfies the formula and one that does not (with the rest the same)
- The worlds get associated probabilities through the weights
- A world that violates a formula is not invalid (not non-model), but only less likely

Some "models" (worlds) become more likely than others

- The weight of a formula captures the way the probability decreases when a ground instance of the formula is violated
- A high weight for a formula becomes a high penalty on worlds that do not satisfy it
- Given a world W, each node $N \in V$ takes the value 0 or 1 if false or true in W (worlds become outcomes)
Then, each node N becomes
a Bernoulli random variable X^{N}
- Worlds become instantiations of a random vector

$$
\mathcal{X}=\left\langle X^{N_{1}}, X^{N_{2}}, X^{N_{3}}, \ldots, X^{N_{M}}\right\rangle
$$

$$
W_{1} \text { becomes } \mathbf{x}_{1}=\langle 1,1,0, \ldots, 0\rangle
$$

- Each instantiation of a formula generates a propositional "feature", with value 1 if true in a world \mathcal{W}, and 0 , otherwise
- We can assign probabilities to worlds

Equivalently, build a joint probability distribution P^{m} for \mathcal{X}

- As with MNs, we can use a log-linear "potential function"
- For world W associated to $\mathbf{x} \in\{0,1\}^{M}$:

$$
\begin{equation*}
P^{m}(W):=P^{m}(\mathcal{X}=\mathbf{x}):=\frac{1}{Z} \times e^{\sum_{\varphi \in K B} w(\varphi) \times n(\varphi, \mathrm{x})} \tag{*}
\end{equation*}
$$

- $n(\varphi, \mathbf{x})$: number of instantiations of φ true in world \mathbf{x} (or its clique \mathbf{x}_{C})
- Z normalizes over all possible worlds:

$$
Z=\sum_{z \in\{0,1\} M} \exp \left(\sum_{\varphi \in K B} w(\varphi) \times n(\varphi, \mathbf{z})\right)
$$

\equiv

- From $\left(^{*}\right.$): A (ground) clique $g c$ associated to a formula φ in the MN has the potential: $\psi_{g c}(\bar{x}):=\exp \left(w(\varphi) \times \mathbb{I}_{g c}(\bar{x})\right)$,
$\overline{\bar{\sigma}}$ vith \bar{x} formed by 0s and 1 s

車

- In the example, gc could be the three ground atoms in the top-left corner: $g c=\left\{N_{1}, N_{2}, N_{3}\right\}$
$\equiv g c(\bar{x})$, the indicator function, takes value 1 if $g c$ true for \bar{x}, \equiv
$\bar{\nu}$ and 0 otherwise (with that, $e^{0}=1$ gives the right factor)
- This can be seen as a Gibbs distribution for MNs $\overline{\overline{ }}$
- Since we divide by all possible satisfaction with possible worlds (the Z), we can see $w(\varphi)$ as a penalty for not satisfying it Because in that case, it is multiplied by 0
- So, hard or strong constraints that we want to see satisfied should have high weights
- We obtain a probability distribution over possible worlds Those that satisfy "more" high-weight (instances of) formulas become more likely
- Exercise: Give an example of a MLN with a model that (logically) violates all the formulas F in KB, as universal ICs, but still has a non-zero probability
Hint: Make sure not all ground instantiations of the ICs become false
- With a MLN we do not have to create the actual, underlying, ground MN
We have a pattern to produce a concrete one if needed
- Having the exponential on page 24 allows us to deal with sums instead of products
- It is possible to extend MLNs with functions symbols Using Skolem functions could be used for formulas with existential quantifiers
- One can learn MLNs

Learn the weights and/or the formulas
The latter define the structure of the underlying and implicit MN

- How to do inference with MLNs?

Inference in Markov Logic Networks

- Inference under MLNs is of a probabilistic nature
- Similarly, the MLN defines a probability distribution P^{m} over the possible worlds
- Basic inference task is computing the probability of a world, as on page 24
More interesting is a query in the language of the KB : For a sentence ψ :

$$
\begin{aligned}
P^{m}(\psi) & :=P^{m}(\{W \mid W \models \psi\}):=P^{m}(\mathcal{X} \text { makes } \psi \text { true }) \\
& =P^{m}\left(\left\{\mathbf{x} \in\{0,1\}^{M} \mid \psi \text { is true in } \mathbf{x}\right\}\right)=\sum_{\mathbf{x} \in\{0,1\}^{M} \mid \psi \ldots} P^{m}(\mathbf{x})
\end{aligned}
$$

- Computing the probabilities amounts, directly or not, to counting models (possibly with specific properties)
Here, a form of weighted model counting
A hard computational problem ...
- In general in SRL, we want to avoid as much as possible doing the grounding of formulas
Followed by the explicit weighted model counting
(bound to be computationally complex)
- Can we stay at a higher ("lifted") level?
- Different areas converge: model counting in logic (around SAT-related problems), graph theory, and data management

FoodSecurity	Name
	wau
	\ldots

- Each grounding of an attribute, or groups thereof, could be Bernoulli Related to each other in something like a Bayesian Logic Network E.g. in the presence of constraints

- Too many variables and groundings, many not related to each other
- SRL is precisely about doing things at the higher, relational or FO logical level
Representation and reasoning at a "lifted", more general level of granularity
- Can we do model counting without instantiation?
- Can we approximate model counting (and probabilities) without instantiation?
- Doing what is called "Lifted Inference" Lifted up to the FO representation
Exploiting patterns, independence and symmetries

