
Choices

• In many applications, it becomes useful to choose or pick
domain values, possibly depending on other values

• For that, we can introduce a new “choice” construct or
operator

• So as with PCs, it will be possible to eliminate it (by defining
it) if wanted (coming)

But it may be useful to have it as given

• A program Π may have a “choice rule” with a “choice
operator”: (*)

P(x , y , z) ←− Q(. . . , x , . . .),S(. . . , y , . . .),R(. . . , z , . . .),Choice((x , y), z)

For each combination of values (x , y), non-deterministically
choose a unique value for z and put the trio (x , y , z) into P
(while satisfying the other conditions in the body)
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• Example: Consider the relational table that does not satisfy
the functional dependency R : AB → C

R A B C

a b c
a c e
a b d

• Repairing R: (by tuple deletion)

R ′(x , y , z) ← R(x , y , z),choice((x , y), z).
R(a, b, c). Etc.

• Two stable models (two repairs):

{R ′(a, b, c),R ′(a, c , e),R(a, b, c), . . .}
{R ′(a, b, d),R ′(a, c , e),R(a, b, c), . . .}

• Different choices for z appear in different stable models

• Use of choice rules increases number of SMs

• No negation in this example?

Or in the rule (*) above?
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• Negation, actually unstratified, is implicit in choice rules

It will reappear when we define the “choice operator” by
means of regular rules

• So, no essential need for the choice operator (but nice,
intuitive and useful having it!)

• Replace choice rule (*) by:

P(x , y , z) ←− Q(. . . , x , . . .),S(. . . , y , . . .),R(. . . , z , . . .), Chosen(x , y , z)

• Next, define the Chosen predicate with two extra rules:

Chosen(x , y , z) ←− Q(. . . , x , . . .), S(. . . , y , . . .),R(. . . , z , . . .),

not DiffChoice(x , y , z)

DiffChoice(x , y , z) ←− Chosen(x , y , z ′), z ′ ̸= z

• Unstratified negation!

choice operator is an extra source of unstratified negation
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• The last two rules ensure that, for every pair of values (x , y)
that satisfies the body, the predicate Chosen(x , y , z) satisfies
the functional dependency: xy → z

• In (*) the choice operator can (or must) be replaced by the
new predicate Chosen that forces the expected functional
dependency

• Some systems do not support the choice operator, so Chosen
(defined as above) has to be used instead

Exercise: In the example above, replace the choice operator
by its corresponding and concrete Chosen predicate (adding
its definition, of course); and compute the repairs of the DB
with DLV

Exercise: Give a general program to solve the “Hamiltonian
Cycle” problem
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The Answer Set Programming Paradigm

• Normal programs with stable model semantics can be used to
solve hard (and easy) combinatorial problems

• We use the more general notion of “Logic Programs with
Answer-Set Semantics” (more below)

• Determining if there are stable models, and computing one (in
the positive case) is good enough (brave semantics can be used)

• Answer-Set Programming is a new (logic) programming
paradigm: Specify the problem’s conditions

The underlying “solver” will find a solution (if any), or report
when none exists

Cf. Brewka,G., Eiter, T. and Truszczynski, M. Answer Set Programming at a
Glance. Comm. of the ACM, 2011, 54(12), pp. 93-103.

• A form of declarative programming (as opposed to
imperative)
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• NPs (and more generally ASPs) are commonly used to
implicitly specify by means of a general program ΠG all the
solutions of a general (usually combinatorial) problem P

• A specific instance I (input) for problem P is usually
represented by means of a specific EDB E for ΠG

• The SMs of the combined specification ΠG ∪ E become the
solutions for P with instance I

E.g. P could be 3-GC, and I a concrete graph (c.f. page 23)

• Solutions are computed using a general underlying solver

In many applications finding one model is good enough

• Commonly, the solver internally transforms the problem (so as
SM computation) into SAT, the problem of determining the
truth assignments that make a propositional formula true

The latter a crucial problem in many areas of computer
science
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• SAT is a sufficiently and necessarily difficult problem;
complete for the complexity class NP

• The computational data complexity of normal programs
matches that of NP-complete problems (more below)

Then, normal programs can be used to solve any problem in
the class NP

• The solutions can be computed using general implementations
of the SM semantics, e.g. CLINGO or DLV

• ASPs are successfully used in different areas and problems

1. Logic-based knowledge representation in general

In particular, representation of commonsense knowledge and
commonsense reasoning

2. Solution of hard combinatorial problems

3. Many applications in data management

ASPs extend Datalog
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• In data management, ASP can be used to define complex
views and express complex queries

E.g. R ′ on page 29

• The ASP goes on top of a RDB
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The stable models of EDB + ASP program are extended
with query atoms Ans(a) and their specification by means of
extra rules
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• Sometimes we need (or welcome) an extension of NPs

To specify finitely many, but usually mutually exclusive,
alternatives

• The SM semantics can be extended to disjunctive programs
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Disjunctive Stable Model Semantics

• Now we admit rules of the form

B1 ∨ · · · ∨ Bk ←− A1, · · · ,Am, not Am+1, . . . , not An

with Bj ,Ai atoms, and not weak negation as before

E.g. P(x) ∨ T (x)←− R(x),Q(y), not T (y), not Q(x)

• Now we have the disjunctive stable model semantics
(Gelfond & Lifschitz, 1991)

• The semantics is an extension of that for NPs

Based, as before, on testing candidates to SMs
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Start with a candidate set of atoms S ⊆ HB(Π)

1. Pass from Π to ΠH (grounding)

2. Construct a new ground program ΠS
H :

(a) Delete from ΠH every rule that has a subgoal not A in the
body, with A ∈ S

(b) From the remaining rules, delete the negative subgoals

3. We are left with a ground disjunctive positive program ΠS
H ,

without negation

As a “disjunctive Datalog program” it may have several
minimal (H-)models (a simple and natural extension of Datalog)

MinMod(ΠS
H) denotes the set of minimal models of ΠS

H

4. If S ∈ MinMod(ΠS
H), we say that S is a stable model of Π
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Example: p ∨ q ← s, not p

s ←
• For S1 = {s, q}, the residual program ΠS1 is:

p ∨ q ← s

s ←
For this positive, disjunctive Datalog program:

MinMod(ΠS1) = { {s, p}, {s, q}}
Two minimal models

S1 ∈ MinMod(ΠS1): is stable model

• For S2 = {s, p}, the residual program is:

ΠS2 : s ←
MinMod(ΠS2) = { {s} }

S2 /∈ MinMod(ΠS2): not a stable model
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• As before, every stable model of Π is a minimal H-model of Π

• A positive disjunctive program, i.e. without negation, may
have several minimal models

They are also its stable models

• Due to minimality, and unless forced by other rules, a
disjunctive rule will pick only one of the disjuncts from the
head to make it true

• Example: (3-GC revisited) A disjunctive general program:

color(x , green) ∨ color(x , blue) ∨ color(x , red) ← country(x)

← edge(x , y), color(x , z), color(y , z)

Unstratified negation is hidden in the program constraint

The disjunctive head assigns to each country a single color

This program is equivalent to the one on page 23: they have
the same SMs
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• Only some disjunctive programs with negation can be
rewritten as NPs, i.e. without disjunction

• There is a syntactic class of disjunctive programs, that of the
head-cycle free programs, that can be rewritten into
equivalent non-disjunctive programs

By passing, in turns, the (positive) atoms in the head as
negative literals in the body

This is the case of the program for 3-GC above (c.f. page 23)

• Disjunctive logic programs with stable model semantics are
very expressive

More than (non-disjunctive) NPs with stable model semantics
(under common complexity-theoretic assumptions; more coming ...)

So, some disjunctive programs cannot be expressed as
equivalent NPs

• Disjunctive programs can be used to solve harder
combinatorial problems
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Complexity Considerations

• For a fixed intentional program Π (i.e. w/o EDB), and an
input EDB D (i.e. data complexity), there are several decision
problems:

1. Model Checking: Given a set of ground atomsM, is it a
stable model (of Π ∪ D)?

2. Consistency: Does the program have a stable model?

3. Is a given ground atom a skeptical consequence?

4. Is a given ground atom a brave consequence?

• They have a high time-complexity; at least NP-hard for the
last three in the size of D (more below)

For NPs, model checking can be done in PTIME

• The “functional problem” of computing a stable model is also
hard
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• Another difficult problem is Model Counting: How many
stable models?

Model Counting is crucial in many areas of Computer Science

• We recall several complexity measures: program complexity,
query complexity, data complexity, combined complexity
(combinations of the previous ones)

• They count the worst-case number of steps to reach the
decision in terms of: |Π| (leaving, D,Q as fixed parameters),
|Q|, |D|, |Π ∪ D|, etc.

• In data management, the most relevant measure is data
complexity

In terms of the size of the underlying EDB, which can be
large, while the “intentional part” of the program, short
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• For example, the proper formulation of 3. above as a “data
problem”: SQA(Π,A) := {D | Π ∪ D |=skp A}
As a parameterized family of decision problems

The parameters are the intentional program Π and atom A

The decision problem is, for an instance D, whether it belongs
to SQA(Π,A) (do the same with the other problems!)

• Decision problems above, in data complexity, can be placed in
the polynomial hierarchy:

1. Model checking is coNP-complete

More precisely, there are Π,Q for which SQA(Π,Q) is
coNP-complete

For normal programs, i.e. no disjunction, it is always in PTIME

2. Certain QA becomes ΠP
2 -complete

For normal programs: coNP-complete

3. Brave QA becomes: ΣP
2 -complete

For normal programs: NP-complete
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C.f. Dantsin, Eiter, Gottlob, Voronkov. “Complexity and Expressive Power of Logic
Programming”. ACM Computing Surveys, 2001, 33(3): 374-425
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- coNP is the class of decision problems whose complements are solvable
in non-deterministic PTIME

- (coNP)NP is the class of decision problems whose complements can be solved
in non-deterministic PTIME with calls to an oracle that solves (in one step)
problems in NP ETC.
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Why “Answer Sets”?

• As opposed to “stable models”

• ASPs may have also “classical negation” in heads and bodies
(in addition to weak negation in bodies)

¬A(x) ∨ C (y)← B(x , y),¬S(y), not P(x), not ¬M(x , y)

• They describe, and have as models, worlds that are only
partially represented as sets of classical literals

• For example, M = {P(a),P(b),¬P(c),Q(d),¬Q(a)} is an
incomplete representation of a world

• P(a),P(b),Q(d) are true
• P(c),Q(a) are false
• P(d),Q(b),Q(c) are uncertain

No application of the CWA

• ASPs have “answer sets” as models, which may be partial
worlds
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• We expect worlds and models to be “consistent”

We cannot find something like this in them: {. . . ,A,¬A, . . .}

• ASPs extend disjunctive programs with only weak negation
and SMs

• In ASPs, classical and weak negation may coexist

• CWA related to weak negation

If we want, we may impose (specify) the CWA:

¬A← not A (with A an atom)

Making false what is not known to be true

• ASPs are also called “extended logic programs”
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