
Choices

• In many applications, it becomes useful to choose or pick
domain values, possibly depending on other values

• For that, we can introduce a new “choice” construct or
operator

• So as with PCs, it will be possible to eliminate it (by defining
it) if wanted (coming)

But it may be useful to have it as given

• A program Π may have a “choice rule” with a “choice
operator”: (*)

P(x , y , z) ←− Q(. . . , x , . . .),S(. . . , y , . . .),R(. . . , z , . . .),Choice((x , y), z)

For each combination of values (x , y), non-deterministically
choose a unique value for z and put the trio (x , y , z) into P
(while satisfying the other conditions in the body)

28 / 47



• Example: Consider the relational table that does not satisfy
the functional dependency R : AB → C

R A B C

a b c
a c e
a b d

• Repairing R: (by tuple deletion)

R ′(x , y , z) ← R(x , y , z),choice((x , y), z).
R(a, b, c). Etc.

• Two stable models (two repairs):

{R ′(a, b, c),R ′(a, c , e),R(a, b, c), . . .}
{R ′(a, b, d),R ′(a, c , e),R(a, b, c), . . .}

• Different choices for z appear in different stable models

• Use of choice rules increases number of SMs

• No negation in this example?

Or in the rule (*) above?
29 / 47



• Negation, actually unstratified, is implicit in choice rules

It will reappear when we define the “choice operator” by
means of regular rules

• So, no essential need for the choice operator (but nice,
intuitive and useful having it!)

• Replace choice rule (*) by:

P(x , y , z) ←− Q(. . . , x , . . .),S(. . . , y , . . .),R(. . . , z , . . .), Chosen(x , y , z)

• Next, define the Chosen predicate with two extra rules:

Chosen(x , y , z) ←− Q(. . . , x , . . .), S(. . . , y , . . .),R(. . . , z , . . .),

not DiffChoice(x , y , z)

DiffChoice(x , y , z) ←− Chosen(x , y , z ′), z ′ ̸= z

• Unstratified negation!

choice operator is an extra source of unstratified negation

30 / 47



• The last two rules ensure that, for every pair of values (x , y)
that satisfies the body, the predicate Chosen(x , y , z) satisfies
the functional dependency: xy → z

• In (*) the choice operator can (or must) be replaced by the
new predicate Chosen that forces the expected functional
dependency

• Some systems do not support the choice operator, so Chosen
(defined as above) has to be used instead

Exercise: In the example above, replace the choice operator
by its corresponding and concrete Chosen predicate (adding
its definition, of course); and compute the repairs of the DB
with DLV

Exercise: Give a general program to solve the “Hamiltonian
Cycle” problem

31 / 47



The Answer Set Programming Paradigm

• Normal programs with stable model semantics can be used to
solve hard (and easy) combinatorial problems

• We use the more general notion of “Logic Programs with
Answer-Set Semantics” (more below)

• Determining if there are stable models, and computing one (in
the positive case) is good enough (brave semantics can be used)

• Answer-Set Programming is a new (logic) programming
paradigm: Specify the problem’s conditions

The underlying “solver” will find a solution (if any), or report
when none exists

Cf. Brewka,G., Eiter, T. and Truszczynski, M. Answer Set Programming at a
Glance. Comm. of the ACM, 2011, 54(12), pp. 93-103.

• A form of declarative programming (as opposed to
imperative)

32 / 47



• NPs (and more generally ASPs) are commonly used to
implicitly specify by means of a general program ΠG all the
solutions of a general (usually combinatorial) problem P

• A specific instance I (input) for problem P is usually
represented by means of a specific EDB E for ΠG

• The SMs of the combined specification ΠG ∪ E become the
solutions for P with instance I

E.g. P could be 3-GC, and I a concrete graph (c.f. page 23)

• Solutions are computed using a general underlying solver

In many applications finding one model is good enough

• Commonly, the solver internally transforms the problem (so as
SM computation) into SAT, the problem of determining the
truth assignments that make a propositional formula true

The latter a crucial problem in many areas of computer
science

33 / 47



• SAT is a sufficiently and necessarily difficult problem;
complete for the complexity class NP

• The computational data complexity of normal programs
matches that of NP-complete problems (more below)

Then, normal programs can be used to solve any problem in
the class NP

• The solutions can be computed using general implementations
of the SM semantics, e.g. CLINGO or DLV

• ASPs are successfully used in different areas and problems

1. Logic-based knowledge representation in general

In particular, representation of commonsense knowledge and
commonsense reasoning

2. Solution of hard combinatorial problems

3. Many applications in data management

ASPs extend Datalog

34 / 47



• In data management, ASP can be used to define complex
views and express complex queries

E.g. R ′ on page 29

• The ASP goes on top of a RDB

 !"

#$%&'()*(+,
-./01/0.)/+2&!"34.1567

861(

#/6-97

861(&:81(;

The stable models of EDB + ASP program are extended
with query atoms Ans(a) and their specification by means of
extra rules

35 / 47



• Sometimes we need (or welcome) an extension of NPs

To specify finitely many, but usually mutually exclusive,
alternatives

• The SM semantics can be extended to disjunctive programs

36 / 47



Disjunctive Stable Model Semantics

• Now we admit rules of the form

B1 ∨ · · · ∨ Bk ←− A1, · · · ,Am, not Am+1, . . . , not An

with Bj ,Ai atoms, and not weak negation as before

E.g. P(x) ∨ T (x)←− R(x),Q(y), not T (y), not Q(x)

• Now we have the disjunctive stable model semantics
(Gelfond & Lifschitz, 1991)

• The semantics is an extension of that for NPs

Based, as before, on testing candidates to SMs

37 / 47



Start with a candidate set of atoms S ⊆ HB(Π)

1. Pass from Π to ΠH (grounding)

2. Construct a new ground program ΠS
H :

(a) Delete from ΠH every rule that has a subgoal not A in the
body, with A ∈ S

(b) From the remaining rules, delete the negative subgoals

3. We are left with a ground disjunctive positive program ΠS
H ,

without negation

As a “disjunctive Datalog program” it may have several
minimal (H-)models (a simple and natural extension of Datalog)

MinMod(ΠS
H) denotes the set of minimal models of ΠS

H

4. If S ∈ MinMod(ΠS
H), we say that S is a stable model of Π

38 / 47



Example: p ∨ q ← s, not p

s ←
• For S1 = {s, q}, the residual program ΠS1 is:

p ∨ q ← s

s ←
For this positive, disjunctive Datalog program:

MinMod(ΠS1) = { {s, p}, {s, q}}
Two minimal models

S1 ∈ MinMod(ΠS1): is stable model

• For S2 = {s, p}, the residual program is:

ΠS2 : s ←
MinMod(ΠS2) = { {s} }

S2 /∈ MinMod(ΠS2): not a stable model

39 / 47



• As before, every stable model of Π is a minimal H-model of Π

• A positive disjunctive program, i.e. without negation, may
have several minimal models

They are also its stable models

• Due to minimality, and unless forced by other rules, a
disjunctive rule will pick only one of the disjuncts from the
head to make it true

• Example: (3-GC revisited) A disjunctive general program:

color(x , green) ∨ color(x , blue) ∨ color(x , red) ← country(x)

← edge(x , y), color(x , z), color(y , z)

Unstratified negation is hidden in the program constraint

The disjunctive head assigns to each country a single color

This program is equivalent to the one on page 23: they have
the same SMs

40 / 47



• Only some disjunctive programs with negation can be
rewritten as NPs, i.e. without disjunction

• There is a syntactic class of disjunctive programs, that of the
head-cycle free programs, that can be rewritten into
equivalent non-disjunctive programs

By passing, in turns, the (positive) atoms in the head as
negative literals in the body

This is the case of the program for 3-GC above (c.f. page 23)

• Disjunctive logic programs with stable model semantics are
very expressive

More than (non-disjunctive) NPs with stable model semantics
(under common complexity-theoretic assumptions; more coming ...)

So, some disjunctive programs cannot be expressed as
equivalent NPs

• Disjunctive programs can be used to solve harder
combinatorial problems

41 / 47



Complexity Considerations

• For a fixed intentional program Π (i.e. w/o EDB), and an
input EDB D (i.e. data complexity), there are several decision
problems:

1. Model Checking: Given a set of ground atomsM, is it a
stable model (of Π ∪ D)?

2. Consistency: Does the program have a stable model?

3. Is a given ground atom a skeptical consequence?

4. Is a given ground atom a brave consequence?

• They have a high time-complexity; at least NP-hard for the
last three in the size of D (more below)

For NPs, model checking can be done in PTIME

• The “functional problem” of computing a stable model is also
hard

42 / 47

Leo's Notebook
Highlight

Leo's Notebook
Sticky Note
D



• Another difficult problem is Model Counting: How many
stable models?

Model Counting is crucial in many areas of Computer Science

• We recall several complexity measures: program complexity,
query complexity, data complexity, combined complexity
(combinations of the previous ones)

• They count the worst-case number of steps to reach the
decision in terms of: |Π| (leaving, D,Q as fixed parameters),
|Q|, |D|, |Π ∪ D|, etc.

• In data management, the most relevant measure is data
complexity

In terms of the size of the underlying EDB, which can be
large, while the “intentional part” of the program, short

43 / 47



• For example, the proper formulation of 3. above as a “data
problem”: SQA(Π,A) := {D | Π ∪ D |=skp A}
As a parameterized family of decision problems

The parameters are the intentional program Π and atom A

The decision problem is, for an instance D, whether it belongs
to SQA(Π,A) (do the same with the other problems!)

• Decision problems above, in data complexity, can be placed in
the polynomial hierarchy:

1. Model checking is coNP-complete

More precisely, there are Π,Q for which SQA(Π,Q) is
coNP-complete

For normal programs, i.e. no disjunction, it is always in PTIME

2. Certain QA becomes ΠP
2 -complete

For normal programs: coNP-complete

3. Brave QA becomes: ΣP
2 -complete

For normal programs: NP-complete

44 / 47



C.f. Dantsin, Eiter, Gottlob, Voronkov. “Complexity and Expressive Power of Logic
Programming”. ACM Computing Surveys, 2001, 33(3): 374-425

ΠP
0 := ΣP

0 := ∆P
0 := P

∆P
i+1 := PΣP

i

ΣP
i+1 := (NP)Σ

P
i

ΠP
i+1 := (coNP)Σ

P
i

E.g. ΣP
1 = NPP = NP

ΠP
1 = coNPP = coNP

ΣP
2 = NPNP

ΠP
2 = coNPNP

· · ·

P

NPcoNP

2

P

PSPACE

.

.

. second level of the 

polynomial hierarchy

NP complete

coNP complete

P
o
ly

n
o
m

ia
l

H
ie

ra
rc

h
y

EXPTIME

NPcoNP

P

2

P

2

P
!

decidable

- coNP is the class of decision problems whose complements are solvable
in non-deterministic PTIME

- (coNP)NP is the class of decision problems whose complements can be solved
in non-deterministic PTIME with calls to an oracle that solves (in one step)
problems in NP ETC.

45 / 47



Why “Answer Sets”?

• As opposed to “stable models”

• ASPs may have also “classical negation” in heads and bodies
(in addition to weak negation in bodies)

¬A(x) ∨ C (y)← B(x , y),¬S(y), not P(x), not ¬M(x , y)

• They describe, and have as models, worlds that are only
partially represented as sets of classical literals

• For example, M = {P(a),P(b),¬P(c),Q(d),¬Q(a)} is an
incomplete representation of a world

• P(a),P(b),Q(d) are true
• P(c),Q(a) are false
• P(d),Q(b),Q(c) are uncertain

No application of the CWA

• ASPs have “answer sets” as models, which may be partial
worlds

46 / 47



• We expect worlds and models to be “consistent”

We cannot find something like this in them: {. . . ,A,¬A, . . .}

• ASPs extend disjunctive programs with only weak negation
and SMs

• In ASPs, classical and weak negation may coexist

• CWA related to weak negation

If we want, we may impose (specify) the CWA:

¬A← not A (with A an atom)

Making false what is not known to be true

• ASPs are also called “extended logic programs”

47 / 47


