
• Interpret predicates and constants of the basic alphabet S
through relations and distinguished elements of the structure:

S = {On(·, ·), LeftOf (·, ·),Color(·, ·),Block(·), a, b, c , d , e,
azul , rojo, ..., piso}

• a
B7→ A, b

B7→ B, . . . , verde
B7→ green, piso

B7→ floor , . . .

Constants interpreted as distinguished elements of structure B

• Block
B7→ BlockB, Color

B7→ ColorB, . . . (=
B7→ =B)

Unary predicates interpreted as unary relations on the domain;
two-ary (binary) predicates as binary relations on the domain,
etc.

• B is an interpretation structure for (or compatible with)
language L(S)

• Notice that the names in the symbolic language do not have
to coincide with the names in the structure (but see page 18)
(showing this was the reason for choosing the “strange” alphabet S)

15 / 49

• We have now define when a formula is true in a compatible
interpretation structure

• In general: Meta-level, structural, interpretation level

B = ⟨B,BlockB,OnB,ColorB, LeftOf B,A,B,C ,D,E , green, . . .⟩

“there are e1, e2 ∈ B such that (e1, e2) ∈ OnB and (e2, red) ∈ ColorB”

Statement in the meta-language of usual Math

- -↑ ↑ ↑
∃x∃y(On(x , y) ∧ Color(y , rojo))

Statement in the object language

Symbolic, formal, object level
S = {On(·, ·), LeftOf (·, ·),Color(·, ·),Block(·), a, b, c, d , e, azul , rojo, ..., piso}

• This sentence should be true once interpreted above

B should make ∃x∃y(On(x , y) ∧ Color(y , rojo)) true

Denoted: B |= ∃x∃y(On(x , y) ∧ Color(y , rojo))

16 / 49

• We can give a general definition of truth of formulas under
interpretation structures

• We will restrict ourselves to a particular class of interpretation
structures

They are simple and naturally appear in RDBs and their
extensions

• We will consider “syntactic” structures whose elements belong
to the object language (a.k.a. Herbrand structures)

So as in RDBs: the data items and predicates appear both in
the schema and in the RDB itself as an interpretation
structure

So, we know this and have used this without being aware of it

17 / 49

Example: Given the language L(S) above, consider the structure

D = ⟨Dom,Block,On,Color , LeftOf , a, b, . . .⟩

• Domain Dom contains the set of constants of L(S):
Dom = {a, b, c , d , e, azul , rojo, ..., piso, . . .}

The constants of S are then interpreted by themselves

• Predicates are interpreted by relations (represented as tables):

Block
a
b
c
d
e

On
c b
b a
a piso
d piso
e piso

Color
a rojo
b verde
c amarillo
d purpura
e azul

LeftOf
a d
d e

That is, BlockD = {a, b, c, d , e}, . . . , LeftOf D = {(a, d), (d , e)}

• A “syntactic” structure, at the level of the symbolic language

Perfectly O.K. as set-theoretic structure

• The DB becomes an interpretation structure for the language
determined by its schema

A relational model of our blocks world
18 / 49

• Usually Dom is implicit, and this structure (the DB) is
represented as:

D = {Block(a),Block(b),Block(c),Block(d),Block(e),On(c, b),On(b, a),
On(a, piso),On(d , piso),On(e, piso),Color(a, rojo),Color(b, verde),
Color(c, amarillo),Color(d , purpura),Color(e, azul), LeftOf (a, d),

LeftOf (d , e)} (*)

• It contains all the “true” atomic sentences of the language,
and only them (still to be formalized)

• We want to define when a formula φ ∈ L(S) is true in D
• But what about formulas with free variables, e.g. ∃xOn(x , y)?

Its truth (or not) should depend on the value y takes in Dom

• We need, in addition to D, an assignment

θ : {u, v ,w , x , y , z , . . .} → Dom

A function that maps variables to domain elements

• With θ1 : y 7→ a the formula should be true, but not with
θ2 : y 7→ c

19 / 49

• We will give an inductive definition of “a formula φ being true
in structure D under assignment θ”

To be denoted with: D |= φ[θ]

• We mean “induction on the structure of a formula”

Following the syntactic construction formula rules on page 8

• φ[θ] denotes formula φ with its free variables replaced by the
domain elements according to θ

E.g. ∃xOn(x , y)[θ1] becomes ∃xOn(x , a)

• We expect D |= ∃xOn(x , y)[θ1] to hold

• Since we do not care about the values assigned to variables
that are not free in φ, we usually write D |= ∃xOn(x , y)[a]

• Let’s proceed ...

20 / 49

• Definition of D |= φ[θ] by induction on legal formulas φ

We assume the structure is represented as in (*) on page 19

1. φ is atomic formula, but not an equality

D |= φ[θ] :⇐⇒ φ[θ] ∈ D
Definition of LHS in terms of RHS, no need for “:”, just to emphasize

Also: “⇐⇒” is the usual mathematical symbol of the meta-language

Examples:

D |= On(b, a) (no need for θ, formula is “ground”, no variables)

D ̸ |= On(d , b) (meaning “it is not the case that D |= On(d , b)”)

D |= On(x , a)[b]

D ̸|= On(x , a)[c]

Remark: This case captures the “closed-world assumption”
(CWA) of RDBs:

A positive fact is true if an only it is explicitly represented in the

DB, in a table
21 / 49

2. For t1, t2 in Dom or variables (i.e. terms):

D |= (t1 = t2)[θ] :⇐⇒ t1[θ] and t2[θ] are (syntactically) identical

Examples:

D |= a = a D ̸|= a = b

D |= (x = a)[a] D ̸|= (x = b)[c]

Remark: This captures the “unique-names assumption”
(UNA) of RDBs:

Two different names (constants) in a RDB denote two
different objects; e.g. john and peter, being syntactically
different, are treated as different by the DB

That is, “john = peter” is never true in a RDB

22 / 49

3. If φ is a (legal) formula:

D |= ¬φ[θ] :⇐⇒ D ̸|= φ[θ]

Examples:

D |= ¬On(d , b), because D ̸|= On(d , b)
(equivalently due to CWA: On(d , b) /∈ D)

D |= ¬a = b (denoted D |= a ̸= b), because D ̸|= a = b

4. If φ,ψ are formulas:

D |= (φ ∧ ψ)[θ] :⇐⇒ D |= φ[θ] and D |= ψ[θ]

D |= (φ ∨ ψ)[θ] :⇐⇒ D |= φ[θ] or D |= ψ[θ]

D |= (φ→ ψ)[θ] :⇐⇒ If D |= φ[θ], then D |= ψ[θ]

(equivalently D |= φ[θ] =⇒ D |= ψ[θ])
︸ ︷︷ ︸

object language ︸ ︷︷ ︸
meta-language

• Here we are assigning their intended meaning to propositional
connectives (the same as in propositional logic)

23 / 49

• Notice how we recursively pass from a possible complex
formula on the LHS to simpler subformulas on the RHS

5. If φ is formula, and x a variable:

D |= ∀xφ[θ] :⇐⇒ D |= φ[θ xs], for every s ∈ Dom

Here, θ xs is the assignment that coincides with θ on every
variable, possibly except for x that is assigned the value s

Example: D |= ∀x¬On(piso, x) (θ irrelevant; no free variables on
LHS)

In fact: D |= ¬On(piso, x)[s], for every s ∈ Dom

6. If φ is formula, and x a variable:

D |= ∃xφ[θ] :⇐⇒ D |= φ[θ xs], for some s ∈ Dom

Example: D |= ∃x(Block(x) ∧ ¬On(x , piso))
In fact: D |= (Block(x) ∧ ¬On(x , piso))[b], with b ∈ Dom

• Here we are assigning meaning (semantics) to quantifiers

24 / 49

• The definition of truth is compositional in the sense that the
truth of a formula is determined by the truth of its
subformulas

Something we see already clearly see in propositional logic,
through the use of truth tables

• The inductive nature of this definition enables a recursive
procedure to evaluate the truth of a formula in a database

• This compositional evaluation of formulas (queries in RDBs)
is at the basis of SQL

The standard query language for RDBs

25 / 49

Owner
Cross-Out

Example: “There is a block that has no other block on top”

• ∃x(Block(x) ∧ ∀y(Block(y) → ¬On(y , x)))

• D |= ∃x(Block(x) ∧ ∀y(Block(y) → ¬On(y , x)))?

1. Is there an s ∈ Dom, such that:

D |= (Block(x) ∧ ∀y(Block(y) → ¬On(y , x)))[s]?

2. Is there a s ∈ Dom, such that:

D |= Block(x)[s] and D |= ∀y(Block(y) → ¬On(y , x)))[s]?

3. So, in D: Is there a s ∈ Dom, such that Block(s) and
for every t ∈ Dom : Block(t) ∈ D ⇒ On(t, s) /∈ D?

Clearly this true in D for s = c:
Block(c) ∈ D and, for every t ∈ Dom : Block(t) ∈ D ⇒ On(t, c) /∈ D

(also for values d and e for s)

• So, the answer is Yes!

• This is something a RDB actually does for query and IC
evaluation!

26 / 49

Exercise: Are the following sentences true or false in the structure
(database) D that models the blocks world?

Decide intuitively, but also using the inductive definition of truth

1. ∃x(Block(x) ∧ Colour(x , azul))

2. ∀x¬∃yOn(y , x)
3. ¬∀x¬∃yOn(y , x)
4. ∃x∃y¬On(y , x)
5. ∀x(∃yOn(x , y) → Block(x))

6. ∃y(Block(y) ∧ ¬∃z(Block(z) ∧ LeftOf (y , z))

7. ∀x∀y(Colour(x , z) ∧ Colour(y , z) → x = y)

27 / 49

Owner
Sticky Note
add: for all z

