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Abstract

This thesis addresses the problem of verifying the geographic locations of Internet
clients. First, we demonstrate how current state-of-the-art delay-based geolocation
techniques are susceptible to evasion through delay manipulations, which involve
both increasing and decreasing the Internet delays that are observed between a
client and a remote measuring party. We find that delay-based techniques generally
lack appropriate mechanisms to measure delays in an integrity-preserving manner.
We then discuss different strategies enabling an adversary to benefit from being
able to manipulate the delays. Upon analyzing the effect of these strategies on
three representative delay-based techniques, we found that the strategies combined
with the ability of full delay manipulation can allow an adversary to (fraudulently)
control the location returned by those geolocation techniques accurately.

We then propose Client Presence Verification (CPV) as a delay-based technique
to verify an assertion about a client’s physical presence in a prescribed geographic
region. Three verifiers geographically encapsulating a client’s asserted location are
used to corroborate that assertion by measuring the delays between themselves and
the client. CPV infers geographic distances from these delays and thus, using the
smaller of the forward and reverse one-way delay between each verifier and the
client is expected to result in a more accurate distance inference than using the
conventional round-trip times. Accordingly, we devise a novel protocol for accurate
one-way delay measurements between the client and the three verifiers to be used
by CPV, taking into account that the client could manipulate the measurements to
defeat the verification process.

We evaluate CPV through extensive real-world experiments with legitimate clients
(those truly present at where they asserted to be) modeled to use both wired and
wireless access networks. Wired evaluation is done using the PlanetLab testbed, dur-
ing which we examine various factors affecting CPV’s efficacy, such as the client’s ge-
ographical nearness to the verifiers. For wireless evaluation, we leverage the Internet
delay information collected for wired clients from PlanetLab, and model additional
delays representing the last-mile wireless link. The additional delays were generated
following wireless delay distribution models studied in the literature. Again, we
examine various factors that affect CPV’s efficacy, including the number of devices
actively competing for the wireless media in the vicinity of a wireless legitimate
CPV client.

Finally, we reinforce CPV against a (hypothetical) middlebox that an adversary
specifically customizes to defeat CPV (i.e., assuming an adversary that is aware of
how CPV operates). We postulate that public middlebox service providers (e.g.,
in the form of Virtual Private Networks) would be motivated to defeat CPV if it
is to be widely adopted in practice. To that end, we propose to use a Proof-of-
Work mechanism that allows CPV to impose constraints, which effectively limit the
number of clients (now adversaries) simultaneously colluding with that middlebox;
beyond that number, CPV detects the middlebox.
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Chapter 1

Introduction

Remotely proving that an Internet-connected device is geographically present at

where it asserts to be remains one of the most challenging problems in today’s

Internet. This thesis addresses the problem of one party verifying an assertion

about the geographic location of a typically remote second target party over the

Internet. The verifying party is different from and not in physical possession of

the target party’s device. The target party is a physical device running a process

that is able to send and receive Internet data. The goal of the thesis is to devise

a mechanism that provides greater assurance about the correctness of an asserted

location, compared to current state-of-the art techniques.

More formally, we state the research question as follows:

Assume two devices transmitting data between themselves over the Internet. If the

geographic location of one of them is asserted, what mechanisms are available to

provide assurance of the correctness of this assertion?

1.1 Terminology and Scope

Terminology. Throughout this thesis, the terms client and Location-Sensitive

Provider (LSP) are such that the client is the target party whose location is im-

portant for the appropriate operation of the LSP. The term geolocation means

(physical) location-determination; hence, geolocating means determining the loca-

tion. Additionally, Internet geolocation means geolocating an Internet-connected

device.

We define the evasion of geolocation as deliberately causing a geolocation technique

1



1.2. Motivation 2

to fail or to return an incorrect location.

Scope. While geolocation is of interest, the main focus is location verification,

meaning that some geolocation mechanism (beyond the scope of this thesis) first

asserts a client’s location, which is then verified by mechanisms within this thesis.

The thesis focuses on real-time location verification. Non real-time applications,

such as in forensic analysis where geolocating IP addresses post-incident is of inter-

est, are out of scope. Solutions devised in this thesis assume a two-way real-time

communication between the client and the LSP.

1.2 Motivation

Numerous applications can benefit from reliable information about the locations of

Internet clients. The following examples are those where evasion incentives may

arise, motivating this thesis. Cases where little or no evasion incentive exists, e.g.,

location-directed ads, are outside the scope of this thesis.

Fraud prevention. The geographic location where credit card transactions are

taking place could provide higher assurance to the authenticity of these transactions,

compared to when the location is not known.

Impersonation prevention. Impersonation over the Internet, including through

password-guessing attacks, can be reduced by restricting a user’s login to locations

previously associated with the user’s account. An impersonating adversary may

thus try to evade geolocation in order to place itself fraudulently in that location.

Policy compliance. Various legal agreements are location-dependent. For ex-

ample, cloud providers often promise the sole storage of users’ data within user-

requested jurisdictions. However, motivations to violate such an agreement may

arise due to cheaper overseas operations and maintenance costs. Additionally, video-

on-demand providers, e.g., Hulu [78], are often licensed to stream only to restricted

geographic regions. Gambling regulations differ across jurisdictions, placing a re-

sponsibility on gambling websites to enforce these regulations according to where the

gambler is geographically located. Many online retailers are required to charge appli-

cable taxes based on users’ locations. In general, the motivation to evade geolocation

in the cases under the Compliance category is usually for gaining location-dependent

benefits.
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Location-based access control. Sensitive data, such as military documents or

patient records, are often allowed to be viewed only from within certain regions.

Operations like online bidding, community-related voting, or even ordering home-

delivery meals, can be regulated by users’ locations, e.g., to reduce spammers.

1.3 Deficiency of Existing Geolocation Mechanisms

Commonly-used Internet geolocation techniques lack integrity or cross-checking of

their results. Such techniques fail to adequately consider a knowledgeable adversary

that is motivated to cheat about its location. Most of the geolocation literature focus

on achieving higher geolocation accuracy, overlooking adversarial environments.

Tabulation-based techniques. These work by having the LSP look up the

client’s IP address in a pre-populated Database (DB) that maps IP-addresses to

locations, e.g., MaxMind [103]. Studies have found that many of the major tabula-

tion providers are evadable, e.g., by having the client simply hide its true IP address

using a Virtual Private Network (VPN) [107].

Self-positioning systems. This is the class of techniques where an LSP requests

the client’s location information from the client itself. The client’s device determines

its own location using, e.g., Global Positioning System (GPS) [75], WiFi Positioning

System (WPS) [158] (see Chapter 2), cell tower triangulation (in the case of mobile

devices) [142], and communicates it to the LSP. No geolocation techniques under

this class can be relied upon to geolocate adversaries motivated to forge their lo-

cations; the asserted location must be verified for prudent use in location-sensitive

services.

Measurement-based geolocation techniques [91, 93]. These exploit the cor-

relation between Internet delays and geographic distances in geolocating clients.

Delays are measured between the client and a set of landmarks with known loca-

tions, and are mapped to distances according to some predefined (usually calibrated)

mapping function. Multilateration is then used to determine the client’s location

relative to the landmarks. When the client’s IP address is used in delay measure-

ments (e.g., using the ping utility), employing a non-local IP address evades those

techniques [107], i.e., similar to evading tabulation-based techniques discussed above.

Additionally, even when the IP address is not used, delay manipulations can corrupt

the geolocation process [59].
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1.4 Thesis Contributions and Organization

1.4.1 Analyzing the security of delay-based geolocation

Previous literature analyzed the effect of an adversary increasing the measured

delays on the accuracy and evadability of measurement-based geolocation tech-

niques [59]. Our first contribution is research investigating adversarial evasion ca-

pabilities by (1) demonstrating that an adversary could also decrease the measured

delays by means of exploiting the lack of integrity in common delay-measurement

utilities; (2) demonstrating enhanced adversarial strategies to better utilize delay

manipulation for a more accurate misrepresentation of location, thus showing ad-

ditional vulnerabilities in existing mechanisms; and (3) evaluating the adversarial

accuracy in forging its location, now considering the previous two contributions.

This is presented in Chapter 3.

1.4.2 Accurate One-way Delay Estimation

Due to delay asymmetry [116], One-Way Delays (OWDs) have the potential to

improve the performance of delay-dependent applications [70], such as delay-based

geolocation. However, delay-based geolocation techniques usually map Round Trip

Times (RTTs) to distances rather than mapping OWDs because the former is easier

to estimate.

To that end, and as a tool useful in one of our other contributions (see CPV below),

we devised the minimum pairs protocol (Chapter 4)—a OWD-estimation protocol

that requires no more cooperation between the two parties than that required to

estimate RTTs, yet is in many cases more accurate than simply taking half the

RTT as a OWD-estimate. This later conclusion is reached by formally deriving the

probability distribution of absolute error for these two alternative protocols, as a

function of the delay distribution between network nodes.

The minimum pairs protocol is a generic contribution, which we believe to be of

independent interest; e.g., it could be used by delay-dependent Internet applications

for accurate OWD-estimation without the need for the overwhelming cooperation—

between the two parties estimating delays—typically required by One-Way Active

Measurement Protocol (OWAMP)-like protocols [134].
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1.4.3 Client Presence Verification (CPV)

As the main contribution of this thesis, Chapter 5 introduces Client Presence Ver-

ification (CPV)—a delay-based location verification technique designed to verify

in realtime the presence of an Internet-connected client in a prescribed triangu-

lar geographic region. The algorithm employs heuristics to reduce erroneous false

rejects/accepts, while retaining reasonable granularity.

In CPV, three verifiers geographically encapsulating the client’s asserted location are

selected to verify this assertion. They use the minimum pairs protocol to estimate

OWDs between themselves and the client, and leverage these delays for evidence

supporting the client’s presence within the triangle determined by their geographic

positions.

CPV mitigates common geolocation-evasion tactics explored in the literature [59,

107], as well as the novel adversarial manipulations discussed above in Section 1.4.1.

We discuss the integrity of CPV’s decisions in the presence of a broad class of

adversarial evasion tactics, and argue about the algorithm’s defense capabilities

against these tactics.

Viability of the CPV algorithm is extensively evaluated (from a networking perspec-

tive) through real world experiments on PlanetLab [33]. The effect of various factors

on the correctness of CPV is examined, such as the clients’ geographic proximity to

the verifiers and the triangle they determine, and the number of delay measurements

the verifiers perform. This evaluation is presented in Chapter 6.

The PlanetLab nodes employed are connected through a wired access network. To

evaluate the use of CPV with wireless clients, we use wireless delay distribution

models from the literature, and generate delays following these models. Those delays

are then added to the delays measured using the wired PlanetLab nodes to model

wireless clients. Several factors are considered, including the number of wireless

devices in the vicinity of the wireless client. The wireless evaluation is presented in

Chapter 7.

1.4.4 Hindering Unauthorized Traffic Relaying

CPV raises the bar for an adversary trying to forge its geographic location. It

is designed to reject adversaries even when they are using a Middle Box (MB),

geographically present at their intended location, to hide their IP addresses and relay

their traffic from the server. A colluding MB, customized to specifically evade CPV,
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may however succeed to mislead CPV to accept the MB’s location as that of the

client. For example, third party MB service providers, such as public VPNs [150],

may well be motivated to customize their infrastructure to evade CPV upon its

deployment.

We propose to use a Proof-of-Work (PoW) mechanism, such as client puzzles, to

defeat colluding MBs, hindering their illicit traffic relaying. Our proposal is eval-

uated using a Markov queuing model, and additionally using simulations. Similar

to the minimum pairs protocol, this proposal may be of independent interest as a

standalone contribution since it can be used to resist unauthorized traffic relaying

regardless of the application. In our case, we use it to strengthen CPV against

colluding MBs. This contribution is presented in Chapter 8.

1.5 Related Publications

Detailed explanation to the CPV algorithm (Chapter 5), the minimum pairs pro-

tocol it uses (a proportion of Chapter 4), and the algorithm’s evaluation in a wired

network environment (a proportion of Chapter 6) were published as a full paper in

the IEEE CNS conference. The paper was nominated for a Best Paper award.

• A. M. Abdou, A. Matrawy, and P.C. van Oorschot, “Location Verification

on the Internet: Towards Enforcing Location-aware Access Policies Over

Internet Clients”. In IEEE Communications and Network Security (CNS),

Oct. 2014.

A followup version of the CNS paper, which includes additional analysis to the CPV

algorithm is accepted for publication in IEEE TDSC.

• A. M. Abdou, A. Matrawy, and P.C. van Oorschot, “CPV: Delay-based Lo-

cation Verification for the Internet”. In IEEE Transactions on Dependable

and Secure Computing (to appear; accepted June 14, 2015).

In addition to introducing the minimum pairs protocol, Chapter 4 also evaluates

the protocol analytically by first deriving the probability distribution of its absolute

error, then comparing its accuracy (using the derived distribution) to the RTT-

halving protocol. The evaluation methodology and the derived model were accepted

for publication.

• A. M. Abdou, A. Matrawy, and P.C. van Oorschot, “Accurate One-Way

Delay Estimation with Reduced Client-Trustworthiness”. In IEEE Commu-
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nications Letters, vol. 19, no. 5, pp. 735–738, 2015.

Finally, Chapter 8 introduces the principle of using a PoW mechanism to thwart

MBs (e.g., VPNs and proxies) from illicitly relaying traffic. The principle and its

evaluation, both analytically and using simulations, were published.

• A. M. Abdou, A. Matrawy, and P.C. van Oorschot, “Taxing the Queue:

Hindering Middleboxes from Unauthorized Large-Scale Traffic Relaying”. In

IEEE Communications Letters, vol. 19, no. 1, pp. 42–45, 2015.



Chapter 2

Background and Related Work

This chapter presents related work on the areas of geolocation and location verifica-

tion, their limitations and vulnerabilities. Although we only focus on the verification

aspect in this thesis, we review Internet geolocation techniques in general to help

explore their susceptibility to evasion. Moreover, we analyze measurement-based

geolocation techniques as they provide an insight about the nature of delays over

the Internet, and the accuracy of mapping delays to distances. A brief survey on

location verification in single-hop wireless networks is also presented, as well as

state-of-the-art location-proof architectures and their applications.

2.1 Internet Geolocation

An Internet geolocation technique aims to bind a client’s identifier (e.g., its IP

address) to a geographic location. It either involves Internet delay measurements

between the client and a set of reference objects with known locations, and the

use of multi-lateration to determine the client’s location relative to these objects;

or it could be inference-based, where an estimate for the location is inferred from

the client’s attributes [107] and/or behavior [15]. Either way, a Location-Sensitive

Provider (LSP) may ask the client to geolocate itself and inform the LSP, or ask a

third party geolocation service provider to geolocate the client given an identifier.

Measurement-based techniques can be further categorized into either delay-based or

topology-aware techniques. In what follows, we review proposals in the literature un-

der each category, review inference-based approaches, then discuss other techniques

by which a client geolocates itself and informs the LSP.

8
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2.1.1 Delay-based techniques

Delay-based Internet Protocol (IP) geolocation is a class of techniques where the ge-

ographic location of the client machine is determined based on the observed network

delays between the machine and a set of geographically scattered landmarks with

known locations. These techniques assume the client is able to receive and respond

to the delay-measurement probes, which in practice, commonly use Internet Control

Message Protocol (ICMP)-based utilities like ping and traceroute.

Factors affecting Internet delays Four primary delay components exist be-

tween two Internet hosts: propagation, transmission,1 queueing and processing de-

lays at intermediate systems (e.g., routers) [89]. There are also delays imposed by

end-systems protocols, such as the Transport Control Protocol (TCP)’s congestion

and flow control mechanisms. The flow control mechanism receives its parameters

from the destination. It would decrease the sender’s transmission rate if the receiver

signals “slow-down” cues, or increase the rate otherwise. Additionally, other delay

components may arise from different aspects such as a low Quality of Services (QoS)

provided by the Internet Service Provider (ISP), and excessively circuitous routes.2

Route circuitousness could also be a result of user configuration, as in the case of

using a proxy server or an anonymizing browser.

How delay-based techniques work Despite a plethora of factors that affect

the delays between two nodes over the Internet [34, 153], numerous studies have

established that there is a strong correlation between delays and geographic distances

[67, 92, 113, 165, 167]. The main characteristic relied on is the propagation delay.

Most, if not all, delay-based geolocation techniques mitigate the effect of other delay

factors (e.g., queueing due to congestion) by using the minimum of multiple delay

measurements (e.g., 10-20 RTTs) to the client from each landmark. Once delays are

measured, the research question addressed by most techniques becomes finding the

best function to map them to geographic distances.

1Note that the transmission delay of a packet is measured from the time the first bit of the
packet is placed on the transmission media, until the last bit is similarly placed. It is a function of
the packet length (in bits) and the media’s transmission capacity (in bits per second). In contrast,
the propagation delay of a (single) bit is the time required for the bit to propagate through the
media from the sender to the receiver. It is a function of the distance spanned in the media (in
meters) and the media’s transmission speed (in meters per second).

2A network route is said to be circuitous when the geographic distance it spans is considerably
larger than the (shortest) geographic distance between its source and destination.
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An exception is one of the first delay-based techniques: GeoPing [113]. Instead of

mapping delays to distances, GeoPing matches the location of the client to a location

where the most similar delay behavior has previously been observed. Assuming n

landmarks and m reference nodes with known locations,3 the landmarks in Geo-

Ping first create a delay vector to each of the m nodes. A delay vector of a node

contains n values corresponding to the RTTs between the landmarks and the node.

Each landmark then measures the RTT between itself and the client, enabling the

landmarks to create a delay vector for that client. The location of the node with

the nearest delay vector is then returned as the client’s calculated location. The

authors of GeoPing proposed to calculate nearness between two delay vectors as

the n-dimensional Euclidean distance between the two vectors [113]. Ziviani et al.

showed that Manhattan, Canberra, and Chebyshev distances can generate more

accurate results when used as alternatives to the Euclidean distance [166]. This

class of delay-based geolocation returns a location from a discrete space depending

on the number of available reference nodes.

The authors of delay-based techniques often contribute a function that can map

delays-to-distances accurately. In most proposals [44,67,156], the function’s param-

eters are landmark-specific, and are calibrated prior to geolocating clients. Calibra-

tion occurs by having each landmark measure RTTs to all other landmarks; {RTT,

distance} pairs are then used to calibrate the mapping function.4 The fundamental

difference between delay-based geolocation techniques in the literature lies in the

proposed mapping function. After mapping delays to distances using this function,

these distances are used to calculate the client’s location using, e.g., multi-lateration.

Each landmark in Constraint-Based Geolocation (CBG) [67] calibrates a linear

delay-to-distance function called the best line. On a graph where the x-axis is the

distance (in km) and the y-axis is the RTT (in milliseconds), the authors of CBG

define the best line to be the one “closest to, but below, all data points (x, y) and

has a non-negative intercept”5 [67]. After calibration, each landmark measures the

RTT to the client, and maps it to distance using the best line function. The client’s

location is then estimated as the centroid of the intersection of circles whose centers

are the landmarks and radii are the distances. The authors of CBG later proposed a

mechanism to estimate and remove delays caused by buffering of the message along

the route between landmarks and the client, resulting in a more accurate mapping

3The problem of the geographic placement of such infrastructure to enhance the geolocation
accuracy was well studied in the literature [164,167].

4The “distance” element is the geographic distance between a pair of landmarks.
5The intercept is the intersection with the y-axis.
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to distances [66].

Dong et al. [44] proposed to cluster the {RTT, distance} coordinates of the land-

marks into k clusters. The coordinates in each cluster are then fitted to a polynomial

function, which is then used by the landmark to map delays to distances. Such a

segmented polynomial approach makes use of the observation that delay-to-distance

ratios vary according to the spanned geographic distance [44].

Youn et al. [156] proposed to apply kernel density estimation in the calibration phase

to approximate the Probability Distribution Function (PDF) of delays with respect

to distances, while Arif et al. [14] used maximum likelihood estimation [86]. A Naive

Bayes technique for delay-distance calibration was also considered [48].

Laki et al. [90] proposed to calibrate one delay-to-distance mapping function across

all landmarks, hypothesizing that the relationship between delays and distances is

not landmark-dependent. By doing so, delay measurements from all landmarks were

combined together to generate such a global mapping function.

GeoWeight [13] is another example geolocation technique that works by calculating

a weight factor reflecting the client’s presence inside a region, for some regions that

are determined in realtime. Weights are calculated as the number of overlapping

circles in that region. Recall, a circle at a landmark is one that has the landmark’s

location as its center and the estimated distance between the landmark and the

client as its radius.

Eriksson et al. [47] devised a lightweight geolocation technique that can reduce the

number of required probing messages, yet achieve comparable geolocation accuracy.

Similar to GeoPing, Eriksson et al. [47] rely on delay vectors between a group of

passive monitors and landmarks, while leveraging likelihood estimation.

2.1.2 Topology-aware techniques

Topology-aware geolocation techniques leverage the network topology to generate a

richer set of constraints, compared to those of delay-based techniques, to more accu-

rately geolocate clients. Intermediate systems between the client and the landmarks

are iteratively geolocated using single-hop delay-based analysis. The increased ac-

curacy comes at the cost of longer geolocation time and more required resources.

Katz-Bassett et al. [85] proposed to use traceroute measurements from the land-

marks to the client in order to identify the network topology. They devised some

techniques to refine their topology identification, such as detecting multiple device
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interfaces and using Domain Name Server (DNS) LOC records [37]. The authors

then use the network topology combined with the constraints of the speed of traffic

propagation in fiber [117] to geolocate the client.

Similar proposals involved leveraging negative constraints to enhance the geolo-

cation accuracy [153]. In contrast to the regular (positive) constraints, negative

constraints exclude regions where the client cannot be present at, i.e., based on the

delay measurements.

Others have proposed to leverage large numbers of passive landmarks with known

locations to further enhance the accuracy [68]. A passive landmark is usually a

public server that responds to ICMP queries, e.g., ping or traceroute, but is not

under control of the LSP or the geolocation service provider—neither can conduct

measurements originating from it. After populating a table of thousands of passive

landmarks, Wang et al. [148] combined delay-based with topology-aware techniques

to constrain the region where the client is. Their technique then returns the location

of the nearest (delay-wise) passive landmark to the client as the client’s location.

This last step makes use of the closest-shortest rule, which states that shorter delays

tend to result from smaller distances [93].

2.1.3 Client self-geolocation

In this geolocation category, the client determines its own location and informs the

LSP. The client may have determined its location using, e.g., its GPS. Another ab-

stract example under this category is having the LSP simply asking the (human) user

to input its location, e.g., in an address field on the LSP’s website [107]. Note that,

regardless of how the client determines its location, we place all class of techniques

by which the client sends location information to the LSP under the self-geolocation

category even if the geolocation method involves, e.g., delay measurements (i.e.,

similar to those reviewed in Sections 2.1.1 and 2.1.2).

Commonly used over the Internet, the World Wide Web Consortium (W3C) ge-

olocation Application Programming Interface (API) [123] defines an interface that

allows the client’s web browser to determine and return the client’s location to the

requesting LSP. Browser vendors usually rely on common location-determination

technologies, such as GPS [75] or WPS6 [158]. Because the client sends its location

6In WPS, a device’s location is determined relative to the wireless access points. The device’s
Network Interface Card (NIC) reports a list of visible access points and their signal strengths
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to the LSP, it can submit false information before submitting it [129].

2.1.4 Inference-based Approaches

In this class of approaches, the client’s location is inferred from observations of its

transmitted data [107]. For example, a time zone in a Hypertext Transfer Protocol

(HTTP) packet header being UTC+12 likely indicates that the client is in New

Zealand. If the Chinese language was set in the Accept-Language header, the party

is likely to be from China. If the party’s domain name ends in fr, it is likely in

France. Even the preferred encoding of data gives an insight about the possible

locations.

The client’s location could also be inferred from its IP address [137]. The IP address

is used to consult geolocation service providers that maintain lookup tables mapping

IP addresses to locations [135], e.g., MaxMind [103] and HostIP [43]. However, such

tabulation-based techniques were found unreliable [121].

2.2 Vulnerabilities of Internet Geolocation

As this section discusses attempts whereby a client is motivated to forge its own

location, the client is referred to as the adversary.

Asking the adversary to calculate its location and inform the LSP of that location

enables the adversary to provide misleading information about its location, provided

that no additional verification mechanism is employed. In this case, the adversary

may not only misrepresent its location, but also accurately control the location

where it claims to be at. A verification mechanism could, for example, be to use

Trusted Platform Module (TPM) chips [97] to trust GPS-calculated coordinates.

However, location coordinates obtained from a TPM-supported GPS driver may

still be vulnerable to the Cuckoo attack [115], where an adversary colludes with a

remote party having a TPM-supported GPS to fake the adversary’s location.

Against inference-based approaches, the adversary can alter information that in-

dicates its true location [107], misleading the LSP into calculating the adversary’s

(reflecting the distance between the NIC and the access point) to a “location provider”. Loca-
tion providers manage lookup tables that map access points to their corresponding geographic
coordinates. The location provider calculates the location and informs the browser.
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presence in the forged location. For example, changing the browser-requested lan-

guage from ja to it may cause the LSP to believe the adversary is in Italy instead

of Japan. The adversary’s control over the forged location in this case depends on

the information used to determine the location.

2.2.1 IP-hiding Attacks

IP geolocation techniques, whether they are measurement- or tabulation-based, are

prone to being mislead using MBs such as proxy servers, VPNs, anonymizers [41]

or similar IP-hiding technologies.

We believe that an adversary motivated to misrepresent its location would easily

adopt any such technologies, especially given the wide availability of public VPN-

service providers. A number of these public anonymizers are even available free of

charge [150]. As such, a fundamental design goal in any Internet location verification

mechanism is to address such a well-known evasion tactic, as we do by the mechanism

introduced in Chapter 5.

MBs tend to alter transport-layer headers and/or react differently to ICMP mes-

sages, compared to (non-MB) end-systems [39]. To detect a MB, the provider

and the client typically exchange especially-crafted packets and notice unexpected

changes on the other end [72]. Due to such considerable client cooperation require-

ment between the two parties, these techniques cannot be implemented by an LSP

to detect MBs before geolocating an adversary by its IP addresses.

Attempts to enumerate the IP addresses of MBs and block them do not ensure their

detection due to the dynamic behavior of IP addresses assignment [154], and the

risk of falsely blocking IP addresses that are not associated to MBs [30].

2.2.2 Delay-adding Attacks

Gill et al. [59] analyzed adversarial location-forging abilities when the adversary

increases delays to evade a measurement-based geolocation. The authors [59] ex-

plored the case where the adversary injects delays by not responding to echo-request

messages promptly. They found that, although the adversary was able to misrep-

resent its location, it had little control over the forged location. Additionally, the

authors [59] found that such adversarial manipulations are better detected when the

adversary attempts to fraudulently place itself farther away from its true geographic

location.
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Gill et al. [59] also tested a more sophisticated adversary that has control over a

full network (such as an Autonomous System (AS)-owner or a cloud provider), not

just the device it owns. They found that such an adversary can misrepresent its

location more accurately against topology-aware techniques, than delay-based ones.

This adversary was tested to model a cloud provider [59].

2.2.3 Delay-shortening Attacks

One of the findings of this thesis is that common ICMP-based delay-measurement

tools allow an adversary to fully manipulate, i.e., increase and decrease, the delays

observed by the measuring party, which is made possible due to the lack of integrity

in these tools.

Because those ICMP-based tools are commonly used in measurement-based geolo-

cation, full delay manipulation not only allows an adversary to misrepresent its

location but also gives the adversary substantial control over the forged location,

compared to the evasion tactic proposed by Gill et al. [59]. In such case, suscepti-

bility to evasion stems from the reality that ICMP-based delay-measurement tools

were not designed for adversarial environments.

We explain this attack in details in Chapter 3, where we also propose strategies by

which an adversary can increase its control over the location which a geolocation

technique perceives to be the adversary’s actual location.

2.3 Location-verification

2.3.1 Single-hop wireless networks

Verifying the proximity of two devices to each other using delays has been well

studied in contexts other than the Internet, such as single-hop wireless networks, e.g.,

Radio-Frequency Identifiers (RFIDs) and Wireless Sensor Networkss (WSNs) [57].

Brands and Chaum [23] have proposed a Radio Frequency (RF)-based distance

bounding protocol that aims at proving an upper bound to the distance between a

prover and a verifier. To address the high sensitivity to processing delays and the

complexity of achieving highly accurate clock synchronization among the verifiers,

Wagner et al. [133] proposed an ultrasound-based approach using a prover and a

group of verifiers. Capkun et al. [28] emphasized the importance of having at least
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three verifiers surrounding a prover to account for delay-adding attacks introduced

by the prover or a third party attacker.

The nature of delays over the Internet differs from those in single-hop wireless net-

works. Internet delays alleviate some of the challenging problems in the single-hop

wireless context (e.g., less sensitivity to processing delays), but introduce new chal-

lenges (e.g., stochastic queueing delays due to traffic/route uncertainty [44]). Thus,

proximity verification in single-hop wireless networks is a distinct research prob-

lem from the one addressed in this thesis, since our focus is on Internet location

verification.

2.3.2 Privacy-Preserving Location-Proof Architectures

Delay-based techniques for single-hop wireless networks (see Section 2.3.1) are often

leveraged in the literature to design location proof architectures, also sometimes

referred to as a spatial-temporal attestation service [63], which enable users to obtain

proofs of their presence in a certain location [64]. The proof is often in the form of

a certificate, where a trusted party in the client’s vicinity is available to certify its

presence [96,149].

Saroiu et al. [132] proposed a location-proof architecture in which a user gets cell

towers or Wireless Fidelity (WiFi) access points to certify that the user is present

where it claims to be at. VeriPlace [100,101] is another architecture that addresses

wormhole attacks,7 while focusing on the users’ privacy by employing cryptographic

techniques to spread user’s identification credentials across different entities.

Other proposals involved decentralizing the trusted infrastructure [56], or replacing

it with Bluetooth-based devices in the vicinity of the client [163], or with Near

Field Communication (NFC) tags [122]. Zerosquare [120] is a privacy-preserving

location hub, which allows location-based services to query the users’ locations, while

regulating access to personal information by separating user information from their

location.

The threat of a compromised infrastructure has been addressed as well, where Khan

et al. [88] proposed to use additional (trusted) witnesses in the user’s vicinity to

verify assertions in the presence of untrusted access points/location managers. The

7A wormhole is a relaying attack in wireless networks, where an adversary encapsulates bytes
at one location, relays and decapsulates them at another location in the network [76].
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principle of verified location tracking has been explored as well, where a chain of

location proofs can represent the history of a user’s locations [87, 146].

Relationship to the applications addressed by this thesis Compared to

the Internet location-verification problem we address in this thesis, location-proof

architectures target a problem with more constraints (e.g., preserving users’ privacy

and verifying locations with high granularity). Thus, they address a different class

of applications than the ones addressed by this thesis.

The applications addressed by location-proof architectures provide the advantage

of being privacy-centric; users are assumed to be unwilling to share (or publicly

disclose) the credentials identifying them to an LSP. Such assumption must hold;

otherwise, a user who wants to forge their location may send their credentials to a

colluding party to get them bound to a remote location and endorsed by an access

point at that location. As stated earlier in Chapter 1, we assume no client credentials

playing that role in the applications addressed in this thesis.

There are many cases where users could be unwilling to disclose their credentials.

For example, doing so may reveal private (location) information such as regular

hospital visits. Additionally, sharing identification credentials may threaten losing

benefits associated with these credentials [94]. Foursquare [53] for example enables

coffee shops to reward users, identified by their personal (secret) credentials, when

they visit regularly; a user sharing their credentials with a remote colluding party

may risk having their rewards lost/stolen.

Another fundamental difference between the applications addressed by location-

proof architectures and the ones addressed in this thesis lies in the verification

granularity and trustworthiness of infrastructure. The granularity addressed by

location-proof architectures is very high, e.g., verifying the presence in a hospital

ward or inside a coffee shop. Such high granularity is made possible since wire-

less devices in the user’s vicinity are typically relied upon for location verification.

To achieve location verification at a global-level, we expect the high granularity

of location-proof architectures would come at the cost of large-scale trustworthi-

ness requirements, since a sufficient number of trusted wireless (endorsing) devices

must be present to cover geographic regions at a high granularity. In contrast, the

location-verification granularity addressed in this thesis is coarser (e.g., state- or

country-level) as we explain in Chapter 5, and the required trusted infrastructure is

therefore smaller (see Chapters 5 and 6 for details).



Chapter 3

Accurate Manipulation of

Delay-based Internet Geolocation

Numerous delay-based Internet geolocation techniques have been proposed in recent

years, and are repeatedly positioned as well suited for security-sensitive applications

(e.g., location-based access control, credit card verification). Previous literature [59]

showed that an adversary simply delaying response messages to increase measured

RTTs gains only limited location control in forging its location, and decreasing RTTs

was believed to be infeasible. In contrast, herein we show that indeed an adversary

can decrease RTTs arbitrarily because commonly-used ICMP-based utilities are not

intended to provide delay-measurement integrity, and explore how an adversary can

leverage this to accurately manipulate geolocation results. Using several adversarial

models, we evaluate (on three delay-based geolocation techniques) how selectively

combining this with delay increases can achieve surprisingly high adversarial accu-

racy in forging location—e.g., modeled adversaries can fraudulently misrepresent

their true location by over 15,000 km, some within 100 km of their intended (fraud-

ulent) target location. Thus the new ability to decrease delays, combined with

previous delay-increasing tactics, enables significantly greater adversarial location

control over previous methods.

3.1 Introduction

The recent proliferation of Location-Based Services (LBSs) in the Internet has high-

lighted the requirement for reliable and accurate Internet geolocation tools. Some

of these services employ location-based access policies [18], or restrict operations

18
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by clients’ geographic locations [143]. Examples include media streaming [26],

online voting/gambling, location-based social networking [122], and fraud preven-

tion [30]. Nanjee [109] is one example that provides commercial geolocation services

based on active network measurements [148]. Tabulation-based IP geolocation ser-

vice providers maintain lookup tables that map IP addresses to locations. Studies

have found that many of the major tabulation providers (e.g., MaxMind [103] and

HostIP [43]) are inaccurate/outdated [121,135] and evadable [107].

IP geolocation techniques that rely on active network (delay) measurements have

accuracy advantages over others, e.g., tabulation-based [137]. They are also resilient

to security vulnerabilities that other techniques suffer, such as clients submitting

false location information [107,148]. Although IP geolocation is often evadable using

VPNs and similar IP-hiding technologies [107], such technologies can be detected [30]

and thwarted [12]; some LBSs (e.g., Hulu [78]) have recently started employing these

practices [52, 140]. For these reasons, delay-based techniques are gaining increasing

community support [49,167], specifically advocated [121], and repeatedly positioned

as well suited for security-aware contexts, e.g., ensuring legitimate storage of data

in the cloud [62], or locating hidden servers [31].

Since 2001, more than 10 delay-based IP geolocation techniques have been proposed

[13,14,44,47,48,67,68,91,93,113,156,166]. The RTT is measured between the client

and a set of landmarks with known locations, and the client’s location is estimated

relative to the landmarks. Delay-based geolocation techniques require some way

of measuring delays; because ICMP [125] utilities (e.g., ping and traceroute) are

ubiquitous and facilitate delay measurements, they are commonly used for that

purpose [44,156].

In 2010, Gill et al. [59] studied the ability of an adversary to distort geolocation

techniques that are based on active delay measurements, and the capability of the

geolocating party to detect circumvention. For delay-based techniques, their analysis

considered an adversary that can only increase the observed RTTs by selectively

delaying response messages. Their modeled adversary succeeded to misrepresent its

location, but was limited to a coarse control over the forged location.

In this chapter, we show that common delay-measuring utilities used by geolocation

techniques are subject to (1) modifying and/or (2) predicting packet contents; this

enables an adversary to fully manipulate, i.e., increase and decrease, the observed

RTTs. For example, GNU’s not Unix (GNU)’s implementation of ping relies on

the ICMP echo request/reply protocol, and records the packet-creation time in the

data field of the ICMP packet [54]. The RTT is then calculated by subtracting this
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timestamp, as read from the echoed packet, from the time the echoed packet was

received, expecting the client to return the data unchanged. However, an adversarial

client seeking to manipulate the geolocation mechanism can alter the timestamp in

the data field before echoing the packet. We show that using this, an intelligent

adversary can selectively increase or decrease the observed RTT as necessary to

beneficially control the calculated location.

Upon being able to manipulate delays, the adversary faces the question: What

should the RTT between each landmark and the adversarial client be such that

the geolocation process calculates the adversary’s intended location? We propose

different strategies whereby an adversary can utilize information known about the

landmarks to answer this question. We model several adversaries adopting different

strategies, and compare their accuracy in forging location.

To study the effectiveness of the modeled adversaries, we implemented three delay-

based geolocation techniques, CBG [67], GeoPing [113] and segmented polynomial

(SegPoly for short) [44], and evaluated adversarial location-forging accuracy, given

the ability to fully manipulate delays. Some adversaries modeled obtained forged

locations with distance errors (defined as the distance between the adversary’s in-

tended location and the one calculated by the geolocation technique) below 100

km; this relatively fine-grained location control was possible even for some who at-

tempted fraudulent relocation more than 15,000 km from their true locations (see

Fig. 3.1).

Our work highlights the need for integrity of timing information when relied upon

by security-sensitive applications. Contributions:

1. We show how properties of common ICMP-based delay-measuring utilities

allow an adversary to both increase and decrease measured delays.

2. We demonstrate several strategies that enable an adversary, exploiting these

properties, to accurately forge the location calculated by delay-based geoloca-

tion techniques.

3. We evaluate the manipulation effectiveness to three techniques: CBG [67],

GeoPing [113], and SegPoly [44]. This demonstrates how powerful an adver-

sary can be upon being able to fully manipulate RTTs.

The rest of this chapter is organized as follows. Section 3.2 reviews common delay-

measurement utilities. Section 3.3 explains how RTTs can be fully manipulated,

i.e., increased and decreased. The adversarial models are defined in Section 3.4.

Section 3.5 analyzes the effect of manipulating RTTs on delay-based geolocation.
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(a) Attempted distance on CBG= 15,092 km. Dist error = 70.7 km.

(b) Attempted distance on GeoPing = 8,055 km. Dist error = 71.4 km.

(c) Attempted distance on SegPoly = 6,617 km. Dist error = 75.2 km.

Figure 3.1: Examples of adversarial capabilities after exploiting properties of
common delay-measuring utilities. • = true location of adversary; ×
= intended location of adversary; ◦ = locations calculated by (a) CBG
[67], (b) GeoPing [113], and (c) SegPoly [44]; attempted dist is that
between • and ×; dist error for the adversary is that between × and ◦.
Map data: Google, INEGI, Basarsoft.
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Section 3.6 compares location-forging abilities of different adversarial models. Sec-

tion 3.7 suggests countermeasures. Section 3.8 discusses related work, and Section

3.9 concludes.

3.2 Background: RTT Measurement Using Com-

mon ICMP-based Utilities

A sender can measure RTTs between itself and a receiver by having the receiver

respond to (special) packets of the sender, and timing these responses. Assuming

the sender issues these packets to the receiver every t ms, and the first one was

created at time T , then the sender’s system time when packet i was created, for all

packets i ≥ 0 is:

si = T + i · t (3.1)

If the packets take γ1 ms one-way delay from the sender to the receiver, they reach

the receiver at times:

mi = si + γ1 = T + i · t+ γ1 (3.2)

Assuming the receiver responds promptly, if packets take γ2 ms one-way delay from

the receiver back to the sender, the responses arrive at times:

ri = mi + γ2 = T + i · t+ γ1 + γ2

The sender calculates the RTT for packet i as:

RTTi = ri − si = γ1 + γ2 (3.3)

To measure RTTs, network utilities commonly use the ICMP protocol [125],1 as it

is implemented by default in most systems’ protocol stack. An ICMP packet gets

wrapped by an IP packet for delivery. Eleven ICMP types are specified by Request

For Comment (RFC) 792. The type is indicated by the type field of an ICMP

header. Echo-request/reply, types 8 and 0 respectively, and destination-unreachable,

type 3, are the ICMP options commonly used to measure RTTs. The RFC does not

specify a mechanism to calculate RTTs for either types [125].

1Some utilities, such as tcptraceroute [3], rely on TCP messages.
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(a) (b) (c)

(d)

Figure 3.2: (a) ICMP echo-request/reply packet format; (b) ICMP
destination-unreachable packet format; (c) UDP segment format; (d)
IPv4 packet format.

Echo-request/reply

Echo-request and echo-reply share the same message format, which is shown in

Fig. 3.2(a). To construct an echo-request, the sender sets the type and code fields

to 8 and 0 respectively, chooses two 16-bit values for the identifier and sequence

number fields, and finally (after filling the data) calculates the checksum and places

it in its field. Values in the data, identifier and sequence number fields are

up to the implementer, however the latter two may aid in matching requests with

replies as specified by the RFC [125]. One of the most commonly used network

utility that implements the echo-request/reply type of the ICMP protocol is ping.

We found that many, if not all, ping implementations on Linux, Berkeley Software

Distribution (BSD) and Mac Operating System (OS) place the Process ID (PID) of

the issuing process in the identifier field. The sequence number field usually

starts by either 0 or 1, and is incremented by 1 in each subsequent ping message

[1, 7, 54]. When the receiver gets an echo-request message, it should change the

type field to 0, recalculate the checksum and echo the packet. According to RFC

792, “the data received in the echo message must be returned in the echo-reply

message” [125]. However, the RFC does not specify a mechanism to ensure the

receiver behaves as described. That is, providing integrity checking is not stated

as a requirement. And, of course, attackers feel no particular obligation to follow

RFCs.
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To calculate the RTT using the echo-request/reply options, two common imple-

mentations exist: stateless and stateful. In the stateless implementation, the sender

places the timestamp si (packet-creation time) in the data field of the ICMP packet.

When the echo-reply is received, the sender observes the receiving time ri, reads si

from the echoed packet, and uses them to calculate the RTT using (3.3). Other

examples of such stateless implementation include, but not limited to, ping on

FreeBSD [7] and Mac OS [1].

In the stateful echo-request/reply implementation, the sender records si in its local

memory. The RTT is calculated also using (3.3), but reading si from the sender’s

local memory instead of the echo-reply packet. Examples of this stateful implemen-

tation that use the echo-request/reply options include GNU’s traceroute—ICMP

option (i.e., traceroute -I <host>) [8], and hping3—ICMP option (i.e., hping3

-1 <host>) [4]. These stateful utilities commonly fill the data field using a fixed

predefined pattern, e.g., all zeros, a list of sequential ASCII characters, or hard-coded

strings.

Destination Unreachable

To calculate the RTT using the destination-unreachable option, the sender creates

a UDP segment and sends it to the receiver, with a destination port unlikely to be

open on the receiver’s machine. The sender records si in its local memory. As with

the data field of the echo-request/reply type explained above, the data of this UDP

segment is usually filled with fixed predefined patterns [2,6]. If the port was actually

closed, the receiver is expected to respond with an ICMP destination-unreachable

message [22]; when the sender receives it, the sender records ri, and calculates the

RTT using (3.3). Utilities implementing this behavior are commonly stateful, si is

recorded locally, because the receiver is not echoing an exact copy of the sender’s

packets. GNU’s traceroute is an example employing this implementation through

its (default) UDP probes [8].

The destination-unreachable message format is shown in Fig. 3.2(b). To construct

its header, the receiver sets the type and code fields to 3 and 3 respectively, fills the

32-bit unused field with zeros, and finally (after setting the data field) calculates

the checksum and places it in its field [125]. To enable the sender match responses

with their corresponding processes, the receiver places the IP header and the first 8

payload bytes of the IP packet it received from the sender in the data field of the

destination-unreachable message [125].
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Table 3.1: Properties of ICMP-based utilities, and the effects of exploiting
them on the observed RTTs. A bullet (•) in column 3 means Case i has
property j.

Property
Effect Case

Discovered↑ RTT ↓ RTT 1 2 3

1 Suspendable responses X • • • [59]
2 Modifiable pkt contents X X • herein
3 Predictable pkt contents X • • herein

3.3 Manipulating Latencies

From Section 3.2, the cases whereby a sender can measure RTTs using ICMP are:

• Case 1: stateless using echo-request/reply.

• Case 2: stateful using echo-request/reply.

• Case 3: stateful using destination-unreachable.

Table 3.1 lists potentially-exploitable properties of common ICMP-based network

utilities. These properties become vulnerabilities when the measured RTTs are

relied upon by security-sensitive applications; because we investigate the effect of

using ICMP-based utilities in security-sensitive geolocation purposes, we refer to the

properties in Table 3.1 as vulnerabilities. The table also shows which of the RTT-

measurement cases listed above has which vulnerability. Note that despite having

the same effect on RTTs, the first and second vulnerabilities in Table 3.1 increase

RTTs in a different way; likewise, the second and third decrease differently. We

now discuss how an adversary can increase/decrease the RTTs when it exploits the

corresponding vulnerabilities in each case.

Exploiting the first vulnerability in Table 3.1 enables the adversary increase RTTs

in all three cases, because the adversary needs only hold on to the response messages

to increase the RTTs [59]. Decreasing RTTs, in each case, is achieved as follows.

Case 1. The packet-creation time, si, is recorded in the ICMP echo-request in this

case. To decrease RTTs, the adversary exploits the second vulnerability in Table 3.1;

it increases the value of si before including it in the echo-reply. Changing si to si+δ

decreases the RTTs the sender observes by δ. Using (3.3), the sender calculates the

manipulated RTT of packet i as:

RTT′i = ri − (si + δ) = RTTi − δ (3.4)
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RTTs can also be fraudulently increased by δ ms by changing si to si − δ. If the

adversary knows the actual RTT between itself and the sender, it can mislead the

sender into calculating the RTT as a specific value of the adversary’s choosing, τ ,

by setting:

δ = RTTi − τ (3.5)

causing the sender to calculate the manipulated RTT as:

RTT′i = ri − (si + δ) = RTTi − δ = τ (3.6)

Case 2. To decrease RTTs, the adversary first estimates the waiting time, t in

(3.1), that the sender waits between sending echo-requests. Recall that delay-based

geolocation techniques take multiple RTT measurements to a client, and use the

smallest in geolocation. To estimate t, the adversary refrains from responding to

the first n > 1 echo-requests, or drastically delays their responses to ensure none

of them will be chosen as the smallest. It then subtracts the receiving time of the

echo-request, mi in (3.2), from mi+1 for all 0 ≤ i < n − 1 (Section 3.2). Because

the accuracy of this method depends on the stability of the one-way delay from

the sender to the adversary, the adversary averages the waiting time over multiple

packets:

t =
1

n− 1

n−2∑
i=0

(mi+1 −mi) (3.7)

The adversary can then estimate the receiving time of the next echo-request packet

as:

mi = mi−1 + t (3.8)

To decrease the RTT that the sender observes from packet i by δ ms, the adversary

issues an early (fake) echo-reply at times m′i, instead of mi, such that:

m′i = mi − δ = si + γ1 − δ (3.9)

The sender will then receive replies at times r′i, such that:

r′i = m′i + γ2 = si + γ1 − δ + γ2 (3.10)

and hence, calculate the RTT of packet i as:

RTT′i = r′i − si = γ1 + γ2 − δ (3.11)
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If the adversary knows the actual RTT, it can use (3.5) to mislead the sender into

calculating the RTT as τ .

Issuing early ICMP echo replies requires the adversary to craft them before receiving

their corresponding requests. Exploiting the third vulnerability in Table 3.1 enables

the adversary achieve this because the values in the header of an echo-reply message,

Fig. 3.2(a), are highly predictable. When the sender receives an echo-reply (type

0, code 0), it only uses the identifier and sequence number fields to match

them with corresponding requests; they are the only two fields an adversary needs

to predict, before receiving them in echo-requests. The identifier (commonly be-

ing the PID of the issuing process) is usually constant across echo-requests issued

within the same session, the sequence number is usually 1 plus the previous echo-

request [4, 5, 8]. After receiving the first echo-request, which the adversary ignores,

it predicts the values of those two fields for subsequent requests.

Case 3. Similar to the previous Case, the adversary decreases RTTs by sending

early (fake) destination-unreachable messages. Timing analysis is, thus, similar to

that of Case 2. From the destination-unreachable header, Fig. 3.2(b), we see that

the ICMP header constitutes no difficulties for the adversary to predict; the type

and code fields are set to 3 [125], the unused bytes must be set to 0 [125], and the

checksum is calculated after placing the data. Predicting the data field requires

the adversary to predict the sender’s IP header and the first 8 bytes of the IP

payload. We found that given common implementations of ICMP-based utilities,

both headers are highly predictable after receiving the first UDP segment from the

sender.

For the IP header (Fig. 3.2(d)), the following fields are not expected to change

across multiple packets issued within the same session: version, Internet Header

Length (IHL), total length, fragmentation bytes (flags+offset), protocol, and source

and destination IP addresses. Fragmentation is likely to remain zero because UDP

segments are typically small in size; otherwise, they may distort the measurement

RTTs due to additional processing and transmission delays of large packets. The pro-

tocol number will be set to 17, for UDP [124]. The following fields are already prone

to changes by intermediate systems (e.g., routers) [126]: Differentiated Services

Code Point (DSCP), Explicit Congestion Notification (ECN), Time to Live (TTL),

and header checksum. Thus, the sender cannot rely on those fields to match the

returned ICMP messages to an issuing process (we noticed no utilities relying on

them). For the remaining field, IP identification, most systems increment it by 1 in
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each subsequent IP packet. This summarizes the adversary’s ability to predict the

contents of the next IP header after receiving at least one.

The first 8 bytes of the IP payload constitute the UDP header (Fig. 3.2(c)). On

many implementations, including the traceroute utility of GNU [8], FreeBSD [6],

and Mac OS X [2], the source and destination port numbers are fixed over a single

session, or incremented by one with each subsequent UDP segment. Similar to

the stateful echo-request utilities (Section 3.2), the data field of UDP segments

is commonly a fixed predefined pattern. However, we found that many utilities

overlook the returned values in this field, as well as the returned UDP header length

and checksum; that is, only the UDP source and destination port numbers are used

to match destination-unreachable messages with corresponding UDP segments.

3.4 Adversarial Models

3.4.1 Common Capabilities

The adversary is a client that tries to misrepresent its own location by manipulating

geolocation. The adversary’s objective is to have the technique return a location as

close as possible to its intended location, rather than its true location. We consider

a LSP that uses a delay-based geolocation technique that relies on ICMP messages

to measure delays.2

The adversary has full control over its own machine, but no other machines. It

cannot influence the delay-distance calibration process of the landmarks (see Sec-

tion 2.1.1, page 9), nor infer their calibration functions. Note that the adversary is

nonetheless a powerful one since, as shown below, the adversary can achieve high

accuracies while manipulating geolocation, even lacking knowledge of those param-

eters. The adversary is able to selectively manipulate the delays between itself and

any landmark, as explained in Section 3.3, and accurately increase or decrease the

RTTs observed by a measuring party. The adversary only knows the geographic

locations of the landmarks, but does not know the RTT between each landmark and

its intended location (where the adversary wants to appear to be, in terms of the

result computed by the geolocation technique), nor between each landmark and its

2Note that the adversary can lead the LSP to rely on ICMP-response messages simply by
filtering all TCP ports, i.e., no TCP response messages are sent on attempted connections to any
port.



3.4. Adversarial Models 29

Table 3.2: Capabilities and assumptions of 5 modeled classes of adversaries,
their assumed traffic propagation speed, and where they are discussed.

Adv. Able to Knows Traffic
Proposed Section

class ↑ RTT ↓ RTT G T F Speed
A X X X (1/3)c herein 3.5
B X X (2/3)c [59] 3.6
C X X (1/3)c herein 3.6
D X X X X Variable herein 3.6
E X X X Variable [59] —

G = landmarks’ locations; T = adversary-to-landmark RTT; F = landmarks’ calibrated
delay-distance function; c = speed of light.

true location. We make the latter assumption because the landmarks may prevent

anyone from ping ing their addresses except, perhaps, themselves.

3.4.2 Strategies for Modeling Traffic Speed

Let the adversary’s true location be a, the set of landmarks be L, and the RTT

(at a given time) between the adversary’s true location and each landmark l ∈ L

be α(a, l). To deceive a geolocation process, the adversary manipulates the RTTs,

observed by each landmark l ∈ L, between itself and l. To forge its location to a′,

the adversary ideally deceives each l ∈ L to measure the RTT as one that would

be consistent with α(a′, l) instead of α(a, l). The challenge for the adversary is that

(by our assumption) it does not know both α(a, l) and α(a′, l).

If the adversary guesses the speed of traffic propagation, it can estimate the RTT

(at current time) because it knows the distances between itself and the landmarks.

The adversary may use the constant (2/3)c (i.e., speed of light in fiber [117], where c

is the speed of light in vacuum) as an estimate to the traffic propagation speed [59].

However, Katz-Bassett et al. [85] found that a speed between (2/9)c and (4/9)c

better reflects the one-way delay nature of the typically multi-hop Internet routes.

We study the adversary’s manipulation capabilities when it uses (3/9)c = (1/3)c as

an approximation to the traffic propagation speed. The adversary’s estimated RTT

between its true/intended location and landmark l is:

β(a, l) =
2× dis(a, l)

(1/3)c
(3.12)

and

β(a′, l) =
2× dis(a′, l)

(1/3)c
(3.13)
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where dis(a, l) and dis(a′, l) are the great circle3 geographic distances [58] between

the adversary’s true/intended location and landmark l. The distance (in the numer-

ator) is doubled because β is a round-trip, rather than one-way, delay. To forge its

location from a to a′, the adversary sets δ in (3.5) as:

δ = β(a, l)− β(a′, l) (3.14)

The difference between the adversary’s estimated RTT and the actual contributes

to the adversary’s errors in forging location.

Adversary A. After evaluating this adversary, we compare its efficacy to three

other classes of adversaries. We refer to the adversary described above as adversary

A. Adversaries B, C and D have similar assumptions, except for the factors in

Table 3.2. Note that in contrast to the achieved ability in the second column of the

table, the third column presents an assumed knowledge.

Adversary B . Gill et al. [59] studied the effect of an adversary increasing the RTT

observed by a measuring party by delaying response messages. To realize how much

an adversary gains by also being able to decrease RTTs (as explained in Section

3.3), we implemented the manipulation tactic of Gill et al. [59],4 which is equivalent

to adversary B, to compare it with adversary A.

Adversary C . Similar to the modeled adversary of Gill et al. adversary B uses

(2/3)c to model traffic speed, whereas A uses (1/3)c. To understand whether B ’s

retrogressions/improvements over A were due to its limited delay-manipulation abil-

ities or its parameterization, we involve in the discussion adversary C which only

differs from B in that it uses (1/3)c as the traffic speed.

Adversary D . We assume this adversary has the advantage of knowing the RTT

between itself and each l ∈ L, α(a, l) (e.g., by ping ing each l ∈ L). However, it does

not know the RTT between the landmarks and its intended location. To estimate

it, D benefits from its knowledge of α(a, l), and calculates the traffic speed between

itself and each l ∈ L as follows:

λl = max

(
2× dis(a, l)
α(a, l)

, (2/9)c

)
(3.15)

3A great circle is one whose center and radius are those of the Earth.
4The results obtained from our implementation closely match those reported by Gill et al. [59];

we believe that any dissimilarities arise from differences in the data sets and the experimental
environment.
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The calculated speed λl reflects l’s access network speed; it increases with fast access

network, and decreases otherwise. Since l’s calibrated delay-to-distance function (see

Section 2.1.1, page 9) would have already been affected by the speed of its access

network, using λl increases l’s accuracy in calculating the distance between itself

and D ’s intended location, i.e., in favor of the adversary. The lower bound (2/9)c

in (3.15) is applied to avoid the effect of increased circuitousness (indirectness)

and highly varying delay-to-distance ratios occurring with short distances over the

Internet [139]. D then estimates the RTT that l should observe at the intended

location, a′ using the speed λl:

β(a′, l) =
2× dis(a′, l)

λl
(3.16)

The adversary finally sets δ in (3.5) as:

δ = α(a, l)− β(a′, l) (3.17)

Adversary E . Proposed by Gill et al. [59], adversary E was assumed to have access

to each landmark’s calibration function, and was using this function to model the

traffic propagation speed. It may not be trivial for an adversary to have access

to such information in practice. Thus, we only list Adversary E in the table for

completeness, but do not explore it further. Note however that having access to

each landmark’s calibration function makes the adversary stronger. We show later

in this chapter that even when lacking knowledge of this information, some of the

modeled adversaries are already powerful enough to control the forged location at a

country-level granularity.

3.5 Evaluation Results

The primary evaluation metrics we use are the adversary’s distance error and di-

rection error (Fig. 3.3). The first is the distance between the adversary’s intended

location and the location calculated by the geolocation technique. We used, again,

the great circle distance to calculate this metric. The second metric is the absolute

spherical angle (i.e., ≤180) between the lines passing through both locations and the

adversary’ true location. We used spherical trigonometry to calculate this metric,

where we adopted 6,371 km as an approximation to the Earth’s radius [106].

We implemented three representative delay-based techniques for evaluating manip-



3.5. Evaluation Results 32

Figure 3.3: Distance and direction errors. The calculated location is the one
returned by the geolocation technique, whereas the intended location
is the one the adversary intends to appear at (fraudulently).

Figure 3.4: Locations of 122 landmarks and 51 modeled adversaries used in
our experiments. Each adversary attempted to forge its location to 50
other (intended) locations, for a total of 2,550 modeled attempts to
manipulate geolocation. N = landmarks; • = true locations of adver-
saries; × = intended locations of adversaries. Note: this graph shows
experimental design, not results. Map data: Google, INEGI.

ulations: GeoPing [113], CBG [67], and SegPoly [44], and believe analogous manip-

ulation effect extends to other techniques. To evaluate the manipulations, we used

PlanetLab [33], where we selected 144 nodes (Fig. 3.4) to represent 122 landmarks

and 51 adversaries (some nodes acted as both). We obtained the delays between

these nodes from the iPlane project [102], which were collected on March 27, 2014.

Each client made 50 location-forging attempts, marked by × in Fig. 3.4, giving a

total of 2,550 attempts.

Figure 3.5 shows a Cumulative Distribution Function (CDF) of the attempted dis-

tances (see Fig. 3.3 for definition); 50% of all attempts intended to move at least

∼7,600 km away from the true locations. Such large distances are not typically

state or city level relocation, but rather country or continent level. In fact, we chose

the centroids of 20 countries to represent 20 of the 50 intended locations, and the
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Figure 3.5: CDF of the attempted distances. A point (x,y) means a fraction
y of all 2,550 manipulations attempted to move x km or less away from
the true location. Note: this graph shows experimental design, not
results.

centroids of 30 US states to represent the remaining ones.

3.5.1 Manipulation Accuracy

Figure 3.6(a) shows a CDF of A’s distance errors; one-third of manipulations to

CBG resulted in errors below 700 km (close to the width of France), and two-thirds

below 1,700 km.5 Both values are less than half the US width; e.g., if Pandora [114]

used CBG to enforce US geographic restriction policies, at least two-thirds of non

US-based clients are expected to bypass these restrictions.

The adversary’s distance errors were larger while manipulating GeoPing; one-fifth of

all manipulations resulted in errors below 850 km, and half had errors below 1,800

km. The difference between CBG and GeoPing, however, partly stems from CBG

being generally more accurate than GeoPing [67]. When the adversary can fully

manipulate the delays, such higher accuracy may unfortunately help adversaries

more accurately control the calculated location.

For SegPoly, 80% of manipulation attempts resulted in more than 1,200 km error,

which is due to the linear function adversary A uses to map distances to delays

(distance = delay × (1/3)c). The function leads to a large deflection between

the distance it wants a landmark to calculate, and the one the landmark actually

calculates. Despite using linear mapping against a technique that uses polynomial

5Note that these adversarial errors arise in part due to inherent inaccuracies of the geolocation
methods themselves, making the relatively smaller errors more noteworthy.
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Figure 3.6: CDF of (a) distance errors and (b) direction errors for adversary
A upon manipulating geolocation. A point (x,y) means a fraction y of
all manipulation attempts resulted in error of x (km or degrees) or less.

mapping, 44% of A’s manipulations resulted in less than 2,000 km distance error.

The CDF of the direction error for the three techniques is shown in Fig. 3.6(b);

88%, 82%, and 63% of adversary A’s manipulations to CBG, GeoPing and SegPoly

respectively resulted in direction errors less than 50◦. To interpret this result, one

can think of a US bank restricting credit card transactions to the US, e.g., for

fraud prevention [30,91]. Using CBG, and assuming relatively small distance errors,

about 88% of European-based adversaries are expected to succeed to pretend to be

in the (contiguous) US. That is because for most adversaries whose true locations are

Europe (excluding Iceland) and who intend to be in the US, a direction error below

∼50◦ (and distance error below ∼5,000 km—the country’s width) enables them

achieve their objective. Figure 3.7 shows the spherical angle at the intersection

point, close to the extreme west of Europe, of two lines enclosing the contiguous US.

If a European-based adversary, for example, expects to incur a 50◦ direction error

clockwise, it can plan to pretend to be in Florida so that its location ends up being

calculated as Washington, and vice versa.6 Note that the angle in Fig. 3.7 decreases

when the two lines intersect further to the east of Europe.

Next we explore the relationship between A’s attempted distance and its distance

error. The correlation7 between the two variables are 0.55 for CBG and GeoPing,

and 0.68 for SegPoly. A powerful adversary should exhibit lower correlation be-

6The adversary is not assumed to control whether the direction error is clockwise or counter-
clockwise; if one fails, it tries the other.

7The Pearson Correlation Coefficient ranges from -1 to +1, with 0 indicating no correlation,
and ±1 indicating extreme +/-ve correlation.
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Figure 3.7: The spherical angle at the intersection point, close to the extreme
west of Europe, of two lines enclosing the contiguous US is ∼49◦. Map
data: Google, SIO, NOAA, U.S. Navy, NGA, GEBCO.

tween both variables, meaning that its accuracy does not degrade when its intended

location is far away from its true one. The relatively moderate correlation while ma-

nipulating CBG and GeoPing (0.55) indicates that an adversary able to increase and

decrease RTTs can accurately control extremely remote fraudulent locations. Note

that the correlation is positive because manipulations of small attempted distances

result in small distance errors.

Manipulations to SegPoly experienced higher correlation, compared to CBG and

GeoPing, because of the discrepancy between SegPoly’s segmented polynomial map-

ping function and the linear function adversary A uses, which manifests quite clearly

as larger delays get mapped to distances.

3.5.2 Manipulation Detection

CBG calculates a client’s geographic location as the centroid of a convex region

enclosed by the intersection of multiple circles. Gill et al. [59] suggested the area

of this region could be used to detect manipulations, which involves an adversary

increasing the RTT, because larger adversary-landmark RTTs increase the area.

We analyze detection abilities of this against an adversary that can also decrease

delays. GeoPing generates no intersection regions; we are not immediately aware of

a method to precisely detect manipulations against GeoPing.

Figure 3.8 shows a CDF of the intersection-region areas while operating CBG and

SegPoly to calculate the forged and true locations of adversaries.8 The speed that ad-

versary A uses, (1/3)c, is slow relative to the average traffic propagation speed [85].

8These true locations are calculated from the original delays between the landmarks and the 51
PlanetLab nodes, before changing these delays to model adversaries.
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Figure 3.8: CDF of the intersection-region areas while determining the (51)
true and the (2,550) manipulated locations. A point (x,y) means a frac-
tion y of all attempts had areas of x km2 or less. Higher (manipulated)
curves indicate less detectable manipulations.

This results in relatively large RTT estimates to the intended location, β(a′, l) in

(3.13), increasing the distances the landmarks calculate from mapping those RTTs.

This explains the large areas (low curves in Fig. 3.8) while manipulating geolocation.

However, 92% of the areas that CBG calculated while locating the true nodes were

equivalent to 71% of those while calculating the forged locations, at x = 2×106

km2. This implies that if the geolocating party decides to reject clients whose

intersection-region areas are greater than this value, it falsely rejects 8% of legitimate

clients and falsely accepts 71% of adversaries. According to these results, detecting

manipulations based on the intersection-region areas is not trivial.

3.6 Comparing the Adversarial Models

We compare the adversaries modeled in Table 3.2 (Section 3.4). The same delay

dataset was used across them to establish a comparable experimental set up.

3.6.1 Manipulation Accuracy

Figure 3.9 compares the distance errors for the four adversaries. About 80% of

B ’s manipulations to the three techniques resulted in distance errors above ∼1,900

km; only 29%, 48% and 59% of A’s manipulations to CBG, GeoPing, and SegPoly
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Figure 3.9: Distance errors for the adversaries in Table 3.2.

respectively resulted in errors above 1,900 km. The median distance errors for

A and C while manipulating CBG were 1,100 km and 3,800 km respectively. The

corresponding values for GeoPing were 1,800 km and 3,100 km, and for SegPoly were

2,250 km and 3,600 km. The improvements of adversary A over C underscore the

effectiveness of full delay manipulation on an adversary’s location-forging abilities.

Adversary D shows a distance error improvement over A while manipulating CBG,

with 66% of D ’s manipulations resulting in errors below 1,000 km, versus 46% of A’s

manipulations. Surprisingly, A showed slight improvement over D while manipulat-

ing GeoPing. One possible explanation for this could be D ’s access network; if it

is relatively slow, the varying delay-distance mapping decreases the mapped delays

between D and all landmarks. A constant traffic speed protects A from the effect

of a slow access network. Finally, for SegPoly, almost unnoticeable distance error

improvements were made by adversary D ’s manipulations over A.

Figure 3.10 compares the results for the direction errors; 50%, 38% and 53% of

adversary B ’s manipulations to CBG, GeoPing and SegPoly respectively resulted

in direction errors below 45◦, versus 87%, 80% and 60% of adversary A’s manipu-

lations. A lower direction error for the adversary indicates a more accurate (hence,

more worrisome) adversary. Similar to the distance errors, adversary C ’s overall

direction error was better than that of B but worse than A, again highlighting

A’s devastating abilities. Adversary D showed direction error improvements over

A only while manipulating CBG, but no considerable improvements were observed

upon manipulating the other two geolocation techniques.
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Figure 3.10: Direction error for the adversaries in Table 3.2.

3.6.2 Manipulation Detection

Figure 3.11 shows CDFs of the intersection regions areas; 58% of B ’s manipulations

to CBG resulted in areas above 2×106 km2, versus only 29% of A’s. Clearly, adver-

sary A’s manipulations to CBG are harder to detect using the area as the detection

factor.

Areas resulting from B ’s manipulations to SegPoly were significantly smaller com-

pared to its manipulations to CBG, and more interestingly, were close to those result-

ing from A’s manipulations to SegPoly (the curves A and B are close in Fig. 3.11(b)

than in Fig. 3.11(a)). This is because B uses double the speed that A uses to model

the traffic speed. If both adversaries pretend to be farther from a landmark by a

certain distance, B increases the RTT by half the amount that A increases. When

the landmark maps those RTTs, smaller values get mapped to smaller distances, de-

creasing the area of intersection. Nonetheless, the average distances resulting from

adversary B ’s mapping are not expected to be relatively small since B can only

increase RTTs. B ’s faster traffic speed combined with its ability to only increase

delays explains its area similarity with A. This argument does not apply to CBG

because the linear calibration the landmarks use blindly maps larger delays to larger

distances.

Adversary C had the largest intersection-region areas compared to A and B because

it combines two factors that tend to increase areas: only increasing RTTs and using

a small constant to model traffic speed. Therefore, C is the most exposed to being

detected based on the area of the intersection region.

Adversary D was less detectable than A. Half of D ’s manipulations to CBG resulted

in intersection-region areas below 0.1×106 km2, compared to double this number for
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Figure 3.11: CDF of the intersection-region areas for the adversaries in Ta-
ble 3.2. A point (x,y) means a fraction y of all attempts resulted in
areas of x km2 or less. Higher curves indicate less detectable manip-
ulations.

Table 3.3: Median distance (km) & direction errors (degrees), median areas of
intersection regions (km2), and correlation coefficients between the dis-
tance errors and the attempted distances for the adversaries in Table 3.2;
Adversary B is similar to that of Gill et al. [59]. Smaller values for all
fields indicate a more powerful adversary.

Geolocation Dist error (km) Direction error (deg) Area ×106 (km2) Correlation

method A B C D A B C D A B C D A B C D

CBG [67] 1,100 6,300 3,800 700 9.5 44 33 6 2 4.1 17.3 <1 0.54 0.89 0.73 0.33

GeoPing [113] 1,800 6,700 3,100 1,630 14 58 29 14 – – – – 0.55 0.86 0.64 0.57

SegPoly [44] 2,250 5,350 3,600 2,200 28 41 34 29 <1 <1 <1 <1 0.68 0.85 0.8 0.64

half of A’s manipulations.

3.6.3 Summary

Table 6.2 summarizes the differences between the four modeled adversaries. Adver-

sary A achieves 83%, 73% and 58% reductions9 to the median distance errors over

B while manipulating CBG, GeoPing, and SegPoly respectively; and achieves 71%,

41.94% and 37.5% over C while manipulating the three techniques. A’s improve-

ment over C is solely due to its ability to fully manipulate delays (since it is the only

difference between them), highlighting the powerful nature of manipulation when

an adversary is able to decrease and increase the RTTs.

9Percentage reduction = Median error of B - Median error of A
Median error of B × 100.
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Compared to B, adversary C achieves 40%, 54%, and 33% improvement to the

median distance error while manipulating CBG, GeoPing, and SegPoly respectively

(see Table 6.2). The only difference between both adversaries is the constant they

used to model traffic speed, suggesting that a clever modeling can by itself increase

the adversary’s location-forging accuracy drastically.

Adversary D achieves 36%, 9.4%, and 2.2% improvement to the median distance

error over A while manipulating the three techniques respectively. Thus, against

GeoPing and SegPoly, an adversary’s knowledge of the RTTs between itself and the

landmarks did not significantly improve the results.

Adversary D ’s manipulations to CBG resulted in the smallest intersection-region

area, thus hiding manipulation attempts on CBG is easier when the adversary knows

the RTTs between its true location and the landmarks. However, knowledge of this

information did not reveal significant advantages in hiding manipulation attempts

on SegPoly since all adversaries resulted in very small areas. These results highlight

that the accuracy SegPoly gains using polynomial regression comes at the cost of

lower ability to detect manipulations by the constrained region area.

Finally, from Table 6.2, it is evident that B and C exhibit the highest correla-

tion between the attempted distance and distance error (i.e., poor performance).

Adversaries A and D relax the correlation, enabling them to fraudulently relocate

themselves at extremely remote locations with high accuracy. Thus, the combined

ability of increasing and decreasing delays reduces the impact on the distance error

when large distances are attempted.

3.7 Countermeasures

We discuss possible countermeasures that specifically aim at preserving the integrity

of delay measurements used by a geolocation technique. We stress that the root

cause of the vulnerabilities lies not in the ICMP utilities themselves but rather in

(improperly) leveraging them to carry out a task (geolocation) for which they were

not designed. A high level countermeasure would therefore be to avoid using ICMP-

based utilities for geolocation. If ICMP-based utilities are to be used nonetheless,

the following countermeasures could be considered. These measures require only the

landmarks conducting geolocation to modify their network stacks.

As discussed in Section 3.3, the vulnerabilities lie in the adversary’s ability to tamper

with both the sending (s) and receiving (r) times of ICMP-based network utilities.
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Every landmark must ensure the integrity of both parameters. Locally recording s

enables a landmark to retrieve s from its memory instead of the data field of an

echo-reply packet. Obviously, the landmark’s own local memory is more reliable

than an unprotected packet returned from the receiver/adversary. This precludes

the adversary from undetectably tampering with the value of s. If a stateless im-

plementation is desired, landmarks may use a Message Authentication Code (MAC)

protecting s, the ICMP identifier, and the ICMP sequence number of the echo re-

quest; the landmarks can then place the MAC in the data field of the packet along

with s (see Fig. 3.2(a)). Note that a landmark cannot include the type and check-

sum fields in the MAC because the receiver must change them in the echo reply,

as specified by RFC 792 [125]. The landmark can store the non-shared key of the

MAC locally. A single key suffices for multiple sessions. Landmarks can then verify

the integrity of their own timestamp s retrieved from a received echo reply.

As for the receiving time r, recall that a key factor for an adversary to beneficially

manipulate it is the adversary’s ability to measure the waiting time between a suc-

cessive pair of echo requests. Consequently, randomizing the waiting times raises

the bar for the adversary to accurately predict this time. Such a precaution is simple

to implement as it may not necessarily require modifications to the local utilities

(e.g., ping and traceroute). However, because the adversary calculates the average

waiting time, this precaution does not stop the adversary from undetectably ma-

nipulating r; it only increases the adversary’s error range. Another countermeasure

to provide timestamp integrity is to include an element of randomness in the data

field of echo requests, i.e., similar to DNS cache-poisoning countermeasures [138].

For all practical purposes, ample unpredictability should prevent the adversary from

successfully issuing fraudulent echo replies, forcing it to wait for echo requests first.

Although the countermeasures presented in this section could be technically simple,

we expect little community support to deploy modifications to the widely used

generic network utilities for the sole purpose of hardening geolocation.

3.8 Related work

In 2010, Gill et al. [59] studied the effect of delay increases on topology-aware (see

Section 2.1.2, page 11) and delay-based geolocation techniques, choosing one repre-

sentative technique for each. They modeled two classes of adversaries: simple (con-

trols only its own machine) and sophisticated (controls a full wide area network).

The former was able to increase delays (adversaries B and E herein—Section 3.4)
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and the latter was able to increase the number of hops to the landmarks. Against

delay-based techniques, both adversaries had limited control over the forged loca-

tion [59].

Muir et al. [107] investigated geolocation over the Internet from a security perspec-

tive, and enumerated a broad spectrum of tactics for an adversary to manipulate

geolocation techniques, including using proxies to hide the IP address, and falsify-

ing location records of public registries (whois databases, DNS LOC records [37],

etc). They argued that despite a plethora of proposals to geolocate Internet hosts,

none appears to be robust against all classes of adversaries. Our work is comple-

mentary as it provides concrete evidence, based on practical evaluations, supporting

their assertion with respect to popular implementations of delay-based geolocation

techniques.

Goldberg et al. [61] addressed the problem of path quality monitoring, devising

protocols to detect if an adversary sitting in the path between two end systems is

manipulating their traffic. Although their research is motivated, in part, by the

lack of integrity checking in network-monitoring utilities, their proposed solutions

assume the collaboration of the two end systems. In our case, one of the end systems

is the adversary itself and therefore collaboration cannot be assumed (hence: none

of their solutions fit the problem studied herein).

Delay-based location verification techniques have been proposed [10,127,160]. How-

ever, proposals for single-hop wireless networks [127,160] cannot be directly applied

to the Internet because of the difference in delay nature between both domains [59].

In Network Coordination Systems (NCSs), such as Vivaldi [36] and Meridian [152],

network nodes are assigned coordinates according to the delays between them. NCSs

are generally seen as different from geolocation because the coordinates of a node

reflect its network location rather than geographic longitude and latitude; thus, no

delay-to-distance mapping is required. Adversarial environments (e.g., to disrupt an

NCS) were explored [60,157], and proposals for securing NCSs addressed adversarial

delay-increase [84].

3.9 Conclusion

Virtually all current implementations of conventional network utilities (e.g., ping

and traceroute) fail to check the integrity of the measured RTTs. Thus, misusing

them for delay-based geolocation allows an adversary of moderate abilities to in-
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crease or decrease the RTTs observed by the measuring party. Without controlling

any devices or network traffic other than its own, the adversary can then manipulate

geolocation techniques that are based on active delay measurements to the extent

of accurately controlling the calculated (forged) location, e.g., for a resulting error

as small as 100 km—providing country-level granularity control.10 This may defeat

location-aware security systems, e.g., a cloud provider violating service level agree-

ments [62], especially given that such geolocation techniques are increasingly being

advocated for use in security-aware contexts [31].

By evaluating several adversarial situations, we have demonstrated that better es-

timates to the traffic propagation speed can enhance the adversary’s accuracy in

controlling the forged location. This finding even extends to adversaries only ca-

pable of increasing RTTs [59]; e.g., an adversary that uses the constant (1/3)c as

an estimate to the traffic speed, as shown herein, is 40% more accurate in forg-

ing a CBG-calculated location [67] than the one using (2/3)c studied in previous

literature [59].

We note there are countermeasures, based on well-known and technically simple

techniques, which provide integrity to the timing information exploited by the ma-

nipulations we discussed in Section 3.3, and thereby would (if implemented and

deployed) preclude the evasion of geolocation that we analyzed in Sections 3.5 and

3.6. However, these add overhead to core ICMP utilities, and thus may well face

deployment resistance since they are unnecessary for core services. Designers of

delay-based geolocation usually focus on achieving high location accuracy, but to

date have failed to propose integrity-preserving yet deployable delay-measurement

algorithms—despite being motivated by security-sensitive applications [14,44,67,91].

The analysis in this chapter provides some useful insights. For example, landmarks

in CBG [67] would ideally allow only themselves to measure RTTs between each

other; in our experiments, an adversary knowing the RTTs between itself and the

landmarks was 36% more accurate. Additionally, if SegPoly [44] is used, the areas

of the constrained region cannot be relied upon for detecting manipulations since

they become considerably smaller. In fact, security-sensitive applications [62] should

not rely on the constrained region areas for detecting manipulations because, while

geolocating adversaries who can fully manipulate delays, the constrained regions

become almost indistinguishable from those of legitimate clients.

10Related to geolocating cloud data, Peterson et al. [118] emphasize: “Of particular interest is
establishing data location at a granularity sufficient for placing it within the borders of a particular
nation-state.”
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Our work highlights the importance of ensuring timing integrity in delay-based ge-

olocation. We believe more investigations into these techniques are required, and

expect that the search for a geolocation mechanism which is not easily defeated

remains challenging. We hope our work raises awareness of the importance of devis-

ing such evasion-resilient geolocation mechanisms, and encourages further research

in this area.



Chapter 4

Accurate One-Way Delay

Estimation with Reduced

Client-Trustworthiness

This chapter proposes a novel protocol that enables a server to estimate OWDs

between itself and a client by cooperating with two other servers, requiring neither

client-clock synchronization nor client trustworthiness in reporting one-way delays.

Due to these benefits, the proposed protocol is of value to, and is used in, the

location verification mechanism introduced later in Chapter 5.

We evaluate the protocol by deriving the probability distribution of its absolute

error, and compare its accuracy with the well-known round-trip halving protocol.

While neither protocol requires client-trustworthiness nor client clock synchroniza-

tion, the analysis shows that the new protocol is more accurate in many situations.

4.1 Introduction

Delay-dependent applications can benefit from accurate OWD-estimation mecha-

nisms [32]. For example, measurement-based geolocation (see Chapter 2) may be

The first part of this chapter, the minimum pairs protocol, was published at the 2014 IEEE
CNS conference [10] (with a full length version accepted for publication in IEEE TDSC [9]). The
second part, the evaluation using probability models, was published at the IEEE Communications
Letters [11].
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performed with a greater precision if accurate OWD-estimates were relied upon,

rather than RTTs. The common methods that enable a server to accurately measure

one-way delays to/from a client [134] rely on the client’s honest cooperation—the

client is assumed to synchronize its clock accurately with the server, calculate and

honestly report its view of the delays.1

Because RTTs are easier to estimate than OWDs, half the RTTs—or the average

(av) of the actual forward and reverse OWDs—are often use as OWD-estimates

[159]. However, the asymmetric nature of Internet routes [116] highlights the po-

tential for OWDs to improve the efficacy of such delay-dependent applications [70].

Compared to half the RTTs, OWDs are more likely to exclude noisy delay compo-

nents caused by, e.g., congested or circuitous routes because the delay is measured

in one direction.

A delay-based location verification mechanism requires a combination of both: ac-

curate delay-estimation and minimal client cooperation. The accuracy is required

to reduce false client rejects and false adversarial accepts as much as possible, while

the minimal cooperation is required to reduce the adversary’s attack surface. Using

common OWD-estimation methods (e.g., OWAMP [134]) allows dishonest clients

to forge delay-estimates, and using half the av protocol is expected to result in

incorrect decisions.

This chapter introduces a new protocol, minimum pairs (mp), which allows a server

to estimate OWDs between itself and a client by mainly cooperating with two other

servers , while requiring less client cooperation than classical OWD-estimation proto-

cols; e.g., neither client-clock synchronization nor client trustworthiness in reporting

OWDs is required by the mp protocol. The required client cooperation is similar

to that required by the av protocol (i.e., responding to echo-request messages for

measuring RTTs). These features make mp more suitable for location verification,

as we show in Chapter 5.

The mp protocol is evaluated by deriving the probability distribution of its absolute

error. Because the protocol’s client-cooperation requirements are similar to that of

the av, we similarly derive the probability distribution of error for the av protocol,

and compare both protocols assuming a Poisson delay-distribution. While neither

protocol requires client-trustworthiness nor client clock synchronization, the analysis

shows that the mp protocol provides more accurate OWD-estimates than av in many

1Although OWDs are generally measured between peers, we use the server/client terminology to
discriminate between the party measuring the delays (server) and the one the delays are measured
to/from (client).
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situations.

This chapter makes the following contributions:

• Proposing the minimum pairs (mp) protocol for accurate OWD-estimation,

which is to be used later in Chapter 5 for location verification.

• Deriving the Probability Mass Function (PMF) of the absolute error for the

mp and the av protocols as a function of the delay distribution between the

client and the servers.

• Using the derived probability models to compare the accuracy of both pro-

tocols assuming Poisson delay distribution with various representative means.

This example comparison can now be drawn since the derived models allow

general determination of the more accurate protocol given the probability dis-

tribution of delays; Poisson is used as an example.

The rest of this chapter is organized as follows. Section 4.2 explains the threat

model. Section 4.3 presents the mp protocol, while Sections 4.4 and 4.5 derive

the PMF of absolute errors for the av and mp protocols respectively. Section 4.6

provides an example of comparing the accuracy of both protocols assuming Poisson

delay distribution with various means. Section 8.5 concludes.

4.2 Threat model

Recall that in OWAMP-like protocols, OWDs between a server and a client are

estimated by having them synchronize their clocks together, and exchange times-

tamps. The server can calculate the OWD (at some moment) only in the direction

client-to-server by subtracting the timestamp that the client sends from the time

the stamp was received; the client does the same procedure for calculating OWDs

in the reverse direction, and informs the server with the calculated OWDs.

Because the mp protocol is designed to address possibly dishonest clients, it must

assume the client is able to:

1. Refrain from appropriately synchronizing its clock with the server;

2. Falsify OWDs before informing the server about them, during the estimation

of server-to-client OWDs;

3. Falsify the timestamps before sending them, during the estimation of client-

to-server OWDs; or
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4. Delay or reject timestamp messages.

As we explain in the next section, the mp protocol neither relies on the client’s clock,

nor on any information reported by the client. Thus, the first three threats do not

affect mp. In the next chapter, we show how the location verification mechanism

itself handles the fourth threat—delaying or rejecting timestamp messages.

4.3 The Minimum Pairs Protocol

The mp protocol is designed to estimate the smaller of the forward and reverse

OWDs at current network conditions. The larger OWD can then be estimated as

the difference between the smaller and the RTT. However, we discard the larger

delay between the two parties since the smaller provides a more accurate estimate to

the distance between them; the larger delay must have been influenced by route con-

gestion, circuitousness [153] (see Section 2.1.1, page 9), or other noisy circumstances

that increase delays.

To use mp, three servers must cooperate together. These servers will be the ones

implementing the location verification algorithm later in Chapter 5, and will be

referred to as verifiers. To simplify the discussion, we refer to them as verifiers from

this point on. We assume each of the three verifier possesses a public-private key

pair, and is aware of the public keys of the other two verifiers, possibly through a

closed Public Key Infrastructure (PKI).

Notation There are three bidirectional edges joining a client with three verifiers,

and three bidirectional edges joining the three verifiers, as shown in Fig. 4.1. Each

of the six edges has two OWDs in opposite directions. Denote D• as an ordered

list holding six OWD estimates at a given time. The estimates correspond to the

smaller of the forward and reverse OWDs (i.e., at current network conditions) at

each of the six bidirectional edges in Fig. 4.1. The superscript • is the protocol used

to estimate the delays in D•.
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Figure 4.1: Notation of OWDs between client c and verifiers v1, v2 and v3.

Table 4.1: Notation

Notation Description
Sa(m) denotes message m digitally signed by entity a.

A
m−→ B A sends message m to B.
ta the most recent timestamp according to verifier a’s clock.

eij (line 10) corresponds to dic + dcj (see Fig. 4.1).

4.3.1 Protocol description

When requesting a location-sensitive service from an LSP, the LSP notifies the client

of the IP addresses of a set, V , of three verifiers, which the client must connect to2

in order to have their location verified. Details about how the verifiers are chosen

are discussed in Chapter 5.

Algorithm 1 explains the mp protocol; see Table 4.1 for notation used in the algo-

rithm. Note that the location verification protocol presented in Chapter 5 also relies

on av as an alternative OWD-estimation protocol. For convenience, Algorithm 1

also calculates OWD-estimates following the av protocol.

Algorithm Explanation The three verifiers take turns to send the client digitally

signed timestamps of their most recent system time (line 3). Once received, the client

is required to forward this message to the three verifiers.3

When all three verifiers are done their turns, they will have nine values of delays

corresponding to dic+dcj for all 1 ≤ i, j ≤ 3. The mp protocol estimates the smaller

of dic and dci independently, for all 1 ≤ i ≤ 3, as follows. First, for all 1 ≤ i, j ≤ 3

and i 6= j, the larger of dic+dcj and djc+dci is discarded (line 13) because the smaller

2The client and the verifiers may use websockets [50] to connect to the verifiers, as they are a
stable means of delay measurement through the browser [95].

3This behavior can be implemented in the browser through javascript.
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Algorithm 1: The mp protocol. See notation inline.

Input: The set of the three verifiers, V (see Fig. 4.1).
Output: Dmp and Dav

begin
1 foreach vi in V do
2 vi retrieves its current system time b := ti

3 vi
b,Si(b)−−−→ client

4 foreach vj in V do

5 client
b,Si(b)−−−→ vj

6 vj records the message-receiving time r := tj
7 vj validates Si(b)
8 if invalid signature then
9 Abort “possible client cheating attempt”

10 eij := r − b

11 for i := 1 to 6 do
12 The verifiers in V measure dvi (see Fig. 4.1)

/* Calculating Dmp */

13 m := {min(e12, e21), min(e23, e32), min(e31, e13)}
14 for i := 1 to 3 do
15 j = ((i+ 1) mod 3) + 1
16 k = (i mod 3) + 1
17 xi := (mi +mj −mk)/2
18 yi := min(dvi , d

v
i+3)

19 Append xi and yi to Dmp

/* Calculating Dav */

20 for i := 1 to 3 do
21 xi := eii/2
22 yi := (dvi + dvi+3)/2
23 Append xi and yi to Dav

24 return Dmp and Dav
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sums are likely to correspond to the smaller OWDs. Second, the three remaining

sums are equated to the corresponding smaller OWDs, and estimates to the smaller

delays are obtained by solving simultaneously for x1, x2, x3:

xi + xj = min(dic + dcj, djc + dci) ∀ 1 ≤ i < j ≤ 3

where xi is the estimate to the smaller of dic and dci. To work out these equations,

let m1 be the minimum between d1c+dc2 and d2c+dc1; similarly, m2 is the minimum

between d2c+dc3 and d3c+dc2; and m3 is the minimum between d3c+dc1 and d1c+dc3.

The simultaneous equations are:

x1 + x2 = m1

x2 + x3 = m2

x3 + x1 = m3

Solving these equations yields:

x1 = (m1 +m3 −m2)/2
x2 = (m2 +m1 −m3)/2
x3 = (m3 +m2 −m1)/2

This is demonstrated in lines 13 to 17 of Algorithm 1.

Discarding the larger delays (line 13) provides a fundamental advantage to mp over

av, as it helps reduce the unfavourable effect of delay spikes occurring in one direction

but not the other. Compared to av, the probability of mp to exclude delay spikes

is higher.

In line 12, estimating the smaller OWDs of the edges between the verifiers (i.e.,

dvi in Fig. 4.1) is simpler, since the verifiers trust each other; for example, the

OWAMP [134] tool can be used. Again, the verifiers discard the larger of the forward

and reverse OWDs for each of the three edges between them (line 18). Finally, the

set Dmp holds the six smaller OWD estimates (line 19).

4.3.2 Clock synchronization among the verifiers

In mp, the verifiers may choose to synchronize their clocks to the nearest millisec-

ond to increase the accuracy of OWD estimates [34, 38], or use techniques that do

not require accurate synchronization [98, 145]. For example, Gurewitz et al. [69]

proposed a technique that estimates OWDs in the absence of accurate clock syn-

chronization between network nodes. Strong cooperation between these nodes is,

however, required. The nodes conduct many OWD measurements among themselves

using the poorly synchronized clock, and use those preliminary estimates to derive

constraints of an objective function. The function uses optimization techniques,
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and reaches a per-link OWD estimate that minimizes the error with respect to the

provided constraints.

While this class of techniques addresses imperfect clock synchronization, the mp

protocol addresses client untrustworthiness. Therefore, such a class of techniques

can be used among the verifiers if accurate clock synchronization cannot be achieved.

However, due to its strong cooperation and trustworthiness requirement, it cannot

be used with potentially dishonest clients.

4.4 Analyzing the Average Protocol (av)

In this section, the PMF of absolute error is derived for the av protocol. The absolute

error is the absolute difference between the smaller of the forward and reverse OWDs

and the OWD estimated by the protocol. Let fx(d) be the PMF of the delay of edge

d, for each of the six bidirectional edges in Fig. 4.1.

Throughout this section (and Section 4.5), we focus on the OWDs between the client

and verifier v1 in Fig. 4.1. Similar analysis applies to the other two bidirectional

edges.

4.4.1 Absolute error of av

The av protocol estimates the smaller OWD between v1 and c as:

tav =
RTT

2
=
d1c + dc1

2
(4.1)

The absolute error of the av protocol is:

εav = |tav −min(d1c, dc1)|

The magnitude of the error thus depends on the difference between d1c and dc1.

Table 4.2 lists the three cases. Denoting by εavi the error in Case i, then:

εav1 =

∣∣∣∣d1c + dc1
2

− d1c
∣∣∣∣ =

dc1 − d1c
2

We can drop the “absolute” sign (||) because in Case 1, d1c < dc1. The error for the

remaining two cases is given in Table 4.2.
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Table 4.2: Cases relating d1c with dc1, the calculated delay (tav) in each case,
and the error (εav) of the av protocol.

Case (i)
Condition

tavi εavi
d1c [relation] dc1

1 < (d1c + dc1)/2 (dc1 − d1c)/2

2 = (d1c + dc1)/2 0

3 > (d1c + dc1)/2 (d1c − dc1)/2

4.4.2 PMF of error for av

The PMF of εavi depends on the probability of occurrence of Case i. Thus, for all

x ≥ 0:

P{εav = x} =
3∑
i=1

P{Case i} · P{εavi = x | Case i}

=
3∑
i=1

P{Case i} · P{ε
av
i = x ,,, Case i}
P{Case i}

=
3∑
i=1

P{εavi = x ,,, Case i}

(4.2)

where the “comma” indicates the intersection of the two events. Expanding the

term at i = 1 yields:

P{εav1 = x ,,, Case 1} = P

{
dc1 − d1c

2
= x ,,, d1c < dc1

}
= P{dc1 = 2x+ d1c ,,, d1c < dc1}

= P{dc1 = 2x+ d1c ,,, d1c < 2x+ d1c}

= P{dc1 = 2x+ d1c ,,, x > 0}

=

(
∞∑
i=0

P{d1c = i} · P{dc1 = 2x+ i}

)
· P{x > 0}

=


∞∑
i=0

fi(d1c) · f2x+i(dc1), x > 0

0, otherwise

(4.3)
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Since εav2 = 0 (see Table 4.2), therefore,

P{εav2 = x ,,, Case 2} = P{x = 0 ,,, d1c = dc1}

=

P{d1c = dc1}, x = 0

0, otherwise

where:

P{d1c = dc1} =
∞∑
i=0

fi(d1c) · fi(dc1)

The term for i = 3 in (4.2), P{εav3 = x ,,, Case 3}, can be expanded analogous to

Case 1. We thus rewrite (4.2) as:

P{εav = x} =

P{d1c = dc1}, x = 0

P{εav1 = x ,,, Case 1}+ P{εav3 = x ,,, Case 3}, x > 0

=


∞∑
i=0

fi(d1c) · fi(dc1), x = 0

∞∑
i=0

fi(d1c) · f2x+i(dc1) +
∞∑
i=0

fi(dc1) · f2x+i(d1c), x > 0

(4.4)

4.5 Analyzing the Minimum Pairs Protocol (mp)

In this section, the PMF of absolute error is derived for the mp protocol. Again, we

focus our analysis on the OWDs between the client and v1. Throughout the section,

the notation d+ij is used to denote dic + dcj; likewise, d−ij denotes dic − dcj.

4.5.1 Absolute error of mp

In Algorithm 1, lines 17 to 19 define three simultaneous equations that estimate

the smaller OWD (tmp). Although the mp protocol does not enable the verifiers

to calculate d−ii for all i ∈ {1, 2, 3}, it enables them to sort these differences. For

example, assume in line 17 that d2c + dc1 ≤ d1c + dc2. Rearranging yields d−22 ≤ d−11.

Also assuming in line 18 that d3c + dc2 < d2c + dc3 (equivalent to d−33 < d−22), the

verifiers can deduce that d−33 < d−22 ≤ d−11.

The order of d−11, d
−
22 and d−33 identifies the cases in Table 4.3; possible outcomes of

the min() function in lines 17 to 19 are indicated at the header of the “Conditions”
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Table 4.3: Cases relating d+ij with d+ji, the calculated delay in each case (tmpi ),
and the absolute error (εmp) of the mp protocol. In each Case, a circled
condition is implied by the other two.

Case (i)
Conditions

Order tmpi
εmpi,j

d+31 [relation] d+13 d+21 [relation] d+12 d+32 [relation] d+23 d1c ≤ dc1 d1c > dc1

1 < ≤ < d−33 < d−22 ≤ d−11 dc1 + d−22/2
∣∣d−22/2− d−11∣∣ ∣∣d−22/2∣∣

2 < < ≥ d−22 ≤ d−33 < d−11 dc1 + d−33/2
∣∣d−33/2− d−11∣∣ ∣∣d−33/2∣∣

3 ≤ > < d−33 ≤ d−11 < d−22 d+11/2 −d−11/2 d−11/2

4 = = = All three are equal d+11/2 −d−11/2 d−11/2

5 ≥ < > d−22 < d−11 ≤ d−33 d+11/2 −d−11/2 d−11/2

6 > > ≤ d−11 < d−33 ≤ d−22 d1c − d−33/2
∣∣−d−33/2∣∣ ∣∣d−11 − d−33/2∣∣

7 > ≥ > d−11 ≤ d−22 < d−33 d1c − d−22/2
∣∣−d−22/2∣∣ ∣∣d−11 − d−22/2∣∣

d−33 [relation] d−11 d−22 [relation] d−11 d−33 [relation] d−22
Rearranged Conditions

column, with their rearrangements indicated at the bottom. Two conditions imply

the third; the implied condition is circled in Table 4.3.

The smaller between d1c and dc1 is indicated by the tmpi column in Table 4.3. In

Case 1 for example, where d+31 < d+13, d
+
21 ≤ d+12, and d+32 < d+23, the simultaneous

equations of lines 17 to 19 will be β1 + β2 = d+21, β2 + β3 = d+32, and β3 + β1 = d+31.

In Algorithm 1, β1 is returned as the estimate to the smaller between d1c and dc1,

which evaluates to:

tmp1 = β1 =
d+21 + d+31 − d+32

2

=
d2c + dc1 + d3c + dc1 − (d3c + dc2)

2

=
d2c − dc2 + 2dc1

2
= dc1 +

d−22
2

Similarly, tmpi can be calculated for the remaining cases.

The returned OWD estimate (tmp) can indicate whether there were large delay

asymmetries between each verifier and the client. For example, if tmp < 0, then the

difference between the forward and reverse delays of some links between the client

and the verifiers is relatively large.

4.5.2 Comparison between tmp and tav

As is now shown, in none of the seven cases will the mp protocol return a larger

estimate to the smaller OWD than that of the av protocol; that is, the inequality
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tmpi ≤ tav holds for all i ∈ {1..7}. In Case 1, we have (Table 4.3):

tmp1 = dc1 +
d−22
2

(4.5)

Since d−22 ≤ d−11 in this case (second rearranged condition, bottom of the “Condi-

tions” column in Table 4.3), therefore:

tmp1 ≤ dc1 +
d−11
2

Simplifying yields

tmp1 ≤
d1c + dc1

2
= tav from (4.1)

Analogous analysis applies to Cases 2, 6 and 7, which we omit for conciseness. The

equation tmpi = tav already holds for i ∈ {3, 4, 5} (see Table 4.3). Thus, the mp

protocol never returns an estimate, to the smaller between the forward and reverse

OWDs, that is larger than that of the av protocol.

4.5.3 PMF of error for mp

The PMF of error depends on the probability of occurrence of each case in Table 4.3,

and the probabilities of d1c ≤ dc1 and d1c > dc1 in each case. We index those two

additional conditions using the variable j ∈ {1, 2} respectively. For example, to

calculate the error in Case 1 given additional condition 2 (which is d1c > dc1):

εmp1,2 = |tmp1 −min(d1c, dc1)| =
∣∣∣∣dc1 +

d−22
2
− dc1

∣∣∣∣ =

∣∣∣∣d−222

∣∣∣∣
The probability that the error is equal to x is the probability that any of the ex-

pressions listed under the εmpi,j column in Table 4.3 evaluates to x, for all x ≥ 0. The

PMF of the absolute error can, thus, be expressed as:

P{εmp = |x|} =
7∑
i=1

2∑
j=1

P{Xi,j} · P{εmpi,j = |x| | Xi,j}

=
7∑
i=1

2∑
j=1

P{Xi,j} ·
P{εmpi,j = |x| ,,, Xi,j}

P{Xi,j}

=
7∑
i=1

2∑
j=1

P{εmpi,j = |x| ,,, Xi,j}

(4.6)
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where Xi,j is the intersection of all three conditions under the “Conditions” column

of Case i with additional condition j. Because the error, εmpi,j , in each of those 14

cases is the absolute difference, then:

P{εmpi,j = |x| ,,, Xi,j} =

P{ε
mp
i,j = 0 ,,, Xi,j}, x = 0

P{εmpi,j = x ,,, Xi,j}+ P{εmpi,j = −x ,,, Xi,j}, otherwise

(4.7)

At i = 1 and j = 1, the event X1,1 is (from Table 4.3):

X1,1 = (d+31 < d+13) ∩∩∩ (d+21 ≤ d+12) ∩∩∩ (d+32 < d+23) ∩∩∩ (d1c ≤ dc1)

The condition d+31 < d+13 can be removed because it is implied by the other two

conditions in Case 1, Table 4.3. Therefore:

X1,1 = (d+21 ≤ d+12) ∩∩∩ (d+32 < d+23) ∩∩∩ (d1c ≤ dc1)

= (d−22 ≤ d−11) ∩∩∩ (d−33 < d−22) ∩∩∩ (d−11 ≤ 0)

By substitution, we have

P{εmp1,1 = x ,,, X1,1}

= P{d
−
22

2
− d−11 = x ,,, d−22 ≤ d−11 ,,, d

−
33 < d−22 ,,, d

−
11 ≤ 0}

=
0∑

i=−∞

P{d−22 = 2(i+ x) ,,, d−22 ≤ i ,,, d−33 < d−22 ,,, d
−
11 = i}

=
0∑

i=−∞

(
P{d−11 = i} · P{d−22 = 2(i+ x) ,,, d−22 ≤ i ,,, d−33 < d−22}

)
=

0∑
i=−∞

(
gi(d1c, dc1) ·

i∑
j=−∞

P{j = 2i+ 2x ,,, d−22 = j ,,, d−33 < j}

)

=
0∑

i=−∞

(
gi(d1c, dc1) ·

i∑
j=−∞

(
P{j = 2i+ 2x} · P{d−22 = j} · P{d−33 < j}

))

=
0∑

i=−∞

(
gi(d1c, dc1) ·

i∑
j=−∞

(
P{j = 2i+ 2x} · gj(d2c, dc2) ·

j−1∑
k=−∞

P{d−33 = k}

))

=
0∑

i=−∞

(
gi(d1c, dc1) ·

i∑
j=−∞

(
P{j = 2i+ 2x} · gj(d2c, dc2) ·

j−1∑
k=−∞

gk(d3c, dc3)

))

where the function gx(Y, Z) is the probability P{Y − Z = x} for two independent
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Table 4.4: Means of the Poisson distributions of the delays for each edge in
Fig. 4.1, and their corresponding chart in Fig. 4.2.

Scenario
Mean (ms)

d1c dc1 d2c dc2 d3c dc3

Fig. 2

(a) 30 30 30 30 30 30
(b) 30 7 8 25 5 5
(c) 2 20 5 50 7 80
(d) 35 5 45 70 2 15
(e) 10 10 30 12 30 60
(f) 10 10 30 3 20 5

discrete random variables Y and Z. It is calculated as follows:

gx(Y, Z) = P{Y − Z = x} = P{Y = x+ Z}

=
∞∑

i=−∞

P{Z = i} · P{Y = x+ i} =
∞∑
i=∞

fi(Z) · fx+i(Y )

This concludes an example expansion to one of the terms in (4.7). Analogous ex-

pansion could be made for the remaining terms, which we omit for conciseness.

4.6 Examples of Accuracy Comparison

It has been established that Internet delays follow a Gamma distribution with vary-

ing parametrization [21, 108]. We model the OWDs of the six edges of Fig. 4.1 as

independent and discrete random variables that follow Poisson distributions,4 and

take on integer values (e.g., delays in milliseconds). Poisson is used because it is

a discrete distribution that is a special case of Gamma. Table 4.4 lists the distri-

bution means in six example scenarios. The scenarios were chosen to analyze the

effect of delay asymmetry between the client and the verifiers. Figure 4.2 plots the

Cumulative Distribution Functions (CDFs) of the absolute errors for each scenario

in Table 4.4, using (4.2) and (4.6) for the av and the mp protocols respectively.

Scenario (a) (Table 4.4) addresses delay symmetry in all six edges.5 Figure 4.2(a)

shows that mp is more accurate than av in this scenario, with a 54% chance of

producing an absolute error <1.5 ms, versus 35% for av.

4Note that this is not the packet arrival times.
5Note that the numbers in Table 4.4 do not represent the delays on each edge. The delays are

rather modeled as a random variable following Poisson distributions with the means listed in the
table.
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Scenario (b) addresses the effect of delay symmetry between the client and one

verifier. In this scenario, we deduce that mp will operate in Case 2 most of the

time (from the “Order” column in Table 4.3), and thus εmp = εmp2,2 as it is highly

probable that d1c > dc1. Because d3c and dc3 have equal means (5 ms), the error

εmp2,2 = |d−33/2| becomes relatively small, as shown in Fig. 4.2(b). The mp protocol

has a 90% chance of resulting in <2.5 ms absolute error, versus 0.1% for the av,

making it significantly more accurate in this scenario.

Scenarios (c) and (d) explore delay asymmetry in all six edges. Despite the huge

asymmetries in (c), mp has a ∼25% chance to result in <2.5 ms absolute error,

versus ∼0.2% for av. The smaller delay variations of scenario (d), compared to (c),

caused mp to be substantially more accurate (Fig. 4.2(d)).

Scenarios (e) and (f) analyze the effect of delay symmetry between d1c and dc1, and

asymmetry in the other two links. In Fig. 4.2(e), where the two graph lines coincide,

the accuracy of mp is similar to that of av because, with higher probability, mp

operates in Case 3 of Table 4.3 (the resulting OWD-estimates are similar to av). In

(f), delay asymmetry between the client and {v2, v3} mislead mp, but do not affect

the average of d1c and dc1. Because d1c and dc1 are highly symmetric (see Table 4.4),

av is more accurate.

4.7 Related Work

Most research in the area of accurate OWD estimation is primarily to achieve ac-

curate clock synchronization [136], e.g., by predicting delay jitters [77]. Estimation

errors and the accuracy of clock synchronization are two metrics generally used to

evaluate an OWD-estimation technique. Commonly, there is a tradeoff between

the two metrics. The OWAMP tool [134] is a popular example that relies on clock

synchronization to accurately estimate OWDs. In the lack of synchronized clocks,

the typical method is to measure the RTT, and use its half as an estimate to the

OWD [159].

Other methods leveraged the accuracy of GPS clocks to enhance OWD estima-

tion [110]. Additionally, since network queuing delays constitute the most unpre-

dictable delay component, researchers have worked towards devising techniques that

enable a sender and a receiver of a Voice over IP (VoIP) application estimate one-

way queuing delays without requiring perfect clock synchronization [111]. Despite

addressing imperfect clock synchronization, all these proposals assume honest coop-
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Figure 4.2: Absolute errors between the estimated and the actual OWD, as-
suming Poisson delay distributions (see Table 4.4 for means) for the
edges in Fig. 4.1.
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eration between both parties, and thus cannot be used in hostile environments.

4.8 Conclusion

This chapter proposed a novel OWD-estimation protocol that combines accuracy

and reduced-cooperation advantages over current state-of-the art techniques that

provide one advantage but not the other. The protocol was formally analyzed by

deriving the probability distribution of its absolute error, and comparing it with

that of av. The comparison establishes that the mp protocol is in many cases more

accurate in estimating OWDs than the commonly-used av protocol. This is achieved

with the added bonus of the mp’s reduced client-cooperation requirements, making

it suitable for adversarial environments, but comes at the cost of requiring extra

infrastructure (the verifiers).

The probability distribution models derived herein for the mp protocol did not

consider errors due to imperfect clock synchronization among the verifiers because

such errors can be mitigated as shown in the literature [145].

We highlight that the degree of delay asymmetry between the verifiers and the client

is a key element affecting the accuracy of both protocols. The PMFs derived herein

are thus useful to an application deciding between both protocols. This follows from

the properties of the PMFs derived herein: (1) they allow determination of which

protocol is more accurate in estimating OWDs given the delay environment, and (2)

they are generic—they evaluate the probability mass of error given any discrete delay

distribution (Poisson was used herein). Note however that, despite being generic,

the PMFs derived herein must be used with discrete delay distributions. We did

not pursue the avenue of PDFs that can be used with continuous delay distributions

models, and therefore cannot advise on whether any technical difficulties would

be encountered. However, it would appear that analogous steps would provide a

corresponding analysis for the case of continuous distributions. This is left as future

work.



Chapter 5

CPV: Delay-based Location

Verification for the Internet

The number of location-aware services over the Internet continues growing. Some

of these require the client’s geographic location for security-sensitive applications.

Examples include location-aware authentication [17,73], location-aware access poli-

cies, fraud prevention, complying with media licensing [51], and regulating online

gambling/voting. An adversary can evade existing geolocation techniques, e.g., by

faking GPS coordinates or employing a non-local IP address through proxy and

virtual private networks. This chapter presents CPV, a delay-based technique de-

signed to verify an assertion about a device’s presence inside a prescribed geographic

region. CPV does not identify devices by their IP addresses. Rather, the device’s lo-

cation is corroborated in a novel way by leveraging geometric properties of triangles,

which prevents an adversary from manipulating measured delays. To achieve high

accuracy, CPV mitigates Internet path asymmetry using the OWD-estimation pro-

tocol introduced in Chapter 4, and leverages delay-related information for evidence

supporting/refuting the asserted location. We explain the threat model, detail the

CPV algorithm, and discuss its security benefits.

5.1 Introduction

Over the Internet, LSPs are those that customize their content/services based on

The content of this chapter is accepted for publication at IEEE TDSC [9].
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the geographic locations of their clients (the software that communicates with the

LSP, typically a web-browser). Some LSPs restrict their services to certain ge-

ographic regions, such as media streaming [26] (e.g., hulu.com); others limit cer-

tain operations to a specific location, such as online voting (e.g., placespeak.com),

online gambling (e.g., ballytech.com), location-based social networking [122] (e.g.,

foursquare.com), or fraud prevention (e.g., optimalpayments.com). LSPs may also

use location information as an additional authentication factor to thwart imperson-

ation and password-guessing attacks (e.g., facebook.com). Privacy laws differ by

jurisdiction, which allows/bans content based on region [143]. The nature of the

provided services may motivate clients to forge their location to gain unauthorized

access.

Existing geolocation technologies, commonly used in practice, are susceptible to

evasion [107], as discussed in Section 2.2 (page 2.2). Tabulation-based techniques,

where a geolocation service provider maintains tables that map IP addresses to

locations—e.g., MaxMind [103], can be evaded through IP address-masking tech-

nologies [30] such as proxy servers and anonymizers [41]. Geolocation that is based

on active delay measurements [13,91] is prone to an adversary corrupting the delay-

measuring process [59]. A location verification technique is therefore required to

provide greater assurance of the veracity of the specified location.

Various solutions have been proposed to verify location claims in wireless networks

[28,133]. However, solutions in this domain cannot be directly adopted by multi-hop

networks, e.g., the Internet, due to delay characteristics of different domains. For

example, Internet delays are stochastic [44], whereas in single-hop wireless networks,

delays can be estimated from the distance the signal spans and the speed of its

propagation.

Verifying the location of Internet clients is a challenging problem [107]. A practical

approach must address critical challenges such as handling of IP address-masking,

and ensuring the correctness of location information submitted by the client. We

present and evaluate CPV, a delay-based technique designed to verify a client’s

geographic location. Experimental results show that CPV provides a high level

of assurance that a correct (i.e., honest) location assertion is verified to a granu-

larity equivalent to a circle of radius ∼400km. CPV is designed to resist known

geolocation-circumvention tactics as it (1) does not rely on the client’s IP address,

(2) does not rely on client-submitted information, and (3) is designed such that

manipulating the delays is not in the dishonest client’s favor, e.g., CPV precludes

the attacks of Chapter 3, as well as those of Gill et al. [59].
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A common challenge faced by delay-based geolocation techniques is to find an accu-

rate delay-to-distance mapping function, and thus factors affecting the correctness

of this mapping have been well studied in the literature [92, 167]. CPV undertakes

a set of measures to mitigate the effect of these factors. For example, it mitigates

path asymmetry [116] by relying on OWD-estimates, instead of RTTs, to/from a po-

tentially dishonest client, using the minimum pairs protocol introduced in Chapter

4. Additionally, CPV mitigates network instability [35] by iterating the OWD-

estimation process.

In Chapter 6, the effect of several factors on the correctness of CPV is analyzed by

evaluating its False Reject (FR) and False Accept (FA) rates using PlanetLab [33],

where all modeled clients are assumed to use wired access networks. Further in

Chapter 7, the correctness of CPV is analyzed when only legitimate clients are

using wireless access networks.

The rest of this chapter is organized as follows. Section 5.2 provides a summary of

the literature on delay behavior over the Internet, and its relationship to geographic

distances. The threat model is discussed in Section 5.3, and CPV is explained in

Section 5.4. A security discussion is presented in Section 5.5. Section 5.6 concludes.

5.2 Background

Delay characterization between Internet hosts plays a prominent role in numerous

applications such as distributed web-caching, server placement in Content Distribu-

tion Networks (CDNs), clock synchronization, overlay Peer to Peer (P2P) networks,

Internet geolocation, application-layer mutlicast, and timeout estimations in TCP.

Due to the importance of understanding the impacts of delays between Internet hosts

on delay-dependent applications, factors affecting these delays have been well stud-

ied [92, 147, 153, 167] including the spanned geographic distances, routing policies,

etc.

Delay-based IP geolocation includes a broad class of techniques aiming to calculate

the geographic location of a client based on the delays observed between the client

and a set of landmarks with known locations [67]. Most techniques apply regression

analysis to find a function that best models the relationship between the measured

delays and geographic distances [44,91]. Multilateration is then used on the distances

mapped between the landmarks and the client to constrain the region where the

client is located. Recent techniques incur a median error of as low as a few kilometres
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[91]. To infer distances from delays, the speed at which packets are transmitted over

the Internet has been approximated by Katz-Bassett et al. [85] to 4/9 the speed of

light in vacuum, a ratio called the Speed of the Internet (SOI) [85]. However,

the actual speed is affected by several factors such as time of the day, region and

characteristics of the underlying network. Based on 19 million RTT measurements

in the Internet, Landa et al. [92] found that the knowledge of the geographic distance

between two nodes, their /8 IP prefixes, and their countries can help scope down

delay-estimation errors to within ∼22ms.

Network Coordination Systems (NCSs) [36] model a network as a geometric space

by assigning coordinates to each node in the network. The coordinates denote a

node’s position relative to other nodes in the network delay space, i.e., according to

its delay to/from them. One essential advantage of NCSs is the ability to locate a

node’s network position relative to almost all other nodes without overwhelming the

network with storms of delay sampling [45]. NCSs are vulnerable to an adversary

falsifying its coordinates [60].

The aforementioned delay studies provide solid evidence of a strong correlation be-

tween Internet delays and geographic distances [155], which is commonly speculated

to stem from improved global network connectivity [67]. CPV leverages these results

to address location verification.

5.3 Threat Model

We now explain the threat model addressed by CPV. Note that this threat model

is different from the adversarial models explained in Section 3.4 (page 28); those in

Chapter 3 explain how various adversarial capabilities can manipulate delay-based

geolocation.

The adversary is a human user that programs its client software to evade a geoloca-

tion process, to intentionally misrepresent its location. The adversary is in physical

possession of the client device (e.g., laptop or smartphone), which is connected to

the Internet and thereby to the LSP. The adversary has full control over its client

device; it can install/uninstall any software.

We consider within scope an adversary that uses public proxies, VPNs and/or

anonymizers to hide its IP address or to hide any other identifying information

that may reveal its true location. The adversary is also capable of manipulating

delays, as explained in Chapter 3.
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CPV is designed to verify the output of a geolocation technique. The adversary must

thus be able to mislead that technique first to forge its location. We assume, for

simplicity, that the geolocation step prior to the operation of CPV is an unverified

location assertion; CPV is then to verify this assertion. By considering this case,

whereby the adversary can simply assert a location (e.g., the LSP asks its users to

simply input their location), the adversary is powerful enough to evade any basic

geolocation technique.1

We define the target location as the location the adversary attempts to appear at.

The following two use cases explain adversarial motivation to forge location, both

of which are within the threat model.

Impersonation. To mitigate online impersonation of users’ accounts, typically

done through password-guessing attacks, logins can be restricted to location(s) (e.g.,

country) associated with the legitimate user’s account. To impersonate a user, the

adversary needs to not only guess the user’s password, but also the user’s associated

location, and place itself fraudulently in that location. In this case, the adversary’s

target location changes widely according to the account being attacked.

Violation of geographic-restriction policies. When an LSP customizes its

services/content based on the location of its users, such as location-sensitive multi-

media providers (e.g., Pandora [114] and Hulu [78]), adversaries may be motivated

to evade geolocation to gain location-dependent benefits. This threat is harder to

defend against than the previous one, since the adversary’s target location is fixed

(i.e., the adversary does not have to keep modifying its geolocation evasion mech-

anism to appear at different parts of the world), and immediately known to the

adversary.

5.4 CPV: Client Presence Verification

CPV builds on the established result that Internet delays and geographic distances

have strong positive correlation [139] (see Section 5.2). In CPV, when a client asserts

its presence in a geographic location, delays are measured between the client and

three verifiers2 encompassing the asserted location. These delays are then processed

to provide assurance that the client is truly present (geographically) inside the tri-

1Some geolocation techniques are harder to evade than others. See Chapter 3.
2In practice, verifiers could be dedicated servers maintained by an independent party providing

location verification as a service.
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Figure 5.1: An example of 13 clients inside a triangle projected by verifiers in
Duke University, Case Western Reserve University and Rutgers.

angle determined by the three verifiers. The size of that triangle is the verification

granularity. Figure 5.1 shows an example triangle and several inside clients.

To reduce falsely rejecting legitimate (honest) clients and falsely accepting adver-

saries, factors affecting the delay-distance correlation (e.g., route circuitousness,

queuing delays and congestion) must be addressed. The forward and reverse paths

between any two hosts over the Internet are often affected by those factors differently,

resulting in delay asymmetry [116]. The less affected path is likely to be the faster

one (i.e., with a smaller OWD), and thus better represents the distance between the

two hosts. Relying on the smaller OWD between the client and the verifiers rather

than the RTTs is, thus, expected to improve CPV’s accuracy in judging location

assertions.

CPV uses the minimum pairs protocol for OWD-estimation (see Chapter 4). Accu-

rate OWD-estimation is one measure utilized by CPV for accurate delay-to-distance

mapping. By the end of this section, a summary is provided on how CPV manages

the delay-measurement process to reduce the factors affecting this mapping, without

jeopardizing the integrity of the location verification process.

After mitigating these factors, CPV uses a simple function to map delays to dis-

tances, and verifies assertions based on these distances (see Section 5.4.3 below).
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5.4.1 Operational Requirements

CPV requires geographically-distributed verifiers whose locations are consistent with

the LSP’s Permitted Geographic Regions (PGRs). PGRs are the regions in which

clients are permitted to receive services/content or carry out location-specific opera-

tion (e.g., login or vote). The client must not control any of the verifiers involved in

corroborating its assertion. To successfully enforce the LSP’s location-aware policies,

the verifiers must:

1. be publicly reachable over the Internet; and

2. the convex hull of the verifiers must encapsulate the LSP’s PGRs.

5.4.2 Notation and definitions

The set of verifiers available to the LSP is denoted V. For any triangle, 4, the set of

the three verifiers determining 4 is denoted V4 ⊂ V. For any geographic location

l = {latitude, longitude}, El is the set of triangles enclosing l, such that all 4l ∈ El
are near equilateral in the network delay-space (see Section 5.2), and do not cross

the PGR border.

A client and three verifiers make four triangles. The function valid(D) checks for

Triangular Inequality Violations (TIVs) in the four triangles whose side lengths

are mapped from the six OWDs in D. It returns true only if, for each of the four

triangles, the sum of each two sides is greater than the third. The function area v(D)

calculates the area of the triangle determined by the three verifiers; the side lengths

of that triangle are mapped from the three OWDs in D that belong to the edges

between the verifiers. The function area c(D) similarly calculates the areas of the

three triangles determined by each pair of verifiers and the client, and returns the

summation of those areas.

5.4.3 CPV description

CPV’s verification process begins with an asserted client location as input, l =

{lat, lon}. The LSP chooses a triangle 4l ∈ El, and informs the client of the

IP addresses of the verifiers in V4l
. The client connects to the verifiers and the

verification process, Algorithm 2, begins.

First (in line 4), the verifiers estimate the smaller of the forward and reverse OWDs
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Algorithm 2: Executed by the verifiers in V4l
when a client asserting to be

at location l connects to them. See inline for the definition of the function
acceptable(); similarly, see Section 5.4.2 for the definitions of the functions
valid(), area c() and area v().

Input: Number of iterations, n4l
; tolerance of area inequality, ε4l

; and
acceptance threshold τ4l

.
Output: Accept/Reject client’s location assertion
begin

1 pass := 0
2 for i := 1 to n4l

do
3 Di := φ
4 Estimate, in real time, the one-way delays for Dmp and Dav using .

. Algorithm 1 (see Chapter 4).
5 if valid(Dmp) then Di := Dmp

6 else if valid(Dav) then Di := Dav

7 if Di 6= φ then
8 δi := area c(Di)− area v(Di)
9 if δi ≤ ε4l

and acceptable(Di) then
10 pass := pass +1

11 Γ := pass/n4l

12 if Γ < τ4l
then

13 Reject client’s location assertion

14 else
15 Accept client’s location assertion
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at the six edges between the verifiers and the client using two protocols: minimum

pairs (mp) and average (av), as explained in Chapter 4. The six OWDs are then

mapped to distances according to the simple mapping function f(x) = x, i.e., x ms

is equal to x km. The resulting distances are never used in an absolute form;

they are only processed relative to each other. This design provides the advantage

of resilience to factors that affect the network comprising the client and the three

verifiers, e.g., a network congestion that affects the delays of the six edges altogether.

OWD estimation is done iteratively (line 2), where the input parameter n4l
specifies

the number of iterations to be performed, to account for possible delay instability

[162]. The confidence ratio, Γ (line 11), represents the verifiers’ confidence of the

truthfulness of the asserted location. It is calculated as the proportion of iterations

where the values of area c(Dmp) and area v(Dmp) (see Section 5.4.2 for notation)

match within a suitable error tolerance, ε. From a geometric perspective, we have

the following claim (see Appendix B for proofs):

Claim 1 Let P be a point in the Cartesian plane, and let 4XY Z be the triangle

determined by the points X, Y and Z. If P is strictly outside 4XY Z, then the sum

of the areas of 4XY P , 4XPZ and 4PY Z is greater than the area of 4XY Z.

TIVs are evident in the Internet [99]. Because CPV relies on triangular areas in veri-

fying location assertions, TIVs can thwart CPV’s successful operation. Additionally,

an adversary can increase the estimated OWDs of the mp protocol, flattening some

triangles and resulting in TIVs. Thus, the verifiers become less confident about

the truthfulness of the asserted location as more TIVs occur, which is a security

precaution to reduce potential false accepts. This can be seen in line 9, where Di

must hold a valid set of delays (from lines 5 or 6) for Γ (line 11) to increase.

Iterating the delay-estimation process helps reduce the number of benign TIVs [147],

hence reducing the number of FRs. Additionally, more than one delay-estimation

protocol (namely, both mp and av) further lessens the effect of TIVs; av is used

as a fallback if the estimates in Dmp result in TIVs [147]. In lines 5 and 6, Dmp is

checked first because it is more resilient to delay spikes, as discussed in Chapter 4.

On the other hand, such iterative delay-estimation approach may affect the usabil-

ity of CPV, as it increases the time required by CPV to reach a decision. Some

applications may require a decision before providing the location-sensitive service

to users, such as online credit card transactions. However, in other applications,

the verification algorithm may run in the background (i.e., continuously and con-

current to the location-sensitive application), such as media streaming. As such,
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despite its potential usability drawbacks, the impact of the number of iterations on

the usability of CPV depends essentially on the application.

The error tolerance, ε (line 9), accounts for route circuitousness [153], congested

routes, or other factors that contribute to inaccuracies in the delay-distance map-

ping over the Internet. If an adversary’s true location is so far from the asserted

location that one of the inner triangles (those having the client as one of their ver-

tices) becomes obtuse, the triangle becomes flattened and its area decreases. An

unnecessarily large error tolerance may thus falsely accept this adversary.

To mitigate this effect, we include the acceptable(D) function (line 9), which checks

that the OWD between verifier v and the client is not larger than the OWDs between

v and the other two verifiers. The function returns true only if the previous statement

is true for the three delay-mapped distances in D that are between the client and

the verifiers. From a geometric perspective, using the notation AB for the length of

line segment AB, we have the following claim (see Appendix B for proofs):

Claim 2 Let W be a point in the Cartesian plane, and let 4XY Z be the triangle

determined by the points X, Y and Z such that XZ ≤ XY . If XW > XY , then W

is strictly outside of 4XY Z.

Calibration of input parameters. Calibration of input parameters. To set the

three input parameters of Algorithm 2 for each 4, the three verifiers in V4 can

operate CPV to verify the geographic presence/absence of network nodes that are

known (as a ground-truth) to be inside/outside 4 (e.g, using other verifiers in V).

Based on the delays between the verifiers and these nodes, the input parameters

should be set such that CPV accepts inside nodes, and rejects outside ones. For

example, in line 11 (Algorithm 2), if Γ ≥ 0.6 for all such nodes, then τ4l
should be

set to 0.6.

Summary. CPV’s measures to reduce factors negatively affecting delay-to-distance

mapping can be summarized as follows:

1. Two protocols are used to estimate OWDs instead of one to reduce the effect

of TIVs.

2. Active delay measurement is used with each client, which reflects the most

recent delay status in the region [162].

3. No universal delay-to-distance mapping is used. Rather, mapping is done

relative to other delays in the region.
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4. Delay-estimation is conducted iteratively to more accurately converge to the

actual delays at current network conditions [74].

5. The three verifiers are chosen within a geographical proximity of the asserted

location to

(a) reflect regional delays [44,167];

(b) span fewer Autonomous Systems, which reduces route circuitousness [139];

(c) reduce the number of TIVs [147]; and

(d) exhibit stronger positive correlation between delays and distances [92].

5.5 Security Discussion

5.5.1 Classical Geolocation Attacks

Submitting false information. Although this may mislead simple geolocation

techniques [107], it does not defeat CPV because the verification process (Algorithm

2) is independent of any information submitted by the client. Chapters 6 and 7

analyze CPV’s efficacy in detecting false location assertions (Fig. 5.2(a)) due to

area mismatch or large client-verifier delays.

Using middleboxes. Some IP geolocation techniques can be circumvented if a

client’s IP address is concealed using generic MBs such as proxies, anonymizers, or

VPNs [107]. These do not threaten the integrity of the verification process of CPV

because delay measurements are conducted over the client’s application layer. MBs

that blindly relay application-layer traffic (Fig. 5.2(b)) will also relay the timestamps

(see Section 5.4) to the client [30]. Chapter 8 shows how a MB specifically designed to

defeat CPV by searching application-layer traffic for timestamps could be mitigated

using a PoW mechanism.

Manipulating delays to increase calculated distances. Delay-adding attacks

[59] can be attempted on CPV when the adversary inserts a delay before forwarding

timestamps. Assuming verifier i sent a timestamp, the adversary failing to forward it

promptly to verifier j enlarges dic and dcj fraudulently, increasing the value of dic+dcj

(see Fig. 4.1 in Chapter 4 for notation). Because the mp protocol estimates the

smaller OWD at each edge by solving simultaneous equations, selectively delaying

timestamps can result in delay estimates that are smaller than the actual delay. For

example, solving simultaneously the equations a + b = 7, a + c = 8 and b + c = 9
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(a) (b)

Figure 5.2: An adversary asserting a false location (a) without using a mid-
dlebox, and (b) using a middlebox at the asserted location. •=true
location; ◦=asserted location; M=middlebox; PGR=Permitted Geo-
graphic Region.

gives a = 3, b = 4, and c = 5. Whereas a+ b = 7, a+ c = 8, and b+ c = 13 results

in a = 1, b = 6 and c = 7. Thus, increasing b+ c resulted in a smaller value for a.

However, the adversary cannot reduce the summation of dic and dcj as this requires

speeding up the traffic propagation between the adversary and the verifiers [59].

From a geometric perspective, increasing the summation of any pair of edges does not

help an adversary outside a triangle to forge its location making it inside. Formally,

using the notation AB for the length of line segment AB, we have the following

claim (see Appendix B for proofs):

Claim 3 Let P be a point in the Cartesian plane, and let 4XY Z be the triangle

determined by the points X, Y and Z. If P is strictly outside 4XY Z, then increas-

ing the sums XP + PZ, XP + PY or Y P + PZ without reducing at least one of the

other sums cannot place P inside 4XY Z.

Manipulating delays to cause TIVs. As shown in Algorithm 2, CPV holds the

number of TIVs against the client (the condition Di 6= φ in line 9 means Di must not

violate the triangle inequality to increment pass). In conclusion, manipulating delays

does not help the adversary, but rather signals the adversary’s evasion attempts.

5.5.2 Attempts to Evade CPV

To study potential vulnerabilities in CPV, we review steps where the verifiers inter-

act with the client.
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(a) (b) (c)

Figure 5.3: (a) and (b) inappropriately deployed verifiers; (c) insuffi-
ciently deployed verifiers. •=true location; ◦=asserted location;
PGR=Permitted Geographic Region.

Connecting to the verifiers. Assuming the adversary’s target location (location

it is trying to appear at) is l, connecting to a set of verifiers V4l′
6= V4l

does not help

the adversary in pretending to be at l as those verifiers cannot verify the adversary’s

presence inside 4l.

Forwarding the timestamp. Because the verifiers sign the timestamps, the ad-

versary can neither forge nor inject fake ones. Delaying a timestamp is discussed in

Section 5.5.1.

5.5.3 Poor Verifier Deployment and PGR Proximity

Adversaries bordering the PGR may be able to exploit inappropriate or insufficient

verifier deployment. Figures 5.3(a) and 5.3(b) show examples of inappropriately

deployed verifiers with respect to the PGR, where a triangle crosses the PGR border

or encloses the PGR inside itself. As shown, a close adversary could be outside the

PGR but inside those triangles. Verifying the presence inside the triangle does

not ensure presence inside the PGR in those cases. Figure 5.3(c) shows potential

vulnerability due to insufficient verifiers/triangles: not all regions inside the PGR are

covered with triangles. The verifiers determining the shown (solid) triangle should

not overly relax ε4 to account for the uncovered region (relaxing ε4 is depicted

by the dashed triangle in Fig. 5.3(c)). Otherwise, the verifiers falsely accept an

adversary close to the PGR asserting to be at the uncovered region of the PGR, as

shown in Fig. 5.3(c).

Possible countermeasures. To address PGR border crossing, additional over-

lapping triangles could be used to enclose the asserted location as long as a single

triangle, or the intersection of multiple triangles, crosses the PGR border. The in-
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(a) ×=possible true locations. (b) M=middlebox;

Figure 5.4: Defenses against a bordering adversary that exploits inappropri-
ate or insufficient verifier deployment. •=true location; ◦=asserted
location; PGR=Permitted Geographic Region.

tersection region of the triangles must (1) not cross the PGR border and (2) enclose

the asserted location, as shown in Fig. 5.4(a). Client presence inside the PGR is

then verified only if the verifiers of each triangle accept the assertion. For exam-

ple, in Fig. 5.4(a), if the client’s (adversary’s) true location was at any of the areas

marked with ×, two triangles may falsely accept the assertion. Two triangles are

insufficient in that case because the PGR border crosses the overlapping areas of

each two of the three triangles. Verifying the presence inside all three suffices to

verify the correctness of the assertion.

As for insufficient deployment of verifiers, whenever an assertion is made in a re-

gion not covered by any triangle, the LSP (location-sensitive provider) could use a

measurement-based IP geolocation technique instead of relying on client-dependent

geolocation (such as GPS). A bordering adversary must then evade this technique

prior to bypassing CPV. It would then be challenging for the adversary to precisely

target a location not covered by any triangle only through delay manipulation [59].

In such a case, using a measurement-based IP geolocation technique motivates the

adversary to use a MB inside the uncovered region of the PGR (Fig. 5.4(b)). How-

ever, MBs tend to increase delays [30], which helps the verifiers detect the adversary’s

false assertion.

5.6 Conclusion

CPV is a delay-based technique which, to the best of our knowledge, is the first to

verify a client’s location over the Internet without assuming the client’s possession

of a secret personal identifier (see Section 2.3). CPV mitigates delay spikes injected
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by the Internet as it iterates the delay-measuring process, and corroborates the

client’s location based on the smaller OWD, as estimated using the minimum pairs

protocol (Chapter 4). In CPV, delays are estimated between a client and three

verifiers, which enclose the client’s unverified location within their convex hull. The

verifiers estimate the delays over the client’s application layer to overcome IP hiding

tactics, typically carried out using Middle Boxes (MBs). For clients using web-

browsers, CPV requires no extra client-side software; the client’s browsing experience

is retained as the verification process could run in the browser. These advantages

highlight CPV’s potential for practical adoption.

In the following chapter, CPV is evaluated using detailed experiments in a real-

world environment when legitimate clients are using wired access networks. Further,

in Chapter 7, experimental logs collected from the wired testing are modified to

represent last mile delays of a client using a wireless access network, and CPV is

reevaluated under these conditions.



Chapter 6

Evaluating CPV in Wired

Networks

In this chapter, CPV is evaluated in wired networks through detailed experiments

on PlanetLab [33], exploring various factors that affect its efficacy, including the

granularity of the verified location, and the verification time. The evaluation of

CPV in wireless netowrks is presented in Chapter 7.

We use the rates of False Rejects (FRs) and False Accepts (FAs) as the assessment

metrics. If a client asserts to be at location l, an FR occurs when this client is

actually present somewhere inside 4l, and is judged by the verifiers in V4l
as absent

from 4l. By contrast, an FA occurs when that client is actually absent from 4l,

and is judged by the verifiers in V4l
as present in 4l.

We use 80 PlanetLab [33] nodes in USA and Canada (Fig. 6.1), and identified 34 dif-

ferent sized triangles satisfying the requirements stated in Section 5.4. The triangles

were chosen with internal angles ranging 50-70 degrees so as to be near-equilateral

in the network delay-space, as specified in Section 5.4.2, page 68. Triangular areas

ranged from ∼32,000 km2, almost the size of Maryland state, to ∼500,000 km2,

almost the size of Spain.

We assume that the Permitted Geographic Region (PGR) (see Chapter 5) is a

triangular-shaped region that perfectly coincides with the dimensions of the trian-

gle. One triangle was considered at a time. For each triangle, all nodes—except the

The content of this chapter was published at the 2014 IEEE CNS conference [10] (with a full
length version accepted for publication in IEEE TDSC [9]).
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Figure 6.1: Locations of the 80 PlanetLab nodes used in our experiments.
Map data: Google, INEGI.

three determining the triangle—acted as clients; all clients had provided assertion

to be at the centroid of that triangle. Combining clients of all triangles, legitimates1

(clients actually inside) totalled 146 and adversaries (clients actually outside) to-

talled 2,301 for a total of 2,447 experiments. The verifiers determining each triangle

were verifying assertions of all clients concurrently. The verifiers used Network Time

Protocol (NTP) [105] to synchronize their clocks. Knowing the ground truth of le-

gitimates and adversaries with respect to each triangle, our objective is to identify

the optimal values for the tolerance of the area inequality (ε4) and the acceptance

threshold (τ4) for each of the 34 triangles, and quantify the FRs and FAs at these

values.

To see how far adversaries were from the triangles in the experiments, we define the

adversaries’ outside distance with respect to each triangle in our experiments as the

distance between the adversary’s true location and the point of intersection between

lines A and B; line A is the one passing through the adversary’s true location and

the triangle’s centroid; line B is the triangle’s closest side to the adversary (see

Fig. 6.2(a)). Figure 6.2(b) shows a CDF of the 2,301 adversaries’ outside distance.

Half the adversaries were less than 700 km away from the triangle’s closest side (i.e.,

the triangle encapsulating their fraudulently asserted location), and no adversary

was farther than 4,000 km away. For reference, the width of the United States is

approximately 4,000 km. The argument is that if CPV rejects relatively nearby

adversaries, it will reject more distant ones.

1We use the word legitimates (i.e., as a noun) to refer to legitimate clients.
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(a) ×=centroid of triangle;
•=adversary’s true location.
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Figure 6.2: Adversaries’ distances from the triangles’ closest side. (a) How the
external distance is calculated with respect to a triangle; (b) A point
(x, y) means the proportion y of adversaries were x km away from the
closest side. Note: this graph shows experimental design, not results.

Implementation details. Both the CPV server and the client were implemented

as Java applications. The server’s code was run on the three PlanetLab nodes chosen

as CPV servers at each experiment; the client code’s was run on the remaining nodes

representing the CPV clients. Each CPV client was informed with the server’s IP

addresses and port numbers. When all three CPV servers are started and waiting

for clients to connect, all clients were started in parallel and the verification process

begins across all clients simultaneously. Note that in practice, the CPV algorithm

requires no specific client-side software because the client side can be implemented

using javascript and websockets.

Experiments were run over the course of a month (April 2013) and at different times

of the day. The number of iterations, n4 (Algorithm 2 on page 69 ), was fixed at

n4 = 600 for all 4 in the 34-triangle set to study the factors affecting CPV over

a relatively long period of time (a total of ∼13.3 million delay measurements were

taken between all nodes). Fewer iterations might be sufficient to judge a client, as

we show in Section 6.6 below.

Limitations of PlanetLab. Despite being generally used as an experimental

testbed representing the global Internet, PlanetLab measurements should not ab-

solutely be deemed as so [16]. Many of PlanetLab nodes are connected through

the Global Research and Educational Network (GREN), e.g., Internet 2 [80] and

CANARIE [27], in which traffic could be fully routed within the network. Accord-

ingly, all experiments conducted in this thesis are subject to PlanetLab’s network
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settings [131].

The rest of this chapter is organized as follows. Section 6.1 details an example from

the experiments, which involves three clients: one legitimate and two adversaries.

Sections 6.2, 6.3, and 6.4 respectively analyze the rates of TIVs, examines the use

of the triangular areas as CPV’s primary assertion-verification metric, and analyzes

CPV’s confidence ratio associated with all experimented clients. In Section 6.5,

the effect of legitimate clients’ closeness to the triangles’ sides is examined, and in

Section 6.6 the appropriate number of iterations is analyzed. Section 6.7 analyzes

hypothetical modifications to CPV, where the OWD-estimation process is modified

and CPV’s efficacy is reevaluated. Finally, Section 6.8 concludes.

6.1 An Example

We detail the results of one of the triangles in our 34-triangle set, and three of the

clients being verified by that triangle. One of the clients was legitimate, the other

two were adversaries. Figure 6.3(a) shows the geographic location of the triangle and

the three clients, labelled D, E and F . The area difference, δi (line 8 of Algorithm

2) for all 1 ≤ i ≤ 600, is plotted for the three clients in Fig. 6.3(b).

Number of Triangular Inequality Violations (TIVs). Some iterations have

no corresponding values for the area difference (visible in high resolution). Those are

the ones where valid(Dmp) and valid(Dav) (lines 5 and 6 of Algorithm 2) returned

false, i.e., the mapped distances resulted in at least one TIV of the four triangles

determined by the three verifiers and the client. Of all 600 iterations, the number

of iterations where both functions returned false for D, E and F are 114, 11 and

0 respectively. The number of TIVs is high for D likely due to its relatively close

position to two of the three triangle’s sides (versus one side as with E).

Area difference (δ). From Fig. 6.3(b), the median of δi, δ̃, for clients D, E and

F is 30 km2, 66 km2 and 209 km2 respectively. The median corresponding to F is

substantially larger than that of D and E because F is relatively far away from the

triangle. The smallest recorded area difference for F is δ325 = 102 km2. Therefore,

any value for ε4 in the range ε4 < 102 keeps the variable pass= 0 (line 10, Algorithm

2) for all iterations, resulting in Γ = 0. Consequently, at ε4 < 102, any value for

τ4 (the acceptance threshold, Section 5.4) in the range τ4 > 0 rejects F ’s assertion.

Client E was less than 50 km away from the triangle’s nearest side AC, thus the

average area difference of E is close to that of D. However, at ε4 = 45, there is a
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Table 6.1: Results for clients D, E, and F . The “Section” column shows the
section where each variable (row) is analyzed further for all experiments.

Variable
Client

Section
D E F

Number of TIVs 114 11 0 6.2

δ̃ (km2) 30 66 209 6.3
Γ (0 to 1) 0.84 0.2 0 6.4

visible distinction between both nodes—there existed a value for ε4 (i.e., 45 km2)

that enabled the verifiers to correctly judge the assertions of both clients, D and E,

despite being geographically collocated.

Confidence ratio (Γ). In Algorithm 2, Γ is calculated when all n iterations are

performed. Figure 6.3(c) plots Γ (at ε4 = 45 km2), assuming it was calculated

at each iteration. Despite the relatively close values of δi between D and E in

Fig. 6.3(b), their Γ greatly differs. At i = 100, Γ is 0.86 and 0.3 for D and E

respectively. Therefore, after 100 iterations, any τ4 in the range 0.3 < τ4 ≤ 0.86

enables the verifiers to decide that D is a legitimate and E is an adversary. When

all 600 iterations are performed, Γ becomes 0.84 and 0.2 for D and E respectively,

showing no significant change from the 100th iteration.

Summary. Table 6.1 summarizes the results of this example. The following three

sections analyze each of the three variables (rows) in the table for all 2,447 experi-

ments. The respective section is reported in the table.

6.2 Triangle Inequality Violations

For each client, four delay-based triangles are calculated at each iteration, three

of which have the client as one of the triangle’s vertices for a total of 3×600 =

1,800 triangles involving the client. Figure 6.4 shows a CDF of the number of TIVs,

resulting from either mp-estimated or av-estimated delays, for each client (legitimate

or adversary). Note that Algorithm 2 does not call valid(Dav) if valid(Dmp) is true

(line 5).2 We thus counted the number of TIVs for av by running a modified version

of Algorithm 2 (page 2), where line 5 is removed (and the else at the beginning of

line 6).

2Recall form Section 5.4.2 on page 68, the function valid(D) checks for TIVs in the four triangles
whose side lengths are mapped from the six OWDs in D.
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(a) The area of the shown triangle is ∼230,000 km2. Clients E and F
are outside, whereas D is inside. Map data: Google, INEGI.
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Figure 6.3: An example from our experiments showing a triangle and three
clients (best viewed in color).
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Figure 6.4: Number of TIVs involving the client. A point (x, y) means the
proportion y of clients suffered x or fewer TIVs.

For the triangles described by mp-estimated delays, very few clients (5%) suffered

no TIVs, and 86% suffered at least 10 (of 1,800 possible) TIVs. While these results

confirm that TIVs occur frequently in the Internet (cf. [161]), they emphasize the

importance of iterative delay-measurement to mitigate TIVs. For example, half the

clients suffered fewer than 28% (or 500) TIVs in total, enabling CPV to use the

remaining 1,300 valid triangles to verify location assertions.

The case was slightly different using av-estimated delays; almost all clients suffered

at least one TIV and 93% suffered at least 10 of the possible 1,800 TIVs. However,

av was overall better in avoiding TIVs than mp. Half the clients suffered fewer than

300 TIVs (versus 500 for mp). Because av estimates the OWD of a triangle’s side

as the average of both directions, it tends to reduce the discrepancy between the

three sides, leading to fewer TIVs than mp.

6.3 The “Area” as a Discrimination Metric

We analyze the effectiveness of using the areas of triangles (those determined by

the verifiers and the client—see Chapter 5) as a metric to distinguish legitimates

from adversaries. Figure 6.5 shows a CDF of the median area difference, δ̃, for all

146 legitimates and 2,301 adversaries. These area differences are either calculated

from the mp or the av protocols (see Algorithm 2). Note that, from Fig. 6.2(b)

(Section 6), about one-third of all adversaries were within 400 km of the triangle’s

sides (e.g., E and F in Fig. 6.3(a) were within 50 km and 850 km of the triangle’s

side respectively).
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Figure 6.5: Median area difference (δ̃) for 146 legitimates, and 2,301 adver-
saries. A point (x, y) means δ̃ was less than or equal to x km2 for the
proportion y of clients.

The results in Fig. 6.5 show that 93% of all legitimates had δ̃ <100 km2, whereas

two-thirds of all adversaries had more than that value. The results affirm that, al-

though the experiments involved numerous adversaries that are close to the sides of

the triangles encompassing their asserted location, triangular areas distinguished be-

tween them. In conclusion, the triangular area served as a successful discrimination

metric to distinguish between legitimates and adversaries.

6.4 The Confidence Ratio

Figure 6.6(a) shows the CDF of Γ for legitimates and adversaries; the values of

Γ associated with 90% of all adversaries was 0, i.e., certain values for CPV’s in-

put parameters led the algorithm to be 100% confident about the absence of those

adversaries from the triangles encompassing their asserted location. The case was

different with legitimates, where only 30% had a Γ value above 0.5, and half had a

value above 0.1. Thus in our experiments, CPV detected falsified location assertions

easier than realizing the correctness of true (honest) assertions. The values of ε4

that result in this Γ distribution are shown in Fig. 6.6(b).

For FRs and FAs, tolerating one over the other depends on the application using

CPV. For example, media broadcasters aiming to assert their legal compliance with

license agreements would likely tolerate FAs more than FRs. On the other hand,

FRs might be more tolerable for a sensitive banking transactions than FAs. Tuning

CPV’s input parameters enables applications to control which false decision should
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Figure 6.6: (a) Confidence ratios (Γ) for 146 legitimates, and 2,301 adver-
saries. A point (x, y) means Γ was less than or equal to x for the
proportion y of clients. (b) Values of ε4, for each 4 in the 34-triangles
set.

the algorithm tolerate more.

6.5 Proximity to Triangle’s Sides

This subsection analyzes the effect of a legitimate’s proximity to the sides of its

enclosing triangle. Let away(4, g) be the ratio of the distance between a point g

inside 4 and side zg4 to the length of zg4, where zg4 is the closest side to g (see

Fig. 6.7(a) for an example). If away(4, g) = 0, then g lies on one of the three

sides of 4. We evaluate how CPV’s efficacy changes (as expected it improves) as

we test with fewer legitimates close to the sides (i.e., with relatively small values of

away()). Figure 6.7(b) shows a CDF of away(4, g) for all 146 legitimate clients in

the experiments with respect to each 4 in the 34 triangle set. The location g of

two-thirds of legitimate clients was such that away(4, g) ≤ 0.1.

Figure 6.8 shows the number of FRs and FAs after excluding legitimates at locations

g, such that away(4, g) < λ for all 0 ≤ λ ≤ 0.1. The number of remaining

legitimates is shown on the same chart as the y-axis on the righthand side.3 All

adversaries in our experiments were included in the plot regardless of their triangle

proximity. As more legitimates are excluded, the effect of the remaining ones on

3Most of the PlanetLab nodes used in our experiments are located within cities, which explains
the relatively large number of nodes close to triangles’ sides.
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0 0.2 0.3
0

0.25

0.5

0.75

1

0.1

0.66

away(4, g)
C

D
F

(b) CDF of away(4, g)

Figure 6.7: Legitimates’ distances from the triangles’ closest side. (a) Cal-
culation of away(4, g); (b) A point (x, y) means the proportion y of
adversaries were x km away from the closest side. Note: this graph
shows experimental design, not results.
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Figure 6.8: FRs and FAs when legitimates at location g = {x, y} are excluded
from the experiments, such that away(4, g) < λ. The shaded region is
the number of remaining legitimates.
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Figure 6.9: FRs and FAs when n iterations in Algorithm 2 (page 69) are
performed.

the FRs increases. When the remaining clients suffer relatively high network delays,

the FRs oscillate as shown in the plot. Of the chosen PlanetLab nodes, we noticed

three nodes suffering exceptionally high delays for unknown reasons. Their distance

from the triangle’s closest side was such that 0.002 ≤ away() ≤ 0.28. Those nodes

contribute to the oscillation intensity occurring in Fig. 6.8 as λ increases, and become

very hard to partition from adversaries as more legitimates get excluded. At λ =

0.1, the FRs were 2% versus 12.3% at λ = 0. This improvement emphasizes the

importance of appropriate triangle choice with respect to the asserted location. For

an asserted location l, it is recommended that 4l be chosen such that away(4l, l) ≥
0.1.

Although the number of adversaries included in the experiments was unchanged over

the spectrum of λ in Fig. 6.8, FAs improve as λ increases; the FAs were 9% at λ = 0,

and dropped to 1.1% at λ = 0.1. Such improvement stems from the ability to find

smaller ε values that do not falsely reject legitimates—now far from the triangle’s

sides, i.e., at λ = 0.1. Smaller ε values reduce FAs.

6.6 Number of Iterations

In this section, we study the effect of the number of CPV iterations, n, on the

efficacy of the verification process. Note that large number of iterations comes at

the cost of an increased CPV runtime, during which the client is waiting to get its

location verified before receiving services.

Figure 6.9 shows the change in FRs and FAs with n (log10 scale). FRs and FAs

generally decrease as more iterations are performed, at λ = 0.1 and λ = 0. The
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results for λ = 0.1 are quite sensible: FRs and FAs decrease almost monotonically

when more iterations are performed. With two iterations, at λ = 0.1, the FAs

dropped to ∼9% from over 50% when only one iteration was performed. Fewer

than 10 iterations did not enable the verifiers to identify legitimates appropriately

as the FRs were between 6-22%, i.e., no values for ε4 and τ4 existed to partition

legitimates and adversaries. However, between 10 and 20 iterations, FRs and FAs,

at λ = 0.1, remained at ∼2% and ∼1% respectively.

At λ = 0, FAs dropped from ∼56% when one iteration was performed, to ∼10%

when 9 iterations were performed. It then oscillated between ∼10% and ∼6% when

fewer than 100 iterations are performed, climbing steadily to ∼8% for the rest of

the iterations. This rise happened simultaneously with an improvement in the FRs

(at λ = 0). As more iterations are performed, it becomes more feasible to find

ε4 values that partition legitimates from adversaries. To accommodate legitimates

that are very close to the triangles’ sides, large values of ε4 were required, which

resulted in falsely accepting more adversaries. This explains the rise in FAs as more

iterations were performed, at λ = 0. Over the entire range of n, the FRs at λ = 0

decreased from ∼34% at n = 1 to ∼12% at n = 600. Even when legitimates are

highly adjacent to their enclosing triangles’ sides, large number of iterations can

improve the ability of finding ε and τ values that better partition legitimates from

adversaries. This highlights the importance of the iterative delay-measurement of

CPV (see Algorithm 2 on page 69), especially when the chosen verifiers determine

a triangle whose sides are close to the asserted location.

In the conducted experiments, each iteration took six seconds because each verifier

sent a probing packet every 2 seconds. Such duration could be modified accord-

ing to the application’s requirements. For example, increasing the duration of each

iteration (i.e., increasing the delay between each subsequent probing message) di-

versifies the network conditions during which the delays are measured. This comes

at the cost of increased verification time thus, affecting CPV’s usability. In general,

a 30 ms delay between network probing/monitoring packets should be sufficient to

avoid packet interference [71]. Finding an optimal balance between both ends of the

spectrum is left for future investigation.

6.7 Minimum pairs versus Average protocol

Table 6.2 summarizes PlanetLab results of different CPV evaluation scenarios. The

columns represent modified versions of CPV, i.e., different from the behavior given
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Table 6.2: Results of modified versions of CPV. The shaded column is the
unmodified version—see Algorithm 2 on page 69.

Case λ n
av only mp only CPV (mp and av)

FR% FA% FR+FA FR% FA% FR+FA FR% FA% FR+FA

1 0 10 45 4.4 49 39 3.8 43 35 3.9 39

2 0 100 25 5.3 30 26 4.9 31 21 5.1 26

3 0 600 14 7.1 21 17 6.5 24 13 7.3 20

4 0.1 10 24 1.7 26 10 2.3 12 4.1 2.1 6.2

5 0.1 100 10 0.7 11 2.0 1.0 3.0 2.0 1.1 3.1

6 0.1 600 2.0 1.7 3.7 2.0 1.0 3.0 2.0 1.0 3.0

λ = legitimates-exclusion threshold (see Section 6.5); n = number of iterations (see Algorithm 2);

av = the “average” protocol; mp = the “minimum pairs” protocol.

in Algorithm 2. In line 4 of Algorithm 2, two OWD-estimation protocols are used

(mp and av) to alleviate the effect of TIVs. Table 6.2 lists the results when only

the av protocol is used (“av only” column), when only mp is used (“mp only”

column), and when both are used (“CPV” column). The results are shown for

various combinations of the exclusion threshold, λ (see Section 6.5), and the number

of iterations, n. The table shows the FRs, the FAs, and their sum in each respective

case.

From Table 6.2, the summation of FRs and FAs when both OWD-estimation proto-

cols are used (right-most column under “CPV”) is smaller in four out of six of the

cases (table rows) compared to the summation when each protocol is used solely, e.g.,

39 is less than 43 and 49 in the first case. Thus, the use of both OWD-estimation

protocols tends to enhance the accuracy of the location verification process.

Using the mp protocol solely gave better results than av solely in four out of six

cases. The av protocol was better at λ = 0 and n ≥ 100. Recall from Section 6.2

that the mp protocol results in more TIVs. Since CPV counts the number of TIVs

against the client, more TIVs tend to increase FRs, as shown by the results under the

“mp only” column in Table 6.2. At λ = 0 and n ≥ 100, there were 26% and 17% FRs

using the mp protocol, versus 25 and 14% using av. In conclusion, CPV works best

when utilizing both delay-estimation protocols to mitigate the unfavorable effect of

TIVs.

6.8 Conclusion

Three remarks can be made in conclusion from the evaluation conducted in this

chapter.
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1. Reducing the factors that negatively affect the delay-to-distance mapping pro-

cess (such as TIVs [161]) improves the accuracy of the location verification pro-

cess. CPV leverages several heuristics to reduce such factors, e.g., iterating

the delay-measurement process and using multiple delay-estimation protocols.

The results in Sections 6.2, 6.6 and 6.7 provide evidence that CPV’s accuracy

improves upon applying these heuristics.

2. Comparing the areas of triangles projected using the delays between three

verifiers and a client enables the verifiers to realize if the client is geographically

encapsulated by the triangle determined by the verifiers’s locations. Section

6.3 provide evidence supporting this conjecture.

3. The adjacency of a legitimate client to the sides of the triangle enclosing

their geographic location can dramatically affect the correctness of CPV’s

verification. From the analysis in Section 6.5, clients that were away of the

triangle’s closest side at least 10% of the length of that side were likely to get

their assertions correctly accepted.

In summary, the evaluation conducted in this chapter using a real world experimen-

tal testbed with wired-connected clients shows that certain CPV parameterization

enabled the algorithm to FR and FA rates of 2% and 1% respectively. However, to

achieve these results in practice, a sufficient number of verifiers must be available

to find the appropriate triangles, ones whose sides are far enough from the asserted

location (see Section 6.5).

From a geographic perspective, all triangles used in the experiments conducted in

this chapter had side lengths ranging from ∼260 km to ∼1,100 km; the reported

results pertain to this range. Due to the increased route circuitousness (see Section

2.1.1, page 9) that happens with short distances over the Internet [93], extremely

small triangle sizes are expected to result in higher FR/FA rates. The rate by which

the results worsens as triangles become smaller is left for future exploration.

Since the triangle size is the verification granularity, larger triangles may become less

practical from the application’s perspective. However, some applications may only

need coarse verification granularity, e.g., to preserve user’s privacy; larger triangles

in that case may be beneficial.

In the next chapter, CPV will be similarly evaluated, but with legitimate clients

modeled to use 802.11 (wireless) access networks.



Chapter 7

Evaluation with Wireless CPV

Clients

The nature of delays in wireless and wired networks is different. This chapter evalu-

ates CPV when legitimate clients (those inside the triangles) are connected through

WiFi access networks. In the rest of this thesis, we refer to those clients simply as

wireless clients. A wireless client is assumed to be one hop away from its access

point, which serves as the client’s gateway to the Internet. Beyond the gateway, all

hops until the verifiers are assumed to be wired. That is, none of the verifiers are

assumed to use a wireless access network, e.g., satellite, which is a reasonable as-

sumption since the location verification service provider is assumed to own/control

the verifier infrastructure.

In Chapter 6, CPV was evaluated with clients connected through wired access net-

works. Using the PlanetLab testbed, evaluation was performed by having sets of

three verifiers (running on PlanetLab nodes) measure OWDs to/from legitimate

clients and adversaries using the mp and av protocols (Chapter 4). The measured

OWDs where logged, and the CPV algorithm (Chapter 5) was run locally on the col-

lected logs. Knowing the ground truth of inside and outside clients (i.e., legitimates

and adversaries), CPV’s false reject/accept rates were quantified.

To evaluate CPV in wireless networks, we use the OWDs collected in Chapter 6

between the client and the verifiers, and add an additional delay component to each

delay value to model wireless transmission. The added component represents the

single-hop delay between the wireless client and its access point, and is modeled as a

random variable that follows wireless latency-distributions studied in the literature

[29].

91
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Table 7.1: Combinations of access networks for a legitimate client and an ad-
versary

Legitimate client Adversary Chapter
Wired Wired 6
Wired Wireless –

Wireless Wired 7
Wireless Wireless –

Assume two clients, a legitimate and an adversary, both having their location as-

sertions verified by CPV. Their access networks follow one of the four combinations

shown in Table 7.1. The table also shows in which chapter the combination is ex-

plored. Wireless adversaries are not modeled in this thesis. The reason is that wire-

less networks tend to, among other effects, increase delays and the delay variance,

which in CPV increase the likelihood of rejecting assertions. Therefore, by modeling

wireless legitimates and wired adversaries, we test CPV in the most demanding (to

the defender) situation among the four possible combinations in Table 7.1.

This evaluation methodology addresses the effect of delays in wireless networks,

while retaining the advantages of PlanetLab, e.g., real-world network delays, logical

and geographical network topology, exterior gateway routing policies, congestion be-

havior. In addition, by using the data logs collected from the wired evaluation phase

(Chapter 6), we unify all experimental parameters across wireless and wired testing.

Root causes of improvement/retrogression can then be more reliably identified.

This chapter aims to study the impact of the varying wireless delays on CPV, by

specifically exploring the following three questions:

1. Assuming k wireless devices actively competing for the wireless me-

dia with the legitimate client, how does k affect CPV? Here, the

number of wireless legitimate clients is varied, and CPV’s efficacy is analyzed.

We test by modeling clients using IEEE 802.11b as a representative access

technology.

2. For a given triangle verifying assertions of wireless legitimates and a

wired adversary, what is the minimum distance the adversary should

be away from the triangle’s nearest side so that CPV correctly re-

jects it? To answer this question, we test CPV when varying the width

of the adversary-free region outside the triangle. We do this by progressively

excluding nearby adversaries from the experiments and reevaluating CPV.

3. How many CPV iterations should the verifiers perform in order to



7.1. Background on 802.11 93

essentially eliminate the effect of the additional wireless delays? As

explained in Chapter 5, the verifiers in CPV estimate the delays iteratively.

We derive the number of iterations required to essentially eliminate the effect

of the wireless networks, as a function of the number of wireless devices k and

the acceptance threshold τ (see Chapter 5).

Chapter Roadmap. Section 7.1 provides background on the mechanisms by

which 802.11 networks manage access to the shared medium. Section 7.2 reviews

recent literature that models delays of single-hop wireless networks. The reviewed

models are then used to evaluate CPV in Section 7.3. Section 7.4 analyzes the effect

of the number of iterations on the efficacy of CPV when legitimate clients are using

wireless access networks.

7.1 Background on 802.11

Distributed Coordination Function (DCF) is the technique used in IEEE 802.11

(wireless) networks [79] to manage access to the shared wireless media [89]. It

employs the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

method.

In DCF, when the Medium Access Control (MAC) layer of a device has a data frame

to send, it checks if the medium is busy and starts transmission if it is free for a length

of time called the Distributed (coordination function) Interframe Space (DIFS) [89].

If the medium is busy, the device backs off for X time slots, where X is a number

chosen uniformly at random in the range [0,Wmin]. The countdown of the back-off

timer is paused whenever a transmission (i.e., from other devices) is sensed. The

device transmits only if the media was found vacant for a period equal to DIFS after

the back-off time reaches zero. Otherwise, the device backs off for another uniformly-

chosen random number of time slots in the range [0, 2·Wmin]. The process is repeated

as long as the medium is sensed to be busy anytime during the countdown, with

the back-off interval doubling on each repetition until it reaches a maximum of

Wmax = 2m ·Wmin, for some predefined value m.

Upon successful reception, the receiver sends an Acknowledgement (ACK). Trans-

mitting the ACK follows the DCF procedure described above. If an ACK is not

received, the sender of the original data frame attempts several further retransmis-

sions following the DCF procedure, and eventually gives up if those fail.

If two wireless devices, A and B, using one access point are not in the transmission
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ranges of each other, they are said to be hidden terminals. A and B may thus fail

to sense each others’ transmission, in which case simultaneously transmitting may

cause collision at the access point. To address the hidden terminal problem [55],

Request to Send and Clear to Send (RTS/CTS) frames are optionally used. If A

is the device with data to send, it first sends an Request to Send (RTS) control

frame to the access point. This frame indicates the time A needs to send its data

frame and receive the ACK. The access point responds by broadcasting a Clear To

Send (CTS) containing such timing information, which would also be received by B.

B then refrains from using the medium for the specified period of time. The analysis

included throughout this chapter considers the case whereby RTS/CTS frames are

used.

7.2 Wireless Delay Models in the Literature

This section reviews two wireless delays models in the literature, both assume a

single-hop wireless network with one access point and k wireless devices. The k

devices are saturated, i.e., always have frames to send. The channel is assumed

ideal, meaning that the only source of frame corruption is collision.

Note that the focus of this section is not to compare the two wireless delay models,

nor not to evaluate their accuracies. We rather review these models to use them in

evaluating CPV later in Sections 7.3 and 7.4 below.

7.2.1 Average back-off time at a stage

Carvalho and Garcia-Luna-Aceves [29] derived the average time a device spends

backing off. Recall from Section 7.1 that a device backs-off for X = U{0, 2m ·Wmin}
time slots. Thus, the expected backing-off time, α, is the time spent while counting

down X time slots plus the time where the countdown is paused during a sensed

transmission [29]:

α = σpi + tcpc + tsps (7.1)

The constant σ is the length of the time slot (in µsec); pi is the probability the

channel is idle (i.e., the subscript is not an index, it denotes “idle”) during a time

slot; and pc and ps are the probabilities of collision and successful transmission

respectively during a time slot. ts and tc are the number of time units a device

spends while pausing the countdown during a successful transmission and during a
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transmission with collision respectively. Bianchi et al. [20] expressed these durations

as follows:

ts =
l(RTS) + l(CTS) + l(H) + l(P ) + l(ACK)

rate
+ (3 · SIFS + DIFS) + 4δ (7.2)

tc =
l(RTS)

rate
+ DIFS + δ (7.3)

where the function l(.) indicates the frame (or packet) length in bits; RTS/CTS are

the Ready/Clear To Send frames (see Section 7.1); δ is the propagation delay (in

µsec); SIFS is a technology-specific amount of time (in µsec); H, P and ACK are

the header, data packet, and acknowledgement packets respectively; and rate is the

media’s transmission rate in Mbps.

Using a 2-dimensional discrete-time Markov process, Bianchi et al. derived the

probability, ψ, that a transmission occurs (successful or with collision) at a time

slot as:

ψ =
2(1− 2p)

(1− 2p)(Wmin + 1) + pWmin(1− (2p)m)
(7.4)

where p is the probability of collision occurring at a time slot. Note that p is different

from pi, pc and ps in (7.1). Bianchi et al. [20] then assumed that a packet collides with

a constant and independent probability regardless of the number of retransmissions

it suffers. Assuming k devices in the network, if one device transmits, the only case

that results in no collision is when none of the k− 1 other devices transmit, i.e., the

probability of no collision is (1 − ψ)k−1. Therefore, p can be expressed in terms of

ψ as [20]:

p = 1− (1− ψ)k−1 (7.5)

Thus, the relationship between p and ψ is non-linear. Carvalho and Garcia-Luna-

Aceves [29] linearized this model in order to use ψ to derive the expected total

back-off time (see Section 7.2.2 below).

Using ψ and assuming k devices, the probability (Ptr) that at least one of the k

devices is transmitting, and the probability (Psuc) that a transmission for any of the

k devices is successful are calculated as follows [19,20]:

Ptr = 1− (1− ψ)k

Psuc =
kψ(1− ψ)k−1

Ptr

The probabilities pi, pc and ps in (7.1) are therefore calculated as pi = 1 − Ptr,



7.2. Wireless Delay Models in the Literature 96

pc = Ptr(1− Psuc), and ps = PtrPsuc [29].

7.2.2 Expected total back-off time

Carvalho and Garcia-Luna-Aceves [29] give an approximate solution to the nonlinear

relation between ψ in (7.4) and p in (7.5), and reduce ψ to:

ψ =
2Wmin

(Wmin + 1)2
(1− p) (7.6)

Using (7.6), the authors derived p independent of ψ as [29]:

p =
2Wmin(k − 1)

(Wmin + 1)2 + 2Wmin(k − 1)

Carvalho and Garcia-Luna-Aceves [29] then used this approximation to obtain α in

terms of σ, k, Wmin, ts and tc, as explained above. Finally, they derived the expected

time a device backs off TB as [29]:

TB =
α(WminF − 1)

2q
+

(
1− q
q

)
tc (7.7)

where

F =
q − 2m(1− q)m+1

1− 2(1− q)
and q = 1− p represents the probability of no collision.

7.2.3 Mean delay and jitter, the model of Carvalho et al.

Carvalho and Garcia-Luna-Aceves [29] expressed the expected delay E[T ] of a frame

as the expected time a device backs off TB in (7.7) plus the frame transmission time

ts in (7.2):

E[T ] = TB + ts (7.8)

The variance of T was derived as:

Var[T ] =

[
α(Wminγ − 1)

2
+ tc

]2
1− q
q2

where

γ =
(2q2 − 4q + 1−mq(2q − 1))(2− 2q)m + 2q2

(2q − 1)2
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Thus the jitter (or the standard deviation) is:

Std[T ] =
√

Var(T ) (7.9)

7.2.4 CDF of delays

The model of Carvalho and Garcia-Luna-Aceves [29] only provides information

about the mean and jitter of the delays given some number of wireless devices k. We

assume that delays will follow a Gaussian distribution with mean and variance de-

rived as in (7.8) and (7.9) respectively. However, since the distribution (which would

be the delays in that case) goes from −∞ to ∞, the model can result in negative

delay values. Thus, we assume a truncated Gaussian [82] in the range [0,∞].

The mean of the Gaussian distribution truncated from a to b is given by [82]:

GausMeanµ,σ(a, b) = µ− σ · Z(α, β)

where µ and σ are respectively the mean and standard deviation of the parent (non-

truncated) Gaussian distribution; α = (a−µ)/σ and β = (b−µ)/σ; and the function

Z(.) is defined as:

Z(α, β) =
φ(β)− φ(α)

Φ(β)− Φ(α)

The functions φ(.) and Φ(.) are respectively the PDF and the CDF of the standard

(i.e., with µ = 0 ms and σ = 1 ms) Gaussian distribution.

The standard deviation of the Gaussian distribution truncated from a to b is [82]:

GausStdµ,σ(a, b) =

√
σ2 ·

(
1− β · φ(β)− α · φ(α)

Φ(β)− Φ(α)
− Z2(α, β)

)

To obtain a CDF of the wireless delays that has a mean and standard deviation as

in (7.8) and (7.9), we need to solve simultaneously for µ and σ:

GausMeanµ,σ(0,∞) = E[T ] (7.10)

and

GausStdµ,σ(0,∞) = Std[T ] (7.11)

Those are two equations in two unknowns, which can be solved using numerical

methods. Finally, using µ and σ, the CDF of the Gaussian distribution truncated
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Table 7.2: Mean µ, and standard deviation σ, of the single-hop wireless delays
when k devices are simultaneously competing with the media.

Parameters (ms) Eqn.
k

2 3 4 5 10 20 30
E[T ] (7.8) 2 3 4 5 12 40 87

Std[T ] (7.9) 0.6 1.6 2.9 4.7 21 89 186
µ – -110 -159 -208 -246 -691 -2419 -5156
σ – 15 22 29 36 95 328 700

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

delay (ms)

C
D

F

k = 2

k = 5

k = 10

k = 20

k = 30

Figure 7.1: Truncated Gaussian CDFs of single-hop wireless delays that a
frame endures when there are k saturated wireless devices in the net-
work.

from a to b is [82]:

GausCDFµ,σ(x; a, b) =
Φ(ζ)− Φ(α)

Φ(β)− Φ(α)
(7.12)

where ζ = (x−µ)/σ. Table 7.2 shows the mean and standard deviations calculated

using (7.8) and (7.9) for various values of k, and the corresponding µ and σ of the

parent (non-truncated) Gaussian distribution calculated by solving (7.10) and (7.11)

simultaneously.

Figure 7.1 plots the delay distribution, GausCDFµ,σ(x; 0,∞), using (7.12) for various

values of k. Unsurprisingly, the chart shows that the wireless delays generally in-

crease with k. These delay distributions are used in Sections 7.3 and 7.4 to evaluate

CPV in wireless networks.

The model of Carvalho and Garcia-Luna-Aceves provides an upper bound on the

average delay a frame is expected to suffer [29]; when they compared their model

to simulations, delays from the simulations were always smaller. One reason for the

simulation delays being smaller is that there is a non-zero probability that a frame

backs off indefinitely [29]. However, the DCF standard [79] specifies that the MAC

layer must discard the frame if transmission failed after R back off trials, for some
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predefined value of R. Transmission retrials from upper layers may then take care

of the discarded frames.

7.2.5 CDF of delays, the model of Raptis et al.

Similar to Carvalho and Garcia-Luna-Aceves [29], Raptis et al. [128] used the basis

of Binachi [20] to derive a CDF (and jitter) for the single-hop 802.11 access delays.

However, Raptis et al. [128] took into consideration the reality that the frame being

transmitted will be discarded after failing transmission in R back-off stages. The

authors [128] began by deriving the expected delay that a frame suffers after a failed

transmission at stage j (0 ≤ j ≤ R) as:

Uj = (j + 1) · tc + α ·
j∑
i=0

Wi − 1

2
(7.13)

where tc and α are analogous to those in (7.3) and (7.1) respectively, and

Wi =

2i ·Wmin, if 0 ≤ i ≤ m

2m ·Wmin, m < i ≤ R
(7.14)

To derive the CDF of delays, Raptis et al. [128] first calculated the probability that

a frame is successfully transmitted at stage j as:

Qj =
pj(1− p)
1− pR+1

(7.15)

Since at any stage j, selecting any back-off value in the range 0 ≤ i < Wj is

equiprobable, then the probability of transmitting a frame at stage j after backing

off for i stages is (independent of i):

Pj = Qj ·
1

Wj

(7.16)

Using (7.16), Raptis et al. [128] derive the CDF of delays as follows. Let Ω be a finite

set of delays, such that Ωj,i is the delay a frame suffers before it gets successfully

transmitted at stage j, given that i back-off slots were selected at stage j. For any

randomly-chosen delay value D, the probability that D ≤ d for all 0 ≤ d ≤ ∞ is
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Figure 7.2: CDF of single-hop wireless delays that a frame endures when there
are k saturated wireless devices in the network [128].

given by [128]:

P{D ≤ d} =
R∑
j=0

Wj−1∑
i=0

Pj,i(d) (7.17)

where

Pj,i(d) =

Pj, if Ωj,i ≤ d

0, otherwise
(7.18)

Using (7.17), Fig. 7.2 plots the wireless delay CDFs of Raptis et al. [128] at various

values of k. Once again, the model shows that delays generally increase with k, which

is unsurprising. However the distributions derived by Raptis et al. [128] (Fig. 7.2)

are not exactly similar to those derived by Carvalho and Garcia-Luna-Aceves [29]

(Fig. 7.1). Differences between both models are discussed in Section 7.2.6 below.

Jitter

Similar to Carvalho and Garcia-Luna-Aceves [29], Raptis et al. [128] also derived an

expression for the delay jitter in a single-hop wireless network with k devices. To

do that, the authors [128] first derived the expected total delay that a frame suffers

before being successfully transmitted at stage j as:

ωj = Uj − tc + ts (7.19)
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Then, using (7.19) and (7.15), the expected delay, E[T ], a frame suffers before being

successfully transmitted is [128]:

E[T ] =
R∑
j=0

(ωj ·Qj) (7.20)

And the expected value for the square of a delay, T 2, is [128]:

E[T 2] =
R∑
j=0

Pj · Wj−1∑
i=0

(E[Ωj,i])
2

 (7.21)

where E[Ωj,i] is the average of {Ω0,0, .. Ωj,i}, and is calculated as [128]:

E[Ωj,i] = ts + i · α + Uj−1 (7.22)

Finally, in contrast to the delay jitter of Carvalho and Garcia-Luna-Aceves [29] in

(7.9), the jitter of Raptis et al. [128] is calculated using (7.21) and (7.20) as:

Std[T ] =
√
E[T 2]− (E[T ])2 (7.23)

In Sections 7.3 and 7.4, we use the CDFs in (7.12) and (7.17) to evaluate CPV.

7.2.6 Differences between the models

Figure 7.3(a) plots the truncated Gaussian distribution with the parameters ob-

tained from the model of Carvalho and Garcia-Luna-Aceves [29] modeling single-

hop wireless delays, and the distribution derived by Raptis et al. [128] at k = 2 and

k = 10. The distributions are not drastically different. Their dissimilarities might

however stem from differences in their assumptions, e.g., Raptis et al. assumes the

frame is discarded after failing transmissions in R stages, while Carvalho et al. does

not make this assumption.

Figure 7.3(b) shows the difference in the jitter between both models, obtained using

(7.9) and (7.23) respectively. At first glance, the individual values of the two curves

over the region up to k = 20 are reasonably similar, but the model of Raptis et al.

appears almost linear, while that of Carvalho et al. gives values lower in the region

up to k = 20, but rising much faster starting for values shortly beyond k = 20.

In the rest of this chapter, both models are used to analyze CPV in wireless networks,
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Figure 7.3: Comparison of the reviewed models. M. A means using the model
of Carvalho et al. [29]; M. B means using the model of Raptis et
al. [128]. (a) Truncated Gaussian delay distribution with parameters
derived from the model of Carvalho et al. [29], and the distribution de-
rived by Raptis et al. [128] at k = 2 and k = 10. (b) The jitter follows
that derived by the authors [29,128].

with a truncated Gaussian distribution assumed for the parameters of Carvalho and

Garcia-Luna-Aceves.

7.2.7 Summary of reviewed literature on wireless models

All the models reviewed herein, in Section 7.2, consider a wireless network with

a single access point and no hidden terminals, typically addressing a small (e.g.,

home) network. In public places (e.g., coffee shops or hotel rooms), this may not

be the case. However, the models already incorporate the additional delays due to

the RTS/CTS mechanism of the 802.11 DCF and thus, we believe the existence of

hidden terminals is unlikely to result in significant difference in delays.

Another assumption made in the reviewed literature is that the physical media is

error-free; in other words, failed transmissions are only caused due to collision. The

reviewed literature have compared their analytical models using simulations, which

highlighted almost negligible effect of these assumptions in practice [20,29,128].

The reviewed literature assumes all k devices are saturated (i.e., always have packets

to send). However, k devices are typically expected to alternate between phases of

transmission, reception and idle activity. We believe this assumption tends to cause

the delays resulting from the derived models to be larger than those in practice.
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7.3 Evaluating CPV in 802.11 Networks

We evaluate CPV with wireless clients using the delay models discussed in Section

7.2. All results reported in this chapter follow CPV’s recommendation of λ = 0.1 (see

Chapter 6). The area tolerance ε4 and the acceptance threshold τ4 are calibrated

per triangle. Similar to Chapter 6, the objective is to quantify the FRs and FAs

at some values of ε4 and τ4 that allow CPV to adequately distinguish legitimates

from adversaries.

To analyze CPV with wireless clients, we varied the number of legitimate clients

modeled to use wireless access networks.1 The number of wireless legitimate clients

in each4 affects the calibration of CPV’s input parameters (ε4 and τ4), and is thus

expected to affect the overall results. Each wireless network was modeled to have k

actively-transmitting wireless devices, with one of those k being CPV’s legitimate

client.

Recall from Chapter 6 that at λ = 0.1, our PlanetLab experiments had 49 legitimate

clients. Thus, we can model a maximum of 49 distinct wireless access networks,

with k ≥ 2 wireless devices in each. For example, if a proportion of ∼0.2 of all 49

legitimate clients was using a wireless access network with k = 4, this means there

are 10 distinct wireless access networks modeled at different geographic regions,

and each network has 4 wireless devices (constant across all 10 networks). Fig. 7.4

shows an example of eight legitimate CPV clients; a proportion equal to 0.5 of them

is using a wireless access network that has k = 2 devices.

7.3.1 Evalution assumptions (wireless access)

Each wireless legitimate client is assumed to be competing for the wireless media

with k − 1 other wireless devices. All k devices (i.e., including the legitimate client

whose assertion is being verified by CPV) use the same wireless access point, which is

one hop away. We assume no hidden terminals (recall Section 7.1)—the transmission

of any device is sensed by all others.

All k devices are using an 802.11b access network over Direct-Sequence Spread

Spectrum (DSSS) on the physical layer with a 11Mbps data rate. Characteristics

of DSSS are shown in Table 7.3. Following the reviewed models in Section 7.2, all

k devices are assumed saturated (i.e., the packet queues of all k device are never

1Characteristics of such a network are explained in Section 7.3.1 below.
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Figure 7.4: An example of eight CPV clients, half of which are using a wireless
access network that has k = 2 devices.

Table 7.3: DSSS characteristics

Item Value
Wmin 32 time slots
Wmax 1024 time slots
Retransmission limit (R) 6 stages
Physical header (PHY) 192bits at 1 Mbit/s
MAC header 224 bits at 11 Mbit/s
ACK length 112 bits at 11 Mbit/s + PHY
RTS length 160 bits at 1 Mbit/s + PHY
CTS length 112 bits at 1 Mbit/s + PHY
Propagation delay (δ) 1 µsec
Slot time (σ) 20 µsec
SIFS 10 µsec
DIFS 50 µsec

empty), and are transmitting at the same time according to a Constant Bit Rate

(CBR) with a packet size equal to 8148 bits.

Finally, because an element of randomness (i.e., the delay component resembling a

wireless network) is now introduced to the results, experimentation scenarios were

run 10 times and the average result is reported.

7.3.2 Effect of number of wireless devices (k) on CPV

Figure 7.5 shows the mean FRs and FAs of 100 runs resulting from using the models

of Carvalho et al. [29] and Raptis et al. [128]. All 49 legitimate clients were using



7.3. Evaluating CPV in 802.11 Networks 105

Table 7.4: SE and Margin of Error (ME) at 90% confidence level for the rest
of the results

Model Parameter Std SE ME at 90% CI

Carvalho et al. [29]
FRs 0.97 0.097 ±0.16
FAs 0.74 0.074 ±0.12

Raptis et al. [128]
FRs 0.92 0.092 ±0.15
FAs 0.14 0.014 ±0.02

Std = Standard deviation; SE = Standard error; ME = Margin of Error.

a wireless access network, and there was a total of k = 5 devices in the network

of each wireless CPV client. The number of CPV iterations (see Chapter 5) was

fixed at n4 = 600 for all 4. FRs and FAs for both models lied between ∼1.8% and

∼4.5%.

Because FRs and FAs are estimated empirically from 100 runs, we calculate the

error margin of these estimates for a 90% confidence level. To calculate the error

margin, we first calculate the critical value as follows [104]:

α = 1− confidence level

100
= 1− 0.9 = 0.1

Critical Probability (p∗) = 1− α

2
= 1− 0.1

2
= 0.95

Degree of Freedom (df) = n− 1 = 100− 1 = 99

From the statistics tables [104], at df = 99 and p∗ = 0.95, the critical value is 1.66.

Next, we calculate the standard error (SE). For the FRs obtained using the model

of Carvalho et al. [29]:

SE (FRs) =
Std√
n

=
0.97√

100
= 0.097. (7.24)

Table 7.4 shows the SE for the rest of the results. Finally, the Margin of Error (ME)

at 90% confidence level is calculated as:

ME (FRs) = critical value× SE = 1.66× 0.097 = 0.16. (7.25)

The ME at 90% confidence level for the rest of the results is reported in Table

7.4. The MEs at 90% confidence level are depicted using vertical lines atop the

bars in Figure 7.5 for the mean FRs and FAs. None of the MEs exceeds ±0.16%,

highlighting that the means estimated from the sample runs are relatively precise.
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Figure 7.5: Statistical confidence of CPV results in wireless networks. M. A
means using the model of Carvalho et al. [29]; M. B means using the
model of Raptis et al. [128].

Note that ideally, the statistical confidence of any results reported thereafter could

be measured, although it is not planned in any of the experiments conducted in the

remains of this thesis.

Figure 7.6 shows the FRs and FAs when k = 2 and k = 10. Again, the number of

CPV iterations was fixed at n4 = 600 for all 4. Using the model of Carvalho and

Garcia-Luna-Aceves [29], there was degradation in CPV’s efficacy with an increased

k, but such degradation was not severe. For example, when all 49 legitimate clients

were using a wireless access network (i.e., at x = 1 in Fig. 7.6), the sum FR+FA

went from ∼4.61% at k = 2 to ∼6.22% at k = 10. We believe these results stem from

the non-zero probability that the wireless delay is (relatively) negligible, e.g., 3 ms.

At k = 10, the truncated Gaussian distribution in Fig. 7.1 indicates that there is a

∼20% chance the transmitted frame (holding the verifiers’ timestamps) suffers <3

ms delay, i.e., if one iteration was performed. As more iterations are performed, the

chances that one or more iterations result in such negligible delay increase. Because

CPV requires only a proportion τ of the performed iterations to pass the triangular

area checks (which is more likely to happen with smaller delays between the verifiers

and the client, as discussed in Chapters 5 and 6), it still accepts a client when a

proportion of 1 − τ of all iterations result in large delays and area mismatch. The

required number of iterations is derived in terms of k and the acceptance threshold

τ in Section 7.4 below.

Using the model of Raptis et al. [128], and assuming that half the legitimate clients

are wireless, the sum FR+FA went from 5.1% at k = 2 to 8.3% at k = 10. Those

numbers are to be compared to 3.1% (2.0% + 1.1%) when none of the legitimate

clients are using a wireless access network. In conclusion, under this model, when
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Figure 7.6: FRs and FAs when a proportion of the 49 legitimate clients (i.e.,
PlanetLab nodes inside triangles) use a wireless access network that has
k wireless devices. n4 = 600 CPV iterations for all 4. M. A means
using the model of Carvalho et al. [29]; M. B means using the model of
Raptis et al. [128].

a wireless CPV legitimate client competes for the media with another device (i.e.,

k = 2), it has double the chances of being falsely rejected compared to a wired

legitimate client.

Figure 7.7 shows the summation of FRs and FAs with respect to the number of

iterations n (i.e., n4 for all 4), and the number of wireless devices, k, in each

wireless network when 25 of the 49 legitimate CPV clients are using a wireless

access network.2 Using the model of Carvalho and Garcia-Luna-Aceves [29], the

effect of k on the results begins to manifest starting around k = 1. For example,

at k = 2 the sum FR+FA is almost constant regardless of the performed number of

CPV iterations, n. In contrast, at k = 30, the impact of n on the sum FR+FA is

large. In conclusion, increasing the number of CPV iterations has large impact only

when more than k = 15 devices are present in each wireless network.

The case is different using the wireless models of Raptis et al. [128], where k has a

significant impact on the results, for all values of k. For example, at k = 6, the sum

FR+FA decreases from ∼18% at n = 60 to ∼7% at n = 600; and at k = 30, FR+FA

decreases from ∼36% at n = 60 to ∼22% at n = 600. These results highlight the

potential for a larger number of iterations to mitigate the effect of the wireless delays

2Recall that the number of wireless legitimate clients being verified by triangle 4 affects the
calibration of ε4 and τ4, which is how those 25 wireless clients are expected to influence CPV’s
decisions on others.
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Figure 7.7: FR+FA when half of the evaluated legitimate clients were using
a wireless access network with k devices.

on CPV.

Both models agree that CPV’s efficacy decreases as k increases, suggesting that CPV

may perform poorly in public places where numerous devices are actively competing

for the media.

7.3.3 Minimum adversarial distance from the triangle

Figure 7.8 shows the minimum distance, between an (outside-triangle) adversary

and the triangle encapsulating the adversary’s asserted location, that enables CPV

to maintain similar efficacy compared to when all clients are using a wired access

network. Recall from Chapter 6, FR+FA when all legitimates were wired-connected

is ∼3% at λ = 0.1. Results are obtained when 25 of all 49 legitimate clients are

using a wireless access network, and when n4 = 600 iterations for all 4.

Using the model of Carvalho and Garcia-Luna-Aceves [29], and at k = 5, the sum

FR+FA≈3% when (outside-triangle) adversaries were at least ∼250 km away from

the triangles’ sides. At k = 15, the minimum distance adversary-free distance

outside the triangle that maintains FR+FA≈3% becomes 1, 250 km.

With the model of Raptis et al. [128], the minimum adversarial distance is 700 km

at k = 5 (see Fig. 7.8) and ∼1,600 at k = 10. In conclusion, the minimum distance

clearly increases with k in both models, suggesting that as more saturated devices

exist in the network of CPV’s legitimate wireless clients, the likelihood of accepting

(outside) adversaries close the triangles’ sides increases.
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Figure 7.8: The minimum distance, between the (outside) adversary and the
triangle, that enables CPV to maintain similar efficacy compared to
when all clients are using a wired access network. Results are obtained
when 25 of all 49 legitimate clients are using a wireless access network,
and when n4 = 600 CPV iterations, for all 4. The error bars indi-
cate the smallest and largest y (minimum distance) obtained from 10
runs, and the marker is their average. M. A means using the model of
Carvalho et al. [29]; M. B means using the model of Raptis et al. [128].

7.4 Required Number of CPV Iterations

This section addresses the following question. Assume that the number of wireless

devices in the client’s access network, k, is known to the verifiers; how many CPV

iterations (see Chapter 5) should they perform such that with very high probability

the legitimate client gets accepted? It is important to answer this question because,

as the results of the previous section show, increasing the number of CPV iterations

reduces the impact of the wireless delays on the efficacy of CPV. It is thus important

to know what the appropriate number should be in order to mitigate such impact.

To answer this question, let t be a small delay value (i.e., due to the wireless access

network) that when added to the (Internet) end-to-end delays of a legitimate client

that CPV would typically accept, will not cause CPV to falsely reject this client

(i.e., due to the increased delay). Using the wireless delay models in Section 7.2, we

can obtain the probability pk(t) = Pk{D < t} that a transmitted frame (carrying

the verifiers’ signed timestamps) experiences less than t ms additional delay while

sharing the wireless media with k − 1 other actively participating devices.

If two CPV iterations are performed, the probability that the frames experience < t
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ms delay in one of them (either the first or the second) is:

%1(t, k, 2) = pk(t) · (1− pk(t)) + (1− pk(t)) · pk(t)

= 2 · pk(t) · (1− pk(t))
(7.26)

Note that this equation is similar to the (basic) probability of getting a number x

once from a dice that is rolled twice, such that x < 3 (i.e., the probability of getting

either 1 or 2). This probability would be: either getting x from the first roll but

not the second, or from the second roll but not the first; the number of dice rolls is

analogous to the number of CPV iterations.

For three iterations:

%1(t, k, 3) = 3 · pk(t) · (1− pk(t))2 (7.27)

In general, the probability that a transmitted frame experiences < t ms in exactly

one of n iterations is given by:

%1(t, k, n) = n · pk(t) · (1− pk(t))n−1 (7.28)

Considering more than one iteration, the probability %2 that the transmitted frames

(holding the timestamps) experience < t ms in exactly two of n iterations is given

by:

%2(t, k, n) =

(
n(n− 1)

2

)
· pk(t)2 · (1− pk(t))n−2 (7.29)

That is because there are n(n−1)/2 ways of choosing two of n iterations. In general,

there are nCr ways of choosing r of n iterations, where:

nCr =
n!

r!(n− r)!
(7.30)

Accordingly, the probability that the transmitted frames experience < t ms in ex-

actly r of n iterations is given by:

%r(t, k, n) = nCr · pk(t)r · (1− pk(t))n−r (7.31)

And thus, the probability that the wireless delay is < t ms in at least r of n iterations

is given by:

ρr(t, k, n) =
n∑
i=r

%i(t, k, n) (7.32)
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Table 7.5: The probability pk(3) that an additional delay of < 3 ms is incurred
by the wireless network at different values of k.

Model
k

2 5 10 20 25 30

pk(3)
[29] 0.77 0.45 0.21 0.07 0.04 0.03
[128] 0.24 0.08 0.04 0.02 0.02 0.02

Calculating this probability is fundamental to the operation of CPV. For example, let

the number of iterations that CPV performs be n = 600, and let CPV be calibrated

such that it requires at least 30 of those 600 iterations to pass the triangular area

check (explained in Chapter 5). Assuming that t = 3, then using (7.32) we can

calculate the probability, ρ30(3, k, 600), that the timestamps exchanged between the

verifiers and the client are delayed (additionally by the wireless access network)

< 3 ms in at least 30 of the 600 iterations. This probability will thus serve as

an upper bound probability of that client being correctly accepted. It is “upper

bound” because if ρ30(3, k, 600) = 1, the client may still get falsely rejected due to

other non-wireless related factors (see Chapter 6). Equation (7.32) is used below to

derive a function calculating the number of CPV iterations required to mitigate the

negative effect of wireless delays.

Note that pk(t) is calculated using the CDFs in (7.12) and (7.17). For example, for

the model of Carvalho et al., we have:

pk(t) = GausCDFµ,σ(t; 0,∞) (7.33)

where µ and σ are functions of k as discussed in Section 7.2. Example values for

pk(3) are listed in Table 7.5 for various values of k.

Figure 7.9 shows a plot of ρ5(3, k, n) and ρ20(3, k, n) against n at k = 2 and k = 10.

The charts show that at k = 2, the verifiers need to perform 11 (or 45) iterations

using the model of Carvalho and Garcia-Luna-Aceves [29] (or that of Raptis et

al. [128]) to be almost certain (i.e., with probability ρ5(3, 2, n) ≥0.99) that the

transmitted frames will endure < 3 ms delay in at least 5 iterations. To achieve < 3

ms wireless delay in 20 or more iterations, and at k = 10, the verifiers will need to

perform ∼150 and ∼700 iterations respectively using the models of Carvalho et al.

and Raptis et al. to satisfy ρ20(3, 10, n) ≥0.99.

CPV requires a proportion 0 ≤ τ4 ≤ 1, for each 4, to pass the triangular area-
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Figure 7.9: The probability that a transmitted frame experiences < t = 3 ms
of wireless delay in at least 5 and 20 of n iterations, when k wireless
devices are sharing the access network. See Table 7.5 (or similarly
Figures 7.1 and 7.2 at x = 3 ms) for the values of pk(t). M. A means
using the model of Carvalho et al. [29]; M. B means using the model of
Raptis et al. [128].

match checking in order to accept a client.3 By policy, if n · τ4 of the n iterations

pass the area checks, the client gets accepted. To mitigate the effect (on CPV’s

decisions) of wireless delays with probability ≥0.99, the verifiers need to perform n

iterations that satisfy:

ρnτ4(t, k, n) ≥ 0.99 (7.34)

Using linear iterative root finding [141], we solved (7.34) for n at various values of

k. A plot of both variables is shown in Fig. 7.10 for different values of τ . Once

again, the differences between the wireless delay models in the reviewed literature

manifest in our analysis. For example, using the model of Carvalho and Garcia-

Luna-Aceves [29], if τ = 0.05, then only 8 iterations are required to mitigate the

effect of the wireless delays on CPV, versus 440 iterations using the model of Raptis

et al. [128]. At k = 30 wireless devices, and τ = 0.01, the required number of

iterations is ∼250 and ∼1590 respectively.

3Recall that the CPV algorithm handles triangular inequality violations (TIVs) and area-
mismatches similarly, both are treated as area-mismatch.
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Figure 7.10: Required number of iterations to essentially eliminate the effect
of wireless network delays at different values of τ .

7.5 Conclusion

In this chapter, the efficacy of CPV was evaluated when legitimate clients are using

wireless access networks with varying k—the number of saturated wireless devices

competing for the media in each network. Evaluation was performed using wireless

delay distributions derived in the literature.

The results show that wireless networks are likely to impact the correctness of CPV’s

decisions. The significance of that impact depends fundamentally on k. For example,

the summation of FRs and FAs jumped from 3% (see Chapter 6) when all legitimate

clients are using wired access networks to ∼4.5% at k = 2 and to ∼7% at k = 10

(those numbers are the averages obtained upon using both of the reviewed models).

Moreover, we found that CPV is more likely to falsely accept adversaries close to

the triangles’ sides when there are wireless legitimate (inside) clients. For example,

when k = 10, some adversaries within ∼1,000 km of the triangles’ sides were falsely

accepted, some of which were correctly rejected when no wireless legitimate clients

were considered (Chapter 6). Adversaries that are farther away than this distance

are unlikely to (illicitly) benefit from the existence of wireless legitimate clients.

Finally, the analysis conducted in this chapter shows that increasing the number

of CPV iterations can mitigate the negative effect of wireless delays on CPV. As

such, we derived the number of iterations required to achieve that mitigation. Using

the derived expressions, we found that the required number of iterations rapidly

increases with k. When CPV is calibrated to be more tolerant to high delays between
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the client and the verifiers (i.e., at smaller values of τ), the rate for which the

required number of iterations increases with k slows down. These results highlight

the importance of conducting the appropriate number of iterations, especially when

CPV is verifying locations of wireless legitimate clients.

In general, the results in this chapter suggest that the impact of wireless networks

on delay-based Internet applications should be given more attention, e.g., most

delay-based geolocation techniques in the literature are not evaluated with wireless

networks. Investigating the behavior of CPV with clients using other wireless access

technologies (e.g., LTE networks) is left for future investigation.



Chapter 8

Hindering Middleboxes from

Unauthorized Traffic Relaying

When employed by online content providers, access-control policies can be evaded

whenever clients collude with a Middle Box (MB) that meets the policies. A col-

luding MB, commonly being the gateway of a VPN, typically contacts the content

provider on behalf of the clients it colludes with, and relays the provider’s outbound

traffic to those clients.

To address this problem, we propose a solution to hinder colluding MBs from unau-

thorized relaying of traffic to a large number of clients. To the best of our knowledge,

this is the first work to address this problem. Our solution increases the cost of collu-

sion by leveraging client puzzles in a novel way, and uses network properties to help

the content provider detect if its outbound traffic is being further relayed beyond

a transport-layer connection. Our evaluation shows that using client puzzles places

an upper bound on the number of clients a MB can collude with in parallel. The

upper bound follows a hyperbolic decay with the rate of creation of puzzles and the

time required to solve a puzzle—both factors are influenced by the content provider,

but grows almost linearly with the MB’s computational resources.

8.1 Introduction

The content in this chapter was published at the IEEE Communications Letters [12].

115



8.1. Introduction 116

Online content providers, such as Hulu [78], often have access-control policies, which

either customize or prevent content-delivery to certain classes of clients. By client,

we mean the software used to communicate with the content provider, e.g., a web

browser. For instance, an access policy may only allow access to clients within 300

km of where the site is hosted (e.g, for data sovereignty [118]), or to those with

certain IP addresses [40]. Another policy may ban clients at a specific geographic

location [18, 25] (see Chapters 3 and 5), or clients whose devices have certain sys-

tem fingerprints (operating system, user-agent, etc) [112]. A content provider (or

provider for short) may also classify clients by their access networks [151], or their

network distance from the server (in terms of hop counts, network latency, etc) [81].

When access policies are in effect, the motivation to bypass them may arise. A client

that does not meet the access policies may try to bypass them using a MB that

meets those policies. MBs are commonly transport-layer proxy servers, gateways

of VPNs or anonymizing networks. The MB requests the provider’s content and

grants the client access to it by simply relaying the provider’s outbound traffic.

Many MBs claim to own thousands of IP addresses, which makes blocking them by

enumerating their IP addresses almost infeasible. To detect an intercepting MB, a

provider can collaborate with a cooperative client [39]. However, this is infeasible

within our threat model as we address a client that aims to bypass the provider’s

access policies; i.e., the client is the provider’s adversary. Solutions that aim to

prevent MBs from intercepting a connection (such as Secure Socket Layer [130])

fail to prevent those MBs from relaying traffic because the client would be ready to

share cryptographic credentials, such as encryption keys, with the MB to deceive

the provider.

We propose to use client puzzles [83] to increase the cost of collusion per client

on the MB. Our solution leverages network properties (average latency between

network hosts) which, together with the puzzles, impose a limit on the number of

simultaneous clients an MB can collude with. Exceeding the limit divulges the MB’s

relaying actions to the provider. This chapter makes the following contributions:

• Proposing and studying a solution that uses client puzzles to limit unautho-

rized traffic relaying (Section 8.2).

• Using a Markovian queueing model to evaluate our solution, and to find the

upper limit of the number of clients the MB can collude with at a time (Section

8.3).

• Evaluating the rates of false rejects and false accepts through simulations.
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8.2 Proposed Approach

Our objective is to enable a provider detect if a content recipient1 is a legitimate

client (i.e., connected to the provider without an MB and not relaying the provider’s

traffic anywhere else) or an MB. To achieve this objective, we use client puzzles [83]

to increase the computation required by the MB per client; thus, increasing the RTT

the provider observes. The success of detecting an MB is dependent on the number

of simultaneous clients receiving the relayed traffic from the MB. As the number

increases, the detection success increases. If the number of clients reaches a certain

threshold (Section 8.3), the provider realizes that the MB is relaying its traffic. The

provider is assumed to be able to:

• Estimate the average RTT from itself to a content recipient [92, 153].

• Estimate the mean time to solve a puzzle with certain difficulty across different

client machines spanning a range of computational power (demonstrated in

[83]).

For each connection made to provider w from content recipient d, w estimates Nw(d),

which is the average network RTT from itself to d. The provider w then periodically

creates non-parallelizable puzzles [144], and sends them to d. To solve a puzzle, d

must allocate a portion of its resources for some time depending on the puzzle

difficulty set by w. The resource demanded by the puzzle depends on the type

chosen by w, which could be processing- [83] or memory-type [46] puzzles. We

assume w uses processing-type puzzles throughout this chapter. However, any type

can be chosen as long as w is able to estimate the client’s puzzle-solving time to some

degree of certainty (second assumption above). Upon solving a puzzle, d is required

to return the solution to w, which verifies it and bans d if the solution was incorrect.

Verification happens in constant time independent of the puzzle difficulty [83].

Denoting tc as the mean time to solve a puzzle across various clients, w expects to

see a RTT of:

RTTe = Nw(d) + tc (8.1)

When w receives a solution, it calculates the actual round-trip time, RTTa, from

the puzzle-arrival time and compares it with RTTe. If RTTa ≤ RTTe, the provider

assumes that d is not an MB. Otherwise, it suspects that d is an MB because the

existence of an MB between the provider and a client is likely to increase RTTa—an

1We use this term to refer to the machine intended by the provider as the final content desti-
nation.
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explanation follows.

If d is an MB, it has two options: either relaying all of w’s outbound traffic including

the puzzles to client c, so that c solves them; or extracting the puzzles from the

traffic and solving them on behalf of c. Relaying the puzzles to c costs an additional

network RTT, NMB(c), between the MB and c. An analogous effect occurs if the

puzzles were outsourced to a remote party. The actual RTT then becomes:

RTTa = Nw(d) +NMB(c) + tc (8.2)

We do not expect w to be able to estimate NMB(c). To satisfy RTTa ≤ RTTe, the

MB and c have to satisfy NMB(c) + tc ≤ tc, which happens when NMB(c) = 0; that

is, the colluding client and the MB are one physical machine, or very close to each

other. We believe it is not a cost effective (scalable) attack for an MB to be close to

a meaningful number of clients. Assuming proper estimations to tc and Nw(d) (i.e.,

RTTe), it would be challenging for the MB to relay the puzzles to c, and satisfy

RTTa ≤ RTTe. We study the effect of inappropriate estimation of RTTe in Section

8.3.1 below.

To avoid the additional NMB(c), the MB will be inclined to choose the second option:

solve the puzzles on behalf of the clients. An additional queueing time, q, is expected

to contribute to RTTa because the MB will solve many puzzles, which correspond

to the number of clients it simultaneously colludes with. The actual RTT would

then be:

RTTa = Nw(d) + q + tMB (8.3)

where tMB is the MB puzzle-solving time. Recall, the content recipient d is the MB.

Again, we do not expect w to be able to estimate tMB. To maintain RTTa ≤ RTTe,

the MB’s computational resources must satisfy:

W ≤ tc (8.4)

where W = q + tMB, which is the average time a puzzle spends at the MB from

the moment it arrives unsolved to the MB until it departs the MB solved. The

queueing time q is affected by: the rate at which w sends puzzles to each client

connection; the number of clients simultaneously colluding with the MB; the MB’s

processing capabilities; and the puzzles’ difficulty. The last two factors also affect

tMB. Although this option seems more appealing to the MB than the previous one,

it forces the MB to limit the number of simultaneous clients to avoid being caught

by the provider.
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Table 8.1: Notation

Notation Description

δ
the number of clients simultaneously colluding with (i.e., being
relayed the provider’s content from) the MB.

t

(tc in Section 8.2) the mean of an exponential distribution
representing the time required to solve a single puzzle across
different client machines, measured in seconds/puzzle. The
provider is required to estimate this mean according to the chosen
puzzle difficulty.

r
the rate the provider generates puzzles to each client connection,
measured in puzzles/second.

b
the proportion of a client’s time available to solve puzzles;2 b = rt.
If b = 1, the average client spends all of its time solving puzzles.

k
the number of distinct puzzles the MB can solve simultaneously.
It is possibly influenced by the number of available processing
cores to the MB.

g
the factor by which an MB processing core is faster than the
average client. It is possibly influenced by the cores’ clock rate.

If an MB chooses to combine both options, solving some puzzles by itself and relaying

others, the provider will likely observe larger RTT for the relayed puzzles and hence

reject the client. The provider may allow some proportion, ρ, of RTTs to be larger

than the expected RTT before rejecting a client to account for delay spikes. In

such case, the benefit of relaying some puzzles will be limited by the provider’s

parametrization, which upper bounds the proportion of puzzles the MB can relay,

without getting its clients rejected, by ρ.

8.3 Evaluation and Analysis

In this section, we derive W (Section 8.2) as a function of the parameters affecting it.

We choose an analytical evaluation method rather than an empirical one to calculate

the theoretical maximum number of clients a MB can simultaneously collude with

(i.e., relay content to) to maintain W that satisfies equation (8.4).

We use the notation in Table 8.1. Note that of all the variables in the table, a

provider needs only estimate k and g, which is left for future investigation.
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We focus only on the MB’s processing power (k and g) as needed to solve processing-

type puzzles, and exclude from consideration resources (e.g., bandwidth, I/O, mem-

ory, etc) needed for the MB to relay content to clients. The motivation for this is to

allow focus on how the puzzle rate and difficulty constrain the MB; i.e., this is the

limiting factor. It follows that if the MB has sufficient resources to solve the puzzles

sent to it, then we assume it will have sufficient additional resources to relay content

to an arbitrary number of clients. We assume the MB does not store a local copy

of the traffic it receives from the provider; it initiates a connection to the provider

with each client connection request.

We use the M/M/k queueing model [65] to represent the queueing system at the

MB, where we assume the puzzle arrival is modelled by a Poisson process, and the

puzzle-solving time is exponentially distributed. This model considers k serving

units, which in our case is the number of puzzles the MB is able to solve in parallel.

The waiting time of this model is [65]:

W =
1

µ
+

(
(kρ)k

k!(1− ρ)
+

k−1∑
i=0

(kρ)i

i!

)−1(
ρ(kρ)k

λ(1− ρ)2k!

)
(8.5)

where

ρ =
λ

kµ
(8.6)

In the queueing terminology, λ is the customer arrival rate to the system and µ is

the customer departure rate from each of the k serving units (µ = 1
service time/customer

),

both measured in customers/time unit. Customers arriving and departing the sys-

tem resemble, in our case, unsolved puzzles arriving and solved puzzles departing

the MB. Customer-service time at each serving unit resembles puzzle-solving time

at each of the MB’s cores.

To realize the maximum δ that satisfies (8.4), we first need to represent W as a

function of δ. We use the waiting time of (8.5), and express λ and µ in terms of δ,

r, t and g. Because the provider sends puzzles at a rate of r puzzles/second to each

client connection, the puzzle arrival rate at the MB is λ = nr puzzles/second. The

rate of solving puzzles at each of the k cores is g times faster than that of a client;

hence, µ = g/t. Substituting in (8.6), we get:

ρ =
nrt

kg
=
nb

kg
(8.7)

Note that the MB can prevent its queue from growing indefinitely by maintaining

λ < kµ [65], which occurs if it keeps the number of simultaneous clients δ < kg/b.
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However, only satisfying this inequality can still disclose the MB’s relaying actions

to the provider, as it does not ensure satisfying (8.4). By substituting ρ obtained as

in (8.7) for that in (8.5), we express W in terms of δ, t, r, k and g. Inequality (8.4)

(which can be rewritten as W/t− 1 ≤ 0) then becomes:

1

g
+

(
(nb
g

)k

k!(1− nb
kg

)
+

k−1∑
i=0

(nb
g

)i

i!

)−1( nb
kg

(nb
g

)k

nb(1− nb
kg

)2k!

)
− 1 ≤ 0 (8.8)

Using linear iterative root finding [141], we can find the maximum integer value of

δ that satisfies (8.8).

To study the behavior of δ with respect to b, k and g, we consider a range of values

for each of those parameters in the intervals [2−6, 1], [1, 80] and [1, 4] respectively.

Note that, as of this writing, the fastest clock frequency being manufactured in the

industry is the IBM zEC12, which has a frequency of 5.5 GHz [42]. On the other

hand, processor speeds of smartphones (i.e., representing slow clients) are generally

in the range of 1.2 to 1.9 GHz. As such, the processor speed of a MB is unlikely

to exceed four times that of a regular client, hence the upper bound of the selected

interval of g. Note that it is still possible for a client to be using a machine slower

than 1.2 GHz.3 As such, values of g > 4 could still be of interest to evaluate.

However, as we show later below, the selected range does not affect the conclusions

drawn about the effect of the puzzles to hinder traffic relaying.

Figure 8.1(a) shows the change of δ at k = 25, and Fig. 8.1(b) at g = 1.5. We ignore

δ when b > 1 because the provider should never set b in that range. Otherwise,

unsolved puzzles start to accumulate at legitimate clients, increasing the RTT due

to additional queueing delay, and falsely rejecting these clients.

From (8.8), we can see that δ and b always occur multiplied together, hence by

replacing all occurrences of δb with γ, we can express δ in terms of γ and b as

δ = γ/b. That is, δ follows a hyperbolic decay with b (for all b > 0) with a scale

factor of γ. The maximum value of γ that makes W satisfy (8.4) grows with k and

g. For example, in Fig. 8.1(b)—where g = 1.5—every integer value, κ, on the k axis

defines the scale factor, γ = f(1.5, κ), of a hyperbolic decay of δ with respect to b

at κ.

The results plotted in Fig. 8.1 show that δ follows an almost linear growth with g

3Note—it is likely that such slower devices will already be precluded from enjoying many now-
common services that require more powerful processors (e.g., streaming media content, running a
browser that is new enough to support web-sockets for CPV, etc).
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Figure 8.1: Maximum theoretical number of clients that can simultaneously
collude with the MB without being detected by the provider. The lines
on the surfaces are equally spaced on the b, g and k axes. See Table 8.1
for notation.

and k, versus a hyperbolic decay with b. The provider influences b through t and

r, the MB controls k and influences g by investing in hardware. This puts the MB

in a critical situation as the provider has a more significant impact on δ than the

MB has. These results illustrate the potential of puzzles in limiting the number of

colluding clients.

8.3.1 Simulation Results

The analytical evaluation showed how client puzzles affect the number of clients

the MB could support in case the MB decides to solve the puzzles on behalf of the

clients it colludes with. We now study the case where the MB decides to forward

the puzzles to those colluding clients. We use the network simulator (ns-2) [24] to

evaluate the rate of False Rejects (FRs), where a legitimate client is rejected by the

provider; and False Accepts (FAs), where a client colluding with the MB is accepted.

Because wireless access networks have unique latency-estimation issues (see Chapter

7), they are beyond the scope of the evaluation performed in this chapter.

We assume the provider will endure some error while estimating RTTe in (8.1). This

error scales RTTe by a factor β, such that:

RTTe = β × RTTa (8.9)

See (8.2) for RTTa. FRs tend to increase when β < 1, FAs tend to increase when
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Figure 8.2: FR and FA obtained from simulations; β represents the error of
the provider’s RTT estimation.

β > 1.

Our simulation scenarios involved several runs with 100 nodes and random con-

nectivity patterns. Nodes distribution and link latencies were designed to resemble

networks distributed over a large geographic region. One node was set to be the

provider, another was set to be the MB, while other nodes simulated clients. Some

clients were connected directly to the provider (legitimate clients), others (colluding

clients) were connected through the MB. FRs and FAs are shown in Fig. 8.2. For

the runs we conducted, the error scale in the range 1.03 < β < 1.1 yields 0% FRs

and 2% FAs. We believe these results show promising potential for the solution we

propose herein.

8.4 Further Considerations

How many puzzles per second should the provider send to a client, and what should

their difficulty be? Figure 8.1 showed a tradeoff between allowing more clients to

collude with an MB, and overwhelming legitimate clients. To deal with this tradeoff,

providers may set b to the value that satisfies a central tendency of δ, such as the

mean δ̄, over desired intervals of b, k and g.

One way to calculate δ̄ is to, first, approximate a function that mimics the behavior

of δ. This can be done using curve fitting [119]. For example, at g = 1.5 and

2−6 ≤ b ≤ 1, δf can mimic the behavior of δ, such that:

nf = k(AebB+C +D) (8.10)
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where A, B, C and D are constants—their values are shown on Fig. 8.3. The mean,

δ̄f , in terms of k is:

δ̄f =
1

1− 2−6

∫ 1

2−6

k(AebB+C +D) db = 8.9k (8.11)

Substituting δ̄f for δf in (8.10), and solving for b, we get:

b =
1

B

(
ln

8.9k −Dk
kA

− C
)

= 0.07 (8.12)

That is, considering the abstraction given in Section 8.3 and our queueing model,

when b is restricted to the range 2−6 ≤ b ≤ 1 and g = 1.5, the mean of δf occurs

at b = 0.07. Beyond this value of b, puzzles will overwhelm legitimate clients with-

out significant drop in the number of colluding clients δ whereas below, δ rapidly

increases with little reduction in the puzzle workload on legitimate clients. This

highlights selection of an example value of b which may be of practical interest.

To set b, the provider adjusts r and t such that their product b results in the desired

value. Because the network RTT is typically measured in ms [34], a puzzle that

takes a relatively long time (e.g., 1 sec) to solve on an average client machine may

overshadow the network RTT. Providers need to consider that when setting the

puzzle difficulty, as it affects t.

Finally, providers may consider varying the puzzles’ difficulty randomly, and discard-

ing the observed RTT of puzzles that are harder than certain undisclosed threshold

to avoid having their solving time overshadow the network RTT. This may penalize

an MB significantly as it will not be able to distinguish time-sensitive puzzles (those

where the provider will account for their RTT) from others, and will have to solve

them in order of arrival. Having a number of relatively difficult puzzles in the MB’s

queue will raise the waiting time of all others behind them, making it easier for the

provider to capture the highly-delayed responses of timed puzzles, thus, detecting

the MB.

8.5 Conclusion

This chapter addressed the problem of unauthorized relaying of a content provider’s

traffic, commonly performed by a MB to enable colluding clients to bypass access-

control policies set by the provider. We proposed to use client puzzles and delay

estimation to enable providers hinder such unauthorized relaying of traffic, and used
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Figure 8.3: Fitted surface at g = 1.5 represented by (8.10). The values of the
constants in equation (8.10) are: A = 5.64, B = −58.13, C = 3.9 and
D = 4.37. NRMSD over the displayed b and k intervals is 0.04 (or 4%).
The blue line represents the mean δ̄f .

a queueing-model to evaluate our solution.

The evaluation shows that in the presence of the proposed solution, the maximum

number of clients that can simultaneously collude with the MB without being de-

tected by the provider follows a hyperbolic decay with the rate of creation of puzzles

and the time required to solve them. Both of these factors are influenced by the con-

tent provider. Additionally, the number of colluding clients follows an almost-linear

growth with the MB’s computational resources, which is rather influenced by the

MB. This enables a provider using the proposed solution to have a higher control

on the maximum number of simultaneously colluding clients than the MB itself.

However the rate of puzzle creation overwhelms legitimate clients too, deriving the

need to find an appropriate balance between overwhelming legitimate clients and

limiting the MB’s collusion. We discussed how this balance could be obtained given

the situation.



Chapter 9

Conclusion

As location-oriented service/content providers are emerging over the Internet, veri-

fying the geographic locations of Internet clients is becoming increasingly crucial. A

plethora of security applications—such as fraud detection, location-based authenti-

cation, and online voting—can benefit from a realtime location-verification tool.

Measurement-based Internet geolocation approaches highlight a strong correlation

between the Internet’s delays and geographic distances, and provide a strong evi-

dence of the ability to utilize these delays to locate clients, given appropriate delay

processing. Despite the achieved accuracy of recent techniques, the process of refin-

ing the measured delays could be exploited by an adversary motivated to forge its

location. Accordingly, any secure delay-based geolocation approach has to consider

both menaces : the adversary and the Internet-added delay uncertainty.

9.1 Satisfying Thesis Objectives

In this thesis, we first investigate the reliability of current state-of-the-art delay-

based geolocation techniques in the presence of an adversarial client motivated to

deliberately misrepresent its own geographic location (Chapter 3). Our findings

illustrate that such techniques are not ready for use in hostile environments yet

as they fail to employ an integrity-preserving delay-measurement process, which is

the fundamental component relied upon by all such techniques. The difficulty to

fix current status quo stems from the challenges of getting community support to

modify the default implementation of ICMP-based utilities in the network stack,

and disseminate the modifications for the sole purpose of hardening geolocation.

126
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We then proceed to devise CPV (Chapter 5), a delay-based algorithm designed

to provide a higher level of assurance about the correctness of a device’s loca-

tion, compared to the assurance provided by current state-of-the art geolocation

techniques. To reduce potential false rejects/accepts, we support CPV by a novel

OWD-estimation protocol that requires similar amount of client cooperation as in

estimating RTTs, yet achieves higher accuracy in many cases (Chapter 4). To iden-

tify these cases, we derived the probability distribution of absolute error for both

protocols as a function of the underlying delay distribution. CPV has been exten-

sively evaluated in wired (Chapter 6) and wireless networks (Chapter 7), and the

results show its potential to be adopted in practice.

We show how the CPV algorithm can be further reinforced against a customized MB,

which is specifically designed to defeat CPV by exchanging the algorithm’s control

messages with the verifiers on behalf of the adversary (Chapter 8). By attaching a

cryptographic puzzle to these control messages and verifying the solution each time

the messages are echoed, we force the MB to solve all the puzzles destined to all the

adversaries it colludes with. We proved how this technique enables CPV to place a

ceiling on the number of adversaries the MB can collude with in parallel, without

being detected by CPV.

The bigger picture

Table 9.1 shows solutions designed to ensure the integrity of location calculation

against common adversarial threats. The table shows where the location verification

mechanisms contributed by this thesis (two right-most columns) stand with respect

to current state-of-the-art mechanisms. A check mark (X) means the solution is

sufficient to ensure location integrity against the respective adversarial threat. Note

that the threat at row i means the adversary is capable of imposing this threat and

all previous threats in upper table rows. Accordingly, a check mark at row i means

the respective solution (column) is sufficient to ensure location integrity against an

adversary capable of imposing all threats from 1 to i inclusive, or any combination

thereof.

The table categorizes these solutions by their susceptibility to evasion rather than,

e.g., by their cost of operation or the magnitude of their accuracy. The “user-

declared location” (column 1) is the mechanism by which the LSP simply asks

the human user about his/her location. In the absence of any adversarial threats,

including the absence of the threat that the user falsifies (or lies about) their location
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Table 9.1: Solutions designed to ensure the integrity of location calculation
against common adversarial threats. The location verification mecha-
nisms contributed by this thesis are in the two right-most columns.
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1 Absence of threats X X X X X X
2 Falsifying declared location X X X X X
3 Forging transmitted coordinates X X X X
4 Modifying location hints X X X
5 Manipulating delays X X
6 Colluding with a public MB X

∗This class of solutions encompasses all measurement-based geolocation techniques when measurements are per-
formed on the application layer of the TCP/IP protocol stack.

(row 2 in the table), this mechanism is sufficient to ensure location integrity (hence

the checkmark in row 1 column 1).

As discussed in Chapter 2, the “client self-geolocation” category (column 2 in the

table) includes any means by which the client geolocates itself and informs the

Location-Sensitive Provider (LSP), e.g., using GPS or WPS. Also recall, from Sec-

tion 2.1.4 on page 13, that the client’s location could be “inferred” from its IP ad-

dress (column 3). This is different from measurement-based IP geolocation, which

is when the delay-measurement probes are destined to the client’s observed IP ad-

dress. However, we place both, inference-based geolocation (including IP-address

based inference) and measurement-based IP geolocation techniques, together under

a single solution category (column 3) since they are affected by the same threat:

modifying location hints. This threat includes not only modifying browser-based

hints (e.g., preferred language—see Section 2.2 on page 13), but also using a MB

to modify the IP address observed by the geolocating party. If measurement-based

geolocation is to be used, with delay measurements performed over the application

layer (column 4), e.g., through the browser [30, 107] or using websockets [50, 95], it

would be sufficient to ensure the integrity of location calculation against the threats

in rows 1 to 4 in the table.
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The table shows that CPV combined with a Proof-of-Work (PoW) mechanism, as

we explain in Chapter 8, is sufficient to ensure location integrity against all the

listed adversarial threats in the table. The absence of CPV leaves two threats

(rows 5 and 6) unaddressed by current state-of-the-art geolocation techniques. Note

however that this list is not exhaustive. For example, there is also the threat of

the adversary colluding with a MB customized to evade CPV, and that MB is not

colluding with other adversaries. This is the case when, for example, the adversary

has its own private MB physically located where it wants to fraudulently appear to

be. However, it may not be scaleable for an adversary to own a MB at every possible

geographic location it intends to forge its location to. To that end, we believe the

mechanisms for location verification of Internet clients contributed to the literature

by this thesis are of practical value to many location-sensitive applications.

9.2 Future Research Directions

We now discuss possible future extensions to the work conducted in this thesis.

Enhancing the accuracy of delay-based geolocation techniques. The ad-

vantages provided by the minimum pairs protocol of Chapter 4 can be leveraged to

enhance the accuracy of delay-based geolocation techniques. The protocol requires

three cooperating servers to exchange messages among themselves and the client;

in delay-based techniques, sets of three landmarks can cooperate to implement the

minimum pairs protocol, thus estimating OWDs instead of RTTs across all the links

between the landmarks and the client. No further cooperation would be required

from the client beyond echoing the messages, which is similar to what the client does

when the landmarks estimate RTTs. For example, the client would not be required

to synchronize its clock with the landmarks, nor to calculate and report its view of

the delays.

Server location verification. Verifying the geographic locations of servers, e.g.,

webservers, may provide security benefits to mitigate server impersonation, typically

done through phishing, pharming or Man in the Middle (MitM) attacks. We believe

that some of the ideas in this thesis, including the heuristics used to enhance the

delay-measurement process, can be adapted to address the problem of verifying the

geographic locations of servers.
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Appendix A

RTT Measuring Tools

To illustrate the ease of manipulating delays as measured by common network utili-

ties, we show code snippets of example utilities lacking delay-measurement integrity.

Recall from Section 3.3 that the sender in the stateless implementation places the

timestamp si (packet-creation time) in the data field of the ICMP packet.1 From

GNU’s ping (ping.c) [54]:

502 if (PING_TIMING (data_length))

503 {

504 struct timeval tv;

505 gettimeofday (&tv, NULL);

506 ping_set_data (ping , &tv, 0, sizeof (tv), USE_IPV6);

507 }

The variable tv represents our si. When the echo-reply is received, the sender

observes the receiving time ri, reads si from the echoed packet, and uses them to

calculate the RTT using (3.3). From GNU’s ping (ping echo.c) [54], when the sender

receives the echo-reply:

181 struct timeval tv;

182 int timing = 0;

183 double triptime = 0.0;

184

185 gettimeofday (&tv, NULL);

...

196 struct timeval tv1 , *tp;

197

1ICMP types 13 and 14 (timestamp, and timestamp reply), can also be used to measure RTTs;
RFC 792 specifies recording sending and receiving timestamps in their data field [125]. However,
we did not notice many implementations of these types.
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198 timing ++;

199 tp = (struct timeval *) icmp ->icmp_data;

200

201 /* Avoid unaligned data: */

202 memcpy (&tv1 , tp, sizeof (tv1));

203 tvsub (&tv, &tv1);

204 triptime = (( double) tv.tv_sec) * 1000.0 + (double) tv.tv_usec) / 1000.0;

...

227 if (timing)

228 printf (" time =%.3f ms", triptime);

The variable timing is true if datalen - PING HEADER LEN >= sizeof (struct

timeval). Thus, from line 502 in ping.c and 227-228 in ping echo.c above, such

implementation of ping fails to calculate the RTT if the packet size was less than

the size of the timeval struct.2

For the stateful echo-request/reply implementation, recall that the sender records

si in its local memory. These stateful utilities commonly fill the data field using a

fixed predefined pattern; e.g., from GNU’s traceroute [54] (src/traceroute.c):

664 char data[] = "SUPERMAN";

665

666 len = sendto (t->udpfd , (char *) data , sizeof (data),0, (struct sockaddr *) &t->

to, sizeof (t->to));

...

679 if (gettimeofday (&t->tsent , NULL) < 0)

680 error (EXIT_FAILURE , errno , "gettimeofday");

where t is a struct (locally) holding information about an issued traceroute packet.

When an echo-reply is received [54] (src/traceroute.c):

383 gettimeofday (&now , NULL);

384

385 now.tv_usec -= trace ->tsent.tv_usec;

386 now.tv_sec -= trace ->tsent.tv_sec;

...

417 triptime = (( double) now.tv_sec) * 1000.0 + (( double) now.tv_usec) / 1000.0;

2The timeval struct could either be 8 or 16 bytes depending on the platform. The packet size
is commonly set by the -s option.
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...

438 printf (" %.3fms ", triptime);

The snippets provided herein are only examples of a wide range of utilities adopting

similar behaviors. They show how predictable packet contents of commonly-used

utilities could be, and provide evidence of lack of integrity in delay measurement. We

assert that, at their current state, none of these tools are ready for use in security-

sensitive systems. Unfortunately, many such systems either rely on these tools [44],

or fail to propose integrity-preserving alternatives.



Appendix B

Proofs

In this appendix, the three claims made in Chapter 5 are proved.

Notation. The notation ©XY (k) refers to the ellipse determined by the foci X

and Y whose major axis is k meters long; AB for the length of line segment AB; and
←→
XY refers to the straight line passing by the points X and Y . Consider 4XY Z in

Fig. B.1. Regions A1, A2 and A3 are those outside 4XY Z delimited by the pairs

(
←→
XZ,

←→
Y Z), (

←→
XY ,

←→
XZ) and (

←→
XY ,

←→
Y Z) respectively, such that none of 4XY Z’s exterior

angles belong to A1, A2 or A3. Regions B1, B2 and B3 are those outside 4XY Z
delimited by the region pairs (A1, A2), (A2, A3) and (A3, A1) respectively. A point

P outside 4XY Z will either fall in region A = A1 ∪A2 ∪A3 or B = B1 ∪B2 ∪B3.

Proof of Claim 1

Recall Claim: Let P be a point in the Cartesian plane, and let 4XY Z be the trian-

gle determined by the points X, Y and Z. If P is strictly outside 4XY Z, then the

sum of the areas of 4XY P , 4XPZ and 4PY Z is greater than the area of 4XY Z.

Figure B.1: Regions A = A1∪A2∪A3 and B = B1∪B2∪B3 outside 4XY Z.
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(a) (b)

Figure B.2: If P is outside 4XY Z, the sum of the areas of 4XY P , 4XPZ
and 4ZPY will be larger than the area of 4XY Z.

First, assume that P is in region A; then:

Claim 4 If P is in region A, then the area of one of the triangles 4XY P , 4XPZ
or 4PY Z will be larger than the area of 4XY Z.

Proving claim 4 suffices to prove claim 1 for region A because if the area of only one

triangle by itself exceeds the area 4XY Z, then the sum of the areas of the three

triangles (4XY P , 4XPZ and 4PY Z) will definitely exceed the area of 4XY Z.

To prove claim 4, assume that P is in region A1, as shown in Fig. B.2(a). In this case,

the one triangle (referred to in claim 4) whose area is larger than that of 4XY Z is

4XY P . The proof follows.

Proof:

Since region A1 is bound by the straight line pair (
←→
XZ,

←→
Y Z).

Therefore ∠Y XP > ∠Y XZ and ∠XY P > ∠XY Z.

Therefore Z is inside 4XY P .

Since line segment XY is shared between 4XY Z and 4XY P .

Therefore 4XY Z ⊂ 4XY P .

Therefore area(4XY Z) < area(4XY P ).

Note that an analogous proof holds if P is in A2 or A3. For region B:

Claim 5 If P is in region B, then the sum of the areas of two of the three triangles

4XY P , 4XPZ or 4PY Z will be larger than the area of 4XY Z.

Again, proving claim 5 suffices to prove claim 1 for region B because the sum of the

areas of the three triangles (4XY P , 4XPZ and 4PY Z) will definitely exceed the
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Figure B.3: If XZ ≤ XY and W is inside 4XY Z, then XW ≤ XY .

area of 4XY Z if the areas of two of the three triangles together exceed the area

4XY Z. To prove claim 5, assume that P is in region B2, as shown in Fig. B.2(b);

line segment PZ intersects XY in W . In this case, the two triangles (referred to in

claim 5) are 4XPZ and 4ZPY . The proof follows.

Proof:

Since P , W and Z are collinear, W is between P and Z, and

Since line segment XZ is shared between 4XWZ and 4XPZ
Therefore 4XWZ ⊂ 4XPZ
Similarly, 4ZWY ⊂ 4ZPY
Therefore (4XWZ ∪4ZWY ) ⊂ (4XPZ ∪4ZPY )

Therefore 4XY Z ⊂ (4XPZ ∪4ZPY ).

Therefore area(4XY Z) < area(4XPZ) + area(4ZPY ).

Analogous proof holds if P is in B1 or B3. This concludes the proof to Claim 1.

Proof of Claim 2

Recall Claim: Let W be a point in the Cartesian plane, and let 4XY Z be the

triangle determined by the points X, Y and Z such that XZ ≤ XY . If XW > XY ,

then W is strictly outside of 4XY Z.

This Claim can be rewritten as:

Claim 6 Let W be a point in the Cartesian plane, and let 4XY Z be the triangle

determined by the points X, Y and Z; XZ ≤ XY . If W is inside 4XY Z, then

XW ≤ XY .

which is the logical transposition (P → Q) ` (¬Q → ¬P ) of Claim 2, where P is
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(a) (b)

Figure B.4: When P ∈ B3, then 4XY Z ⊂ {©XY (XP +PY ) ∪ ©XZ(XP +

PZ)}.

the event “XW > XY ”, and Q is the event “W is strictly outside of 4XY Z”. The

following proves that XW ≤ XY holds when XW is the maximum that maintains

W inside 4XY Z, which is when W lies on line segment Y Z (see Fig. B.3).

Proof:

Since XZ ≤ XY

Therefore θ2 ≤ θ1.

Since W lies on line segment Y Z

Therefore θ1 + θ4 = θ3.

Therefore θ1 ≤ θ3.

Therefore θ2 ≤ θ3.

Therefore XW ≤ XY .

Proof of Claim 3

Recall Claim: Let P be a point in the Cartesian plane, and let 4XY Z be the

triangle determined by the points X, Y and Z. If P is strictly outside 4XY Z, then

increasing the sums XP + PZ, XP + PY or Y P + PZ without reducing at least one of

the other sums cannot place P inside 4XY Z.

Similar to the proof of Claim 1, the proof of Claim 3 is split into two parts: when

P ∈ A and when P ∈ B. For part one, first assume that P ∈ A1. In this case,

according to the isoperimetric inequality, XP + PY must be greater than XZ + ZY

because they both have the same starting and ending points, X and Y . Therefore,

it is impossible to move P inside 4XY Z without decreasing XP + PY . Analogous

argument applies for regions A2 and A3.

Now to the case where P ∈ B. First assume that P ∈ B3 as shown in Fig B.4. If
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4XY Z ⊂ {©XY (XP +PY ) ∪ ©XZ(XP +PZ)},1 is proved, then P cannot move

to inside 4XY Z without reducing XP + PY or XP + PZ because the sum of the

lengths from any point on the ellipse to its pair of foci is constant; hence, the sum

of the lengths from any point inside the ellipse to its pair of foci is less than that to

any point on the ellipse.

Assume that 4XY Z is split into two: 4XYW and 4XWZ, where W is the inter-

section of line segments XP and Y Z. Then, proving that 4XYW ⊂ ©XY (XP +

PY ) is as follows (see Fig. B.4(a)).

Proof:

Since X is a focus of the ellipse; P is a point on the ellipse; X, W and P are

collinear; and P /∈ 4XY Z
Therefore W is inside the ellipse.

Since Y is a focus of the ellipse

Therefore line segments XW , WY and XY are inside the ellipse.

Therefore 4XYW ⊂ ©XY (XP + PY ).

Analogous proof applies to 4XWZ ⊂ ©XZ(XP + PZ) (Fig. B.4(b)). Therefore,

when P ∈ B3, it is impossible to move P inside 4XY Z without reducing the

summation XP + PY or XP + PZ. The remaining regions of B can be proved in the

same manner. Therefore, whenever P ∈ B, then 4XY Z ⊂ {©XY (XP + PY ) ∪
©Y Z(Y P + PZ) ∪ ©XZ(XP + PZ)}. This concludes the proof.

1Note that 4 ⊂ © if ∀p ∈ 4, p ∈ ©.
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