
Markov Networks

• MNs belong to the class of probabilistic graphical models

Undirected, acyclic graphs of random variables
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Figure 10.1 (a) A simple DAG on 5 nodes, numbered in topological order. Node 1 is the root, nodes 4 and
5 are the leaves. (b) A simple undirected graph, with the following maximal cliques: {1, 2, 3}, {2, 3, 4},
{3, 5}.

10.1.4 Graph terminology

Before we continue, we must define a few basic terms, most of which are very intuitive.
A graph G = (V, E) consists of a set of nodes or vertices, V = {1, . . . , V }, and a set

of edges, E = {(s, t) : s, t ∈ V}. We can represent the graph by its adjacency matrix, in
which we write G(s, t) = 1 to denote (s, t) ∈ E , that is, if s → t is an edge in the graph.
If G(s, t) = 1 iff G(t, s) = 1, we say the graph is undirected, otherwise it is directed. We
usually assume G(s, s) = 0, which means there are no self loops.

Here are some other terms we will commonly use:

• Parent For a directed graph, the parents of a node is the set of all nodes that feed into it:
pa(s) � {t : G(t, s) = 1}.

• Child For a directed graph, the children of a node is the set of all nodes that feed out of it:
ch(s) � {t : G(s, t) = 1}.

• Family For a directed graph, the family of a node is the node and its parents, fam(s) =
{s} ∪ pa(s).

• Root For a directed graph, a root is a node with no parents.
• Leaf For a directed graph, a leaf is a node with no children.
• Ancestors For a directed graph, the ancestors are the parents, grand-parents, etc of a node.

That is, the ancestors of t is the set of nodes that connect to t via a trail: anc(t) � {s : s �
t}.

• Descendants For a directed graph, the descendants are the children, grand-children, etc of
a node. That is, the descendants of s is the set of nodes that can be reached via trails from
s: desc(s) � {t : s � t}.

• Neighbors For any graph, we define the neighbors of a node as the set of all immediately
connected nodes, nbr(s) � {t : G(s, t) = 1 ∨ G(t, s) = 1}. For an undirected graph, we
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• Example: Random variables: Xi , i = 1, . . . , 5

• Cliques (usually, maximal) in the graph have
associated potential functions

Non-negative real functions

• No conditional probabilities, but initially, local, joint marginal
potentials

• Here, three maximal cliques, and three potentials

• Combination of potentials define defines joint probability
distribution

Cliques’ potentials become factors of the global joint
distribution
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• Here, three potentials for three cliques:

ψ1(x1, x2, x3), ψ2(x2, x3, x4), ψ3(x3, x5)
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• Potentials may have parameters, possibly
unknown, so as probability distributions

They could be learned from data

• Joint probability distribution (density) for variables in MN:

P(x1, . . . , x5) := 1
Z × ψ1(x1, x2, x3)× ψ2(x2, x3, x4)× ψ3(x3, x5)

• Z is the “partition function”, a normalization factor to obtain
a probability distribution

It has to be:
∑

x1,...,x5
P(x1, . . . , x5) = 1

• Then: Z :=
∑

x1,...,x5
ψ1(x1, x2, x3)× ψ2(x2, x3, x4)× ψ3(x3, x5)

Z for “Zustandsumme” in German: “sum over states”

(roots in Statistical Mechanics, initially largely developed by German
speaking scientists)
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• RVs Xi take values on their domains Dom(Xi )

They reflect outcomes from a real-valued random experiment

They are defined on the sample space Ω in common

• Example: (cont.) Assume Bernoulli RVs:
Dom(Xi ) = {0, 1}

Random propositional features
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• Potentials:

1. ψ1(x1, x2, x3) := total number of 1s taken by the variables

E.g. ψ1(1, 0, 1) = 2

2. ψ2(x2, x3, x4) := x2 + x3 + x4

E.g. ψ2(1, 0, 0) = 1

3. ψ3(x3, x5) := x3 × x5

E.g. ψ3(0, 1) = 0
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• Exercise: Compute Z above, the density value
P(1, 0, 0, 1, 1), and the marginal value P

X1
(1)

For Z , compute the terms of the summation: (25 products)

1. ψ1(0, 0, 0)× ψ2(0, 0, 0)× ψ3(0, 0) = 0× 0× 0 = 0

2. ψ1(0, 1, 1)× ψ2(1, 1, 1)× ψ3(1, 1) = 2× 3× 1 = 6

3. ψ1(0, 1, 0)× ψ2(1, 0, 0)× ψ3(0, 0) = 1× 1× 0 = 0, etc.

P(1, 0, 1, 0, 1) := 1
Z × ψ1(1, 0, 1)× ψ2(0, 1, 0)× ψ3(1, 1) =

2×1×1
Z = 2

Z

• There could be unknown parameters, to be learned, e.g.

ψ′
2(x2, x3, x4) := α× x2 + (1− α)× x3 + θ × x4
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• We have heard about the “Markov Condition”, Markov
Processes, etc.

• Main idea and intuition behind MNs:

The probability distribution of a particular variable (possibly
with others in the net) depends only on a “small
neighborhood” of the variable

There are implicit independence assumptions in place that
“isolate” it from a large portion of the net

• The way MNs are constructed, via factorized representations,
allows to identify certain stochastic (in)dependencies

• There are criteria to identify and exploit them
(notion of “d-separation”)

Criteria also applicable to BNs
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• A common class of MNs comes from Statistical Mechanics
(SM): Boltzmann-Gibbs Distribution

P(x̄) := 1
Z × exp(−∑

C
E (x̄

C
)) = 1

Z × Πx̄C

1
eE(x̄C )

Here, x̄ represents the variables in the graph, and the x̄
C

those in clique C

A joint probability distribution from potentials: ψC := 1

e
E(x̄

C
)

• Think of E (x̄
C
) as an energy function of the variables of

sub-state x̄
C

This distribution makes low energy configurations (states)
more likely

It penalizes high energy states

It favors higher entropy states (we will come back to this)
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• Energy function E may come in different forms

Energy-based models are common in SM, Biochemistry, ML

Whole families of distributions depending on the classes to
which potentials belong

• MNs may be easier or more natural to use in some
applications than BNs

• Choosing a direction between two variables may not be
reasonable

E.g. in image analysis, with variables representing pixels of a
same image

Also with relational data (think of attributes in a table)

• MNs have symmetries that BNs do not have, and can be
exploited

• Inference with MNs tends to be more complex than with BNs
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Some More Inference

• Let us see in more general terms what we did on page 12

• Idea: exploit distributive law a× b + a× c = a× (b + c)

Three operations versus two

• Example: A chain model: X1—–X2—– · · ·—–XN−1—–XN

With potentials: ψ(xi , xi+1)

Joint distribution: P(x̄) = 1
ZΠ

N−1
i=1 ψ(xi , xi+1)

Marginal of X1: PX1(x1) =
1
Z

∑
x2,...,xN

ΠN−1
i=1 ψ(xi , xi+1)

• Computed naively like this, the computation cost is
proportional to ΠN

i=1|Dom(Xi )|
• By distributivity:

PX1
(x1) =

1
Z

∑
x2
[ψ(x1, x2)

∑
x3
ψ(x2, x3) · · ·

∑
xN−1

ψ(xN−2,XN−1)
∑

xN
ψ(xN−1, xN)]]]

Now cost proportional to
∑N−1

i=1 |Dom(Xi )| × |Dom(Xi+1)|
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• Exercise: Consider the MN

586 Graphical Models

Graphical Models, Fig. 2
A directed model (left) and
an undirected model
(right). The joint
distributions they represent
are shown

A

C

B D

E

F A

C

B D

E

F

p(a)p(b a)p(c a)p(d b)p(e b c)p(f b e)
1
Z y (a b)y (a c)y (b d )y (c e)y (b e f )

A

C

B
A C B

A

C

B

p(a,b,c) = p(c)p(a|c)p(b|c) p(a)p(c|a)p(b|c) p(a)p(b)p(c|a,b)
A B BC A C A B

Graphical Models, Fig. 3 Some simple Bayesian Networks and their implied independence statements. Note in
particular that in the rightmost example, we do not have A ? B

ˇ
ˇ C

as

p.xa; xb; xc ; xd / D p.xc/p.xbjxc/p.xd jxc ; xb/

p.xajxc ; xb; xd /: (4)

With this idea in mind, consider a model p.x/
for which we have the conditional independence
statements:

n
p.x�i

jx<�i
/ D p.x�i

jxpa�i
/
o
; (5)

where pa�i
�<�i . We now have

p.x/ D

NY

iD1

p.x�i
jxpa�i

/: (6)

We can interpret pai as referring to the “parents”
of the node i . Essentially, we are saying that
a variable is conditionally independent on its
nondescendants, given its parents.

We can represent (Eq. 6) using a directed
acyclic graph (DAG) by representing each
variable Xi as a node; an arrow is formed from
Xj to Xi if j 2 pai . An example of such a
representation is given in Fig. 2. It can easily be
shown that the resulting graph is always acyclic.

A Bayesian Network (a type of directed graph-
ical model) is simply a set of probability distri-
butions of the form p.x/ D

QN
iD1 p.xi jxpai

/.
Every Bayesian Network can be represented as

a DAG, though we often simply say that the
Bayesian Network “is” the DAG. Some trivial ex-
amples and the type of independence statements
they imply are shown in Fig. 3.

We finish this section with a simple lemma:

Lemma 1 (Topological Sort) Every DAG has at
least one permutation � that “sorts” the nodes
such that each node has a larger index than its
parents; in other words, the factorization associ-
ated to any DAG can be written in the form of
(Eq. 6) for at least one � such that �i > j for all
i , where j 2 pa�i

.

Undirected Graphical Models
Although we have shown how conditional inde-
pendence statements in the form of (Eq. 5) can
be modeled using a DAG, there exist certain
conditional independence statements that are not
satisfied by any Bayesian Network, such as those
in Fig. 4.

Markov random fields (or MRFs) allow for the
specification of a different class of conditional in-
dependence statements, which are naturally rep-
resented by undirected graphs (UGs for short).
The results associated with MRFs require a few
additional definitions:

Definition 4 (Clique) A set of nodes X in a
graph G D .V;E/ is said to form a clique if
.Xi ; Xj / 2 E for every Xi ; Xj 2 X (i.e., the
subgraph X is fully connected).

Verify that:

PA(a) :=
1
Z

∑
b,c,d ,e,f ψ(a, b)ψ(a, c)ψ(b, d)ψ(c, e)ψ(b, e, f )

= 1
Z

∑
b ψ(a, b)

∑
c ψ(a, c)

∑
d ψ(b, d)

∑
e ψ(c, e)

∑
f ψ(b, e, f )

• This variable elimination algorithm uses distributivity

Good for marginal of one variable
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• Example:
P(x2) =

1
Z

∑
x1

∑
x3

∑
x4

∑
x5
ψ(x1, x3, x5)ψ(x1, x2)ψ(x2, x4)ψ(x3, x4)

O(25) operations in the naive way
with binary variables

However:

X1 X2

X3 X4

X5

P(x2) =
1

Z

∑

x1

ψ(x1, x2)
∑

x4

ψ(x2, x4)
∑

x3

ψ(x3, x4)
∑

x5

ψ(x1, x3, x5)

︸ ︷︷ ︸
m5

=
1

Z

∑

x1

ψ(x1, x2)
∑

x4

ψ(x2, x4)
∑

x3

ψ(x3, x4)m5(x1, x3)

︸ ︷︷ ︸
m3

=
1

Z

∑

x1

ψ(x1, x2)
∑

x4

ψ(x2, x4)m3(x1, x4) (mi are marginals per clique or joins thereof)

=
1

Z

∑

x1

ψ(x1, x2)m4(x1, x2) =
1

Z
m1(x2) O(23) now

Summing over x2 gives Z (LHS is 1) (“messages” mi could be reused, c.f. below)

Not more that 3 variables appear together in any term of a
summation
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• In general, the maximum number of variables that appear
together in a summation term depends on the elimination
order

• The lowest complexity is obtained by the order that minimizes
this maximum number

It is related to the tree-width of the graph

• Unfortunately, finding the optimal elimination order is
NP-hard

Reduction from SAT

• What about more than one marginal?

If we want more marginal distributions, we will be repeating
operations

• The algorithm above can be adapted via reuse of
precomputations

• There is a lot more about inference in PGMs ...
30 / 50
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Tree-Width of a Graph

• The tree-width (TW) of a graph becomes relevant in many
problems of data management and AI

• The TW of a graph measures how close a graph is to a tree

• It is commonly the case that graph problems become easier
when the input graph has small TW

• Undirected graph G = ⟨V ,E ⟩
A tree-decomposition of G is a tree T = ⟨{S1, . . . ,Sn},E ′⟩,
such that:

T

Sk

Sj

v

v

v

v

• S1, . . . ,Sn ⊆ V , i.e each node in T is a
subset of V

• S1 ∪ · · · ∪ Sn = V
• (u, v) ∈ E ⇒ {u, v} ⊆ Si , for some i

• If for v ∈ V , v ∈ Sj ∩ Sk , i ̸= k ,
then v ∈ Si , for every Si in the unique
(simple) path between Sj and Sk
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• Width of tree decomposition T : width(T ) := (maxi |Si |)− 1

• The tree-width of graph G: tw(G) := minT width(T )
With T ranging over all tree decompositions of G

• When G is already a tree, the edges in E become the Si

D                  E   F        G       H

B                         C

A

(V,E)

A

A B A C

B D C F C G C H

(T,E’)

TW = 1

BE

The Si are connected by E ′ when they share a node in V

X3 X5

X2 X4

X1

(V,E)

X2 X4 X3 X5

(T, E’)

W =2

X1 X2 X3
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X3 X5

X2 X4

X1

X1 X2 X3

X2 X3 X4X5

(V,E) (T,E’)

W = 3
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Chapter 6: Logical + Probabilistic KR

Leopoldo Bertossi
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Probabilistic Approaches to KR

• Many logic-based approaches to KR&R have a probabilistic
counterpart

• For example, a default rule (as in ASP) may be treated as a
probabilistic/statistical statement

As a conditional probability: P(flies|bird) = 0.95

“the probability of flying being a bird is 0.95”

• Consequences may be probabilistic too

• Diagnosis can be stated using conditionals: (by Bayes formula)

P(flu|fever) = P(flu)×P(fever |flu)
P(fever) (a priori vs. a posteriori)

• More generally: P(cause|symptom) = P(cause)P(symptom|cause)
P(symptom)

P(symptom|cause) easier to estimate by experts than
P(cause|symptom)
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Probabilistic Reasoning Problems

• We can have PGMs or other probabilistic models

With features that are random variables subject to some sort
of uncertainty

• There are probabilistic approaches that favor representation of:

• Joint distributions ; “generative models”

- MNs

• Conditional distributions ; “discriminative models”

- BNs

- Regression models: Y = α× X + β + ϵ

Basically modeling P(Y |X )

• In principle, one can pass from one to the other, but there is
complexity involved (remember inference)

We did this with BNs, using the “chain rule” or Bayes formula
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• Conditional probabilities allows us to attack several problems
in uncertain knowledge representation and reasoning

• Probabilistic versions of diagnosis?

Consider an underlying probabilistic model K (background
knowledge) with an associated probability distribution PK

An observation O (or evidence), and a set of possible
hypothesis (basic admissible explanations) E = {E1, . . . ,En}
O is the value of a random variable (or several of them) in K,
and each Ei is (the value of) a random variable in K
• We can attempt to find the best explanation Eb ∈ E

Eb := arg max
E∈EPK(E | O) (1)

The most probable explanation given the evidence

• Usually called MAP-inference: maximum a posteriori

After (conditioned on) the observation ...
4 / 30



• A different form of probabilistic reasoning: prefer an
explanation E ⋆

E ⋆ := arg max
E∈EPK(O | E ) (2)

The explanation that maximizes the (conditional) probability
of the observation

Which is what we observed after all ...

• This is similar to maximum-likelihood reasoning in Statistics

• Exercise: Verify that under the assumption that the
explanations are equally likely (a priori), (1) reduces to (2)

Hint: use Bayes formula

• There are model-dependent techniques for these reasoning
tasks
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Logic + Probability in AI

• Traditionally, the “logical-” and “probabilistic schools” have
been separate and competitors

• In the last few years they have become complementary
approaches

• Today, KR problems are attacked with mathematical
models/techniques that involve simultaneously logic and
probability

• Different forms of KR combine logic and probability for KR&R

Different formalisms, models, underlying assumptions, etc.

• These combined representations (models) can also be learned

We will see some of them ...
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• Conditional KBs: Knowledge base KB with

• Hard knowledge, e.g. emu → bird

• Soft, conditional, probabilistic rules, of the form r: (α|β)[p]
E.g. rv : (flies|bird)[0.9] (a “probabilistic conditional”)

• Semantics? Logical consequences of/from KB?

• Possible-worlds semantics: Collection W of worlds W

• W is a set of propositional (or ground) atoms assumed to be
true (Herbrand structures, as usual)

• W must satisfy the hard knowledge in KB (as usual)

• W does not have to satisfy β → α, i.e. the conditional as a
classical implication

• For this we need the probabilistic component ...
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• We start considering a probability distribution P on W, the
outcome space: W ∈ W 7→ P(W )

• Which probability distribution P? (possibly several candidates)

• Since all the worlds in W satisfy the hard knowledge, consider
one that satisfies the conditionals:

For r: (α|β)[p], it must hold: P(α|β) = p (and P(β) > 0)︸ ︷︷ ︸
meaning?

P(α|β) := P(

defines an event︷ ︸︸ ︷
α ∧ β )
P(β) := P({W ∈ W | W |= α∧β})

P({W ∈ W | W |= β}) (**)

• Pick such a distribution P⋆ (which one?)

• Boolean query Q (expressed in the logical language): It may be
true or false in an outcome world W

It becomes a Bernoulli RV: P⋆(Q (= 1)) :=
∑

W∈W
W |=Q

P⋆(W )

8 / 30
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• Example: Propositional variables: yellow , fly , bird , emu, canary , . . .

KB = {bird , emu → bird , (flies|bird)[0.9], canary → yellow , ...}

• W contains worlds satisfying the hard knowledge:
(logical constraints)

W1 = {yellow , bird , canary},
W2 = {yellow , bird , fly , canary},
W3 = {yellow , emu, bird , fly , canary}, etc.

• Assume there is a distribution P on W

• Query Q : yellow ∧ bird → fly?

It is true in W2,W3, ...

• Event associated to the query: E (Q) := {W2,W3, . . .}
P(Q) := P({W2,W3, . . .}) = P(W2) + P(W3) + · · ·
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• More generally: We obtain formulas as consequences with
associated probabilities

• We could also define the logico-probabilistic consequences of
KB as those with high probability

• For a logical sentence φ (or query):

KB |=
P
φ :⇐⇒ P(φ) > 1− ϵ

As in the previous example, φ defines an event

• ϵ can be pre-specified (and small)

• Which is a good distribution P on W?

A preferred P⋆?

Some may be “better” or more justified than others
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• ME Distributions: Prefer a distribution that does not make
unjustified, arbitrary assumptions

• One that does not impose unnecessary “structure or
complexity” on the model

• Think of Statistical Mechanics: the contents of a gas
container tends to reach a state of equilibrium of maximum
disorder, with low complexity or structure

• The notion of Entropy comes in ...

Systems tend to reach equilibrium
states of maximum entropy
(maximum disorder)

To impose order, structure,
complexity, one needs extra energy (an unlikely state)

• Choose a distribution that maximizes the entropy?
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• Entropy: Probability space ⟨Ω,P⟩, with Ω = {ω1, . . . , ωn},
pi := P(ωi ) (finite case for simplicity)

• Entropy of the distribution:

Entropy(P) := −
n∑

i=1

pi × log(pi ) (∗)

=
n∑

i=1

(pi × log(
1

pi
)) (= H(P))

• Entropy is interpreted as a measure of the level of uncertainty
captured by the distribution

A measure of the degree of disorder it attributes to the system

• This “measure” can be derived from some desirable properties

As the only function that satisfies them (a theorem)

• Furthermore, one can prove: The uniform distribution
maximizes the entropy, i.e. pi =

1
n

When there is no extra constraint to satisfy or knowledge to
consider
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• Back to our problem, it makes sense to choose P⋆ as the
maximum-entropy distribution:

P⋆ := arg max
P∈P Entropy(P)

= arg max
P∈P −

∑
W∈W P(W )×ln(P(W ))

• Conditioned maximization problem over the class P of
probabilities that satisfy the conditions above (c.f. page 8)

• Distribution without arbitrary assumptions/structure,
maximum disorder, maximum independence

• Choose a distribution that is as close to the uniform
distribution as possible given the conditions

The one that is the least unjustified ...

• One can define query answering and logico-probabilistic
consequences from KB as on pages 8 and 12
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• Example: Consider a box containing balls and cubes, which
can be white or green. We know that all balls are white.
Possible distributions?

• We can think this scenario as involving a draw from the box,
whose observation gives rise to 2 random variables (features)
Shape,Color , each taking two values

• Joint distribution P(Shape,Color) under conditional
P(Color = g |Shape = b) = 0?

1.
Dist w Bs g Bs w Cs g Cs Entropy (in bits)
1 1

5 0 2
5

2
5 ? (compute)

Assuming that 20% of objects are balls

This entails a lot about color, and shape given color: (check!)

w = 3
5 , g = 2

5 , b|w = 1
3 , c |w = 2

3 , b|g = 0, c |g = 1

P(g , b) = 0, P(w , b) = 1
5 , P(g , c) =

2
5 ,P(w , c) =

2
5
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2.
Dist w Bs g Bs w Cs g Cs Entropy (in bits)
2 2

5 0 2
5

1
5 ? (compute)

Assuming 20% of objects to be green, which leads to: (check!)

w = 4
5 , g = 1

5 , b|w = 1
2 , c |w = 1

2 , b|g = 0, c |g = 1

3.
Dist w Bs g Bs w Cs g Cs Entropy (in bits)
3 1

3 0 1
3

1
3 ? (compute)

No assumption determining other properties

Dist w Bs g Bs w Cs g Cs Entropy (in bits)

1 1
5 0 2

5
2
5 1.522

2 2
5 0 2

5
1
5 1.522

3 1
3 0 1

3
1
3 1.585

Last row corresponds to maximum entropy distribution ...
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Markov Logic Networks

• MLNs combine FO logic and Markov Networks (MNs) in the
same logico-probabilistic representation

• They are used for uncertain Knowledge Representation and
Reasoning, and also in Machine Learning

Networks can be learned from data for producing KR models,
with new forms of inference

• MLNs belong to Statistical Relational Learning (SRL)

Handling inherent uncertainty and exploiting compositional structure are
fundamental to understanding and designing large-scale systems

Statistical relational learning builds on ideas from probability theory and

statistics to address uncertainty while incorporating tools from logic,

databases, and programming languages to represent structure

• We have a knowledge base KB in FO logic, but formulas
have “weights” (eventually leading to probabilities)
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• Ground atoms of the logical language become the nodes in an
undirected graph that is handled as a MN

• The formulas can be used to define cliques, and their weights
to define potentials on cliques, and so on ...
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• Example: (a simplified form of MLN)

Consider the implicitly universally quantified constraint
(w/variables)

3.9: Manager(M,E)→ HighlyCompensated(M) (*)

• Consider all possible ground atoms built with underlying
domain Dom

AtomsDom = {Man(m, e) | (m, e) ∈ Dom × Dom} ∪ {HC(m) | m ∈ Dom}

• Each of these ground atoms becomes a node in a MN

• More precisely, each atom A ∈ AtomsDom becomes a Bernoulli
random variable XA in the MN (it can be true or false)

• These variables are stochastically and mutually dependent
with (some of the) other variables XA′

This will be determined by the edges and potentials in a MN

• The MN has a set of nodes V of size M = 42 + 4 nodes
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• The groundings of the MLN are: (42 of them)

1. ¬M(d1, d1) ∨ HC (d1)
2. ¬M(d1, d2) ∨ HC (d1) (F2)

...
16. ¬M(d4, d4) ∨ HC (d4)

• Each grounding represents a factor in the underlying MN:

• The instantiations 1.-16. of (*) become the factors

E.g. the factor or clique F2: M(d1, d2) HC(d1) in the MN

This will be a (mini) clique which will have an associated
potential depending on its weight

• Weight w(F2) = 3.9 (inherited from weight for original formula)

• We do not have potentials yet, only the graph

• Weight of a factor determines potential of associated clique

ψ
F2(M(d1, d2)︸ ︷︷ ︸

X1

,HC (d1)︸ ︷︷ ︸
X2

)
(x1, x2) :={

1 if x1 = 1 and x2 = 0 i.e. F2 false
3.9 otherwise
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• Similarly for the other 15 factors (original weight inherited by factors)

• Product of potentials defines distribution Pm over possible
worlds Indirectly over the Bernouilli RVs Xi

(normalized product of their potentials)

• A possible world W1 = {M(d1, d2),M(d3, d1),HC(d1),HC(d4)}

• W1 makes true all factors, except for ¬M(d3, d1) ∨ HC (d3)

• In compatibility with MNs, its weight (or joint potential):

weight(W1) := Π
F :W1|=F

w(F ) = (3.9)15

Product of the weights of the factors that are true in W1

• Probability of W1: Pm(W1) :=
weight(W1)

Z (also from (*))

• Normalization denominator: Z =
∑

worlds W
weight(W )

• Exercise: How large is the number M of nodes in the MN
depending on the size n of Dom and the predicates?

• Let see now a more common way of presenting MLNs
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• Example: Real-valued weight w(φ) assigned to formulas
φ ∈ KB

Formula Weight

∀x(Steal(x)→ Prison(x)) 3
∀x∀y(CrimePartners(x , y) ∧ Steal(x)→ Prison(y)) 1.5

· · · · · ·

• Fixed, finite domain, e.g. Dom = {bob, anna, ...}
• Producing ground atoms, e.g. CrimePartners(bob, anna), and

instantiated formulae, e.g. Steal(bob)→ Prison(bob)

• Edge between two nodes (ground atoms) if they appear in a
same instantiated formula

CrimePartners(bob,anna) Steal(bob)

Prison(anna)

A (local, mini) clique for one instantiation of the second
formula
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• As on many occasions so far, a world is a set of ground atoms

A Herbrand structure indicating what is true (and indirectly
what is not)

W1 = {CrimePartners(bob, anna),Steal(bob)}
W2 = {CrimePartners(bob, anna), Steal(bob),Prison(anna)}

• A world may satisfy an instantiation of a formula or not

For example, W2 satisfies “the clique” above, but W1 not

• The higher the weight, the higher the difference between a
world that satisfies the formula and one that does not (with
the rest the same)

• The worlds get associated probabilities through the weights

• A world that violates a formula is not invalid (not non-model),
but only less likely

Some “models” (worlds) become more likely than others
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• The weight of a formula captures the way the probability
decreases when a ground instance of the formula is violated

• A high weight for a formula becomes a high penalty on worlds
that do not satisfy it
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The instantiated atoms are the M
nodes of the network (not directed)

Each node N takes the value 0/1
depending on whether it is false or
true (in a worldW )

Each node N is a Bernoulli
random variable XN

N1

N2

W1 represented by random vector: X = 〈XN1 , XN2 , XN3 , . . .〉
= 〈1, 1, 0, . . . , 0〉

• Edge between two nodes if they appear in a same instantiated
formula

33

• Given a world W , each node
N ∈ V takes the value 0 or 1
if false or true in W
(worlds become outcomes)

Then, each node N becomes
a Bernoulli random variable XN

• Worlds become instantiations of
a random vector

X = ⟨XN1 ,XN2 ,XN3 , . . . ,XNM ⟩ W1 becomes x1 = ⟨1, 1, 0, . . . , 0⟩
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• Each instantiation of a formula generates a propositional
“feature”, with value 1 if true in a world W, and 0, otherwise

• We can assign probabilities to worlds

Equivalently, build a joint probability distribution Pm for X

• As with MNs, we can use a log-linear “potential function”

• For world W associated to x ∈ {0, 1}M :

Pm(W ) := Pm(X = x) := 1
Z × e

∑
φ∈KB

w(φ)×n(φ,x)

(*)

• n(φ, x): number of instantiations of φ true in world x (or its
clique xC )

• Z normalizes over all possible worlds:

Z =
∑
z∈{0,1}M

exp(
∑

φ∈KB
w(φ)×n(φ, z))
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• From (*): A (ground) clique gc associated to a formula φ in
the MN has the potential: ψgc(x̄) := exp(w(φ)× Igc(x̄)),
with x̄ formed by 0s and 1s

• In the example, gc could be the three ground atoms in the
top-left corner: gc = {N1,N2,N3}
Igc(x̄), the indicator function, takes value 1 if gc true for x̄ ,
and 0 otherwise (with that, e0 = 1 gives the right factor)

• This can be seen as a Gibbs distribution for MNs

• Since we divide by all possible satisfaction with possible worlds
(the Z ), we can see w(φ) as a penalty for not satisfying it

Because in that case, it is multiplied by 0

• So, hard or strong constraints that we want to see satisfied
should have high weights
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• We obtain a probability distribution over possible worlds

Those that satisfy “more” high-weight (instances of) formulas
become more likely

• Exercise: Give an example of a MLN with a model that
(logically) violates all the formulas F in KB, as universal ICs,
but still has a non-zero probability

Hint: Make sure not all ground instantiations of the ICs become false

• With a MLN we do not have to create the actual, underlying,
ground MN

We have a pattern to produce a concrete one if needed

• Having the exponential on page 24 allows us to deal with
sums instead of products
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• It is possible to extend MLNs with functions symbols

Using Skolem functions could be used for formulas with
existential quantifiers

• One can learn MLNs

Learn the weights and/or the formulas

The latter define the structure of the underlying and implicit
MN

• How to do inference with MLNs?
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Inference in Markov Logic Networks

• Inference under MLNs is of a probabilistic nature

• Similarly, the MLN defines a probability distribution Pm over
the possible worlds

• Basic inference task is computing the probability of a world,
as on page 24

More interesting is a query in the language of the KB: For a
sentence ψ:

Pm(ψ) := Pm({W | W |= ψ}) := Pm(X makes ψ true)

= Pm({x ∈ {0, 1}M | ψ is true in x}) = ∑
x∈{0,1}M | ψ···

Pm(x)

• Computing the probabilities amounts, directly or not, to
counting models (possibly with specific properties)

Here, a form of weighted model counting

A hard computational problem ...

28 / 30



• In general in SRL, we want to avoid as much as possible doing
the grounding of formulas

Followed by the explicit weighted model counting
(bound to be computationally complex)

• Can we stay at a higher (“lifted”) level?

• Different areas converge: model counting in logic (around
SAT-related problems), graph theory, and data management

FoodSecurity Name

wau
...

Trade · · · Name

wau tonj
wau twic
wau gok
... ...• Each grounding of an attribute,

or groups thereof, could be Bernoulli variables

Related to each other in something
like a Bayesian Logic Network
E.g. in the presence of constraints
(here a referential constraint)

FoodSe

…

FoodSecurity(wau)

Trade(wau,tonj)

Trade(wau,twic)

Trade(wau,gok)
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• Too many variables and groundings, many not related to each
other

• SRL is precisely about doing things at the higher, relational or
FO logical level

Representation and reasoning at a “lifted”, more general level
of granularity

• Can we do model counting without instantiation?

• Can we approximate model counting (and probabilities)
without instantiation?

• Doing what is called “Lifted Inference”

Lifted up to the FO representation

Exploiting patterns, independence and symmetries
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