
The Well-Separated Pair Decomposition and Its Applications

Michiel Smid

School of Computer Science

Carleton University

Ottawa, Ontario, Canada, K1S 5B6

E-mail: michiel@scs.carleton.ca

December 22, 2016

1.1 Introduction

Computational geometry is concerned with the design and analysis of algorithms that solve problems on

geometric data in Rd, where the dimension d is a constant. A large part of the field has been devoted

to problems that involve distances determined by pairs of points in a given point set. Given a set S of

n points in Rd, we may wish to compute a pair p, q of distinct points in S whose distance is minimum,

the k smallest distances among the
(
n
2

)
pairwise distances, the nearest neighbor of each point of S, or

the minimum spanning tree of S. Most problems of this type can be rephrased as a graph problem on

the complete Euclidean graph on S, in which each edge pq has a weight being the Euclidean distance |pq|

between p and q. Since the number of edges in this graph is Θ(n2), many problems involving pairwise

distances can trivially be solved in O(n2) time. Even though the complete Euclidean graph has size Θ(n2),

it can be represented in Θ(n) space: It is clearly sufficient to only store the points of S, because the weight

of any edge can be computed in O(1) time. This leads to the question whether distance problems can be

solved in subquadratic time, possibly at the cost of obtaining an approximate solution. For many of these

problems, subquadratic algorithms have indeed been designed; see for example the books by Preparata and

Shamos [21] and de Berg et al. [11], and the survey papers by Bern and Eppstein [5], Eppstein [12], and

R-1-1

1.1 INTRODUCTION R-1-2

Smid [25]. Most of these algorithms, however, are tailored to the problem at hand.

Callahan and Kosaraju [8, 10] devised the well-separated pair decomposition (WSPD), and showed that

it can be used to solve a large variety of distance problems. Intuitively, a WSPD is a partition of the
(
n
2

)
edges of the complete Euclidean graph into O(n) subsets. Each subset in this partition is represented by

two subsets A and B of the point set S, such that (i) all distances between points in A and points in B

are approximately equal, (ii) all distances within the point set A are much smaller than distances between

A and B, and (iii) all distances within the point set B are much smaller than distances between A and B.

Thus, a WSPD can be regarded as a set of O(n) edges that approximates the dense complete Euclidean

graph.

Callahan and Kosaraju showed that the WSPD can be used to obtain optimal algorithms for solving the

closest pair problem, the k closest pairs problem, the all-nearest neighbors problem, and the approximate

minimum spanning tree problem. After the publication of this influential paper, other researchers have

shown that the WSPD can be used to solve many other problems. In this paper, we give an overview of

several proximity problems that can be solved efficiently using the WSPD. We mention that the WSPD

has also been a critical tool for the solution of several variants of the problem of constructing spanners; an

overview of these results can be found in the chapter by Gudmundsson and Knauer [16] in this handbook.

An extensive treatment of the WSPD and its applications is given in the book by Narasimhan and Smid [20].

The rest of this paper is organized as follows. In Section 1.2, we define the WSPD. In Section 1.3, we

present an efficient algorithm for constructing a WSPD. In Section 1.4, we show that the WSPD can be used

to obtain optimal algorithms for the closest pair problem, the k closest pairs problem, and the all-nearest

neighbors problem. In Section 1.5, we use the WSPD to obtain approximate solutions for the diameter

problem, the spanner problem, the minimum spanning tree problem, and the problem of computing the

k-th closest pair. Finally, in Section 1.6, we mention some results on generalizing the WSPD to more general

metric spaces.

1.2 WELL-SEPARATED PAIRS R-1-3

1.2 Well-Separated Pairs

In this section, we define the well-separated pair decomposition (WSPD), and prove one of its main proper-

ties in Lemma 1.1. As mentioned in Section 1.1, the WSPD was introduced by Callahan and Kosaraju [8, 10].

Previously, however, similar ideas were used by Salowe [23, 24] and Vaidya [28, 29, 30], who designed efficient

algorithms for computing spanners, all-nearest neighbors, and k closest pairs.

We start by defining the notion of two sets being well-separated. For any set X of points in Rd, we

denote its bounding box by R(X). Thus, R(X) is the smallest axes-parallel hyperrectangle that contains

the set X.

Definition 1.1 Let A and B be two finite sets of points in Rd and let s > 0 be a real number. We say that

A and B are well-separated with respect to s, if there exist two disjoint balls CA and CB, such that

1. CA and CB have the same radius,

2. CA contains R(A),

3. CB contains R(B), and

4. the distance between CA and CB is at least s times the radius of CA.

The real number s is called the separation ratio.

If we are given the bounding boxes R(A) and R(B) of the sets A and B, respectively, then we can test

in O(1) time whether these two sets are well-separated.

In the next lemma, we prove the two properties of well-separated sets that were mentioned already in

Section 1.1: If A and B are well-separated with respect to a large separation ratio s, then (i) all distances

between points in A and points in B are approximately equal and (ii) all distances between points in A

(resp. B) are much smaller than distances between A and B. These two properties will be used repeatedly

in the rest of this paper.

Lemma 1.1 Let s > 0 be a real number, let A and B be two sets in Rd that are well-separated with respect

to s, let a and a′ be two points in A, and let b and b′ be two points in B. Then, we have

1.2 WELL-SEPARATED PAIRS R-1-4

1. |aa′| ≤ (2/s)|ab|, and

2. |a′b′| ≤ (1 + 4/s)|ab|.

Proof: Let CA and CB be disjoint balls of the same radius, say ρ, such that R(A) ⊆ CA, R(B) ⊆ CB , and

the distance between CA and CB is at least sρ. The first claim follows from the facts that |aa′| ≤ 2ρ and

|ab| ≥ sρ. By combining the first claim with the triangle inequality, we obtain

|a′b′| ≤ |a′a|+ |ab|+ |bb′| ≤ (1 + 4/s)|ab|,

proving the second claim. 2

Definition 1.2 Let S be a set of n points in Rd, and let s > 0 be a real number. A well-separated pair

decomposition (WSPD) for S, with respect to s, is a sequence

{A1, B1}, {A2, B2}, . . . , {Am, Bm}

of pairs of non-empty subsets of S, for some integer m, such that

1. for each i with 1 ≤ i ≤ m, Ai and Bi are well-separated with respect to s, and

2. for any two distinct points p and q of S, there is exactly one index i with 1 ≤ i ≤ m, such that

(a) p ∈ Ai and q ∈ Bi, or

(b) p ∈ Bi and q ∈ Ai.

The integer m is called the size of the WSPD.

Observe that a WSPD always exists: If we let any two distinct points p and q of S form a pair {{p}, {q}},

then the conditions in Definition 1.2 are satisfied. The size of this WSPD, however, is
(
n
2

)
. In the next

section, we will give an algorithm that computes a WSPD whose size is only O(n).

We remark that, for any set of n points in Rd, the size m of any WSPD satisfies m ≥ n− 1. An elegant

proof of this fact, using linear algebra, was given by Graham and Pollak [15]; see also Chapter 9 in Aigner

and Ziegler [2]. Moreover, for any set of n points in Rd and for any WSPD, the total size
∑
i (|Ai|+ |Bi|) of

all sets in the decomposition is Ω(n log n); see Bollobás and Scott [7]. Callahan and Kosaraju have shown

that, for some point sets, this summation is, in fact, Ω(n2) for any WSPD.

1.3 COMPUTING A WELL-SEPARATED PAIR DECOMPOSITION R-1-5

1.3 Computing a well-separated pair decomposition

Let S be a set of n points in Rd, and let s > 0 denote the separation ratio. The algorithm that constructs

a WSPD for S consists of two phases. In the first phase, a so-called split tree is constructed, which can be

considered to be a hierarchical decomposition of the bounding box of S into axes-parallel hyperrectangles.

In the second phase, the split tree is used to actually compute the WSPD. The algorithm is due to Callahan

and Kosaraju [10].

1.3.1 The split tree

The split tree T (S) for the point set S is a binary tree that is defined as follows:

1. If n = 1, then T (S) consists of a single node storing the only element of S.

2. Assume that n ≥ 2 and consider the bounding box R(S) =
∏d
i=1[`i, ri] of S. Let i be the dimension

such that ri − `i is maximum, and define S1 := {p ∈ S : pi ≤ (`i + ri)/2} and S2 := S \ S1. The

split tree T (S) for S consists of a root whose two children are recursively defined split trees T (S1)

and T (S2) for the sets S1 and S2, respectively. The root of T (S) stores the bounding box R(S).

Thus, the split tree T (S) stores the points of S at its leaves. Each internal node of T (S) stores an

axes-parallel hyperrectangle, which is the bounding box of the set of all points of S that are stored in its

subtree. Observe that the split tree is, in general, not balanced.

The above definition immediately leads to an O(n2)–time algorithm for constructing the split tree.

Callahan and Kosaraju show that, by using a divide-and-conquer approach, the split tree can in fact be

constructed in O(n log n) time:

Lemma 1.2 The split tree for any set of n points in Rd can be constructed in O(n log n) time.

1.3.2 Using the split tree to compute well-separated pairs

Consider the split tree T = T (S) for the point set S. For any node u of T , we denote by Su the subset of S

that is stored at the leaves of the subtree rooted at u. For any subset X of Rd, we denote by Lmax(R(X))

the length of a longest side of the bounding box R(X) of X.

1.3 COMPUTING A WELL-SEPARATED PAIR DECOMPOSITION R-1-6

The following algorithm uses the split tree to compute a WSPD for S. Recall that s denotes the

separation ratio.

Step 1: Initialize an empty queue Q. For each internal node u of T , do the following: Let v and w be the

two children of u. Insert the pair (v, w) into Q.

Step 2: Repeat the following until the queue Q is empty: Take the first pair (v, w) in Q and delete it from

Q. If the sets Sv and Sw are well-separated with respect to s, then output the pair {Sv, Sw}. Otherwise,

assume without loss of generality that Lmax(R(Sv)) ≤ Lmax(R(Sw)). Let w1 and w2 be the two children of

w. Insert the pairs (v, w1) and (v, w2) into the queue Q.

It is not difficult to see that the output of this algorithm is a well-separated pair decomposition of the

point set S. Callahan and Kosaraju use a non-trivial packing argument to show that the number of pairs

is O(n).

Lemma 1.3 Given the split tree, the above algorithm constructs, in O(sdn) time, a WSPD for S that

consists of O(sdn) pairs.

Observe that the WSPD is represented implicitly by the split tree: Each pair {A,B} in the WSPD

is represented by two nodes v and w, such that A = Sv and B = Sw. Thus, the entire WSPD can be

represented using O(sdn) space.

By combining Lemmas 1.2 and 1.3, we obtain the following result:

Theorem 1.1 (Callahan and Kosaraju [10]) Given a set S of n points in Rd, and given a real number

s > 0, a well-separated pair decomposition for S, with separation ratio s, consisting of O(sdn) pairs, can be

computed in O(n log n+ sdn) time.

In some applications, it is useful to have a WSPD in which each well-separated pair consists of two sets,

at least one of which is a singleton set. For the WSPD {Ai, Bi}, 1 ≤ i ≤ m, that is constructed by the

algorithm given above, Callahan [8] proves that

m∑
i=1

min(|Ai|, |Bi|) = O
(
sdn log n

)
.

1.4 EXACT ALGORITHMS FOR PROXIMITY PROBLEMS R-1-7

Thus, if we replace each pair {Ai, Bi} (where we assume without loss of generality that |Ai| ≤ |Bi|) by |Ai|

pairs {{a}, Bi}, a ∈ Ai, then we obtain the following result:

Theorem 1.2 (Callahan [8]) Let S be a set of n points in Rd, and let s > 0 be a real number. In

O(sdn log n) time, a well-separated pair decomposition for S, with separation ratio s, can be constructed,

such that each well-separated pair consists of two sets, at least one of which is a singleton set, and the total

number of pairs is O(sdn log n).

1.4 Exact algorithms for proximity problems

As we have mentioned before, the WSPD is an O(n)–size approximation of the set of Θ(n2) distances

determined by a set of n points. In this section, we show that, despite the fact that the WSPD approximates

all distances, it can be used to solve several proximity problems exactly. All results in this section are due

to Callahan and Kosaraju [8, 10].

Let S be a set of n points in Rd, and let s > 0 be a real number. Consider the split tree T and the

corresponding WSPD for S, with separation ratio s, consisting of the pairs {Ai, Bi}, 1 ≤ i ≤ m.

1.4.1 The closest pair problem

In this problem, we want to compute a closest pair in S, i.e., two distinct points p and q in S such that

|pq| is minimum. Many algorithms are known that solve this problem optimally in O(n log n) time; see

Smid [25]. We show that the WSPD “contains” a solution to the closest pair problem.

Let (p, q) be a closest pair in S, and let i be the index such that p ∈ Ai and q ∈ Bi. If we assume

that the separation ratio s is a constant larger than two, then it follows from Lemma 1.1 that both Ai

and Bi are singleton sets. Thus, by considering all pairs {Aj , Bj}, 1 ≤ j ≤ m, such that both Aj and Bj

are represented by leaves of the split tree, we obtain the closest pair in O(m) time. Combining this with

Theorem 1.1, we obtain the following result:

Theorem 1.3 Given a set S of n points in Rd, a closest pair in S can be computed in O(n log n) time.

1.4 EXACT ALGORITHMS FOR PROXIMITY PROBLEMS R-1-8

1.4.2 The k closest pairs problem

We next consider the problem of computing the k closest pairs in S, for any given integer k with 1 ≤ k ≤
(
n
2

)
.

That is, we want to compute the k smallest elements in the (multi)set of
(
n
2

)
distances determined by pairs

of points in S. Several algorithms have been designed that solve this problem optimally in O(n log n + k)

time; see Smid [25]. As for the closest pair problem, we show that, once the WSPD is given, the k closest

pairs can be obtained in a simple way.

For each i with 1 ≤ i ≤ m, we denote by |R(Ai)R(Bi)| the minimum distance between the bounding

boxes R(Ai) and R(Bi) of Ai and Bi, respectively. We assume, for ease of notation, that the pairs in the

WSPD are numbered such that

|R(A1)R(B1)| ≤ |R(A2)R(B2)| ≤ . . . ≤ |R(Am)R(Bm)|.

(This ordering of the pairs is only used in the analysis, it is not computed by the algorithm.) The algorithm

does the following:

Step 1: Compute the smallest integer ` ≥ 1, such that
∑`
i=1 |Ai| · |Bi| ≥ k.

Step 2: Compute the distance r between the bounding boxes R(A`) and R(B`) of the sets A` and B`,

respectively.

Step 3: Compute the largest index `′ such that |R(A`′)R(B`′)| ≤ (1 + 4/s)r.

Step 4: Compute the set L′ consisting of all pairs (p, q) for which there is an index i with 1 ≤ i ≤ `′, such

that p ∈ Ai and q ∈ Bi.

Step 5: Return the k smallest distances determined by the pairs in the set L′.

Lemma 1.4 This algorithm computes the k closest pairs in S.

Proof: Let (p, q) be one of the k closest pairs, and let j be the index such that p ∈ Aj and q ∈ Bj . It

suffices to prove that (p, q) is an element of L′, i.e., j ≤ `′. To prove this, assume that j > `′. Then

|pq| ≥ |R(Aj)R(Bj)| > (1 + 4/s)r.

Let L be the set consisting of all pairs (x, y) for which there is an index i with 1 ≤ i ≤ `, such that

x ∈ Ai and y ∈ Bi. This set contains at least k elements. Using Lemma 1.1, we have, for each pair (x, y)

1.4 EXACT ALGORITHMS FOR PROXIMITY PROBLEMS R-1-9

in L,

|xy| ≤ (1 + 4/s)|R(Ai)R(Bi)| ≤ (1 + 4/s)|R(A`)R(B`)| = (1 + 4/s)r.

This contradicts our assumption that (p, q) is one of the k closest pairs. 2

Using a linear-time (weighted) selection algorithm, the running time of the algorithm can be bounded

by

O

m+

`′∑
i=1

|Ai| · |Bi|

 = O(m+ |L′|).

Let δ be the k-th smallest distance in S. Then it can be shown that r ≤ δ and |pq| ≤ (1 + 4/s)2δ, for any

pair (p, q) in L′. Hence, if we denote by M the number of distances in the set S that are at most (1+4/s)2δ,

then the running time of the algorithm is O(m+M). By using a counting technique, based on a grid with

cells having sides of length δ/
√
d, it can be shown that

M = O
(
(1 + 4/s)2d(n+ k)

)
.

We take the separation ratio s to be equal to, say, one. Then, by combining our results with Theorem 1.1,

we obtain the following theorem:

Theorem 1.4 Given a set S of n points in Rd, and given an integer k with 1 ≤ k ≤
(
n
2

)
, the k closest pairs

in S can be computed in O(n log n+ k) time.

1.4.3 The all-nearest neighbors problem

In this problem, we want to compute for each point p of S a nearest neighbor in S, i.e., a point q ∈ S \ {p}

for which |pq| is minimum. Vaidya [29] was the first to solve this problem optimally in O(n log n) time. In

fact, his algorithm uses ideas that are very similar to the WSPD. In this section, we sketch the algorithm

of Callahan and Kosaraju [10].

Let p be a point of S and let q be its nearest neighbor. Let i be the index such that p ∈ Ai and q ∈ Bi. It

follows from Lemma 1.1 that the set Ai consists only of the point p. Hence, in order to solve the all-nearest

neighbors problem, we only have to consider pairs of the WSPD, for which at least one of their sets is a

singleton set. This observation does not lead to an efficient algorithm yet.

1.4 EXACT ALGORITHMS FOR PROXIMITY PROBLEMS R-1-10

For any node u of the split tree T , we define F (u) to be the set of all points p ∈ S such that {{p}, Sv} is

a pair in the WSPD, for some ancestor v of u. (We consider u to be an ancestor of itself.) Also, we define

N(u) to be the set of all points p ∈ F (u), such that the distance from p to the smallest ball containing

R(Su) is at most equal to the smallest distance between p and any other point of F (u). Observe that

N(u) ⊆ F (u).

Lemma 1.5 The size of the set N(u) is O((s/(s− 1))d).

Proof: Let C be the smallest ball that contains R(Su). We claim that

1. for each p ∈ N(u), the sets {p} and Su are well-separated, and

2. |pC| ≤ |pq|, for any two distinct points p and q of N(u).

By combining these two claims with a generalization of the fact that any point can be the nearest neighbor

of at most a constant number of other points, it can be shown that the size of N(u) is O((s/(s− 1))d).

To prove the first claim, let p ∈ N(u). Since p ∈ F (u), there is an ancestor v of u such that the sets {p}

and Sv are well-separated. Since Su is a subset of Sv, the sets {p} and Su are well-separated as well.

To prove the second claim, let p and q be two distinct points of N(u). The definition of N(u) implies

that the distance between p and C is at most the smallest distance between p and any other point of F (u).

In particular, since q ∈ F (u), we have |pC| ≤ |pq|. 2

We assume from now on that the separation ratio s is a constant larger than two. The sets N(u), where

u ranges over all nodes of the split tree T , can be computed in a top-down fashion, in O(n) total time. How

do we use these sets? Let p be any point of S, let q be a nearest neighbor of p, and let u be the leaf of the

split tree that stores q. Let i be the index such that Ai = {p} and q ∈ Bi, and let v be the ancestor of u

such that Bi = Sv. Then, p ∈ F (u). Moreover, since Su = {q}, the distance between p and the smallest

ball containing R(Su) is equal to |pq|, which is at most the distance between p and any other point of F (u).

Therefore, we have p ∈ N(u).

The discussion above, together with Theorem 1.1, leads to an algorithm that solves the all-nearest

neighbors problem in O(n log n) time.

1.5 APPROXIMATION ALGORITHMS FOR PROXIMITY PROBLEMS R-1-11

Theorem 1.5 Given a set S of n points in Rd, the all-nearest neighbors problem can be solved in O(n log n)

time.

1.5 Approximation algorithms for proximity problems

In this section, we consider proximity problems for which no optimal exact algorithms are known. For each

of these problems, we show that the WSPD leads to simple and fast approximation algorithms.

Let S be a set of n points in Rd, and let s > 0 be a real number. We assume that we have already

computed the split tree T and the corresponding WSPD for S, with separation ratio s, consisting of the

pairs {Ai, Bi}, 1 ≤ i ≤ m. For each i with 1 ≤ i ≤ m, we choose an arbitrary element ai in Ai, and an

arbitrary element bi in Bi.

1.5.1 The diameter problem

The diameter of S is defined to be the largest distance between any two points of S. If the dimension d is

equal to two, the diameter can be computed in O(n log n) time; see Preparata and Shamos [21]. Ramos [22]

obtained the same time bound for the three-dimensional case. It is not known if for dimensions larger than

three, the diameter can be computed in O(n logO(1) n) time. In this section, we show that the WSPD leads

to a simple and efficient algorithm that approximates the diameter, for any constant dimension d.

Let D be the diameter of S, and let i be the index for which |aibi| is maximum. A straightforward

application of Lemma 1.1 shows that D/(1 + 4/s) ≤ |aibi| ≤ D. Hence, if we choose s = 4(1 − ε)/ε, then

this result, together with Theorem 1.1, yields the following theorem.

Theorem 1.6 Given a set S of n points in Rd, and given a real constant 0 < ε < 1, a (1−ε)-approximation

to the diameter of S can be computed in O(n log n) time.

We remark that the same approximation factor can be achieved in only O(n) time: Choose O(1/εd−1) =

O(1) vectors such that, for any pair p, q of distinct points in Rd, one of these vectors makes an angle of at

most ε with the vector −→pq; see Chapter 5 in Narasimhan and Smid [20]. Then, for each of these vectors ~v,

compute an extreme point a of S in the positive direction ~v, compute an extreme point b of S in the negative

1.5 APPROXIMATION ALGORITHMS FOR PROXIMITY PROBLEMS R-1-12

direction −~v, and compute the distance |ab|. The largest distance |ab| obtained is a (1− ε)-approximation

to the diameter of S. The running time of this algorithm is O(n). For details, see Janardan [18].

1.5.2 The spanner problem

For a real number t > 1, a graph G = (S,E) is called a t-spanner for the point set S, if for any two points

p and q of S, we have |pq|G ≤ t|pq|, where |pq|G denotes the length of a shortest path in G between p and

q. Many algorithms are known that compute spanners; see the chapter by Gudmundsson and Knauer [16]

in this handbook, and Narasimhan and Smid [20]. In this section, we show that the WSPD immediately

gives a spanner for S consisting of O(n) edges. The construction is due to Callahan and Kosaraju [9].

Lemma 1.6 Assume that the separation ratio s is larger than four. Define G = (S,E) to be the graph with

edge set E = {aibi : 1 ≤ i ≤ m}. Then, G is a t-spanner for S, where t = (s+ 4)/(s− 4).

Proof: The proof is by induction. Consider two points p and q in S. If p = q, then obviously |pq|G ≤ t|pq|.

Assume that p 6= q. Moreover, assume that |xy|G ≤ t|xy|, for all points x and y in S for which |xy| < |pq|.

Let i be the index such that p ∈ Ai and q ∈ Bi. Using Lemma 1.1, we obtain

|pq|G ≤ |pai|G + |aibi|G + |biq|G

= |pai|G + |aibi|+ |biq|G

≤ t|pai|+ |aibi|+ t|biq|

≤ (2t/s+ (1 + 4/s) + 2t/s)|pq|

= t|pq|.

2

Observe that, if the separation ratio s goes to infinity, the value t = (s+4)/(s−4) converges to 1. Thus,

Theorem 1.1 implies the following result.

Theorem 1.7 Given a set S of n points in Rd, and given a real constant t > 1, a t-spanner for S, consisting

of O(n) edges, can be computed in O(n log n) time.

1.5 APPROXIMATION ALGORITHMS FOR PROXIMITY PROBLEMS R-1-13

1.5.3 The greedy spanner

Let S be a set of n points in Rd and let t > 1 be a real constant. We have seen in Theorem 1.7 that a

t-spanner with O(n) edges can be computed in O(n log n) time. In one of the earliest papers on geometric

spanners, Althöfer et al. [3] introduced the following simple greedy algorithm for computing a t-spanner:

Algorithm GreedySpanner(S, t)

sort the
(
n
2

)
pairs of distinct points in non-decreasing order of their

distances (breaking ties arbitrarily), and store them in list L;

E := ∅;

G := (S,E);

for each pair pq in L (∗ consider pairs in sorted order ∗)

do if |pq|G > t|pq|

then E := E ∪ {pq};

G := (S,E)

endif

endfor;

return the graph G

It is obvious that the output of this algorithm is a t-spanner for the input set S. The following theorem

uses the WSPD of S to prove that the number of edges in the greedy spanner is O(n).

Theorem 1.8 Let S be a set of n points in Rd, let t > 1 be a real constant, and assume that the separation

ratio s in the WSPD for S satisfies t = (s+ 4)/(s− 4). Then the number of edges in the greedy spanner for

S is O(n).

Proof: The proof will follow from the claim that, for each pair {Ai, Bi} in the WSPD for S, the greedy

spanner contains at most one edge pq with p ∈ Ai and q ∈ Bi.

We prove this claim by contradiction. Assume the greedy spanner contains two distinct edges pq and

p′q′, with p, p′ ∈ Ai and q, q′ ∈ Bi. We may assume without loss of generality that pq is before p′q′ in the

1.5 APPROXIMATION ALGORITHMS FOR PROXIMITY PROBLEMS R-1-14

list L. Consider the moment when the algorithm examines the pair p′q′. At this moment, the edge pq is

already in the edge set E. Moreover, by Lemma 1.1, |pp′| ≤ (2/s)|p′q′| < |p′q′| and, thus, at this moment,

we have |pp′|G ≤ t|pp′|. By the same argument, we have |qq′|G ≤ t|qq′|. It follows that, at this moment,

|p′q′|G ≤ |p′p|G + |pq|+ |qq′|G

≤ t|p′p|+ |pq|+ t|qq′|

≤ (2t/s+ (1 + 4/s) + 2t/s)|p′q′|

= t|p′q′|.

As a result, the algorithm does not add p′q′ as an edge to the greedy spanner. This is a contradiction. 2

Using geometric arguments, it can be shown that any two edges pq and pq′ of the greedy spanner make

a “large” angle. This implies that the maximum degree of the greedy spanner is O(1). Also, using a lengthy

analysis, it can be shown that the total edge length of the greedy spanner is within a constant factor of the

total length of a minimum spanning tree. Proofs of these claims can be found in Narasimhan and Smid [20].

See also Smid [26].

1.5.4 The minimum spanning tree problem

In the two-dimensional case, the minimum spanning tree of S can be computed in O(n log n) time, by using

the fact that it is contained in the Delaunay triangulation of S; see Preparata and Shamos [21] and de

Berg et al. [11]. For the three-dimensional case, the best known algorithm has a running time that is close

to O(n4/3); see Agarwal et al. [1]. Erickson [13] argues that it is unlikely that this running time can be

improved considerably. In this section, we show that, in any constant dimension d, an approximation to

the minimum spanning tree can be computed in O(n log n) time. The algorithm is due to Callahan and

Kosaraju [9].

Let t > 1 be a real constant and consider an arbitrary t-spanner for S having O(n) edges. Observe that

G is a connected graph. Let T be a minimum spanning tree of G.

Lemma 1.7 T is a t-approximate minimum spanning tree of S.

Proof: Let T ∗ be a minimum spanning tree of S, and denote its total edge length by |T ∗|. Number the

1.5 APPROXIMATION ALGORITHMS FOR PROXIMITY PROBLEMS R-1-15

edges of T ∗ as e1, e2, . . . , en−1. For each i with 1 ≤ i ≤ n − 1, let Pi be a t-spanner path (in G) between

the endpoints of ei, and denote the length of this path by |Pi|. Then,

n−1∑
i=1

|Pi| ≤
n−1∑
i=1

t|ei| = t|T ∗|.

Let G′ be the subgraph of G consisting of the union of the edges of all paths Pi, 1 ≤ i ≤ n− 1. Then G′ is

a connected graph on the points of S, and its weight is at most t|T ∗|. Since the weight of T is at most that

of G′, the weight of T is at most t times the weight of T ∗. 2

Since the graph G contains O(n) edges, its minimum spanning tree T can be computed in O(n log n)

time. By combining this with Theorem 1.7, we obtain the following result.

Theorem 1.9 Given a set S of n points in Rd, and given a real constant ε > 0, a (1 + ε)-approximation

to the minimum spanning tree of S can be computed in O(n log n) time.

1.5.5 The k-th closest pair problem

In this problem, we are given an integer k with 1 ≤ k ≤
(
n
2

)
, and want to compute the k-th smallest element

in the (multi)set of
(
n
2

)
distances determined by pairs of points in S. In the two-dimensional case, the best

known algorithm for this problem has a running time that is close to O(n4/3); see Katz and Sharir [19].

Again, Erickson [13] argues that it is unlikely that a significantly faster algorithm exists. We show that, for

any constant dimension, there is a simple and efficient algorithm that approximates the k-th closest pair.

The results in this section are due to Bespamyatnikh and Segal [6].

Let k be any integer with 1 ≤ k ≤
(
n
2

)
. As in Section 1.4.2, we assume that the pairs in the WSPD are

numbered such that

|R(A1)R(B1)| ≤ |R(A2)R(B2)| ≤ . . . ≤ |R(Am)R(Bm)|.

Let ` ≥ 1 be the smallest integer such that
∑`
i=1 |Ai| · |Bi| ≥ k, let x be an arbitrary element of A`, and let

y be an arbitrary element of B`.

Lemma 1.8 If δ is the k-th smallest distance in the set S, then δ/(1 + 4/s) ≤ |xy| ≤ (1 + 4/s)δ.

Proof: As mentioned in Section 1.4.2, it can be shown that |R(A`)R(B`)| ≤ δ. If we combine this fact with

1.5 APPROXIMATION ALGORITHMS FOR PROXIMITY PROBLEMS R-1-16

Lemma 1.1, then we obtain

|xy| ≤ (1 + 4/s)|R(A`)R(B`)| ≤ (1 + 4/s)δ.

Let L be the set consisting of all pairs (a, b) for which there is an index i with 1 ≤ i ≤ `, such that a ∈ Ai

and b ∈ Bi. Let (a, b) be the pair in L for which |ab| is maximum, and let i be the index such that a ∈ Ai

and b ∈ Bi. Observe that i ≤ `. Since L has size at least k, we have δ ≤ |ab|. Therefore (again using

Lemma 1.1),

δ ≤ |ab| ≤ (1 + 4/s)|R(Ai)R(Bi)| ≤ (1 + 4/s)|R(A`)R(B`)| ≤ (1 + 4/s)|xy|.

2

Thus, using Theorem 1.1, we obtain the following result.

Theorem 1.10 Let S be a set of n points in Rd, let k be an integer with 1 ≤ k ≤
(
n
2

)
, let ε > 0 be a

constant, and let δ be the k-th smallest distance in S. In O(n log n) time, a pair (x, y) of points in S can

be computed for which (1− ε)δ ≤ |xy| ≤ (1 + ε)δ.

Surprisingly, computing a pair (x, y) of points in S such that δ ≤ |xy| ≤ (1 + ε)δ is more difficult.

In order to compute such a pair, we use the WSPD of Theorem 1.2. Thus, the WSPD consists of pairs

{Ai, Bi}, 1 ≤ i ≤ m, where each set Ai is a singleton set, say Ai = {ai}, and m = O(n log n).

For each i with 1 ≤ i ≤ m, we define di = min{|aib| : b ∈ Bi} and Di = max{|aib| : b ∈ Bi}. Assume

that the pairs in the WSPD are numbered such that d1 ≤ d2 ≤ . . . ≤ dm. Let ` ≥ 1 be the smallest integer

such that
∑`
i=1 |Bi| ≥ k, and let D = max(D1, D2, . . . , D`).

Lemma 1.9 If δ is the k-th smallest distance in the set S, then δ ≤ D ≤ (1 + 4/s)δ.

Proof: Since
∑`
i=1 |Bi| ≥ k, the pairs {Ai, Bi} with 1 ≤ i ≤ `, define at least k distances. Since D is the

largest among these distances, it follows that δ ≤ D.

Let L = {(ai, b) : b ∈ Bi, i ≥ `}. Then d` is the minimum distance of any element in L. Since the size

of L is larger than
(
n
2

)
− k, it follows that δ ≥ d`. Let i be the index such that D = Di. By Lemma 1.1, we

have Di ≤ (1 + 4/s)di. Therefore, we have

D = Di ≤ (1 + 4/s)di ≤ (1 + 4/s)d` ≤ (1 + 4/s)δ.

1.5 APPROXIMATION ALGORITHMS FOR PROXIMITY PROBLEMS R-1-17

2

We obtain the value of D (which is an approximation to the k-th smallest distance in S), by computing

all values di and Di, 1 ≤ i ≤ m. That is, for each point ai, we compute its nearest and furthest neighbors

in the set Bi. We will show how to use the split tree to solve this problem for the case when the points are

in R2. The algorithm uses the following result.

Lemma 1.10 Let V be a set of N points in the plane. There exists a data structure that supports the

following operations:

1. For any given query point q ∈ R2, report the nearest neighbor of q in V . The query time is O(log2N).

2. For any given query point q ∈ R2, report the furthest neighbor of q in V . The query time is O(log2N).

3. Insert an arbitrary point into the set V . The amortized insertion time is O(log2N).

Proof: Consider the Voronoi diagram of the set V , which can be constructed in O(N logN) time. If we

store this diagram, together with a point location data structure, then a nearest-neighbor query can be

answered in O(logN) time; see Preparata and Shamos [21] and de Berg et al. [11]. If we use the furthest-

point Voronoi diagram, then we obtain the same result for furthest-neighbor queries. Unfortunately, these

Voronoi diagrams cannot be maintained efficiently under insertions of points. Since nearest-neighbor and

furthest-neighbor queries are decomposable, however, we can use the logarithmic method of Bentley and

Saxe [4] to obtain the time bounds that are claimed in the lemma. 2

We now show how Lemma 1.10 can be used to compute all values di and Di, 1 ≤ i ≤ m. Consider

the split tree T . Recall that for any node u, Su denotes the subset of S that is stored at the leaves in the

subtree of u. We store with each node u, a list Lu consisting of all points ai such that Bi = Su.

The algorithm traverses the split tree T in postorder. During this traversal, the following invariant is

maintained: If u is a node that has been traversed, but none of its proper ancestors has been traversed yet,

then u stores the data structure DSu of Lemma 1.10 for the point set Su.

The postorder traversal of T does the following. Let u be the current node in this traversal. If u is a leaf

storing the point, say, p, then we compute di = Di = |aip| for each point ai in Lu, and we build the data

structure DSu of Lemma 1.10 for the singleton set Su = {p}. Assume that the current node u is not a leaf.

1.6 GENERALIZATION TO METRIC SPACES R-1-18

Let v and w be the two children of u. By the invariant, v and w store the data structure DSv and DSw of

Lemma 1.10 for the sets Sv and Sw, respectively. Assume without loss of generality that |Sv| ≤ |Sw|. We

do the following: First, we discard the data structure DSv. Then, we insert each element of Sv into DSw;

this results in the data structure DSu storing all elements of Su. Finally, for each element ai of Lu, we use

DSu to find the nearest and furthest neighbors of ai in the set Su, and compute the values of di and Di.

We analyze the total time of this algorithm. Since the WSPD contains O(n log n) pairs, the total number

of nearest-neighbor and furthest-neighbor queries is O(n log n). Consider any fixed point p of S. If p is

inserted into a data structure, then it “moves” to a new set whose size is at least twice the size of the

previous set containing p. As a result, p is inserted O(log n) times. Thus, overall, the total number of

insertions is O(n log n). Lemma 1.10 then implies that the running time of the algorithm is O(n log3 n). If

we combine this with Theorem 1.2, we obtain the following result.

Theorem 1.11 Let S be a set of n points in Rd, let k be an integer with 1 ≤ k ≤
(
n
2

)
, let ε > 0 be a

constant, and let δ be the k-th smallest distance in S. In O(n log3 n) time, a pair (x, y) of points in S can

be computed for which δ ≤ |xy| ≤ (1 + ε)δ.

1.6 Generalization to metric spaces

All results in the previous sections are valid for Euclidean spaces Rd, where d is a constant. In recent years,

the WSPD (and its applications) has been generalized to more general metric spaces.

Consider an arbitrary metric space (S, δ), where S is a set of n elements, and δ : S × S −→ R is the

metric defined on S. For any two subsets A and B of S, we denote the minimum distance between any

point in A and any point in B by δ(A,B), and we denote the diameter of A by D(A). If s > 0 is a real

number, then we say that A and B are well-separated with respect to s, if

δ(A,B) ≥ s ·max(D(A), D(B)).

Using this generalized notion of being well-separated, we define a well-separated pair decomposition (WSPD)

for S as in Definition 1.2.

Gao and Zhang [14] considered the problem of constructing a WSPD for the unit-disk graph metric: Let

1.6 GENERALIZATION TO METRIC SPACES R-1-19

S be a set of n points in Rd. The unit-disk graph is defined to be the graph with vertex set S, in which

any two distinct points p and q are connected by an edge if and only |pq| ≤ 1. If we define δ(p, q) to be the

length of a shortest path between p and q in the unit-disk graph, then (S, δ) is a metric space. Observe that

even though the unit-disk graph may have Θ(n2) edges, it can be represented in O(n) space: It suffices to

store the points of S. Given any two points p and q of S, we can decide in O(1) time if p and q are connected

by an edge and, if so, compute its length |pq|. (If p and q are not connected by an edge, however, then a

shortest-path computation is needed to compute δ(p, q).) Gao and Zhang proved the following result:

Theorem 1.12 Let S be a set of n points in Rd, and let s > 1 be a real number. Consider the unit-disk

graph metric on S.

1. If d = 2, then a WSPD for S with respect to s, consisting of O(s4n log n) pairs, can be computed in

O(s4n log n) time.

2. If d = 3, then a WSPD for S, with respect to s, consisting of O(n4/3) pairs, can be computed in

O(n4/3 logO(1) n) time.

3. If d ≥ 4, then a WSPD for S, with respect to s, consisting of O(n2−2/d) pairs, can be computed in

O(n2−2/d) time.

Talwar [27] extended the WSPD to metric spaces whose doubling dimension is a constant. To define

this notion, let (S, δ) be a metric space. A ball, with center p ∈ S and radius R, is defined to be the set

{q ∈ S : δ(p, q) ≤ R}. The doubling parameter of S is defined to be the smallest integer λ such that the

following holds, for all real numbers R > 0: Every ball with radius R can be covered by λ balls of radius

R/2. The doubling dimension of the metric space is defined to be log λ. Observe that this generalizes

Euclidean space Rd, because the doubling dimension of Rd is proportional to d.

Many algorithms solving proximity problems in Rd are analyzed using a packing argument. If the

doubling parameter λ is small, then, in many cases, a similar analysis can be used to efficiently solve these

problems.

Talwar showed how to compute a WSPD consisting of O(slog λn log ∆) pairs, where ∆ is the aspect ratio,

which is defined to be the ratio of the diameter and the closest pair distance. Har-Peled and Mendel [17]

REFERENCES R-1-20

gave an improved construction and obtained the following result:

Theorem 1.13 Let (S, δ) be a metric space, let n = |S|, let λ be the doubling parameter of S, and let s > 1

be a real number. There exists a randomized algorithm that constructs, in O(λn log n + slog λn) expected

time, a well-separated pair decomposition for S, with separation ratio s, consisting of O(slog λn) pairs.

Most results of the previous sections remain valid for metric spaces whose doubling parameter is bounded

by a constant. Interestingly, Har-Peled and Mendel have shown that this is not the case for the all-nearest

neighbors problem: For every deterministic algorithm that solves this problem, there exists a metric space

on n points and doubling parameter λ ≤ 3, such that this algorithm must examine all
(
n
2

)
distances

determined by these points. This implies that, in such metric spaces, it takes Ω(n2) time to compute a

minimum spanning tree. Since the greedy spanner contains a minimum spanning tree, this also implies an

Ω(n2)–time lower bound for computing this spanner. For more information, refer to Smid [26].

References

[1] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning trees

and bichromatic closest pairs. Discrete & Computational Geometry, 6:407–422, 1991.

[2] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin, 3rd edition, 2004.

[3] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs.

Discrete & Computational Geometry, 9:81–100, 1993.

[4] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic transformations.

Journal of Algorithms, 1:301–358, 1980.

[5] M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In D. S. Hochbaum,

editor, Approximation Algorithms for NP-Hard Problems, pages 296–345. PWS Publishing Company,

Boston, MA, 1997.

[6] S. Bespamyatnikh and M. Segal. Fast algorithms for approximating distances. Algorithmica, 33:263–

269, 2002.

REFERENCES R-1-21

[7] B. Bollobás and A. Scott. On separating systems. European Journal of Combinatorics, 28:1068–1071,

2007.

[8] P. B. Callahan. Dealing with higher dimensions: the well-separated pair decomposition and its applica-

tions. Ph.D. thesis, Department of Computer Science, Johns Hopkins University, Baltimore, Maryland,

1995.

[9] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in higher

dimensions. In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, pages 291–300,

1993.

[10] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with applications

to k-nearest-neighbors and n-body potential fields. Journal of the ACM, 42:67–90, 1995.

[11] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and

Applications. Springer-Verlag, Berlin, 3rd edition, 2008.

[12] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook of Compu-

tational Geometry, pages 425–461. Elsevier Science, Amsterdam, 2000.

[13] J. Erickson. On the relative complexities of some geometric problems. In Proceedings of the 7th

Canadian Conference on Computational Geometry, pages 85–90, 1995.

[14] J. Gao and L. Zhang. Well-separated pair decomposition for the unit-disk graph metric and its appli-

cations. SIAM Journal on Computing, 35:151–169, 2005.

[15] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. Bell System Technical

Journal, 50:2495–2519, 1971.

[16] J. Gudmundsson and C. Knauer. Dilation and detours in geometric networks. In T. F. Gonzalez, editor,

Handbook of Approximation Algorithms and Metaheuristics. Taylor & Francis, 2nd edition, 2017.

[17] S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their applica-

tions. SIAM Journal on Computing, 35:1148–1184, 2006.

REFERENCES R-1-22

[18] R. Janardan. On maintaining the width and diameter of a planar point-set online. International

Journal of Computational Geometry & Applications, 3:331–344, 1993.

[19] M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM Journal on

Computing, 26:1384–1408, 1997.

[20] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press, Cambridge,

UK, 2007.

[21] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, Berlin,

1988.

[22] E. A. Ramos. An optimal deterministic algorithm for computing the diameter of a three-dimensional

point set. Discrete & Computational Geometry, 26:233–244, 2001.

[23] J. S. Salowe. Constructing multidimensional spanner graphs. International Journal of Computational

Geometry & Applications, 1:99–107, 1991.

[24] J. S. Salowe. Enumerating interdistances in space. International Journal of Computational Geometry

& Applications, 2:49–59, 1992.

[25] M. Smid. Closest-point problems in computational geometry. In J.-R. Sack and J. Urrutia, editors,

Handbook of Computational Geometry, pages 877–935. Elsevier Science, Amsterdam, 2000.

[26] M. Smid. The weak gap property in metric spaces of bounded doubling dimension. In Efficient

Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, volume 5760 of

Lecture Notes in Computer Science, pages 275–289, Berlin, 2009. Springer-Verlag.

[27] K. Talwar. Bypassing the embedding: Approximation schemes and compact representations of low

dimensional metrics. In Proceedings of the 36th ACM Symposium on the Theory of Computing, pages

281–290, 2004.

[28] P. M. Vaidya. Minimum spanning trees in k-dimensional space. SIAM Journal on Computing, 17:572–

582, 1988.

REFERENCES R-1-23

[29] P. M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors problem. Discrete & Computational

Geometry, 4:101–115, 1989.

[30] P. M. Vaidya. A sparse graph almost as good as the complete graph on points in K dimensions.

Discrete & Computational Geometry, 6:369–381, 1991.

