
Example:

A Datalog program defining three intentional predicates:

←
←
←
←

Person(x)
Person(y)

Grandparent(x,z)
Ancestor(x,z)
Ancestor(x,z) ←

Parent(x,y)

Parent(x,y)

Parent(x,y),Parent(y,z)
Parent(x,z)
Ancestor(x,y),Parent(y,z)

On top of the extensional DB:
Parent P C

juan pablo
adam cain
adam abel
eve cain

pablo luis

x
Ancestor<

Ancestor

z
Py Parent

Data propagated minimally from right to left, creating (virtual)
extensions for intentional predicates

68

25 / 54

To generate the extension for Ancestor, first apply the
second last rule, moving all the data from Parent to a partial
extension for Ancestor, obtaining:

Ancestor′ = {(juan, pablo),(adam,cain),(adam,abel),(eve,cain),(pablo, luis)}

Now, use the last, recursive rule, evaluating the RHS, i.e. the
query ΠAnc.1,C(Ancestor′ 1 Parent) (at this stage a self-join of
Parent), obtaining a new partial extension for Ancestor:

Ancestor′′ = Ancestor′∪{(juan, luis)}
We use the same last rule again, a join of Ancestor′′ and Parent

We evaluate the RHS of the last rule again, but this time nothing
new: we have reached a fix-point!

69

An the minimal model is fully computed

26 / 54

More on Recursion

Example: Descendants of aa?

Q(x) ← Ancestor(aa, x) (1)

Ancestor(x , y) ← Parent(x , y) (2)

Ancestor(x , y) ← Parent(x , z),Ancestor(z , y) (3)

DB D of Facts: Parent(a, aa),Parent(a, ab),Parent(aa, aaa),
Parent(aa, aab),Parent(aaa, aaaa), Parent(c, ca)

Like having a selection/projection query (the first rule) on top of a
recursively defined view; in its turn defined on top of a RDB

x
Ancestor<

Parent

y

z

Ancestor

27 / 54

Dependency Graph:

23

Example:
Q(x) ← Ancestor(aa, x) (1)

Ancestor(x, y) ← Parent(x, y) (2)

Ancestor(x, y) ← Parent(x, z),Ancestor(z, y) (3)

Facts: Parent(a, aa),Parent(a, ab),Parent(aa, aaa),
Parent(aa, aab),Parent(aaa, aaaa), Parent(c, ca)

Dependency Graph: Q

[Ancestor]

Parent

(Ancestor is recursive)

Like having a selection/projection query (the first rule) on top of a
recursively defined view; in its turn defined on top of a relational database

(Ancestor is recursive,

an iteration)

Computation:

1. Initialize Ancestor and Q (query answer predicate) as empty:

Ancestor = ∅ Q = ∅
2. View Ancestor needs to be computed

First Ancestor = ∅
Apply rule (2) once, obtaining by forward propagation:

Ancestor = {(a, aa), (a, ab), (aa, aaa), (aa, aab), (aaa, aaaa),
(c , ca)}

This is a partial computation of the view

28 / 54

3. Apply (3) with the tuples obtained in the previous step as
input for the right-hand side, and propagate to the head

That is, perform the join Parent 1 “Ancestor”, with
“Ancestor” only a partial version of the (final) Ancestor

Newly generated tuples for Ancestor : (a, aaa), (a, aab), (aa, aaaa)

New state: Ancestor = {(a, aa), (a, ab), (aa, aaa), (aa, aab),
(aaa, aaaa), (c , ca), (a, aaa), (a, aab), (aa, aaaa)}

4. Since new tuples were generated wrt 1., apply rule (3) again,
with the partial extension for Ancestor as input, from righ to
left (forwards) Newly generated tuples for Ancestor :

(a, aaa), (a, aab), (aa, aaaa), (a, aaaa)

The underlined tuples were recomputed!

New state: Ancestor = {(a, aa), (a, ab), (aa, aaa), (aa, aab),
(aaa, aaaa), (c , ca), (a, aaa), (a, aab),

(aa, aaaa), (a, aaaa)}

29 / 54

5. Since new tuples were generated, apply rule (3) once more

Generated tuples for Ancestor :
(a, aaa), (a, aab), (aa, aaaa), (a, aaaa)

6. No new tuples were obtained (redundant recomputation!);
same state

Block for Ancestor is completely computed

7. Now compute the extension of Q applying its defining rule (a
selection followed by a projection)

Generated tuples: Q = {aaa, aaaa, aab}
Same result is obtained by computing the minimal model for the
program consisting of rules (2)-(3) plus D, and posing the top
query (1) to the minimal model

The same minimal model can be used for different top queries

30 / 54

On the Minimal Model

• The minimal model can be computed in polynomial time in
the size of the extensional DB (EDB) i.e. in data complexity
(i.e. varying the EDB, but keeping the program fixed)

• Like creating a new database that extends EDB and querying
it as usual

Extensional

P  ...
Q  ...

intentional
schema S'

extensional
schema S

meaning?

program

Intentional
Database

DB for
schema
S + S'

Query Q(x)
(in terms of S, S’, Ans)

as query program as usual query in RA, RC, SQL

Ans(x)  B1, …, Bn
B1  Etc.

Etc.
query program

Extensional
Database (EDB)

Database

(minimal model M)

• Alternatively, pose queries to the new virtual database,
without materializing first and posing a usual query next

31 / 54

• One can pose the query directly on top of the program that
defines the extension, as an extra, top layer

Propagating upwards data to answer the top query

But maybe too much data, that is not needed for the top
query

• In the example above, the full TC of Parent is computed, and
moved upwards, to the top query level

Being only interested in descendants of aa, the top selection
discards too many computed tuples

• All computations before last step (7.) were done without
considering the parameter aa in the query

Many tuples were carried to the upper level and then filtered
out: too much useless computation

This part of the process can be optimized

32 / 54

• There is not only computation of “irrelevant” tuples

Also recomputation of tuples

• The method applied above for the computation of the
minimal model is the “naive method”

This other part of the process can also be optimized

• With bottom-up evaluation we get all the answers at once

• There are many query optimization methods

33 / 54

Recursion in SQL3

Datalog is built-in in the newer standards of SQL
SQL3 allows to define recursive views, possibly with stratified
negation
In a RDBMS using SQL3, we want to answer queries like
Examples:

1. Relation ParentOf(parent,child)
Query: Find all ancestors of Mary

2. “Explosion of Parts”
Relations: PartOf(part#,subpart#), Cost(part#,price)
Query: What is the total cost of part #123?
Each part consists of subparts, each subpart of subsubparts,
etc.

34 / 54

Example: Ancestors of Mary given the table
ParentOf(parent,child)?

WITH RECURSIVE Ancestor(anc,desc) AS

((SELECT parent AS anc, child AS desc

FROM ParentOf)

UNION

(SELECT Ancestor.anc,

ParentOf.child AS desc

FROM Ancestor, ParentOf

WHERE Ancestor.desc = ParentOf.parent))

SELECT anc

FROM Ancestor

WHERE desc = "Mary";

Notice that the definition contains the base case, and the properly
recursive case
The union corresponds to the two rules used to define the new
predicate

35 / 54

Example: Total cost of part #123 from
PartOf(part#,subpart#) and Cost(part#,price)?

WITH RECURSIVE AllParts AS

((SELECT * FROM PartOf)

UNION

(SELECT A1.part#, A2.part#

FROM AllParts A1, AllParts A2

WHERE A1.subpart# = A2.part#))

SELECT sum(Cost.price)

FROM AllParts, Cost

WHERE AllParts.part# = 123

AND AllParts.subpart# = Cost.part#

36 / 54

Several extensions of Datalog

E.g. aggregation functions
R A D N

a b 100
a c 150
c f 30
c a 125

Ans(x,sum(z)) ← R(x,y,z)

Addition with group-by
Ans A N

a 250
c 155

7037 / 54

Top-Down Query Evaluation

Uses the resolution deductive rule Program Π:

burglary . hearsAlarm(mary). earthquake. hearsAlarm(john).

alarm ← earthquake. (1)

alarm ← burglary . (2)

calls(X) ← alarm, hearsAlarm(X). (3)

call ← calls(X). (4)

Positive Datalog Two ways to evaluate queries:

1. Build the minimal model and query it as a RDB

Bottom-up approach (typical of Datalog)

Minimal Model M contains:

• Facts: burglary , hearsAlarm(mary), earthquake, hearsAlarm(john)

• Derived atoms: alarm, calls(mary), calls(john), call

Query: :− call? Yes! (by queryingM)

38 / 54

2. Query-dependent methodology based on resolution

Top-down approach (typical of Prolog)

• Query: call? So, we try to prove/deduce atom call

• We add it in negated form to the program: ¬ call

It will be a proof by contradiction via resolution

A contradiction is a clause that is always false: the empty
clause 2 (no literals)

• Good enough: Remember equiconsistency result from
Chapter 1

Negative literal, written in clausal rule form: ←− call︸︷︷︸
a goal

• Resolution with (4):
←− c̸all

̸call ←− calls(X)

←− calls(X)︸ ︷︷ ︸
new goal• Etc. until reaching 2

39 / 54

Owner
Sticky Note
It is inconsistent, because: (a) For a clause to be satisfied by a structure, at least one of the literals in the disjunction has to be true. (b) Since the empty clause has no literals, no structure can make it true. Then, in is inconsistent.

:- call

:- calls(x)

x=mary

:- alarm, hearsAlarm(x) alarm? Yes!

:- earthquake, hearsAlarm(x)

x = john

resolution with (4)

resolution with (3)

resolution with (1) (left) and (2) (right)

:- burglary, hearsAlarm(x)

unification and
resolution w/facts

:- hearsAlarm(x) :- hearsAlarm(x)

x=mary x = john

Yes! Yes! Yes! Yes!

• Prolog follows leftmost path in depth (in red) with
backtracking

• Search guided by the query (contrary to bottom-up)

• One answer at a time (slower that bottom-up)

• :− the same as ← (Prolog notation)

• :− call equivalent to ¬call
• :−calls(x) equivalent to ¬∃xcall(x)
• Above: a successful (resolution-based) refutation tree

40 / 54

• Above Yes! means success, i.e. the empty clause 2 was
reached

• At the root we have the negation of what we want to prove,
in the form: ← call

• The unifications that lead to success are witnesses for the
implicit existential variables

Those values provide the query answers

• Bottom-up vs. Top-down query evaluation?

Model-based vs. procedural semantics?

Being true in intended model vs. existence of refutation tree?

• For (positive) Datalog programs Π and conjunctive queries
Q both query evaluation methods are equivalent

They return exactly the same answers

41 / 54

