
Chapter 3: Answer-Set Programming
Non-Monotonic Logic Programming
& Combinatorial Problem Solving

Leopoldo Bertossi

1 / 47

Where We Start From

• Datalog programs with (weak, non-monotonic) negation (not)
in rule bodies are called “Normal Programs” in the context of
Logic Programming

• Datalog programs with stratified negation form a particular
class of Normal Programs (NPs)

• In the following, programs may have no negation, stratified
negation, or unstratified negation

• We will give a uniform semantics to NPs

• This general semantics will coincide with those we already
have for negation-free programs and programs with stratified
negation

• As usual, we give a model-based semantics to NPs

By characterizing the intended models, i.e. a “possible-worlds
semantics”

2 / 47

First, a reminder of why we call negation “weak or non-monotonic”

Example: Flies(x) ← Bird(x), not Abnormal(x)

Abnormal(x) ← Penguin(x)

Abnormal(x) ← Ostrich(x)

Abnormal(x) ← Canary(x),BrokenWing(x)

Bird(x) ← Canary(x)

Canary(tweety).

1. A program with stratified negation

2. Its standard model (containing the only true atoms) is M =
{Canary(tweety),Bird(tweety),Flies(tweety)} (⇒ Tweety flies)

3. No evidence that it is abnormal, so it is assumed it is not
(commonsense reasoning!)

4. Negation is weak in that it becomes true when there is not evidence
for the affected positive atom to be true

5. Also non-monotonic: adding knowledge to the program may lead to
a rejection of a previous conclusion

With additional atom BrokenWing(tweety), Tweety no longer flies

3 / 47

Data Complexity of Datalogs,not

• The evaluation of a Datalogs,not program can be done in
polynomial time in the size of the extensional database

• More precisely, consider the following computational problem:
Fix a program Π without an EDB:

Given an EDB D as input, compute the standard model
M(Π ∪ D)

(fixed)

Algorithm

P(x) fixed polynomial depending on Π

D M(Π ∪ D)

ComputingM(Π ∪ D) takes
P(|D|) steps

• This is “data complexity”

• Same for query answering (with fixed program and query)

• Since plain Datalog is contained in Datalogs,not , the same
applies to Datalog (and the minimal model)

4 / 47

• The proof is based on the analysis of the “iterative bottom-up
algorithm” for computing the intended model

• Polynomial time is considered “short” time, in contrast to
exponential time

• When confronted with computational problems related to
data, “data complexity” is the relevant measure

Usually the DB is large, and the other inputs, e.g. a query, a
program, etc., tend to be small in comparison with the DB

• A different computational problem:

Algorithm 2Π ∪ D M(Π ∪ D)

Its complexity is “combined complexity”, time measured in
terms of the sizes of both inputs, Π and D

5 / 47

The Stable Model Semantics

• Example: (revisited) What is the semantics of this program?

P(a)← not P(b)

An unstratified ground program

What are its intended models?

• We need a semantics for this kind of programs

Hopefully we will reobtain the good old semantics for
negation-free and stratified programs

• It is the stable model semantics (SMS)

Or more generally, the answer set semantics (Gelfond & Lifschitz, 1988)

It can be applied to a normal program Π; stratified or
unstratified

Π can be a ground program or have variables

6 / 47

• Consider a normal logic program Π

• Let S ⫅ HB(Π), a subset of its Herbrand Base

S is a set of assumptions, and a candidate to be a (stable)
model of Π

A “guess” that will be accepted if properly supported by Π

• For S to be an intended model, its atoms have to be properly
justified by Π

S is stable model of Π if it is a model and is properly justified
by Π

In other terms, if assuming S , we can recover S via Π

• We make the model candidate S pass through a test

7 / 47

1. Pass from Π to ΠH , the ground instantiation of Π

2. Construct a new ground program ΠS
H , depending on S as

follows:

(a) Delete from ΠH every rule that has a subgoal not A in the
body, with A ∈ S

Intuitively: We are assuming A to be true, then not A is
false, then the whole body is false, and nothing can be
concluded with that rule, it is useless

(b) From the remaining rules, delete the negative subgoals

Intuitively: Those rules are left because the negative subgoals
are true, and since they are true, we can eliminate them as
conditions in bodies (because they hold)

3. We are left with a ground, negation-free program ΠS
H , a

residual program determined by S

4. Compute M(ΠS
H), the minimal model of this positive program

5. If M(ΠS
H) = S , S is a stable model of Π

8 / 47

• Intuitively, we started with S (as an assumption) and we
recovered it

It was stable wrt. to the Π-guided process described above; it
is self-justified

• Example: Program Π P(a)← not P(b) (already ground)

Consider S = {P(a)}

P(b) /∈ S , then not P(b) is satisfied in S and can be
eliminated from the body

We obtain ΠS : P(a)← a ground, negation-free program

Its minimal model is {P(a)}, that is equal to S

S is a stable model of the original program

This is the only stable model (check other subsets of the HB!)

• Notice that Π is unstratified (there is recursion via negation),
but has a stable model

9 / 47

Exercise: For the program above, verify that:

(a) The empty set {} (as a subset of the HB) is not a model

(b) {P(a)} is a model

That is, it makes all the implications of the program true

For S ⊆ HB(Π), by definition: not P(a) is true in S iff
P(a) /∈ S

(c) {P(a)} is a minimal model, that is, no proper subset is a
model

(d) {P(b)} is a model

(e) {P(b)} is a minimal model

(f) {P(b)} is not a stable model

So, there are minimal models that are not stable

(g) What about {P(a),P(b)}?

10 / 47

Example: Program Π (unstratified)

P(x)← Q(x , y), not P(y). Q(a, b).

ΠH : (ground instantiation) Candidate S = {P(b)}

P(a)← Q(a, a), not P(a)
P(a)← Q(a, b), not P(b) ×
P(b)← Q(b, a), not P(a)

P(b)← Q(b, b), not P(b) × Q(a, b).

ΠS
H : P(a)← Q(a, a) (residual program)

P(b)← Q(b, a) Q(a, b).

Minimal model of ΠS
H is {Q(a, b)} ≠ S

Then, S is not a stable model

11 / 47

Now consider: S = {Q(a, b),P(a)}

P(a)← Q(a, a), not P(a) ×
P(a)← Q(a, b), not P(b)
P(b)← Q(b, a), not P(a) ×
P(b)← Q(b, b), not P(b) Q(a, b).

ΠS
H : P(a)← Q(a, b)

P(b)← Q(b, b) Q(a, b).

Minimal model of ΠS
H is {Q(a, b),P(a)} = S

S is a stable model of Π

12 / 47

Example: Program Π:

Male(x) ← Person(x), not Female(x)

Female(x) ← Person(x), not Male(x)

Person(a).

If S1 = {Person(a),Male(a)}, then ΠS1 is

Male(a) ← Person(a)

Person(a).

S1 is a stable model

S2 = {Person(a), Female(a)} is also a stable model of Π

There may be more than one stable model for a program!
(Check them!)

Again, Π is unstratified

The semantics for Datalog or Datalogs,not cannot be applied
13 / 47

Exercise: For the program P(a)← not P(a), verify that:

(a) {} is not a model

(b) The program has no stable models

Hint: Consider two cases for an S ⊆ HB(Π): (a) P(a) /∈ S ;
(b) P(a) ∈ S

We say that the program is inconsistent (under the stable model
semantics)

So, normal programs may have no stable models

(c) Actually it has no (Herbrand) models

Exercise: Find and verify the stable models of the program

P(a)← not P(b)
P(b)← not P(a)

14 / 47

Example: Program Π with a function symbol

even(0).

even(x) ← not even(s(x))

H = {0, s(0), s(s(0)), s(s(s(0))), . . .}

ΠH : even(0).

even(0) ← not even(s(0))

even(s(0)) ← not even(s(s(0)))

· · · · · ·
S = {even(0), even(s(s(0))), even(s(s(s(s(0))))), . . .} is the
only stable model

ΠS
H :

even(0).

even(0).

even(s(s(0))). Etc.

M(ΠS
H) = {even(0), even(s(s(0))), even(s(s(s(s(0))))), . . .}

15 / 47

Exercise: Find the stable models for the unstratified program:

P(x)← R(x), not Q(x)
Q(x)← P(x)
Q(a), R(b)

Exercise: Show using any of the example programs above that the
use of negation in the stable model semantics is indeed
non-monotonic

That is, show that by adding a new fact to the EDB, you may lose
a previous certain consequence, i.e. something true in all stable
models

16 / 47

Some Results and Notions

• Every stable model of Π is a Herbrand model in the usual
sense

In them, not is interpreted as “not belonging to the model”

• A stable model is always a minimal model (i.e. no proper
subset of it is a model of the program)

• A normal program may have several stable models

• Several stable models may determine the semantics of a
program:

What is true of (wrt.) the program is what is true in all its
stable models

• If there are several stable models for a program, some atoms
are left undetermined

Those that are true in some models, but false in others

17 / 47

• Example: The program on page 13 leaves every Male-atom
and Female-atom undetermined, uncertain

However, it is certain that Person(a)

However, it is still certain that Male(a) ∨ Female(a)

• If we apply the SMS to a Datalog program, its only stable
model is its minimal model

• If we apply the SMS to a Datalog program with stratified
negation, its only stable model is its standard model

• The SMS is an extension of the semantics for the previous,
simpler classes of programs!

Then, the stable model semantics extends the ones we had for
the “good” classes before!

• For those classes, the unique stable model can be computed
by means of an bottom-up iterative process

In polynomial time in the size of the EDB
18 / 47

• Exercise: Check that the standard model for the stratified program

on page 3 is a stable model

• We also obtain right away that the stable model semantics is
non-monotonic (already shown for stratified programs)

So, it is useful for representation of commonsense knowledge,
and commonsense reasoning

• We have given a declarative, model-based semantics to a
wider class of programs (with or without negation), even
non-stratified

• This is a “possible-world semantics” (this kind of semantics
is common in data management and AI)

19 / 47

• Notions of entailment from a program under the stable model
semantics of a normal program?

• Skeptical, certain or cautious semantics: What is true of a
program is what is true in all stable models of the program

In the previous example, Person(a) is skeptically true, but not
Male(a)

• Brave or possible semantics: What is true of a program is
what is true in some stable model of the program

In the previous example, Male(a) is possibly (or bravely) true

• Both are useful depending on the use of the program

20 / 47

Example: Extension of previous program Π′:

HumanBeing(x) ← Male(x)

HumanBeing(x) ← Female(x)

Male(x) ← Person(x), not Female(x)

Female(x) ← Person(x), not Male(x)

Person(a).

Queries Q(x):
• Π |=skep HumanBeing(x)? x = a

• Π |=brave HumanBeing(x)? x = a

• Π |=skep Person(x)? x = a

• Π |=brave Person(x)? x = a

• Π |=skep Male(x)? ∅
• Π |=brave Male(x)? x = a

• Π |=skep Female(x)? ∅
• Π |=brave Female(x)? x = a

Always: Certain(Π,Q) ⊆ Possible(Π,Q)

21 / 47

Program Constraints

• Program constraints (PCs) can be added to a NP Π:

← A1, . . . ,Am, not Am+1, . . . , not Ak ,
with Ai atoms (a rule with empty head)

• Intuitively, it says: It is not possible for the body to be true
(for any values for the variables) ... A prohibition!

• It has the effect of filtering or eliminating the stable models of
Π that make the body true

• Example: ug(x) ← stud(x), not grad(x)

grad(x) ← stud(x), not ug(x)

stud(mary) ←
← ug(x) “no UG students!”

• Without the PC, two stable models: {stud(mary), ug(mary)}
and {stud(mary), grad(mary)}

• With the PC, only the second one

22 / 47

Example: (3-GC) Want a normal program that gives us
coloring of a graph with 3 colors, without adjacent nodes
sharing the same color

color(x , green) ← country(x), not color(x , blue), not color(x , red)
color(x , blue) ← country(x), not color(x , green), not color(x , red)

color(x , red) ← country(x), not color(x , blue), not color(x , green)

plus atoms of the form edge(a, c) representing the graph at
hand

We need a PC:

← edge(x , y), color(x , z), color(y , z)

“No neighboring countries can share the same color”

• Each SM will represent a possible coloring of the whole graph

• No models if the problem is not solvable

In which case the program is inconsistent

23 / 47

• The same program can be used with any instance of the
problem, i.e. concrete graph, represented trough the facts

• Can a country be painted with more that one color?

• The minimality of stable models will ensure that no country is
painted with more than one color

• Keep this minimality in mind when you create your program

It is a useful implicit tool ...

• This is a normal program that can be used to solve a hard
(NP-complete) combinatorial problem

24 / 47

• PCs look like a new element in NPs

• Are they really needed?

• Actually, not, but it is useful to have them as above

• They could be eliminated if wanted, as follows

• The PC ← A1, . . . ,Am, not Am+1, . . . , not Ak

can be replaced by the usual rule:

q ← A1, . . . ,Am, not Am+1, . . . , not Ak , not q

q is a fresh propositional (or any) atom

• If in a stable model A1, . . . ,Am, not Am+1, . . . , not Ak

becomes true, then also q ← not q becomes true, which is
not possible (cf. page 14)

So, in any SM of the original program,
A1, . . . ,Am, not Am+1, . . . , not Ak cannot be true

• Notice that with PCs, the original NP becomes unstratified
(if it was not already)

25 / 47

• Example: (cont.) q ← ug(x), not q

If in a candidate S to be a SM ug(x) becomes true (for any
value of x), also q ← not q has to be true

• A PC has the effect of filtering the SMs of Π (without the
PC) where the body of the PC becomes true

• PCs are an extra source of unstratified negation, and then, of
extra computational cost (as we will see)

• In data management applications, PCs are useful to capture
common ICs

• E.g. denial constraints:

← Employee(x , janitor), InBoard(x , yes)

“No janitors in the company board”

• A functional dependency R : A→ B:

← R(x , y),R(x , z), y ̸= z

26 / 47

• The rules of the program may specify (and perform) different
data management tasks

• We want to make sure the possible alternative states of the
DB, represented by SMs, are consistent wrt. ICs
Se

• PCs can be used for that

• Example: Consistency of DB wrt. a referential constraint:

“the values in the second argument of table R(A,B) must
appear in the first column of table S(B,C)”

• An attempt: ← R(x , y), not S(y , z) (not safe)

• Better: (c.f. Chap. 2)

←− R(x , y), not S ′(y)

S ′(y) ←− S(y , z)

27 / 47

Leo's Notebook
Cross-Out

