
Chapter 2: Datalog and Deductive
Extensions of Relational
Databases

Leopoldo Bertossi

1 / 53

The Need for Extensions of RC

• Back to the blocks world

B

A D

C

E

• Want to define the predicate (view)
Above(·, ·)
True when an object is above another on
the same stack, maybe with other objects in between

For example, block C should be above block A

• Can we use RC to define this predicate?

• We want a definition that does not depend
on this specific configuration

It should work if we change this world
(or DB), e.g. adding blocks

• A first attempt ...

.

.

.

y

z

x

Above

On

Above

2 / 53

• What about:

∀x∀y(On(x , y)→ Above(x , y)) ∧

∀x∀y(∃z(Above(x , z) ∧ On(z , y)) → Above(x , y)) (*)

• A first “objection”: Not of the form of an explicit definition

With the new one side of a “↔” or an “=”, and something
known on the other

• However, we do obtain Above(c , a): Use first conjunct
above

From On(c , b)→ Above(c, b) plus On(c , b), obtain
Above(c , b)

Next, use second conjunct above

From ∃z(Above(c , z) ∧ On(z , a))︸ ︷︷ ︸
z=b

→ Above(c , a) plus

Above(c , b) and On(b, a): obtain Above(c, a)

3 / 53

• ∀x∀y(On(x , y)→ Above(x , y)) ∧

∀x∀y(∃z(Above(x , z) ∧ On(z , y)) → Above(x , y)) (*)

• A “glitch”: Above(d , a) can be true in the light of (*), and it
shouldn’t

That is, there are structures where Above(d , a) and the
formulas in (*) are both true

For example, structures where Above(d , a) is true, and the
antecedents of the implications in (*) are false (with which
the implications become true; check this!)

• What about

∀x∀y(Above(x , y)︸ ︷︷ ︸
the new

:←→ (On(x , y)︸ ︷︷ ︸
base case

∨ ∃z(Above(x , z)︸ ︷︷ ︸
recursive “call”

∧On(z , y)))?

A recursive definition?

• It does not work! For the same reason as above
Cannot force Above to contain exactly what is depicted on page 2

4 / 53

• Are we not clever enough to properly use RC (or FOPL)?

No!

• In RC (or FOPL) it is mathematically impossible to define the
transitive closure (TC) of a binary relation!

The smallest transitive binary relation that includes a given
one (under set inclusion)

And this is what we are trying to do here ...

• The required predicate minimality cannot be expressed

• The same applies to Relational Algebra (RA)

RA has the same expressive power as RC

• You may remember from “Discrete Math” that an algebraic iteration is

needed for the TC, whose number of steps depends on the initial relation

5 / 53

• This issue already appears in usual RDBs

• If one has a table showing direct flight connections, and one
tries to fly between cities using connections

Those indirect routes are not stored in the DB, and the
connections have to be computed

• One flies by transitive closure ...

• An stored iterative procedure will compute the routes

This will go beyond pure RA, but will use relational operations
as intermediate steps

• Or one can use something like Datalog, as to be seen ...

6 / 53

Datalog

• Datalog is a logical language that extends (part of) RC with
recursion

• Used as a query language, and for view definitions on RDBs

As a “Datalog program”

• Proposed and investigated in the mid 80s

• Constructs of Datalog found its way into commercial
relational DBMSs

• After some dormant period, it is back, healthy and strong

As the basis for many applications inside and outside RDBs

• Can be seen as enabling a “deductive” extension of RDBS:
Deductive DBs!

• Several “ontological” extensions of Datalog (will come back)

• A Datalog program extends a RDB represented as a Herbrand
structure

7 / 53

Example: DB D Salaries Name Salary
J. Page 5,000
V. Smith 3,000
M. Stowe 7,000
K. Stein 4,000

Positions Name Position
J. Page manager
V. Smith secretary
M. Stowe manager
K. Stein accountant

• A Datalog program defining a view:

Top(x) ←− Salaries(x , y), y > 3,000 (*)
(variables universally quantified; comma stands for ∧)

• This is a “rule” defining the predicate on the LHS

It can be written as a clause:
∀x∀y(Top(x) ∨ ¬Salaries(x , y) ∨ ¬ y > 3,000)

Equivalent to: ∀x(Top(x) ∨ ∀y(¬Salaries(x , y) ∨ ¬ y > 3,000))

So, think of (*) as: Top(x) ←− ∃y(Salaries(x , y) ∧ y > 3,000)

• Compute extension (contents) of predicate Top by going to
the RHS and collecting what is true, and nothing more:

Top[D] = {⟨J.Page⟩, ⟨M.Stowe⟩, ⟨K .Stein⟩}

• A form of minimization (extension of CWA to be made precise later on)

For V.Smith the implication is true, because the body is false; but being the
body false, it is not collected

8 / 53

• For Top we obtain the same as in Chapter 1 with RC or RA

There is nothing like minimization needed in this case

• We would expect Datalog to work fine when defining the TC

• Notice that the program and the RDB belong to the same
level of language, the object or symbolic language

For this reason it is common to list the contents of the DB as
a set of facts (atomic formulas w/o free variables) in the
program Top(x) ←− Salaries(x , y), y > 3,000

Salaries(J.Page, 5 , 000) ←−
· · ·

Symbol ← on the RHS of facts usually omitted; they are true without conditions

• The program can be seen as an extension of the DB (now as
set of ground facts), which called the extensional database
(EDB) of the program

The rules form the intentional database (IDB), and can be
seen as a set of view definitions or queries

9 / 53

Example: Relational DB D = {Arc(b, c),Path(b, b),Path(c , c)}
Datalog program Π on top of D:

Path(x , z) ← Arc(x , y), Path(y , z) (∗)

• A recursive definition of Path (or extension of the partial
definition already in the DB)

• A predicate defined in terms of itself!

Paths defined in terms of shorter paths

• Now we give a precise, “model-theoretic” or “model-based”
semantics to Datalog programs (using this example)

• In terms of the intended models of the specification (program)

• By definition, what is true wrt. the program is what is true in
the intended models of the program

This idea can be applied to all kinds of logic-based
specifications

10 / 53

• What is the semantics of Π? (its meaning)

• What world is Π describing?

Is there an intended model (the world) for Π?

• We concentrate on Herbrand structures

Those built with the Herbrand universe H = {b, c}

• Now, with the program’s predicates we consider the Herbrand
Base (HB) of Π

HB(Π) = {Arc(b, b),Arc(c , c),Arc(b, c),Arc(c , b),
Path(b, b), Path(c , c),Path(b, c),Path(c , b)}

It contains all the possible ground atomic formulas that can
be built with the program’s language

• Each of the 28 subsets of HB(Π) will be a Herbrand structure

Each of them looking like the DBs (c.f. Chapter 1)

11 / 53

• Some Herbrand structures will make the program true, others
not ...

Those that do, will be the Herbrand models of the program
(just “models” from now on)

• Making the program true means:

• Making all the rules true, as usual implications

• In particular, they have to contain all the facts of the program,
i.e. they have to contain D

• For the first item, we consider (at least conceptually) all the
ground instantiations on H of the program’s rules

Path(b, b) ← Arc(b, b), Path(b, b)

Path(b, c) ← Arc(b, b), Path(b, c)

· · · ← · · ·
Path(b, b) ←
Path(c, c) ←
Arc(b, c) ←

12 / 53

Path(b, b) ← Arc(b, b), Path(b, b)

Path(b, c) ← Arc(b, b), Path(b, c)

· · · ← · · ·
Path(b, b) ←
Path(c, c) ←
Arc(b, c) ←

• Take M1 = {Arc(b, c),Path(b, b),Path(c , c),Path(b, c)}, a
candidate to be a model

• Ground rule Path(b, c)← Arc(b, c), Path(c , c) is true in
M1 iff when all the atoms in the body (RHS) are true, i.e.
belong toM1, then also the head (LHS) belongs toM1

M1 makes this rule true:
M1 |= (Path(b, c)← Arc(b, c), Path(c, c))

• Also: M1 |= (Path(b, c)← Arc(b, b), Path(b, c))

Trivially, because the body is false: Arc(b, b) /∈M1

13 / 53

• It turns out that M1 |= Π, i.e. it is a model of the
program

It makes all ground rules true

• Another model of the program: (check it!)

M2 = {Arc(b, b),Arc(c , c),Arc(b, c),Arc(c , b),Path(b, b),
Path(c , c),Path(b, c),Path(c, b)}

Actually, the Herbrand base itself; always a model ...

• Yet another model

M3 = {Arc(b, c),Path(b, b),Path(c, c),Path(b, c),Path(c, b)}

Last atom not “justified” by rule (*), but still the implication
is true

• A Herbrand structure that is not a model of Π

M4 = {Arc(b, c),Path(c , c),Path(c, b)}
Path(b, b),Path(b, c) are missing

• There are more candidates
14 / 53

• For a fixed program, Herbrand structures can be compared by
set inclusion: M1 ⫋M3 ⫋M2, M4 ⫋M3

⊆ is a partial order in the class of Herbrand structures

• The same applies to Herbrand models, i.e. those that satisfy Π

In our example: M1 is a minimal Herbrand model of Π:

• It is a model of Π

• There is no other Herbrand modelM withM ⫋M1

That is, no proper subset is also a model (check this
eliminating one of the atoms inM1 at a time)

• The minimal model will be the intended model

• Its minimality is what we need to make recursive definitions
(and transitive closure) work

• No unjustified atoms in the intended model

• An extension of the CWA
15 / 53

Example: Datalog program
R(x)← P(x)
P(a)
Q(b)

• Contents of P and Q are explicitly given, and the
“intentional” relation R a defined view

• A Herbrand structure representing a possible state of the
world:

M1 = {P(a),Q(b),R(a),R(b)}
It says that those atoms inM1 are true and nothing else, e.g.
that P(a) is true, but not P(b)

• This is a model of the program, because it makes all the rules
above true (check this!)

• There are models and non-models: (check them!)

16 / 53

Models

• {P(a),Q(b),R(a),R(b),P(b)}

• M1 = {P(a),Q(b),R(a),R(b)}

• M0 = {P(a),Q(b),R(a)}
• ...

Non-models

• {P(a),R(a),R(b),P(b)}
• {P(a),Q(b),R(b)}
• {Q(b),R(a),R(b)}
• ...

• M1 is a model, but in it R(b) is unnecessarily true,
“unjustified”

R(a) is forced to be true (to satisfy the rules), but not R(b)

• Instead,M0 contains exactly what is necessary to make the
program true

It is (set-theoretically) contained in any other model of the
program

M0 gives the meaning (semantics) to the program

17 / 53

• More generally: We are comparing models (sets of ground
atoms) by set inclusion, which is a partial order

A partial order may have none, one or several minimal
elements

• Theorem: A Datalog program Π has exactly one minimal
Herbrand model, denotedM(Π)

• By definition, the semantics of Π is given byM(Π)

• What is true wrt. to Π is exactly what is true inM(Π)

• Interpreted as “program Π describes world M(Π)”

• How can be compute the minimal model?

• Generating the program instantiation and checking candidates
not appealing

18 / 53

Example: Program Π R(x) ← P(x)

P(x) ← Q(x , y)

Q(a, a) ←
Q(a, b) ←

• The minimal modelM(Π) of the program can be obtained
bottom-up, by propagating the facts through the rules, from
right to left (forward-propagation), iteratively:

• First step: Q(a, a), Q(a, b) ∈M(Π)

Second step: P(a) ∈M(Π)

Third step: R(a) ∈M(Π)

• A fix-point has been reached; nothing new is obtained

M(Π) = {Q(a, a),Q(a, b),P(a),R(a)}
• This is general, even with recursion: The minimal model of a
Datalog program can be obtained as the fix-point of the
bottom-up evaluation we just described

19 / 53

Datalog vs. Relational Algebra/Calculus

• Almost every RA operation can be expressed by means of a
Datalog program

• Examples: Defined predicate Ans collects operation results

RA Datalog

• Selection

σX=a(R(X ,Y)) Ans(a,Y)← R(a,Y)

• Intersection (conjunction)

R(X ,Y)∩ S(X ,Y) Ans(X ,Y)← R(X ,Y),S(X ,Y)

• Union (disjunction)

R(X ,Y) ∪ S(X ,Y) Ans(X ,Y)← R(X ,Y)
Ans(X ,Y)← S(X ,Y)

Two rules define the union, for the two cases

• Projection (existential quantification) (c.f. page 8)

ΠX (R(X ,Y)) Ans(X)← R(X ,Y)

20 / 53

• Ans(X)← R(X ,Y)

Like having an existential quantifier on Y on the RHS

This is always the case when a variable appears in the body of
the rule (the RHS), but not in the head (LHS)

• Join

R(X ,Y) 1Y=Z S(Z ,V) Ans(X ,Y ,V)← R(X ,Y),S(Y ,V)

• Difference

R(X ,Y)∖ S(X ,Y) ?????

No negation in Datalog!

• But we do have recursion in Datalog!

And we can do things that are (provably) impossible in RA
E.g. defining Ancestor as the TC of Parent

21 / 53

• The SQL standard (SQL99 or SQL3) adopted recursive views

Idea, semantics, and query evaluation come from Datalog
(coming)

• Datalog can be extended with built-in or evaluable predicates:
=, ̸=, <, ...

They have a fixed and intended interpretation

E.g. if a and b are different constants, the atom a = b is
evaluated as false, whereas a = a is true

With infinite extensions if underlying domain is infinite

• They can be used in conditions in the bodies, e.g.

SeniorParent(x)← Parent(x , y),Age(x , z), z > 65

Ans(x , y)← R(x , y), x = a

They are evaluated as above

22 / 53

Example: A Datalog program defining two intentional (virtual)
relations on top of extensional relational DB

Declarative and executable specifications of data-related
domains

An extension of relational algebra/calculus/databases

A powerful rule-based language

Example: A Datalog program defining two intentional
(virtual) relations on top of extensional relational DB

P(x,y) ←− Q(x,y),R(x,z,v)
Q(x,y) ←− S(x,u),M(u,y)

S A B
a b
a c
d c

M B C
a b
b c
c e

R A D E
a b t
c c g
e f h
c a s

Read “←” as implication (with a caveat) and comma as conjunction; variables on RHS

but not on LHS are filtered out (implicitly existentially quantified)

65

Variables on RHS that are not on LHS are filtered out
(implicitly existentially quantified)

To create extensions (tables) for intentional predicates P and Q
(if we wanted; it is not always necessary): propagate data from
the underlying tables to the RHSs of the rules, and finally to the
LHSs of the rules

For Q: Evaluate the RHS of the rule for Q is like posing the
relational algebra query ΠAC(S 1A M), propagating the obtained
tuples to Q’s extension, obtaining Q = {(a,c),(a,e),(d,e)}
Now that we have Q, we can compute the extension of P using
the first rule

The query in the body is ΠAC(Q 1A R); evaluating it propagate to
the left the resulting tuples: P = {(a,c),(a,e)}

66

23 / 53

And the minimal model is computed

Notice that the instantiated rule (implication):

Q(a,d)←− S(a,e),M(e,d)

is true, because the RHS (the antecedent) is false (those tuples
are not in the extensional DB)

In spite of this, we do not add (a,d) to Q’s extension: to make
an implication true we always make the RHS true first, and then
the LHS, by data propagation

This a restricted and minimal way of making implications true:
we make true what is forced to be true, we never insert tuples
for free, there must be a justification (the truth of the antecedent)

67

24 / 53

