
Languages for Ontologies

• There are several symbolic languages for representing
ontologies

• Languages of Description Logic

• Languages for the Semantic Web: RDF-S, OWL, etc.

• Extensions and relatives of Datalog: Datalog± languages

• Most frequently, in ontologies one uses 1-ary and 2-ary
predicates (Datalog± gives more flexibility)

• Example: Introduce basic predicates: Employee Manager Manage

reportsTo bossOf

(0,1)

• Unary predicates for concepts: Employee(·),Manager(·)
• Binary predicates for roles: BossOf (·, ·), ReportsTo(·, ·)

Symbolic statements go into the ontology

For example: ∀x∀y(BossOf (x , y)→ Empoyee(x)), etc.

11 / 51

Leo's Notebook
Highlight

• Example of Datalog+: (sometimes denoted Datalog∃)

A DB of employers and employees extended with rules and
constraints
• Impose an tuple-generating dependency (TGD) (aka. inclusion

dependency)
“every manager is an employee”

Employee(x)← Manager(x)

• Another TGD:
“every manager supervises someone”

∃y Supervises(x , y)← Manager(x)

• Impose an IC: “employees are not employers”

As negative constraint (NC):

⊥ ← Employee(x),Employer(x)
(symbol ⊥ on the LHS is always false)

• A key constraint:
“every employee is supervised by at most one manager”

x = x ′ ← Supervises(x , y),Supervises(x ′, y)
12 / 51

• The first is a usual Datalog rule, but not the last three

• New wrt. Datalog: existential quantifiers in the consequents,
and use of constraints (the last two above) Hence, the “+”

• The “−” (coming ...) is due to syntactic restrictions on
Datalog+ (ontological) programs for computational
tractability of QA

• A Datalog+ program is combined with an extensional
database (EDB)

• In contrast to classical Datalog, when used as an ontology, a
program plus an EDB is not subject to CWA: it may be
incomplete

• The rules allow to add data (while satisfying the constraints)

• EDB is extended through the Datalog+ program

Generating new tuples for EDB predicates, and full extensions
for intensional predicates

13 / 51

• Most commonly, ontologies work under the “open world
assumption” (OWA)

• Depending on the kind of rules, possibly several extensions

• Extensions are DBs (say Herbrand structures) that extend the
EDB and are models, i.e. satisfy the rules as classical logical
formulas

D extensions via rules

• Whatever is true in all possible
extensions is considered to be
certain

• We may want to materialize the
extension(s) or keep them virtual And query them ...

• Not a good idea ...

• Is there anything like a single model that “represents” all the
others for QA?

14 / 51

• The chase (of the rules on the EDB) generates an instance
that extends the EDB and “represents” the whole class of
extensions

Propagate data via the TGDs, inserting labelled nulls for
existentials

It turns out that what is certain is what is true in the chase
(i.e. in the extension it produces)

• Example: (cont.) Initial DB (very simple):

Employee name
joe
john

Manager name
joe
sue

Supervises name1 name2
joe john
john pete

Due to the IDs, we can propagate data (not always needed)

Employee name
joe
john
sue

Manager name
joe
sue

Supervises name1 name2
joe john
john pete
sue null1

Query: ∃x Supervises(sue, x)? Yes!

15 / 51

Leo's Notebook
Sticky Note
If the query was the open query Suprvises(sue,x), there would be an empty set of answers

• With open queries (i.e. with variables), the certain answers
obtained from the chase are those that do not exhibit labelled
nulls

• In the example: Q(x) : ∃ySupervises(y , x)? {john, pete}
• When we query an incomplete DB which is extended with an
ontology, we are querying the extension

D

D
chase(D,)

Query

DB extended via rules

incomplete DBExplicitly or implicitly

• No need to explicitly extend
initial DB to answer the query

• Ideally, we want to avoid “completing” the DB first and then
querying

16 / 51

• Example: Incomplete EDB D = {Person(john)}
• TGDs applied forward (as usual in Datalog), with value
invention for existentials

• This is the main part of the “chase procedure”

• Set Σ of Datalog+ rules: ∃x Father(x , y)← Person(y)

Person(x)← Father(x , y)

The chase is a procedure that applies the TGDs in a forward
manner, generating new tuples

chase(D,Σ) = {Father(z1, john),Person(z1),
Father(z2, z1),Person(z2),

Father(z3, z2),Person(z3), ...}
(each zi is a labeled null value)

• Chase may create non-terminating loops

So, the chase may not terminate
17 / 51

Leo's Notebook
Highlight

• The extensions of EDB may all be infinite, including the chase

• For arbitrary Datalog+ programs (no syntactic restrictions),
QA is undecidable

• Related to (but not implied by) the fact that the chase
procedure may be infinite

Finite or infinite, we can still query it, and is not always
hopeless

• There are different families of “good” programs for which QA
is computable, and even tractable

• QA complexity and techniques depend on syntactic
restrictions on the ontology (the − in Datalog±)

We concentrate on conjunctive queries

• So, Datalog± is a family of syntactic classes of programs that
enjoy different good properties

• Different QA techniques for different good classes of programs
18 / 51

Syntactic Restrictions on Datalog+ Programs

• Restrictions are imposed on Datalog+ programs to ensure that
queries are decidable (computable), or even tractable (in data)

• Datalog± stands for those “good” subclasses of Datalog+

Each of them is as a syntactic fragment of Datalog+

• Two cases for the chase

D
chase(D,)

D
chase(D,)

Q

• In first case, QA is
obviously decidable

If the chase can be built
in PTIME (in data),
QA is tractable

• In second case, QA may be (and sometimes is) undecidable

But also possibly decidable depending on the syntactic
structure of the program

19 / 51

• Good cases when the chase is infinite?
Decidability of QA guaranteed by different syntactic
conditions on the set of rules

(A) QA can be correctly done by querying only a bounded,
initial portion of the chase

D
chase(D,)

Q

bounded depth

query this portion

Hopefully a “short portion”

20 / 51

(B) FO query rewriting

D chase(D,Σ)
∞

Q ?
X

Q’

√
rewriting

Instead of posing Q to the (infinite) chase, rewrite Q into new
FO query Q′ (independently from D)

This is done using the rules

Query D with Q′ as usual
Definitely in PTIME in data

• Different syntactic restrictions on Datalog+ programs (leading
to different classes of Datalog± programs) ensure (A) or (B)

• Several classes of Datalog± programs ...

21 / 51

(data complexity)

22 / 51

• For the gist, what we mean by “syntactic restrictions”?

• The class linear Datalog+ contains programs whose rules are
all of the form

∃v S(x , v)← P(x , y , z), or R(x , z)← S(x , y , z)

A single predicate in the body

• The class guarded Datalog+ contains programs whose rules
are all of the form

∃v S(x , v)← P(x , y , z)︸ ︷︷ ︸
guard

,G (y , z),R(x), or

R(x , z)← P(x , y , z)︸ ︷︷ ︸
guard

,U(y), S(x , z)

All the variables in a body appear also in a predicate in
common (in the same body), the guard

• Etc.

23 / 51

Leo's Notebook
Sticky Note
The example on page 17 is linear, and there is still a cycle, but QA can be done in PTIME

Leo's Notebook
Sticky Note
Obviously every linear program is guardedEach of these restrictions do not allow full Datalog to be included

• Example: ER model transformed (in part) into Datalog±

Representing and querying EER schemata: example

Works in
1 2

Group

1 2Leads

Member

memb name

stud gpa

gr name

Phd student Professor

(1, 1)

(1, 1)

(1,N)

since
(1, 1)

(1,N)

• Rules and Constraints: (mostly 1-ary and 2-ary predicates)

Representing and querying EER schemata: example

Works in
1 2

Group

1 2Leads

Member

memb name

stud gpa

gr name

Phd student Professor

(1, 1)

(1, 1)

(1,N)

since
(1, 1)

(1,N)

Some constraints (in Datalog± logic form)

leads(X ,Y)→ works in(X ,Y) professor(X)→ member(X)
professor(X)→ ∃Y leads(X ,Y) key(works in) = {1}
member(X)→ ∃Y works in(X ,Y) key(leads) = {2}

• “Under” this ontology we could have a database containing
professors, students, departments, etc.

• New wrt. Datalog: existential quantifiers in the consequents,
and use of constraints (the last two above)

• Hence, the “+”

The “−” is due to syntactic restrictions on the ontologies to
make QA computationally manageable

24 / 51

• A query:

Representing and querying EER schemata: example

Works in
1 2

Group

1 2Leads

Member

memb name

stud gpa

gr name

Phd student Professor

(1, 1)

(1, 1)

(1,N)

since
(1, 1)

(1,N)

Representing and querying EER schemata: example

Works in
1 2

Group

1 2Leads

Member

memb name

stud gpa

gr name

Phd student Professor

(1, 1)

(1, 1)

(1,N)

since
(1, 1)

(1,N)

Some constraints (in Datalog± logic form)

leads(X ,Y)→ works in(X ,Y) professor(X)→ member(X)
professor(X)→ ∃Y leads(X ,Y) key(works in) = {1}
member(X)→ ∃Y works in(X ,Y) key(leads) = {2}

Representing and querying EER schemata: example

Works in
1 2

Group

1 2Leads

Member

memb name

stud gpa

gr name

Phd student Professor

(1, 1)

(1, 1)

(1,N)

since
(1, 1)

(1,N)

Query

q(B)← phd student(A),memb name(A,B),works in(A,C),
since(A,C , 2006),memb name(C , db)

• Asking about “Names of PhD students who work since 2006
in the DB group”

25 / 51

Leo's Notebook
Sticky Note
ER models can provably be represented by some of the good families of Datalog+_

Exercise: Consider the ER model in the figure
Consider the ER model in the figure

 !"#$%&' (')* +

,$)*

-&.$"/#$'

) 01*!%(&' (),)* &

,$)*1*!%(&')%$!*#

(')* +1*)%& (')* +1 /#2

)""&#"

*)%&)--'&""

 /#2

(a) From the ER model, obtain an ontology in terms of unary and

From the ER model, obtain an ontology In Datalog±, including
some constraints

26 / 51

From Ontologies to the Semantic Web

• Ontologies gave an impulse to the Semantic Web (SW)

• The idea is to wrap web resources with a semantic layer that
conveys the contents and its meaning

• It is a WWW with meaning ...

• In particular, to enable interoperability and data integration

• Today mostly to build DBs of “linked data” with limited
reasoning capabilities

For computability and QA purposes

• Linking data has old tradition in AI: conceptual graphs,
semantic networks, frames, etc.

They are all behind ontologies and modern SW languages and
representations

27 / 51

Leo's Notebook
Sticky Note
very much like the previous example of ontology-based virtual data integration (page 9)

Even in high-school ...

/a
r\

V
I

. (tJ
0r

'cJo..,€

+
'ss,Lad

J+v')
{Tl

6
a_sd-
C

'

Q
/\

(-50/
s"qqJ

tr)r

0/
€,(Jv4trt-�/

,
:

-r
a/

d
F

,
| (4

!

tJIc.qqJ
v

li

'c
\

o
i

.dt-q6
l

M

qJ
jo.9d

!_(,JL6(o,

\,ocs
gI

3a+a-<U

\JuI$/9.pL
ir.

qr
-0tro,
-t*5U

ts,

a
l-oI,\,

/a
\

.
!

f
o

d
d

"J
Id \.)

Li
1J

r4
 \'

a
\

?,I
\o

,

U(n
2olJl
I

qJ

€.

j(P

oO
J

EF{.Y

,oq)
aJ(p

r/l
+

fa)EI
-<

q)
J\nq)vb

4

+'o
-

c
O

s,I

1
/\\

'$
"C6
{

G

J
rc\f)I=L+

c
l

o+
d\)){-o

#
6

l
t

\

3
'!, f

,6
 6 t.i

!
1

+
i

ig
3

'
-e

-€

/
v!Id:

a-oq,
,o
.6I

6Lq,L6tr

L
\

A
r

P

f.b
(

U
n

L

3
q,,

J
$

'
O

t
fl/

-+
-CdTEqJ

-i-c
t

LaiFqJ
LC

+
\s
\

,
q

,
\

EQ
/

-

t
3

q
J

n

f
r

J0af) /

{\)ucpI;IA
J

-[)3Ez.

lq
)

/Jo\nclo9
1

-<ud6\t

_9o
.

U
-ot

rFa\JNIu-O{drFort-otn

*aL0i
e0UE*9g

28 / 51

• Much knowledge represented in a semantic net of frames

DOG
IS-A: ANIMAL

LEGS:
NUMBER 0 TO 5

ASSUME 4
OWNER:
HUMAN
COLOUR:

BROWN OR RED OR
WHITE OR BLACK

← frame name
← link to another frame

other slots

← link to frame HUMAN

Description of concept: Dog

• Frames have slots

BEAGLE
IS-A: DOG
COLOUR:

ASSUME BROWN AND WHITE

SNOOPY
INSTANCE-OF: BEAGLE

COLOUR:
WHITE AND BLACK

OWNER:
CHARLIE-BROWN

Descriptions of subconcept, and instance of a concept

• Inheritance of properties

29 / 51

30 / 51

• Back to SW languages:

• Data on the Web, Ontologies, ...

• Many applications in Biology, Business, etc.

• Useful to represent unstructured data

As opposed to structured
data as in relational DBs

E

E

E E

T A E

T

root

director

name

"Pedro
Almodovar "

movie

@year title
"1999"

"Todo sobre
mi madre "

E

E E

T A E

T

director

name

"Francisco
Lombardi "

movie

@year title
"1999"

"Pantaleón y
las visitadoras "

E

T

citisenship

"Peruana "

E

A E

T

movie

@year
"1998"

"No se lo digas
anadie"

title
1

text

text text text

text text• Common languages:

- XML: Extensible Markup Language

- JSON: JavaScript Object Notation

- RDF, RDF-S: Resource Description Framework (w/ Schema)

- OWL: Ontology Web Language (different versions)

• Most have syntax resembling HTML

31 / 51

Leo's Notebook
Sticky Note
More for data spec. than ontology

• Example: An RDF-S DB (its graphical representation)

Rivera Painter paints Paint

Cubist Picasso Guernica Zapata

type dom ran

sc

type

type type

paints

FlowerSeller

paints

type

• There are data and also conceptual, higher-level knowledge

A light-weight ontology And a graph-DB

• RDF DBs contain triples: ⟨Subject, property ,Object⟩
E.g. ⟨Picasso, paints,Guernica⟩

• RDF is extended by RDF-S, for “schemas”

It has properties with fixed, built-in semantics (meaning):

type (for class membership), sc (for subclass, like an IS-A
link), dom (for domain), ran (for range)

Properties of a class inherited by instances in subclass

• Notice the representation of data as a graph!

32 / 51

Leo's Notebook
Sticky Note
RDF-S and light-weight OWL models can provably be represented by some of the good families of Datalog+_

• In a computer an RDF-S DB could be a file containing triples
in a markup language (think of HTML) (see below)

“Native” RDF ...

• Triples can also be stored/processed in a relational DB

Taking advantage of the two worlds ...

• Whole area of Graph DBs has emerged

• There are large RDF-S DBs for different applications

• RDF-S is also representation language of DBPEDIA
(SW version of Wikipedia)

33 / 51

• We may consider OWL as the “official” language of the SW

• It extends RDF-S with more expressivity and built-in properties

• It uses basically the same computer representation language
as RDF-S

• OWL inspired by (based on) the ontological (logical)
languages of Description Logic (DL)

• There are three kinds of OWL based on different DLs

• So as there are different Datalog± languages, there are
different DLs

For the same reason: tradeoff expressivity/computability

• OWLs go from light-weight to heavy-weight

With increasing level of expressivity

And of computational complexity ...

34 / 51

