
Defining New Predicates

• We could use FOPL to define new predicates

This is what we do when we define views in RDBs

• Example: New predicate ClearBlock(·) “containing” blocks
that are clear, with nothing on top

∀x(ClearBlock(x) ←→ (Block(x) ∧ ¬∃yOn(y , x))) (**)︸ ︷︷ ︸
new

︸ ︷︷ ︸
already existing

• A new predicate symbol introduced in the language with its
definition

This formula can be stored in the DB and used in
combination with the relations (tables)

This predicate becomes a “virtual” one-argument relation

Its contents can be computed upon request

• The new predicate can be used in new formulas
28 / 49

• Definitions in Math are of this kind

They can be seen as convenient abbreviations/shorthands

They could be eliminated, using the RHS instead

• Now we can obtain ClearBlock(d) as an extra, possible
virtual, ground atom

• The RHS of (**) can be seen as a query collecting all
constants that satisfy its condition

Q(x) : Block(x) ∧ ¬∃yOn(y , x)
Its answers become the contents of the new predicate

Ans(Q,D) = {c , d , e} (see page 4)

• The query can be evaluated using the inductive/recursive
definition of truth (more on this coming)

29 / 49

Defining Semantic Constraints

• We could also express semantic constraints (integrity
constraints in RDBs)

• Example: “Nothing can be on top of two different things”

∀x∀y∀z(On(x , y) ∧ On(x , z) → y = z) (***)

A sentence we expect to see satisfied by D

• A functional dependency: On[1] → On[2] (usual notation for FDs
not an implication)

The 2nd argument of On functionally depends upon the 1st

• “Every object that is on top of something is a block”

∀x∀y(On(x , y) → Block(x)) (4*)

Equivalently: ∀x(∃yOn(x , y) → Block(x))

An inclusion or referential constraint

In RDBs sometimes denoted On[1] ⊆ Block[1]

30 / 49

• ICs can be stored in the RDB

• Some may be automatically checked (verified) by the RDB

• Verifying an IC is like answering a Boolean query, i.e. that is
true or false

• We can use (***) and (4*) together with the relations and
views

• It is not only that we want them to be kept true by the RDB
(IC maintenance)

They can be put to good use:

1. Metadata (i.e. data about the data)

2. Additional synthetic knowledge

3. Semantic query optimization, etc.

31 / 49

More on the FOPL/RDB Connection

• A RDB can be seen as a set-theoretic structure D
With a (possibly infinite) domain and certain finite relations
defined on it

Example:

Salaries Name Salary
J. Page 5,000
V. Smith 3,000
M. Stowe 7,000
K. Stein 4,000

Positions Name Position
J. Page manager
V. Smith secretary
M. Stowe manager
K. Stein accountant

• In RDBs the relations/tables are always finite

• The active domain is the finite set of elements of the database
domain Dom that appear in the tables (Dom could be infinite)

ADom = {J.Page,V .Smith, . . . , 5,000 , . . . , accountant} ⊆ Dom

32 / 49

• A query Q(x̄) is a formula of FOPL with free variables x̄

• The values for those variables when the database satisfies the
query are the answers to the query from the database

Salaries Name Salary
J. Page 5,000
V. Smith 3,000
M. Stowe 7,000
K. Stein 4,000

Positions Name Position
J. Page manager
V. Smith secretary
M. Stowe manager
K. Stein accountant

Query: “manager position with its salaries”

Q(x , y) : ∃z(Salaries(z , x) ∧ Positions(z , y) ∧ y = manager)
(join captured via variable in common z)

• In SQL:
SELECT Salary, Position
FROM Salaries, Positions
WHERE Salaries.Name = Position.Name AND Position = ’manager’

(condition involves a join and a selection)

D |= Q[5,000 , manager] D |= Q[7,000 , manager]

(brackets contain the values for the variables that make the formula true, i.e.
the answers from D)

33 / 49

• The query is written in FOPL, also in its fragment called
“Relational Calculus” (RC) (see below)

In its RC and SQL versions it is a declarative query

Saying what we want, not how to compute that

• It can be automatically and internally transformed into an
imperative query in Relational Algebra (RA) (relying on the
inductive structure of the query)

The RA query evaluated as a sequence or relational/set
operations on the DB

• The query on page 33 is of the most common kind of queries:
conjunctive queries (CQs)

In predicate logic (and relational calculus) they are expressed
as ∃ followed by a conjunction (∧) of atomic formulas,
including equality

In RA they are of the form Project-Selection-Join (PSJ)

No negation (or set difference) in them
34 / 49

OWNER
Sticky Note
In the logical version of page 33, the projection is in the existential quantification, the join in the shared variables and the conjunction, and the selection in the equality

• CQs are monotone: The set of answers from a DB can only
grow when new atoms are inserted into the DB:

D ⊆ D′ =⇒ Q[D] ⊆ Q[D′]
(with Q[D] denoting the set of answers to Q from D)

On previous page: Q[D] = {(5,000 , manager), (7,000 , manager)}

• The query on page 33 can be evaluated or checked by
inspecting only elements in ADom (as opposed to in Dom)

That is, the query is safe or domain-independent

• “Query”: Q(x , y) : ¬Salaries(x , y)
It is legal formula of FOPL, but it is not safe as a query

Evaluating it requires looking for values outside the tables

• It cannot be answered by a RDB

• In RDBs we only admit and use safe queries (ICs, view
definitions, etc.)
(it is good enough to inspect and search inside the tables)

35 / 49

OWNER
Sticky Note
A reason for not having set complement in RA, but only set difference (difference of relations)

• A query may have negation and still be safe

“Employees who make more than 3K, but are not managers”

Q(x) : ∃y∃z(Salaries(x , y , z) ∧ z > 3K ∧ ¬Positions(x ,manager))

• The Relational Calculus is the safe portion of FOPL

In line with lack of the complement operation on sets

Only set difference in RA

• Exercise: Relational schema:

Frequents(Drinker ,Bar), Serves(Bar ,Beer), Likes(Drinker ,Beer)

Express in relational calculus (FOPL) the query about the drinkers
who do not frequent any bar that serves some beer they like

Analyze (non-)monotonicity of the query

36 / 49

OWNER
Highlight

OWNER
Highlight

Discussion

• RDBs is one of the best known and most used forms of
knowledge representation (KR)

• FOPL is at the very basis of them, and inspired their
developments

• FOPL goes much beyond RDBs

• One can create Knowledge Bases (KBs) containing logical
formulas for symbolic KR

• One can infer implicit knowledge from a KB by means of
logical inference (deduction)

Not only query answering (QA) as with RDBs

• QA can be seen as a very particular kind of inference

• We need to introduce some notions and techniques related to
inference in FOPL (they apply to RDBs, but much beyond)

37 / 49

OWNER
Sticky Note
Using the same symbolic language for the representation and the interpretation makes integration of the two levels easier, and dispenses us for considering possible non-computable interpretations of the language

A Bit More on FOPL

• A sentence φ ∈ L(S) of FOPL is universally valid if it is true
under every interpretation structure I for L(S)
(of the general kind on page 12, in particular for RDBs)

For every I : I |= φ (think of the tautologies in propositional logic)

• Example: ∀x(x = x) ∀xP(x) → P(c)

P(c) → ∃yP(y) (c a constant in S)
They symbolically capture the semantics (meaning) of
equality and quantifiers

FOPL versions of propositional tautologies, e.g.:
R(a, b) ∨ ¬R(a, b)

• Sentences φ, ψ ∈ L(S) are logically equivalent, denoted
φ ≡ ψ, iff (φ↔ ψ) is universally valid

In every interpretation structure for the language they are
simultaneously true or simultaneously false

(a semantic notion; symbol “≡” belong to the metalanguage)

38 / 49

• Examples: These equivalences are easy to check

(φ→ ψ) ≡ (¬φ ∨ ψ) ¬¬φ ≡ φ

¬(R(a, b) ∧ S(b, c)) ≡ (¬R(a, b) ∨ ¬S(b, c))
¬(R(a, b) ∨ S(b, c)) ≡ (¬R(a, b) ∧ ¬S(b, c))
¬∀xR(x) ≡ ∃x¬R(x) ¬∃xR(x) ≡ ∀x¬R(x)
∃x(R(x) ∨ S(x)) ≡ (∃xR(x) ∨ ∃xS(x))
∀x(R(x) ∧ S(x)) ≡ (∀xR(x) ∧ ∀xS(x))

• However: ∀x(R(x) ∨ S(x)) ≢ (∀xR(x) ∨ ∀xS(x))
∃x(R(x) ∧ S(x)) ≢ (∃xR(x) ∧ ∃xS(x))

• To refute ∀x(R(x) ∨ S(x)) ≡ (∀xR(x) ∨ ∀xS(x)) a
counterexample suffices

A structure that makes one true and the other false

N = ⟨N,Even,Odd⟩, with Even,Odd the sets of even and odd
numbers interpreting R, S , resp. makes the LHS true, but the
RHS false

39 / 49

• Exercise: Prove that

∀x∀y(On(x , y) → Block(x)) ≡ ∀x(∃yOn(x , y) → Block(x))

• Hint: One has to show that for an arbitrary structure
A = ⟨A,BlockA(·),OnA(·, ·)⟩ for the language at hand:

(a) A |= ∀x∀y(On(x , y) → Block(x)) =⇒
A |= ∀x(∃yOn(x , y) → Block(x))

(b) A |= ∀x(∃yOn(x , y) → Block(x)) =⇒
A |= ∀x∀y(On(x , y) → Block(x))

• Both implications are proved as usual in mathematics

40 / 49

• An interpretation structure I satisfies a set of sentences
Σ ⊆ L(S) iff it satisfies every sentence in Σ

I |= Σ :⇐⇒ for every φ ∈ Σ, I |= φ (*)

• Example:

I |= {∀x(Ma(x)→ Mo(x)), Ma(c)} iff

I |= ∀x(Ma(x)→ Mo(x)) and I |= Ma(c) iff

I |= (∀x(Ma(x)→ Mo(x)) ∧ Ma(c)) (always possible when Σ finite)

• Set of sentences Σ ⊆ L(S) and a sentence φ ∈ L(S):

φ is a logical consequence of Σ iff φ is true in every
interpretation structure that makes Σ true

Σ |= φ :⇐⇒ for every I, I |= Σ =⇒ I |= φ
(compare use of meta-symbol on LHS and (*); overloaded notation)

• Example: {∀x(Ma(x) → Mo(x)), Ma(c)} |= Mo(c)

41 / 49

• Notion of logical consequence is central in logic

• A semantic notion, because it is defined in terms of
interpretation structures and truth

• Logical consequences is what we establish in mathematics
when we prove that a theorem follows from a set of axioms
(remember Geometry, Vector Spaces, etc.)

• We want to avoid obtaining logical consequences by appealing
to interpretation structures

Want to avoid reasoning at the meta-level

• We need a purely symbolic, formal, deductive, mechanical
version/counterpart of logical consequence

• Something that can be automated as pure symbolic
processing of formulas

42 / 49

• We provide such symbolic deductive process for formulas of a
particular, but important, syntactic form

Via examples ...

• We consider clauses, which are disjunctions of literals, i.e. of
atomic or negations of atomic formulas

• Examples: These are clauses: R(a, b), ¬S(a, b),
R(a, b) ∨ ¬S(a, b), P(x) ∨ ¬R(x , a) ∨ U(y , x)

In clauses the variables are implicitly universally quantified

P(x) ∨ ¬R(x , a) ∨ U(y , x) is indeed ∀x∀y(P(x) ∨ ¬R(x , a) ∨ U(y , x))

• The resolution deduction rule works with clauses

It takes two clauses and produces a new clause by eliminating
“complementary” literals after the initial clauses have been
unified

43 / 49

• There is a symbolic method to translate arbitrary formulas
into sets of clauses

For example, ∀x(Ma(x) → Mo(x)) is logically equivalent to
the clause ¬Ma(x) ∨Mo(x) (see page 39)

• Example: ̸¬Ma(x) ∨Mo(x)
̸Ma(c)

Mo(c)

After unifying Ma(x) with Ma(c) via x := c

• The “resolvent” (bottom) is logical consequence of the
“parent” clauses (above)

• Purely syntactical, symbolic, logical “calculus”

Hence “calculus” in RC

44 / 49

• Example: Our knowledge base is the set of formulas:

Σ = {On(c, b),On(b, a), LeftOf (a, d),

∀x∀y∀z(LeftOf (x , y) ∧ On(z , x)→ LeftOf (z , y))}

• We want to conclude that: Σ |= LeftOf (c , d)

1. Last formula in Σ is equivalent to the (implicitly quantified):

¬(LeftOf (x , y) ∧ On(z , x)) ∨ LeftOf (z , y)

̸¬LeftOf (x , y) ∨ ¬On(z , x) ∨ LeftOf (z , y) (a clause)

2. ̸LeftOf (a, d) (from Σ)

3. ¬O̸n(z , a) ∨ LeftOf (z , d) (resolvent)

4. ̸On(b, a) (from Σ)

5. ̸LeftOf (b, d) (resolvent)

6. ̸¬LeftOf (x , y) ∨ ¬On(z , x) ∨ LeftOf (z , y)

7. ¬O̸n(z , b) ∨ LeftOf (z , d) (resolvent)

8. ̸On(c , b) (from Σ)

9. LeftOf (c , d) (resolvent)

45 / 49

OWNER
Sticky Note
notice the unification here that makes the variables in the other literals to take values

• This form of purely symbolic deduction has been implemented
in many computational systems

It is at the basis of the PROLOG programming language (for
PROgramming in LOGic)

And deductive extensions of relational DBs (RDBs)

And automated theorem provers (OTTER, PROVER9, VAMPIRE, ...)

• Resolution + Unification was an important step in AI (∼ 1965)

• Any formula can be transformed into a set of clauses

The issue are the existential quantifiers (clauses do not have
them)

There is a “trick” ...

46 / 49

• Examples:

∃x∀y(Block(y)→ ¬On(y , x)) 7→ ∃x∀y(¬Block(y) ∨ ¬On(y , x)) 7→

∀y(¬Block(y) ∨ ¬On(y , c)) 7→ ¬Block(y) ∨ ¬On(y , c) (c fresh constant)

∀y∃x(Block(y)→ ¬On(y , x)) 7→ ∀y∃x(¬Block(y) ∨ ¬On(y , x)) 7→

∀y(¬Block(y) ∨ ¬On(y , f (y))) 7→ ¬Block(y) ∨ ¬On(y , f (y))
(f a fresh function symbol)

• The logical equivalences on page 39 are useful to obtain
clauses Two additional useful ones:

∃x(φ ∧ ψ(x)) ≡ (φ ∧ ∃xψ(x)) and ∀x(φ ∨ ψ(x)) ≡ (φ ∨ ∀xψ(x))
When x does not appear free in ψ

Example: ∃y∀x(∀uQ(x , u, z) → ∀zP(y , u, z)) ≡
∃y∀x(¬∀uQ(x , u, z) ∨ ∀zP(y , u, z)) ≡
∃y∀x(∃u¬Q(x , u, z) ∨ ∀zP(y , u, z)) ≡
∃y∀x(∃v¬Q(x , v , z) ∨ ∀zP(y , u, z)) ≡ (!)
∃y∀x∃v(¬Q(x , v , z) ∨ ∀zP(y , u, z)) ≡
∃y∀x∃v(¬Q(x , v , z) ∨ ∀wP(y , u,w)) ≡
∃y∀x∃v∀w(¬Q(x , v , z) ∨ P(y , u,w)) (not a clause yet)

47 / 49

• What do we do with this?

∃y∀x∃v∀w(¬Q(x , v , z) ∨ P(y , u,w)) (*)

A prefix of quantifiers; two of them existential; the rest is fine ...

• Now we use a Skolem constant c for y , and a Skolem
function f (x) for z : ∀x∀w(¬Q(x , f (x), z) ∨ P(c, u,w))

¬Q(x , f (x), z) ∨ P(c, u,w)) (a clause)

• This clause is not logically equivalent to (*)

They do not even share the same language

• One can prove that the original FOPL KB and that with the
computed clauses are equiconsistent: One is consistent iff the
other is consistent

KB Σ is consistent if there is an interpretation I making it true (I |= Σ)

This is good enough for the form in which we use resolution
most of the time (a bit of this later)

48 / 49

Discussion

• FOPL is relevant in KR and other areas of AI

It will keep reappearing in different forms and contexts later on

• Using KBs written in full FOPL is perfectly fine, but reasoning
may be computationally very expensive (undecidable, uncomputable)

• One commonly uses better behaved fragments of FOPL for
KR

Syntactic subclasses of formulas of a FOPL language L(S)

• In the next chapter we will do this in the context of RDBs

• We will extend RC as a query language into a more expressive
one (Datalog, ...), but still computationally manageable

At the same time, the extension will be syntactically restricted

Both a restriction and an extension of FOPL for RDBs

• Those extensions can be used for KR in general
49 / 49

