
Adding Negation Datalogs,not

• If we extend Datalog with negation in rule bodies, we will
have RA and more

E.g. P(x , y)← R(x , y), not S(x , y) (*)

This would capture the difference of RA: P = R ∖ S

• Notice that we are not using ¬, the classical negation of
FOPL in the body

not will have a slightly different meaning (semantics)

• In RDBs we apply the CWA: If we do not have the (positive)
fact p explicitly given, we say p is false, and its negation true

A form of a non-classical “procedural negation”, different
from classical ¬ used in classical logic and mathematics

The truth of this new negation is based on “not finding p”

• This is the idea behind not
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• In (*) P(a, b) becomes true when (a, b) is in R but not in S

• So, not is weaker that classical negation:

¬p “⇒′′ not p, but not the other way around

• In classical logic, if we cannot prove P(a, b), we cannot
assume ¬P(a, b) is true; it may be undetermined

P(a, b) may be true in some models and false in others

But with Datalog and its extensions, we do not consider all
kinds of models

• This form of weak procedural negation is used in Datalog with
negation, as an extension of the CWA, from the EDB to the
IDB

• All this has to be properly established through the definition
of the intended semantics
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Example: EDB

D = {P(a, b),P(a, a),P(c, b),Q(a, b),Q(c, c), S(a, a),T (a, b)}

Intensional database with view definitions in Datalog with negation:

R(x , y)← P(x , y), not Q(x , y)

R(x , y)← T (x , y),R(x , z), not S(x , z)

P,Q,S ,T are base, extensional tables, and R is intensional
predicate, recursively defined

It uses both negation and recursion (and implicit disjunction)

The rules as safe: (related to the notion of safe query of RDBs)

• Every variable appearing in a negative body literal also
appears in a positive body literal (in the same body); and

• Every variable appearing in a head also appears in the rule
body
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Example: These rules are safe:

P(x , y)← S(x),Q(y), not S(x , y),T (y , z)
P(x , y)← S(x , y), not R(x , y)

Here all the variables in negative literals refer to values that appear
in tables (intentional or not)

These are not safe:

P(x , y)← S(x), not S(x , y),T (x , z)
P(x , y , z)← S(x , y), not R(x , y)

In the first one, what is the meaning of the negative literal?

In the second case, any value from the possibly infinite domain
could be used for z , generating an infinite relation

All this in the spirit of safe or domain independent queries of RC

From now on, we accept only programs with safe rules
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• We will also assume that Datalog programs with negation are
stratified (or have stratified negation)

Denoted Datalogs,not

• Informally for the moment, this means that there is no
recursion via negation

Not the same as having both negation and recursion: the
program on page 44 is stratified

• The semantics of a Datalogs,not program is also a fix-point
semantics

• Compute the intended model, the so-called “standard model”

Use the same procedure applied to Datalog programs:
bottom-up and with forward-propagation

Treating negation when it pops up as usual difference of RA
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Example: (cont.) D = {P(a, b),P(a, a),P(c, b),Q(a, b),Q(c, c), S(a, a),T (a, b)}

R(x , y)← P(x , y), not Q(x , y)

R(x , y)← T (x , y),R(x , z), not S(x , z)

Computation of the standard model M:

1. Propagate values into R using first rule: R = {(a, a), (c, b)}
(partial computation)

That rule is used once (only extensional tables in body)

Bodies are evaluated using relational algebra at every step

2. Use second rule with partial contents of R in body

(T 1 R)(x , y , z) = {(a, b, a)}, but (a, a) ∈ S

No new tuples for R at this step; update
R = {(a, a), (c , b)} ∪ ∅
A fix-point is reached: M = D ∪ {R(a, a), R(c , b)}

Negation and recursion do not interact: Each predicate has been
completely computed (at a previous step) when affected by a
negation
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Example: EDB: D = {Q(a),Q(b),Q(c),H(b),T (a, b)}
Program Π: P(x) ← Q(x), not R(x)

R(x) ← S(x)

R(x) ← H(x), not S(x)

S(x) ← T (x , y), not U(y)

S(x) ← U(x)

Stratification of predicates: S1 < S2 < S3 < S4

• S1 = {Q,H,T ,U}
• S2 = {S} S has to be in a stratum above U, because it is defined by a

negated U• S3 = {R} (idem)

• S4 = {P} (idem)

The upward computation follows the strata

Extensions of predicates at a given stratum are completely
computed before moving to the next stratum above

A negated atom, not Q, can be invoked by a body of a rule
defining a predicate P ∈ Si only if it Q ∈ Sj , with j < i
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Here:

• M1 = D It gives empty extension to U

• M2 = {S(a)}
• M3 = {R(a),R(b)}
• M4 = {P(c)}

The standard model:

M(Π) = M1 ∪M2 ∪M3 ∪M4

= {Q(a),Q(b),Q(c),H(b),T (a, b), S(a),R(a),R(b),P(c)}

This semantics of stratified programs extends the semantics of
(negation-free) Datalog programs

If the program does not have negation the standard model
becomes the minimal model

Always welcome: a smooth extension without a radical change of
semantics
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Example: Beware, recursion may happen through several rules

P(x , y)← R(x , y), not S(x)
R(x , y)← P(y , x)

Recursive, still stratified

Recursion can be detected through a directed graph with predicates
as nodes, with edges from body predicates to the head predicate

If there are loops (cycles), there is recursion

We can annotate edges with, say n, when the body predicate
appears negated

A stratified program should have no cycles with an edge annotated
with n
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Example 1: We can express usual queries in this Datalogs,not

Salaries Name Salary
J. Page 5,000
V. Smith 3,000
M. Stowe 7,000
L. Stark 4,000

Positions Name Position
J. Page manager
V. Smith secretary
M. Stowe manager
K. Stein accountant

• Referential IC: ψ : ∀x∀y(Salaries(x , y)→ ∃zPositions(x , z))
• Not satisfied by DB D: D ̸|= ψ

• Want to catch inconsistencies posing a violation query (view):

In RC: Qψ(x) : ∃y(Salaries(x , y) ∧ ¬∃zPositions(x , z))
• In Datalog, stratified Datalog?

• Viol(x)←− Salaries(x , y), not Positions(x , z))
not safe ↑

• Better introduce auxiliary predicate, and use two rules:

Viol(x)←− Salaries(x , y), not Aux(x))

Aux(x)←− Positions(x , z)

• Viol [D] = {⟨L.Stark⟩} = Qψ[D] (verify by bottom-up evaluation)
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Example 2: (example 1 cont.)

• Above we posed an open query, i.e. with open variables

• A query may also be Boolean, i.e. only true or false in a DB

• In the previous example, we may be interested in knowing if
there is a violation or not

• As before (and always), we introduce and define a
query-answer predicate

In this case it becomes a propositional (i. e. Boolean) variable

• yes ←− Salaries(x , y), not Aux(x))
(plus the other rule as above)

All variables in the body are implicitly existentially quantified

In (safe) RC this would be the Boolean query:

∃x∃y(Salaries(x , y) ∧ ¬Aux(x)
• The query is true if atom yes belongs to the minimal or

standard model, and false otherwise
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Example 3: Commonsense Reasoning in Datalog
Flies(x) ←− Bird(x), not Abnormal(x)

Bird(x) ←− Canary(x)

Bird(x) ←− Penguin(x)

Abnormal(x) ←− Penguin(x)

Canary(tweety). Penguin(pewee).

• Query: Flies(tweety)?

• Check that the standard model is:

M = {Canary(tweety),Penguin(pewee),Abnormal(pewee),Bird(pewee),

Bird(tweety),Flies(tweety)}

• Tweety does fly!

• First is a commonsense (default) rule: “birds normally fly”

• Unless there are explicitly stated exceptions

• Model minimality makes exceptions minimal!

CWA: W/o explicit evidence of abnormality, there isn’t

• Very useful in KR!
53 / 55



Monotonicity vs. Non-Monotonicity

• The previous example shows something quite relevant

• Negation in Datalog produces a non-monotonic behavior:

For a program Π ∪ D certain consequences may be invalidated
when the DB grows: For a ground atom A

A ∈M(Π ∪ D) and D ⫋ D′ ̸=⇒ A ∈M(Π ∪ D′)
• Counterexample: In the previous example consider:

D = {Canary(tweety),Penguin(pewee)}
D′ = {Canary(tweety),Penguin(pewee),Abnormal(tweety)}

Now Tweety does not fly: Flies(tweety) /∈M(Π ∪ D′)
• Commonsense reasoning is intrinsically non-monotonic!

• Datalog (w/o negation) is monotonic (in the same sense and
for the same reason as conjunctive queries in DBs):

A ∈M(Π ∪ D) and D ⫋ D′ =⇒ A ∈M(Π ∪ D′)
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Unstratified Datalog?

Example: D = {Q(1),Q(2)} P(x) ← Q(x), not P(x)

• P is defined by recursion via negation

• Program is not stratified!

• Bottom-up computation of P:

1. P = ∅
2. P = {1, 2}
3. P = ∅
4. etc., etc.

• Infinite loop! No fixpoint!

• Unstratified programs not considered as query languages in
DBs

Not allowed in SQL3; only Recursive Stratified Datalog

• However, they are useful in Knowledge Representation
(coming ...)
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