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Abstract.  A simple new technique of parallelizing methods for solving search problems which
seek collisions in pseudo-random walks is presented.  This technique can be adapted to a wide
range of cryptanalytic problems which can be reduced to finding collisions.  General constructions
are given showing how to adapt the technique to finding discrete logarithms in cyclic groups,
finding meaningful collisions in hash functions, and performing meet-in-the-middle attacks such as
a known-plaintext attack on double encryption.  The new technique greatly extends the reach of
practical attacks, providing the most cost-effective means known to date for defeating: the small
subgroup used in certain schemes based on discrete logarithms such as Schnorr, DSA, and elliptic
curve cryptosystems; hash functions such as MD5, RIPEMD, SHA-1, MDC-2, and MDC-4; and
double encryption and three-key triple encryption.  The practical significance of the technique is
illustrated by giving the design for three $10 million custom machines which could be built with
current technology: one finds elliptic curve logarithms inGF(2155) thereby defeating a proposed
elliptic curve cryptosystem in expected time 32 days, the second finds MD5 collisions in expected
time 21 days, and the last recovers a double-DES key from 2 known plaintexts in expected time 4
years, which is four orders of magnitude faster than the conventional meet-in-the-middle attack on
double-DES.  Based on this attack, double-DES offers only 17 more bits of security than single-
DES.

Key words.  parallel collision search, cryptanalysis, discrete logarithm, hash collision, meet-in-the-
middle attack, double encryption, elliptic curves.

1. Introduction

The power of parallelized attacks has been illustrated in work on integer factorization and
cryptanalysis of DES.  In the factoring of the RSA-129 challenge number and other factoring
efforts (e.g. [26, 27]), the sieving process was distributed among a large number of workstations.
Similar efforts have been undertaken on large parallel machines [14, 19]. In an exhaustive key
search attack proposed for DES [44], a large number of inexpensive specialized processors were
proposed to achieve a high degree of parallelism.  In this paper, we provide a method for efficient
parallelization of collision search techniques.1

1 Preliminary versions of parts of this work have appeared in the proceedings of the Second ACM Conference on
Computer and Communications Security [42] and in the proceedings of Crypto ’96 [43].
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Collision search is an important tool in cryptanalysis.  A broad range of cryptanalytic problems
such as computing discrete logarithms, finding hash function collisions, and meet-in-the-middle
attacks can be reduced to the problem of finding two distinct inputs,a andb, to a functionf such
that f(a) = f(b).  The most efficient techniques for finding such collisions cannot be directly
parallelized efficiently.  The main contribution of this paper is a technique for efficient
parallelization of collision search which reduces the attack time for many cryptographic schemes.

Of interest to collision search is the work of Amirazizi and Hellman showing that “time-memory
trade-offs offer no asymptotic advantage over exhaustive search” [3], and that one must use
multiple processors to take advantage of a large memory.  For a fixed amount of resources, one
can find the optimum time-memory-processor trade-off for mounting an attack.  After optimizing
both conventional techniques and the technique of parallelizing collision search presented here,
one finds that parallel collision search has a much lower attack time for many cryptanalytic
problems.  Also of related interest to collision search are Hellman’s time-memory trade-off for
attacking block ciphers [22], the work on rigorous time-space trade-offs by Fiat and Naor [18],
the DES cycling experiments of Kaliski, Rivest, and Sherman [23], the proof that DES is not a
group [9], and the DES collisions found by Quisquater and Delescaille [35, 36].

The remainder of this paper is organized as follows.  Section 2 reviews previous methods for
collision search, and Section 3 motivates the need for efficient parallelization by showing that
direct parallelization of previous methods is inefficient.  Section 4 describes the new parallel
collision search technique, and Section 5 applies it to three problems.  Pollard’s rho and lambda
methods for computing discrete logarithms in cyclic groups are parallelized in Section 5.1.  Even
when only one processor is used, the new lambda method is 1.64 times faster than the original
lambda method.  Parallel collision search is applied to finding hash function collisions in Section
5.2, and to general meet-in-the-middle attacks in Section 5.3 which leads to the best attacks
known on double encryption and three-key triple encryption.  Section 6 gives machine designs
and determines the run-time for attacking three different cryptographic schemes: an elliptic curve
cryptosystem over GF(2155) [1], the MD5 hash function [37], and double-encryption with DES
[10].  Section 7 concludes the paper.

2. Previous Methods for Collision Search

The new technique for efficiently parallelizing collision search described in this paper is built
upon Pollard’s rho-method, which was originally applied to factoring [33] and discrete logarithms
[34], but may be generalized to finding collisions in any function.

Pollard’s rho-method for discrete logarithms is an improvement over the well-known “baby-step
giant-step” algorithm, attributed to Shanks [25, pp. 9, 575].  Shanks’ method allows one to
compute discrete logarithms in a cyclic groupG of ordern in deterministic timeO( ) and space
for  group elements.  Pollard’s rho-method also has time complexityO( )  (heuristic time
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rather than deterministic), with only negligible space requirements; it is thus preferable.  The time
complexity of the rho-method for factoring is also heuristic, but there is progress towards a
rigourous result by Bach [4].  For groups with additional structure (such as GF(p)), the powerful
index calculus techniques are far superior, but do not apply to arbitrary cyclic groups.  The rho-
method is the best previous technique for proposed elliptic curve groups and for exploiting the
small subgroup used in the Schnorr signature scheme [38], and DSA [11].

When searching for collisions among the outputs of some functionf, the generalized rho-method
is an improvement over the simple technique of selecting distinct inputsxi for i = 1, 2,… and
checking for a collision among thef(xi) values.  Letn be the cardinality of the range off.  For the
simple technique, the probability that no collision is found after selectingk inputs is

(1−1 ⁄ n)(1−2 ⁄ n)…(1−(k−1) ⁄ n) ≈ (1)

for large n and k = O( ) [31].  The expected number of inputs that must be tried before a
collision is found is   (see Appendix A).  Assuming that thef(xi) values are stored in a
hash table so that new entries can be added in essentially constant time, this method finds a
collision inO( ) time andO( ) memory.  The large memory requirements can be eliminated
using the rho-method.  This method involves taking a pseudo-random walk through some finite
setS.  Conceptually, the shape of the path traced out resembles the letter rho, giving this method
its name.  Assume the functionf has the same domain and range (i.e.,f: S→ S).  Select a starting
value x0 ∈ S, then produce the sequencexi = f(xi−1), for i = 1, 2,… .  BecauseS is finite, this
sequence must eventually begin to cycle.  The sequence will consist of a leader followed by an
endlessly repeating cycle.  Ifxl is the last point on the leader before the cycle begins, thenxl+1 is
on the cycle.  Letxc be the point on the cycle that immediately precedesxl+1.  Wheni = c, we
have a desired collision becausef(xl) = f(xc), but xl ≠ xc.  The run time analysis for the simple
algorithm above also applies here.  The expected number of steps taken on the pseudo-random
walk before an element ofS is repeated is , wheren = |S|.  The advantage of this method is
that the memory requirements are small if one uses a clever method of detecting a cycle.

A simple approach to detecting a collision with Pollard’s rho method is to use Floyd’s cycle-
finding algorithm [24, Section 3.1, ex. 6], which has been optimized somewhat by Brent [7].
Start with two sequences, one applyingf twice per step and the other applyingf once per step, and
compare the outputs of the sequences after each step.  The two sequences will eventually reach
the same point somewhere on the cycle.1  However, this is roughly three times more work than is
necessary.  Sedgewick, Szymanski, and Yao showed that by saving a small number of the values
from the sequence, one could step through the sequence just once and detect the repetition shortly

1 At this point we have detected that a collision has occurred, but we have not found the point where the leader meets
the cycle.  As discussed later, finding this point is necessary in some cases (e.g., finding collisions in hash functions),
but in other cases (e.g., Pollard’s methods of factoring and computing discrete logarithms [33, 34]) it is sufficient that
there are two distinct paths to the same point.

e k2 2n( )⁄–

n
πn 2⁄

n n

πn 2⁄



4

after it starts [40].  In finding DES collisions [35, 36], Quisquater and Delescaille took a different
approach based on storingdistinguished points1, an idea noted earlier by Rivest (see [12, p.100])
to reduce the search time in Hellman’s time-memory trade-off [22].  A distinguished point is one
that has some easily checked property such as having a fixed number of leading zero bits.  During
the pseudo-random walk, points that satisfy the distinguishing property are stored.  Repetition can
be detected when a distinguished point is encountered a second time.  The distinguishing property
is selected so that enough distinguished points are encountered to limit the number of steps past
the beginning of the repetition, but not so many that they cannot be stored easily.

3. Direct Parallelization of the Rho-Method

Pollard’s rho method is inherently serial in nature; one must wait for a given invocation of the
function f to complete before the next can begin.  In discussing the rho-method for factorization,
Brent considered running many processors in parallel each producing an independent sequence,
and noted that “Unfortunately, parallel implementation of the “rho” method does not give linear
speedup” [8, p. 29].  Analogous comments apply to the rho-method for computing logarithms and
the generalized rho-method for collision search.  Note that here each parallel processor is
producing its own sequence of points independently of the others and each particular processor
does not increase the probability of success of any other processor.  With the classical occupancy
distribution applicable to collision search, the probability of each new point succeeding in
producing a collision increases with time as the number of computed points increases.  Thus, none
of the parallel processors will reach a success probability as high as is reached in the single-
processor case (because the single processor runs for much longer), which leads to poor
effectiveness of the parallel approach.  If there arem processors, the probability that no collision
has occurred for any processor after selectingk inputs out of a space of sizen is
[(1−1 ⁄ n)(1−2 ⁄ n)…(1−(k−1) ⁄ n)]m ≈  (see equation (1)).  This is (approximately) the
same distribution that one gets with a single processor operating on a set withn ⁄ m elements.
Thus the expected number of steps taken by each processor before a collision occurs is

.  Because the expected speedup is only a factor of , this is a very inefficient use
of parallelization as it requires  times more processing cycles than the single processor (serial)
version.  This is the best previously reported use of parallelization for the rho-method.

In finding DES collisions [35], Quisquater and Delescaille were able to overcome a problem
similar to the inefficient parallelization problem.   To find pairs of DES keys which map a given
plaintext to the same ciphertext, they usedf(x) = g(Ex(P)), whereP is the fixed plaintext,Ex(⋅)
denotes DES encryption with keyx, andg maps a 64-bit DES text to a 56-bit DES key.  The loss

1 Neither the cycle finding method of Sedgewick, Szymanski, and Yao nor distinguished point methods are
applicable to the rho method of factoring.  This is because we are cycling among elements modulo a prime, but we
only have the representation of these elements modulo a multiple of the prime.  Each element has multiple
representations, which makes tests for equality non-trivial.

e k2m– 2n( )⁄
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of information in the mappingg leads to “pseudo-collisions” when two keys encrypt to different
ciphertexts, butg maps the ciphertexts to the same value.  Only one in 28 collisions inf is a true
DES collision rather than a pseudo-collision.  They ran several sequences with different starting
points within the same processor.  All sequences contributed to the same list of distinguished
points.  The process continued until a true DES collision (rather than a pseudo-collision) was
found.  The time to get to the first collision is approximately 256⁄ 2 = 228, but the probability of
getting a true (rather than a pseudo-) collision is 2−8.  If all data used to find a pseudo-collision is
abandoned and one starts all over again, then the expected run time is 228 ⁄ 2−8 = 236.  However,
by keeping previous data, the number of collisions found grows as the square of the time spent
(because, the number of pairs of points grows as the square of the number of points produced).  In
this case, after about 228  = 232 steps, one would expect to have 28 collisions, one of which is
expected to be a true DES collision.  This eliminated the penalty caused by pseudo-collisions.
However, when they parallelized this algorithm tom processors, they achieved a speed up of only
a factor of  because the processors operated independently with different mappingsg. In
contrast, parallel collision search (Section 4) provides a speedup by a factorm for m processors.

4. Parallel Collision Search

In this section we describe the general parallel collision search algorithm.  Two cases are
considered: one where only a small number of random collisions are required (Section 4.1), and
the second for problems where we require a large number of collisions (Section 4.2).  These ideas
may seem unmotivated at this point; some readers may choose to skip to Section 5 to see how
these search algorithms are used to solve practical problems.

4.1 Finding a Small Number of Collisions

The goal in collision search is to create an appropriate functionf and find two different inputs that
produce the same output.  This functionf is chosen so that finding a collision serves some
cryptanalytic purpose.  To use the generalized rho-method, we requiref to have the same domain
and range (i.e.,f: S→ S) and for f to be sufficiently complex that it behaves like a random
mapping.1  A random mapping is one which is selected with a uniform distribution across all
possible mappings.

To perform a parallel collision search, each processor proceeds as follows.  Select a starting point
x0 ∈ S and produce the trail of pointsxi = f(xi−1), for i = 1, 2,… until a distinguished pointxd is
reached based on some easily testable distinguishing property such as a fixed number of leading

1 When we wish to find a collision for some functionf ′: D → R, D ≠ R, we can define a functiong: R → D and let
f = g ° f ′.  If |D| ≥ |R| theng can be made to be injective and a collision inf is also a collision inf ′.  If |D| < |R| theng
can be constructed so that the probability that a collision inf is also a collision inf ′ is |D| ⁄ |R|.  If the behaviour off is
significantly different from a typical random function, then it may be possible to create a suitable function by
composingf with some bijective mapping which has sufficiently random behaviour.

28
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zero bits.  Add the distinguished point to a single common list for all processors and start
producing a new trail from a new starting point.1  Depending on the application of collision
search, other information must be stored with the distinguished point (e.g., one must storex0 and
d in order to quickly locate the pointsa andb such thatf(a) = f(b)).  A collision is detected when
the same distinguished point appears twice in the central list.  As illustrated in Figure 1, we have
many processors taking pseudo-random walks through the setS producing many trails
terminating at distinguished points.  As soon as any trail touches another trail, the two will
coincide from that point on (see trails 3 and 4 in Figure 1).2  Trails 3 and 4 terminate at the same
distinguished pointx5 = x4�′, and the collision inf is f(x2) = f(x1�′).  After the first collision is
detected, if more collisions are required, one can continue producing trails and distinguished
points until the desired number of collisions have been found.

Figure 1. Parallelized Collision Search

Note that it is possible for one trail to collide with the starting point of another trail in which case
we have a “Robin Hood” which does not yield a collision inf.  Let θ be the proportion of points
which satisfy the distinguishing property.  The lengths of trails are geometrically distributed with
mean 1⁄ θ.  In practice,θ is small enough that trails are long and Robin Hoods are rare.  It is also
possible for a trail to fall into a loop which contains no distinguished point.  Left undetected, the
processor involved would cease to contribute to the collision search.  This problem can be
handled by setting a maximum trail length of say 20⁄ θ and abandoning any trail which exceeds

1 In the early description of parallel collision search [42], processors continued the trail from a distinguished point
rather than starting at a new point.  When several collisions are needed, the continuation method has the potential
disadvantage of a processor’s trail falling into a cycle and repeatedly detecting the same collisions.
2 Although the collision depicted in Figure 1 resembles a lambda rather than a rho, it should not be confused with
Pollard’s lambda method for computing discrete logarithms.  The rho method (which parallel collision search is based
on) makes use of a pseudorandom function where all elements of a space are accessible on each iteration, whereas the
lambda method requires an ordering of elements with each iteration taking a step whose distance is small relative to
the total size of the space.
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the maximum length.  The proportion of trails whose length exceeds 20⁄ θ is (1− θ)20⁄ θ ≈ e−20.
Each abandoned trail is about 20 times longer than the average, and so the proportion of work that
is abandoned is approximately 20e−20 < 5×10−8.

Run-Time Analysis for Finding a Small Number of Collisions.  We now examine the expected
run-time of the parallel collision search algorithm starting with the case where only a single
collision is required.  Of all the points on all the trails, if any two are the same, this will eventually
lead to a duplicated distinguished point which will be detected.  Letn = |S|, and letm be the
number of processors producing trails.  From Section 2, we expect to produce  points
before one trail touches another.  The work required by each processor is ⁄ m steps.  In
some applications of collision search, not all collisions are useful.  Letq ≤ 1 be the probability
that a given collision is useful.  The probability that no useful collision is found afterk steps
among all processors is

(1−q ⁄ n)(1−2q ⁄ n)…(1−(k−1)q ⁄ n) ≈ . (2)

The work required by each processor to find a useful collision is ⁄ m steps.  This is
only 1⁄  times more than the case where all collisions are useful because the number of
collisions grows as the square of the time spent.  After a useful collision occurs, we expect the
processor involved to have to produce an additional 1⁄ θ points before the trail strikes a
distinguished point.1  In some collision search applications, it is then necessary to locate the point
on the two trails where the collision occurred (in the case of discrete logarithms (see Section 5.1)
this is not necessary).  To locate the collision efficiently, we need the starting points of the trails
and their lengths.  Begin by stepping the longer trail forward until its remaining length is the same
as the other trail’s length.  Then step the trails forward in unison until they both hit the same point.
Barring a Robin Hood, the pointsa andb preceding the common point are such thatf(a) = f(b),
but a ≠ b, as required.  Stepping the longer trail must be done serially and then the two trails can
be stepped forward with parallel processors.  The expected time required for this process is 1.5⁄ θ
iterations off, which is the expected maximum of two random variables each with geometric
distribution and mean 1⁄ θ (see Appendix B).  In summary, the run-time to detect the first useful
collision is

(3)

wheret is the time required for an iteration off.  Although it is expected that 1⁄ q collisions will
occur before a useful one is found, the terms 1⁄ θ and 2.5⁄ θ do not increase by a factor 1⁄ q

1 There is an apparent paradox here because trails average 1⁄ θ in length, but the expected distance from a point of
collision to the end of the trail is also 1⁄ θ.  Longer trails are more likely to be involved in a collision, which resolves
the paradox.

πn 2⁄
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because all other processors can go on working while a collision which has occurred is being
detected and located (if necessary).  The optimum value ofθ is dependent on the relative costs of
processors and memory, which is addressed in Section 6.

4.2 Finding a Large Number of Collisions

We now consider the case where many collisions are required in a functionf: S→ S.  In this case,
of all the collisions that exist for the functionf, only one is the “golden collision” which leads to a
solution to the cryptanalytic problem at hand.  An algorithm to find the golden collision is useful
for performing meet-in-the-middle attacks faster than can be done with previous techniques (see
Section 5.3).  The algorithm proceeds in the same way as the case where only a small number of
random collisions are required except that we continue collecting collisions until the golden
collision is found.  There must be some test available to determine if a given collision is the
golden collision.

The algorithm begins with processors generating trails each starting from a different pointx0 ∈ S
and computingxi = f(xi−1), for i = 1, 2,… until a distinguished pointxd is reached afterd steps,
where the expected value ofd is 1⁄ θ, and θ < 1 is the proportion of points which are
distinguished.  The triple (x0, xd, d) is stored in a memory.  Letw be the number of triples that the
memory can hold.  To simplify access to the memory, we will assume that the memory address
where a triple is stored is based on a fixed function of the distinguished point.  For example,
suppose that S = {0, 1,… , n−1}, and the set of distinguished points is {0, 1,… , nθ−1}.  Then
a triple (x0, xd, d) could be stored at address� wxd ⁄ (nθ) in the memory.  If the memory element
was already full, holding a different distinguished point, then the old data is simply overwritten.
If the memory element was full, holding the same distinguished point, then we have a collision; in
this case, the two triples are used to locate the collision, and the memory element is overwritten
with the new triple.  A collision is located as in Section 4.1 by first stepping along the longer trail
until the remaining portion of the longer trail is the same length as the shorter trail, and then
stepping along the trails in unison until they reach the same point.  The points preceding the
common point are distinct values which map to the same value.

The number of unordered pairs of distinct points inS is approximatelyn2 ⁄ 2; for each pair, the
probability is 1⁄ n that the two points therein map to the same value throughf.  Therefore, the
expected number of collisions that exist, considering all unordered pairs of distinct points, is
aboutn ⁄ 2.  If all collisions were equally likely to occur, then one would expect to have to find
n ⁄ 2 collisions before the golden one was found.  However, collisions are not equally likely to
occur.  For a given functionf, the golden collision may have a very low probability of detection.
It is necessary to have many versions of the functionf all of which have a golden collision.  The
probability of detecting the golden collision will be different for each version of the function.
Each version is tried for a fixed time period and then another is tried until the golden collision is
found.
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Run-Time Analysis for Finding a Large Number of Collisions.  Let us begin with a simple, but
flawed, run-time analysis.  If the memory is full withw distinguished points, then the total number
of points on the trails leading to those distinguished points is aboutw ⁄ θ.  With each trail point
generated withf in the space of sizen, the probability of producing a point on one of the existing
trails isw ⁄ (nθ).  The required number of generated points per collision found is thennθ ⁄ w.  To
locate a collision, each trail involved must be retraced from its start to the colliding point
requiring a total of 2⁄ θ steps on average.  Note that because so many collisions are generated, the
process of not only generating, but also locating collisions should be parallelized.  The total cost
per collision detected isnθ ⁄ w + 2 ⁄ θ steps.  This is a minimum of  steps when
θ = .  The expected number of collisions generated before the golden collision is found is
n ⁄ 2, giving a total run-time of (n ⁄ 2) =  function iterations.

There are a number of flaws in the analysis above.  The memory for holding distinguished points
is empty at the start of the algorithm, and thus is not full all of the time.  Not all collisions are
equally likely to occur.  Not all distinguished points in the memory are equally likely to produce a
collision.  When a new distinguished point does not lead to a collision, it falls into one of the
memory elements at random and reduces the expected number of empty memory elements.
However, the number of empty memory elements stays the same when a collision occurs.  Thus,
collisions cause the memory to fill more slowly than one would expect in the standard occupancy
distribution model.  This fact combined with the fact that not all distinguished points are equally
likely to produce a collision means that, over time, the distribution of distinguished points in the
memory tends to become biased towards distinguished points with lower probability of producing
a collision.

To examine the true performance of the algorithm, several simulations were run.  Let
θ = α , and let the number of distinguished points produced per version of the function be
βw for some constantsα and β.  Each simulation was performed for a set of parameters
(α, β, w, n) keeping track of the number of function iterations (i) and number of distinct collisions
produced (c).  On each simulation run, the results,i andc, were averaged across216 ⁄ w versions
of the functionf.  Although only one version off was used for simulation runs wherew ≥ 216,
multiple runs with the same parameters, but different versions off, were found to give results
which agreed to within less than 1%.

For the parameters used in a given simulation run, the expected number of versions of the
function required to find the golden collision isn ⁄ (2c), and the expected total run-time isin ⁄ (2c)
function iterations.  Simulations were first run forw = 216, n = 232, and many different pairs of
values forα andβ.  The values which minimized the total run-time wereα = 2.25 andβ = 10.
Simulations were then run with these values ofα andβ for various values ofw andn (see Table
1).  The run-time of each version off is O( ), and the overall run-time of the algorithm to find
the golden collision isO( ).  Each entry in Table 1 is the coefficient of  in the
number of function iterations required to find the golden collision.  The simulation results had

8n w⁄
2w n⁄

8n w⁄ 2n3 w⁄

w n⁄

nw
n3 w⁄ n3 w⁄
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very little variance across different values ofn for each particular value ofw, except that the run-
times dropped slowly asw approachedn.  For values ofw andn which would lead toθ > 1 (an
impossibility), the table entry has a “—”; empty entries correspond to simulations not run due to
the excessive amount of computation required.

These simulations show that if 10w distinguished points are generated for each version of the
function,θ = 2.25 , andw ≥ 210, the expected run-time to find the golden collision can be
slightly overestimated as

T = (2.5 ⁄ m)t (4)

wherem is the number of processors, andt is the time required for a function iteration. Other
results from the simulations are: for 210 ≤ w ≤ n ⁄ 210, each function generates about 1.3w
collisions, of which about 1.1w are distinct; 80% of the function iterations are devoted to
generating distinguished points and 20% are devoted to locating collisions; the expected number
of versions of the function required is 0.45n ⁄ w; and the expected number of distinguished points
written to memory is 4.5n.

5. Cryptanalytic Applications of Parallel Collision Search

In this section, we apply parallel collision search to computing discrete logarithms in cyclic
groups (Section 5.1), finding hash function collisions (Section 5.2), and meet-in-the-middle
attacks (Section 5.3).

Table 1. Run-Time Results of Simulations of the Algorithm to Find the Golden Collision

w
n

20 22 24 26 28 210 212 214 216 218 220

216 9.13 4.18 2.84 2.52 2.40 2.33 2.25 — — — —

218 9.09 4.17 2.87 2.52 2.43 2.39 2.33 2.23 — — —

220 9.09 4.14 2.85 2.52 2.44 2.43 2.39 2.33 2.23 — —

222 9.04 4.20 2.87 2.56 2.47 2.43 2.42 2.39 2.34 2.24 —

224 9.07 4.15 2.85 2.54 2.47 2.43 2.42 2.41 2.38 2.34 2.25

232 9.04 4.22 2.87 2.53 2.48 2.45 2.44 2.45 2.45 2.47 2.50

240 2.61 2.48 2.44 2.43 2.43 2.46 2.44 2.44

248 2.45 2.43 2.44 2.44 2.44 2.44

256 2.43 2.43

w n⁄

n3 w⁄
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5.1 Application to Discrete Logarithms in Cyclic Groups

We now apply parallel collision search to the problem of finding discrete logarithms in a cyclic
groupG of ordern with generatorg.  Given some elementy = gx of G, we wish to findx.  We first
apply the parallelized rho-method of Section 4.1 and then show how to parallelize Pollard’s
lambda-method of computing discrete logarithms.  Elliptic curve cryptosystems are an example of
a system based on a discrete logarithm problem where collision search is the best known attack.
Other examples are the Schnorr signature scheme [38] and DSA [11] when the subgroup of prime
orderq is attacked directly.  For Schnorr and DSA, index calculus attack methods apply to the
larger group GF(p), and the sizes ofp andq determine which attack is superior.

The first step in finding a discrete logarithm is to take advantage of the factorization ofn using a
Pohlig-Hellman decomposition [32] (see also [28]).  For each prime powerpk dividing n, find
x modpk as follows.  Computeg′ = gn ⁄ p, a generator of a subgroup of orderp.  Considerx modpk

in radixp notation,x ≡ (modpk), where theai are unknown.  Fori = 0, 1,…, k−1, find
ai as follows.  Compute the known part of the exponentz = , and compute
y′ = (y ⁄ gz)n ⁄ pi+1

 (note thaty′ = (g′)ai ).  Recoverai by computing the discrete logarithm ofy′ in the
subgroup of orderp.  Finally, use the Chinese Remainder Theorem to recoverx from the residues
of x modulo each prime power dividingn.  The running time will be dominated by the time
required for the discrete logarithm in the subgroup of orderp for the largest primep dividing n.
For the remainder of this section, we will consider the case whereG is of prime ordern=p.

In a parallel version of the rho-method for logarithms, we suggest the same iterating function used
by Pollard [34].  Partition the set of group elements into three roughly equal size disjoint setsS1,
S2, andS3, based on some easily testable property.  Define the iterating function:

Each processor performs the following steps independently.  Choose random exponents
a0, b0 ∈ [0, p) and use the starting pointx0 = ga0yb0.  A key point is that different processors use
independent starting points of known relation to each other allowing collision information to be
resolved into the recovery of logarithms.  Compute the sequence defined above keeping track of
the total exponents (modulop) of g andy (notexi = gaiybi).  Whenxi is a distinguished point,
contribute the triple (xi, ai, bi) to a list common to all processors and begin again with a new
starting point.  Shortly after a collision occurs, the colliding processor will encounter a
distinguished point and there will be a collision among thexi values in the list.  If the
corresponding exponents in the two triples area, b and c, d, then gayb = gcyd or ga−c = yd−b.
Providedb≡/ d (modp), the desired logarithm can be computed as loggy ≡ (a−c)⋅(d−b)−1 (modp);
otherwise, the collision is not useful and the search must continue.  Based on randomness

Σi 0=
k 1– ai p

i

Σj 0=
i 1– aj p

j

xi 1+

yxi if xi S1∈( )

xi
2 if xi S2∈( )

gxi if xi S3∈( )
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assumptions, the probability thatb ≡ d (modp) is very small ifp is large enough to warrant using
parallel collision detection.

We now refer to equation (3) to determine the expected run-time of the discrete logarithm
algorithm.  For this application of collision search, the probability that a collision is useful (q) is
very close to 1, and collisions merely need to be detected, not located.  The overall run-time is

Tρ = ( ⁄ m + 1 ⁄ θ)t (5)

The algorithm above is designed for the case wherex, the logarithm being sought, could be any
value less than the group order.  However, in practical implementations of discrete logarithm-
based systems, the exponent size is sometimes limited to a restricted range for faster
exponentiation.  The algorithm above will work in this case, but there is a faster approach.  Begin
by using a Pohlig-Hellman decomposition to findx modulo the smaller primes dividing the group
order.  Suppose that we are left with the problem of findingx giveny = gx in a subgroup of prime
order p, wherex ∈ [0, b) for some boundb < p.  Pollard’s lambda-method [34] (affectionately
known as the method of catching kangaroos) is well-suited to this task.  A single processor
version of the lambda-method which does not use distinguished points proceeds as follows.
Define an iterating functionxi+1 = xig

a(xi), wherea is a function taking values randomly from a set
A.  A possible choice for the setA is the powers of 2 (starting with 20) 1 up to some limit with the
largest entry selected such that it determines a particular value for the mean of the set entries.  Let
the mean of the values inA be α (the optimum value ofα is found below).  If we think of a
number line labelled with the powers ofg, each iteration jumps the kangaroo forward by a
distance ofa(xi), and the distance jumped is determined solely byxi.  Start a tame kangaroo at
x0 = gb and let it makeαβ jumps (for some constantβ optimized below) keeping track of the total
distance travelled, and record the final resting spot and distance travelled.  This kangaroo is tame
because we know the logarithm of the points that it lands on.  Now start a wild kangaroo atx0′ = y
and let it jump (with the same iterating function) keeping track of the distance travelled and
checking whether it ever lands on the tame kangaroo’s final resting spot.  If the wild kangaroo
ever lands on any of the same spots as the tame kangaroo, then it will follow the same path
thereafter, and when it reaches the tame kangaroo we can find the desired logarithm from the total
distances travelled by each kangaroo.  If the method fails, set off another wild kangaroo with a
starting pointx0 = ygz for some small knownz.

We now determine the run-time of the algorithm and optimize the constantsα andβ.    Note that
we can pre-computegu for eachu ∈ A so that each kangaroo jump costs one group operation.
After the wild kangaroo passesgb, it takes aboutαβ jumps before reaching the tame kangaroo
with each jump having a probability of about 1⁄ α of landing on a spot that the tame kangaroo
once landed on.  The probability of success is about  1− (1 − 1 ⁄ α)αβ ≈ 1−e−β.  The final resting

1 Pollard speculated that powers of 2 would be acceptable [34], but feels that further investigation is needed.

πp 2⁄
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spot for the tame kangaroo is at a distance of aboutb + α2β from g0.  If the wild kangaroo travels
this far (which takes aboutb ⁄ α + αβ jumps) we stop it because it must have passed the tame
kangaroo without landing on it.  Because the expected starting point for the wild kangaroo isgb ⁄ 2,
when the algorithm succeeds, the expected number of steps isb ⁄ (2α) + αβ.  Overall, the tame
kangaroo is sent once (takingαβ jumps), and the wild kangaroo succeeds once and is expected to
fail 1 ⁄ (1−e−β) − 1 times.  This gives a total run-time ofαβ − b ⁄ (2α) + (αβ + b ⁄ α) ⁄ (1−e−β) group
operations.  This is minimized whenα = .  Using numerical
techniques, we find that the run-time is minimized whenβ ≈ 1.39 givingα ≈ 0.51  and a total
run-time of approximately 3.28  group operations.

The lambda-method suffers from the same parallelization problem as the rho-method: runningm
processors independently gives a speedup of only .  However, the lambda method can be
efficiently parallelized as follows.  Again, let the mean of the elements ofA beα (the optimum
value of α is found below).  Launchm ⁄ 2 tame kangaroos with starting pointsg(b ⁄ 2)+iv, for
0 ≤ i < m, wherev is a small constant (avoid a power of 2 forv so that the probability of tame
kangaroos following the same path is not abnormally high).  At the same time, launchm ⁄ 2 wild
kangaroos with starting pointsygb+iv, for 0≤ i < m.  Whenever a kangaroo lands on a
distinguished point, store it in a list common to all processors.  With each distinguished point,
store a flag indicating the kangaroo type (tame or wild) and the distance fromg0 (for tame
kangaroos) or fromy (for wild kangaroos).  Suppose that a kangaroo reaches a distinguished point
that is already in the list.  If the kangaroos are of the same type, then move the trailing kangaroo
forward by some small random distance so that it will not repeat the other kangaroo’s path.  If the
distinguished point was produced by kangaroos of different type, then subtract the distances to get
the desired logarithm and we are done.

We now determine the run-time of the parallelized lambda-method.  Initially, the two groups of
kangaroos are separated by some distance between 0 andb ⁄ 2.  The expected separation isb ⁄ 4
and it takes aboutb ⁄ (4α) jumps for the trailing kangaroos to cover this distance.  After this, the
trailing kangaroos enter a region where the proportion of points landed on by leading kangaroos is
(m ⁄ 2) ⁄ α.  On each step, the probability that one of them ⁄ 2 trailing kangaroos lands on a spot
previously occupied by a leading kangaroo is about (m ⁄ 2)2 ⁄ α, and the expected number of jumps
for each kangaroo before this happens is 4α ⁄ m2.  Adding this to the time required to close the
initial gap between the two groups of kangaroos, we getb ⁄ (4α) + 4α ⁄ m2 jumps, which is a
minimum of 2 ⁄ m when α = (m ⁄ 4) .  If the proportion of points satisfying the
distinguishing property isθ, we expect it to take an additional 1⁄ θ jumps to reach the next
distinguished point after a collision occurs.  If the time required for a group operation ist, then the
total run-time is

Tλ = (2 ⁄ m + 1 ⁄ θ)t (6)

b 1 e β–+( ) 2β 2 e β––( )( )⁄
b

b

m

b b
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In the analysis above, we assumed that the number of processors is even with the processors
divided equally between tame and wild kangaroos.  When there is only one processor, we can
simulate two half-speed processors by alternating between jumps of one tame and one wild
kangaroo.  Thus using equation (6) withm=2 and 2t as the time to perform a group operation, we
get Tλ = (2 + 2⁄ θ)t when there is only one processor.  This agrees with (6) form=1 except
for the term involvingθ which can be made small by choosing an appropriate distinguishing
property.  Compared to a run-time of (3.28 )t for the previous version of the lambda-method
which does not use distinguished points, the new method is 1.64 times faster.1  It is also
interesting to compare the run times of the parallelized lambda and rho-methods.   For the case
where the exponent is full size (b = p), the lambda-method is about 1.60 times slower; it becomes
faster whenb < 0.39p.

5.2 Application to Hash Functions

In this section we apply the parallel collision search technique to finding real collisions in hash
functions.  By “real” we mean not only collisions on the overall hash function (as opposed to
simply on the compression function of a hash function), but such collisions which are meaningful
in practice (e.g., where the input messages may be largely or entirely selected by an attacker).
Such collisions were found by Dobbertin in MD4 [15].  These methods apply to any hash function
including MD5 [37], RIPEMD [5] and its successors RIPEMD-128 and RIPEMD-160 [16],
SHA-1 [39], and MDC-2 and MDC-4 [30].  We first review how hash functions are typically used
in conjunction with digital signatures, and the classic attack of Yuval [45].  We then apply parallel
collision search to extend this attack to allow parallelization and reduce memory requirements.

Hash functions are designed to take a message of arbitrary bitlength and map it to a fixed size
output called a hash result.  LetH: M → R  be such a hash function.  Typically, hash functions are
constructed from a functionh: B×R → R  which takes a fixed size block of message bits together
with an intermediate hash result and produces a new intermediate hash result.  A given message
m ∈ M is typically padded to a multiple of the block size and split into blocksm1, … ml ∈ B.  The
padding often includes a field which indicates the number of bits in the original message.
Beginning with some constantr0 ∈ R, the sequenceri = h(mi, ri−1) is computed fori = 1, … l, and
rl is the hash result for messagem.

Hash functions are commonly used in connection with digital signatures.  Instead of signing a
message directly, the message is first hashed and the hash result is signed.  For cryptographic
security, it must be computationally infeasible to find two messages that hash to the same value;
otherwise, a digital signature could be copied from one message to the other.

1 To be fair, Pollard’s paper describing the lambda-method [34] discussed using a programmable calculator for
performing discrete logarithms.  The new lambda-method is not useful unless it is possible to store at least 4 or 5
distinguished points, and this would have been awkward on a programmable calculator.

b

b
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Now suppose we have a messagem that we would like the victim to digitally sign, but he is not
willing to do so.  A simple attack on the hash function can help to acquire the desired signature as
follows [45].  Choose some other messagem′ that the victim is willing to sign.  Find several ways
to modify each ofm andm′ that do not alter their respective semantic meaning (e.g., adding extra
spaces or making small changes in wording).  The combinations of message modifications lead to
many versions of a message, all of which have essentially the same meaning.  Then hash the
different versions ofm andm′ until we find two versions that give the same hash result.  The
victim will sign the version ofm′, and we can copy the signature tom.  This attack requires
O( ) time and space, wheren = |R|.

The memory requirements for a hash function attack can be eliminated using collision search
techniques.  Letm ∈ M, and letgm: R → M  be an injective function which takes a hash result
(and a fixed messagem) as input and produces a perturbation ofm with the same semantic
meaning to the signer.  For example, the bit positions in a hash result could correspond to
sentences in the messagem with each hash result bit deciding whether to place one or two spaces
after the period.  Partition the setR into two roughly equal size subsetsS1 andS2 based on some
easily testable property of a hash result.  Then define a functionf : R → R as follows, withm and
m′ as described above as implicit constants.

Using the parallel collision search technique from section 4.1, find pairs of hash resultsa andb
such thatf(a) = f(b), buta ≠ b.  A collision is not useful unlessa andb are in different subsetsSi,
Sj of R, which will occur with probability 1⁄ 2.  Supposea ∈ S1 and b ∈ S2; then
H(gm(a)) = H(gm′(b))  (i.e., we have versions ofm andm′ which give the same hash result).

With this approach, each iteration off requires applying the hash function to an entire message.
To reduce the amount of computation required, we choose mappingsgm andgm′ to affect as few
message blocks as possible.  Forgm andgm′ to be injective, we must be able to code the bits of a
hash result into the affected message blocks.  One example of a way to do this would be to find
four non-printable characters and code two bits per byte.  Another example is to code data within
the shading of a company logo in a word processor file.  For the most popular hash functions,
message blocks are longer than hash results (i.e.,|B| > |R|), and in the following, we will assume
that the bits of a hash result can be coded into a single message block.  The messagem consists of
the blocks m1, … ml.  Messagem′ consists of the blocksm′1, … m′j, mj+1, … ml.  Note thatm and
m′ must have the same length so that the length information coded in their final blocks will be the
same.  The effect ofgm andgm′ is coded into blocksmj andm′j.  If the intermediate hash results are
the same form andm′ after block numberj, then the final hash results will be the same as well.
The functionf now just needs to use one iteration of the hash function.  Letrj−1 andr′j−1 be the
intermediate hash results form andm′ afterj−1 blocks.  Replacegm andgm′ with g: R → B  which

n

f r( )
H gm r( )( ) if r S1∈( )

H gm′ r( )( ) if r S2∈( )
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maps a hash result to a message block; this assumes we are free to manipulate the message blocks
mj andm′j in their entirety.  Then use the following functionf for collision search.

Referring to equation (3), collisions must be detected and located, and the probability that a
collision is useful isq = 1 ⁄ 2, giving a run-time for finding a real hash collision of

Thash = ( ⁄ m + 2.5⁄ θ)t (7)

where n = |R|, m is the number of processors, andt is the time required for a hash function
iteration.

5.3 Application to Meet-in-the-middle Attacks

We now apply parallel collision search to meet-in-the-middle attacks.  We begin by examining the
run-time of the standard approach to performing such attacks and then show that parallel collision
search can greatly improve run-time.  Meet-in-the-middle attacks on double-DES and triple-DES
are used to illustrate the techniques; see van Oorschot and Wiener [43] for additional applications
including discrete logarithm attacks for the special case of bounded-weight exponents, and
attacking a scheme for server-aided RSA computations.  Other work on attacking multiple
encryption includes the meet-in-the-middle attack on double-DES described by Diffie and
Hellman [13] and generalized by Even and Goldreich [17], and attacks on two-key triple-
encryption [29, 41].

In a general meet-in-the-middle attack, we have two functions,f1: D1 → R andf2: D2 → R, and
we wish to find two particular inputsa ∈ D1 andb ∈ D2, such thatf1(a) = f2(b).  Letn1 = |D1| and
n2 = |D2|.  Without loss of generality, assumen1 ≤ n2.  If there are many pairs of inputs which
satisfy this condition, there must be some further test to determine which pair is correct.  For the
case of double-DES encryption we assume that we have a plaintext-ciphertext pair (P, C) such
that C = Ek2

(Ek1
(P)), whereEx(⋅) denotes DES encryption with keyx, and k1 and k2 are the

unknown keys.  If we letf1(x) = Ex(P) andf2(x) = Ex
-1(C), thenf1(k1) = f2(k2).  Note thatP andC

are constants; the inputs sought arek1 and k2.  Many pairs of keys will match the particular
plaintext-ciphertext pair.  By testing each pair of keys on a second plaintext-ciphertext pair, with
high probability only the correct pair of keys will remain.

A simple approach to performing the meet-in-the-middle attack proceeds as follows.  Compute
f1(x) for all x ∈ D1 and store the (f1(x), x) pairs in a table (using standard hashing on thef1(x)
values to allow lookup in constant time).   For eachy ∈ D2, computef2(y) and look it up in the
table.  If there is a match, then the candidate pair of inputsx andy must be tested to see if they are

f r( )
h g r( ) r j 1–,( ) if r is even

h g r( ) r ′j 1–,( ) if r is odd
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the correct inputs (a andb).  This method requires, on average,n1 + n2 ⁄ 2 function evaluations
and memory forn1 pairs.  For double-DES, this is (3⁄ 2)256 function evaluations and 256 stored
pairs.  Obviously, this is not a practical amount of memory.  Suppose that available memory can
hold onlyw pairs.  The attack can be modified as follows [17].  Divide the spaceD1 into subsets
of size w.  For each subset, compute and store the (f1(x), x) pairs, and then for eachy ∈ D2,
computef2(y) and look it up.  The expected run-time for this memory-limited version of the
attack is (1⁄ 2)(n1 ⁄ w)(w + n2) ≈ n1n2 ⁄ (2w) function evaluations.

To apply the method of finding a golden collision in Section 4.2 to meet-in-the-middle attacks, we
must construct a functionf for collision search.  Becausef must have the same domain and range,
we splitD2 into subsets of sizen1 and perform a collision search for each subset.  To simplify the
following description, assume thatn1 dividesn2.  Mappings from the integers toD1 andD2 are
needed; leth1: I → D1 andh2: I ×J → D2 be bijective mappings, whereI = {0, 1, … n1−1} and
J = {0, 1, … (n2 ⁄ n1)−1}.  Let f1�′(x) = f1(h1(x)) andf2�′(x) = f2(h2(x, j)), wherej ∈ J is a fixed value
defining a subset ofD2.  Treatingj as a constant, bothf1�′ andf2�′ are mappings fromI to R.  Let
g: R → I ×{1,2} be a surjective mapping that takes an element ofR to a pair which consists of an
element ofI and a bit to select eitherf1�′ or f2�′.  The mappingg should distribute the elements ofR
fairly uniformly across I ×{1,2}.  We can now definef: S→ S, where S= I ×{1,2}, as
f(x,i) = g( fi�′(x)).

To show thatf has a collision related to the desired inputsa andb, begin by lettingh1
−1(a) = z and

h2
−1(b) = (u,v).  Whenj = v, f1(a) = f2(b) implies thatg( f1(h1(z))) = g( f2(h2(u, j))), which means

that f(z,1) = f(u,2).  Therefore, whenj = v, one of the collisions off leads to the desired inputsa
andb.  To use the algorithm for finding a golden collision, several versions off are required.  This
can be achieved by choosing different versions of the mappingg.  To finda andb, repeat the
following for each version off.  For eachj ∈ J, use the algorithm in Section 4.2 to search for the
golden collision.  Using equation (4), the expected run-time, forθ = 2.25 , is
|J|(2.5 ⁄ m)t, wherew is the number of memory elements,m is the number of processors,
andt is the time required for a function iteration.  Because|J| = n2 ⁄ n1 and|S| = 2n1, the expected
run-time of a meet-in-the-middle attack based on this parallel collision search technique is

Tm = (7n2 ⁄ m)t (8)

Compared to the standard approach whose run-time isn1n2t ⁄ (2wm), the meet-in-the-middle
attack based on parallel collision search is 0.07  times faster.  Another point in comparing
the two approaches is that the standard approach requires an access to the memory common to all
processors after every function evaluation, but the collision search approach only accesses
memory every 1⁄ θ = 0.63  function evaluations.  Overall, the new method requires
n ⁄ (18w) times fewer memory accesses than the standard approach.  In a highly parallel attack, the
standard approach is limited by memory access time.

w S⁄
S3 w⁄

n1 w⁄

n1 w⁄

n1 w⁄
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Applying collision search to attacking double-DES,n1 = n2 = 256 so that there is no need for
splitting up D2, h1 and h2 are the identity mappings,f1�′(x) = Ex(P), and f2�′(x) = Ex

-1(C).  The
mappingg takes the first 56 bits of the encryption or decryption result as the next key, and uses
the next 8 bits of the result to derive a bit to choose betweenf1�′ andf2�′.  Because these 8 bits can
take on 256 different values, an unbiased bit can be derived from them in  ways, which is
more than enough versions off.  Using equation (8), the expected attack time is

T2DES = 7⋅284t ⁄ (m ) (9)

Applying collision search to attacking triple-DES with three independent keys, if we use the point
after the first encryption as the middle point, we haven1 = 256 andn2 = 2112.  Using equation (8),
the expected attack time is

T3DES = 7⋅2140t ⁄ (m ) (10)

The meet-in-the-middle attack based on collision search relies on having|R| ≥ 2|D1|.  However,
this would not be the case for attacking double encryption with an algorithm whose key size is
greater than the block size.  In this case, one could use more than one plaintext-ciphertext pair and
definef1 to encrypt multiple concatenated known plaintexts and concatenate the results.  Definef2
similarly.  This increases the effective block size.

For the case where|R| = |D1|, which would occur for double encryption when the key size and
block size are equal, one could re-define the mappingg to compute the element of {1,2} from the
element ofI that it outputs.  This reduces|S| by a factor of 2 saving a factor of 2  in run-time
(see equation (4) withn = |S|), but costs a factor of 4 because there is only one chance in 4 that
there are two elements ofR that map throughg to (a,1) and (b,2).  Overall, the run-time is
times greater, which is better than using two plaintext-ciphertext pairs which costs a factor of 2
because each function iteration would require two encryptions or decryptions.

6. Machine Designs

In practice, the true measure of the effectiveness of a cryptanalytic attack is the time required to
complete the attack given some limitation of resources.  For casual or “unfunded” attackers, a
common measure of resources is the number of PCs and workstations which can be harnessed for
the task.  For well-funded attackers, a better measure is simply a dollar amount.  For most attacks,
a custom approach is far more effective than using available cycles on computers connected to the
internet.  Notable exceptions to this general rule are factoring and discrete logarithms in GF(p)
using index calculus techniques, where general-purpose computers are fairly well suited to the
tasks.

256
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In this section, we consider the case of a well-funded attacker with $10 million1 available for a
custom machine.  Given this resource limitation, we estimate the time required to complete three
different cryptanalytic problems using parallel collision search: computing elliptic curve
logarithms over GF(2155), finding collisions in the MD5 hash function, and recovering double-
DES keys.  To do this, it is necessary to estimate costs of custom processors, memory, and other
components.  Given these cost estimates, one can optimizeθ (the proportion of distinguished
points) andw (the number of memory elements) to minimize the attack time.

6.1 Elliptic Curve Logarithms Over GF(2155)

We now apply parallel collision search to a discrete-logarithm-based cryptosystem of Agnew et
al. [1] which uses elliptic curve cryptosystems over GF(2155).  The security of such systems is
apparently bounded by the difficulty of finding discrete logarithms over the group of points on the
elliptic curve.  Curves are used for which the best known discrete logarithm attack is Pollard’s
rho-method, and to make such attacks infeasible, they recommend curves where the order of the
elliptic curve group contains a prime factor with at least 36 decimal digits (corresponding to
p ≈ 1036 as discussed in Section 5.1).  They analyze the attack effort as follows.  Each step of the
rho-method requires a number of arithmetic operations over the elliptic curve (specifically, for the
implementation cited, 3 elliptic curve additions for Floyd’s cycle-finding requiring a total of 39
field multiplications, each taking 155 clock cycles at 40 MHz), and if 1000 devices are used in
parallel to compute a logarithm, they note the computation would still require 1500 years.
(Although no method was known by which the rho-method could be parallelized, the existence of
a parallelized version with perfect linear speedup was implicit in this reasoning.)  It was
previously believed [1, p.809]: “Provided that the square root attacks are the best attacks on the
elliptic logarithm problem, we see that elliptic curves overF2m with m about 130 provide very
secure systems”.  However, the analysis below indicates that the lower bound of 1036 for the size
of the largest prime factor of the order of the group is too small to provide what we would
understand asvery secure systems.

Let u be the cost of each custom processor (including overhead for housing the custom chips in a
machine),v be the cost of a memory element (including overhead for housing the memory), andt
be the time for a function evaluation.  The elliptic curve system over GF(2155) can be
implemented in less than 1 mm2 of silicon in 1.5µm technology and can perform an addition in
13×155 clock cycles at 40 MHz [1, 2].  This givest = 13×155⁄ (40×106) seconds.  About 75 of
these cells plus input/output and logic to detect distinguished points could be put on a $20 chip.
Based on a DES key search design [44], the overhead of building a machine with many of these
chips would be about $7 per chip.  Each chip plus its overhead costs $27 and contains 75
processors giving a cost ofu = $0.36 per processor.  Each memory element must hold a triple
consisting of a distinguished pointxi and two integersai andbi such thatxi = aig + biy, whereg is

1 All estimates are given in U.S. dollars.
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the generator of the elliptic curve subgroup of orderp, andy is the elliptic curve point whose
logarithm is sought.  Becausep ≈ 1036, ai andbi require 15 bytes each.  A point on an elliptic
curve over GF(2155) can be represented in 155 bits for one coordinate plus one bit for the other
coordinate.  The distinguished pointxi will have 32 leading zero bits (based on the distinguishing
property derived below) which do not need to be stored.  Thusxi requires 155+1−32 = 124 bits or
16 bytes.  Overall, a triple requires 46 bytes.  Assuming that triples are stored in a standard hash
table and the memory is limited to 99% full (to limit the number of probes necessary to find an
empty element), each triple consumes 46⁄ (0.99) bytes of memory.  Assuming that memory costs
$50 per Mbyte1, we havev = $0.0022.

Given a budget limitation ofB = $10 million, the constraint onm (number of processors) andw
(number of memory elements) is

mu+ wv = B (11)

To build a machine, we must fix the amount of memory.  Then in the case that the desired
logarithm is not found before the memory fills up, continue by simply overwriting new
distinguished points on top of old ones.  After the memory fills up, there are a total of aboutw ⁄ θ
points on the trails leading to the distinguished points in the memory.  This affects the run-time as
shown in Appendix A.  Combining the expected run-time of equation (5) with the effect of a
memory constraint given by equation (18) withz = w ⁄ θ andn=p, we get a run-time of

.

Using numerical techniques to minimize this expression subject to the constraint of equation (11),
we find that the run-time is a minimum of 32 days whenθ = (0.93)2−32, m = 2.5×107, and
w = 3.8×108.  This is a total of 330000 processor chips and 16 Gbytes of memory.  This is not an
impractical amount of memory; the existing general purpose parallel machine of [19] has
37 Gbytes of memory.  Note also thatθ is close to (234⁄ 256)2−32, which can be achieved by
defining a point as distinguished if it has 32 leading zero bits and the next 8 bits have a binary
value less than 234.  The overall rate at which the processors produce triples is
mθ ⁄ t = 107 per second, which can be accommodated quite easily by the large memory.  The
triples generated would be passed up from the processors through a hierarchy of controllers to a
single processor which accesses the memory.  Because the system could easily handle 1000 times
as many triples per second, very little buffering is required to handle bursts in the arrival of
triples.  The number of triples lost due to bursts would be insignificant.  Note that the only cost of
losing a triple is wasting the time required to generate it; there is no further impact on the rest of
the algorithm.

1 This memory cost estimate is quite conservative.  As of Sept. 1996, $25 per Mbyte is a better estimate.
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This analysis makes use of the basic hardware described by Agnew et al. [1], and does not take
into account possible optimizations from pipelining the elliptic curve implementation or from
using currently available silicon technology; thus an attacker could do even better.  Note that the
computation of the discrete logarithm in the large subgroup of order approximately 1036 will by
far dominate other computational costs in the entire Pohlig-Hellman decomposition.  This follows
because the order of the elliptic curve group over GF(2m) is 2m + O(2m⁄ 2), and 2155 ⁄ 1036 < 1011,
and so the remaining subgroups are necessarily relatively small form = 155.

6.2 MD5 Collisions

We now apply the hash function collision techniques of Section 5.2 to the MD5 hash function.
The size of the MD5 hash result space isn = 2128.  A 1995 internal study of an MD5 silicon
implementation by Nortel (Bell-Northern Research) indicates that a collision search chip for one
iteration of MD5 with 64 levels of pipelining (recall that MD5 involves 4 rounds of 16
computations per 512-bit block) could be built with a total area of (310 mils)2 and would run at
50 MHz if designed in a 0.5µm CMOS process.  Due to the pipelining, each chip essentially
consists of 64 independent processors, with each processor requiringt = 64 ⁄ (50 MHz) = 1.28µs
to perform an iteration off.  The chips would also contain logic to detect distinguished points to
minimize the rate of input and output to keep costs down.  Such a chip would cost about $15 in
high volume.  Based on a DES key search design [44], the overhead of building a machine with
many of these chips would be about $7 per chip.  This includes the cost of a hierarchy of
controllers and communications path to a central memory of distinguished points.  Each chip
(plus overhead) costs $22 and contains 64 processors giving a cost ofu = $0.34 per processor.
The only cost that has not yet been accounted for is the memory for the distinguished points.

Each memory element must hold a triple consisting of a starting point on a trail, the distinguished
point at the end of the trail, and the number of steps taken.  The starting point can be represented
with 5 bytes because fewer than 240 trails will be produced (as shown in the analysis below), and
the starting points can consist of 88 ones (which need not be stored) followed by a 40-bit count.
The number of steps can be represented with 5 bytes because trails longer than 20⁄ θ are
abandoned (see the optimum value ofθ derived below).  The distinguished point can be
represented in 12 bytes because a hash value is 16 bytes long and, as shown below, distinguished
points have at least 4 leading zero bytes which need not be stored.  Overall, a triple requires 22
bytes.  Assuming that triples are stored in a standard hash table and the memory is limited to 99%
full (to limit the number of probes necessary to find an empty element), each triple consumes
22 ⁄ (0.99) bytes of memory.  Assuming that memory costs $50 per Mbyte, we havev = $0.0011.

Given a budget limitation ofB = $10 million, the constraint onm (number of processors) andw
(number of memory elements) is given by equation (11).  To build a machine, we must fix the
amount of memory, and it is possible that an MD5 collision will not be found before the memory
fills up.  In this case, we continue by simply overwriting new distinguished points on top of old
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ones.  After the memory fills up, there are a total of aboutw ⁄ θ points on the trails leading to the
distinguished points in the memory.  This affects the run-time as shown in Appendix A.
Combining the expected run-time of equation (7) with the effect of a memory constraint given by
equation (18) withz = w ⁄ θ, and taking into account the fact that the probability that a collision is
useful is 1⁄ 2, we get a run-time of

.

Using numerical techniques to minimize this expression subject to the constraint of equation (11),
we find that the run-time is a minimum of 21 days whenθ = (0.66)2−35, m = 2.7×107, and
w = 8.6×108.  This is a total of 420000 processor chips and 18 Gbytes of memory.  The expected
total number of trails produced among the processors is 1.2(229), which is much less than the 240

allowed for above.  The overall rate at which the processors produce distinguished points is
mθ ⁄ t = 405 per second, which can be accommodated quite easily by the large memory.  Because
the system could easily handle many times more triples per second, very little buffering is
required to handle bursts in the arrival of triples, and the number of triples lost due to bursts
would be insignificant.

The run-time of this attack is proportional to the square root of the hash result space.  Thus, if this
attack were applied to SHA-1 whose hash results are 160 bits long (compared to 128 bits for
MD5), the attack would take 216 times longer.

6.3 Known-Plaintext Attack on Double-DES

In this section, the meet-in-the-middle attack method of Section 5.3 is applied to a known-
plaintext attack on double-DES.  The run-time of a meet-in-the-middle attack is given by equation
(8) subject to the constraint of equation (11).  Solving (11) form (the number of processors) and
substituting into (8), we get

Tm = 7n2 ut ⁄ ( (B − vw)) (12)

This is a minimum whenw = B ⁄ (3v) (one-third of the budget is spent on memory) giving

Tm = 18n2 ut ⁄ B3 ⁄ 2 (13)

The most interesting feature of this run-time expression is that the attack time decreases as the
money spent to the power of 1.5 (e.g., spending 4 times more money makes the attack 8 times
faster).  It makes sense that increasing the budget gives better than linear speed-up because the
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increase in number of processors gives linear speed-up, and we get additional speed-up in
detecting collisions as a result of having more distinguished points in a larger memory.

To estimate the run-time for attacking double-DES, estimates are required for each of the
constants in equation (13).  The budget isB = $10 million, and the size of the DES key space is
n1 = n2 = 256.  Based on a DES key search design [44], a chip implementing DES encryption with
16 pipeline stages can be made to run a 50 MHz for $10.50 per chip with an additional $7 per chip
in overhead to house the chips in a machine with a hierarchy of controllers.  To attack double-
DES, the chip must support DES decryption as well (by supporting a reversed key schedule) and
must detect and report distinguished points.  This brings the chip cost plus overhead to about $20.
Due to the pipelining, each chip consists of 16 processors giving a cost ofu = $1.25 per processor,
and an encryption (or decryption) time oft = 16 ⁄ (50 MHz) = 0.32µs.  With 2⁄ 3 of the budget,
we can buym = 5.3×106 processors or 330000 chips of which 80% are devoted to generating
distinguished points, and 20% are devoted to locating collisions.

The analysis below shows that the overall rate at which the memory is accessed is too high for
there to be a single interface to the memory.  For this reason, the memory is divided into 16 Mbyte
segments (organized in 32-bit words) each with its own controller to read and write triples which
consist of a starting point on a trail, the distinguished point at the end of the trail, and the number
of steps taken.  By dividing the memory into segments, we introduce a new problem of how to
direct each triple to the correct memory segment.  To illustrate how this can be done, consider a
small example where there are only 4 memory segments.  Each segment is responsible for values
which begin with a particular 2-bit pattern.  As shown in Figure 2, the processors pass values to a
routing stage which then passes the values to one of two other routing chips based on one of the
bits in the value.  The next routing stage passes the value to one of two memory controllers based
on another bit of the value.  Each routing chip contains a buffer (memory) to deal with peaks in
the supply of values.

Figure 2. Example of Routing Values to Memory Segments

In general,k routing stages are required for 2k memory segments.  For the problem at hand, 12
routing stages suffice (as shown below).  Each routing chip contains some memory to deal with an
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uneven supply of triples.  It is no great loss if all routing chips between a processor and a memory
segment have their buffers fill up once in a while and a small proportion of triples are lost.1  Each
chip in the first routing stage collects triples from several processors.  Each subsequent stage uses
a different bit of the distinguished point to direct the triple toward the correct memory segment.
Allowing $10 per routing chip, $20 for a memory controller, and $100 to house 12 routing chips
and a memory controller in a machine, the overall cost of 16 Mbyte memory segment is $800 (at
$50 per Mbyte) + $240 = $1040.  One third of the budget can buy 50 Gbytes or 3200 such
memory segments (which is less than 212 so that 12 stages of routing chips to direct triples to
memory suffice).  Because a triple requires 12 bytes (as shown next), this memory can hold
w = 4.5×109 triples.  Withn = 257, we haveθ = 2.25 = 0.81(2−11).  The starting point of a
triple can be represented with 5 bytes because 10w trails are produced per version of the iterating
function andw < 240 ⁄ 10.  The 57-bit starting points can consist of 17 ones followed by a 40-bit
count.  The number of steps taken can be represented with 2 bytes because trails longer than
20 ⁄ θ (< 216) are abandoned.  The distinguished point can be represented with 5 bytes because
each point consists of 57 bits of which 11 are leading zeros due to the distinguishing property and
another 11 are implied by the memory segment that the triple is stored in, leaving 35 bits.  One of
the remaining 5 bits could be used to indicate whether a memory element contains a triple or not.
Overall, a triple requires 12 bytes (three 32-bit words).  With a cost of $1040 per 16 Mbytes, the
cost of a memory element isv = $0.00074.

For each distinguished point sent to a memory segment, the memory controller reads a triple from
a memory element and then writes the new triple into the memory element.  In Section 4.2, it was
shown that of 10w trails generated, 1.3w collisions are produced.  This means that 13% of the
time it is necessary to read all three 32-bit words from memory and 87% of the time only one
word must be read (for a negligible fraction of the time, two words are read if most of a stored
distinguished point matches the new one, but the second read determines that there is no match).
It is always necessary to write all three words of the new triple.  This gives a mean of 4.26
memory accesses for each triple.  If the distinguished point is already in the memory, there is a
collision and the two triples are passed to the processors which locate collisions.  The overall rate
at which distinguished points are generated is (80%)mθ ⁄ t = 5.3×109 per second.  These are
spread across 3200 memory segments and each requires 4.26 memory accesses (on average)
giving an average of 140 ns between memory accesses in each segment.  This is more time than is
required to access modern memory, and is thus realistic.  The buffering in the 12 routing stages
between processors and memory will smooth out peak demands on a memory segment so that few
triples are lost.

1 The design requirements are much more relaxed than for a highly parallel general-purpose super-computer.  For the
problem at hand, data flows in only one direction (from processors which generate trails to memory or from memory
to processors which locate collisions) and some data can be lost without affecting the correctness of the algorithm.
For general-purpose machines, data flows in both directions so that transit time is important (not just throughput), and
no data can be lost.

w n⁄
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Substituting the constant values into equation (13), we get a total run-time of 4 years.  This is
about 217 times as long as the 21 minutes required to attack single-DES with a $10 million
machine [44].   In Section 5.3, it was determined that meet-in-the-middle attacks based on parallel
collision search are 0.07 = 280 times faster than a conventional approach.  This does not
take into account the fact that a basic step of the new algorithm is a 20 ns pipeline stage compared
to a basic step of four 32-bit memory accesses (about 320 ns) for the conventional approach,
giving another factor of 16.  There is also the fact that there is greater cost in the conventional
approach due to having to split up the memory into smaller segments to handle the memory
access rate.  Overall, the new approach performs a known-plaintext attack on double-DES about
four orders of magnitude faster than the conventional approach.  This is based on an attacker
having a budget of $10 million.    For a lower budget, the advantage is greater, and vice-versa (see
[43, Table 1]).

7. Conclusion

Obvious methods of parallelizing collision search algorithms do not give linear speedup; whenm
processors are used, collision search is only  times faster than when one processor is used.
The new method for parallelizing Pollard’s rho-method presented herein, based on the use of
distinguished points, gives linear speedup.

Parallel collision search applies to a wide range of cryptanalytic problems.  One such problem is
performing discrete logarithms in cyclic groups.  For some groups where there is no known
subexponential attack, such as certain elliptic curve groups, parallel collision search gives the
most efficient known method of performing discrete logarithms.  This discrete logarithm
technique can also be used for direct attacks on the small subgroup used in the Schnorr signature
scheme and DSA.  Pollard’s lambda-method for discrete logarithms (which is useful when the
logarithm is known to lie in a restricted interval) can also be parallelized with the use of
distinguished points.  Even when only one processor is used, the new lambda method is 1.64
times faster than the previously best variation.

Parallel collision search also gives the best known method of finding collisions between
meaningful messages for many hash functions including MD5, RIPEMD-160, SHA-1, MDC-2,
and MDC-4.  The only details of the specific hash function which enter into such an analysis are
the bitsize of the hash result, and the speed and cost of a hardware implementation possible with
current technology.  The natural conclusion from the analysis is that 128-bit hash results are,
depending on the application, too small to provide adequate security for the future, and perhaps
marginal even for today.  When greater security is required, SHA-1 or RIPEMD-160 [16] may be
used.

A general construction for performing meet-in-the-middle attacks using parallel collision search
was given.  This gives a large speed improvement over the standard approach to meet-in-the-

n1 w⁄

m
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middle attacks, and gives the best attacks known on double encryption and three-key triple
encryption.

To illustrate the use of parallel collision search for practical cryptanalytic problems, designs were
given for three $10 million custom machines which could be built with current technology: one
finds elliptic curve logarithms in GF(2155) thereby defeating a proposed elliptic curve
cryptosystem in expected time 32 days; the second finds MD5 collisions in expected time 21
days; and the last recovers a double-DES key from two known plaintexts in expected time 4
years, which is more than 10000 times faster than the conventional meet-in-the-middle attack on
double-DES.  Based on the new attack, double-DES offers about 17 bits more security than
single-DES.  Because the new attack has faster than linear speedup as machine size increases, the
advantage of double-DES over single-DES shrinks as the budget for the attack increases or as
technology becomes faster and cheaper.
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Appendix A: Expected Number of Steps to a Collision

This appendix sketches a derivation of the expected number of elements of a set of sizen that
must be selected at random with replacement before any element is selected twice.  The case
where the number of elements stored and available for collision is limited is considered as well.

Lemma 1. Let X be the random variable for the number of elements selected before duplication.
Then E(X) ≈ .

Proof. Pr(X > k) = (1−1 ⁄ n)(1−2 ⁄ n)…(1−(k−1) ⁄ n) ≈ (14)

for largen andk = O( ) [31].

E(X) = = = (15)

Therefore, the expected number of elements chosen before duplication is
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E(X) ≈ ≈ = (16)

The error in approximating the sum with the integral is at most 1 because the function is
monotonically decreasing and never exceeds 1.  The integral is a standard definite integral.  This
result is also given by Flajolet and Odlyzko [20] (see also Knuth [24, p.8, ex.12]). ❑

For an implementation where one seeks a duplicated element, all previous elements must be
stored.  But, the actual amount of memory available for a real attack will be limited.  Letz be the
number of elements which can be stored.  After the memory fills, only collisions with thez stored
elements can be detected, not collisions with elements which have been overwritten in the
memory.

Lemma 2. Let Y be the random variable for the number of elements selected before duplication
is detected when the memory size isz.  Then

E(Y) = + (n ⁄ z) .

Proof. This distribution is the same as that ofX up to k = z, after which the probability of
collision isz ⁄ n on each step.

(17)

E(Y) = + (n ⁄ z) (18)

This completes the proof. ❑

Appendix B: Expected Maximum of Two Geometric Distributions

This appendix proves a lemma about the expected maximum of two geometric distributions.  Let
X1 andX2 be two independent random variables with geometric distribution and mean 1⁄ p for
some probabilityp.  Then Pr(Xi = k) = p(1−p)k−1 and Pr(Xi < k) = 1 − (1 − p)k−1 for k ≥ 1 and
i = 1,2 (for an introduction to geometric probability distributions, see Blake [6] for example).

Lemma 3. Let Y be the random variable equal to the maximum ofX1 and X2.  Then
E(Y) ≈ 1.5⁄ p  for p small.

Proof. Pr(Y = k) =  Pr(X1 < k)⋅Pr(X2 = k)  + Pr(X2 < k)⋅Pr(X1 = k)  +  Pr(X1 = k)⋅Pr(X2 = k)

= 2p(1 − p)k−1 − (2p − p2)(1 − p)2(k−1)
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E(Y) = ⋅(2p(1 − p)k−1 − (2p − p2)(1 − p)2(k−1))

Making use of the identity   for 0 <a < 1,

E(Y) = 2 ⁄ p −  1 ⁄ (2p − p2) ≈ 1.5⁄ p   for p small. ❑
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