
Accurate Manipulation of Delay-based Internet Geolocation

AbdelRahman Abdou*‡ Ashraf Matrawy† Paul C. van Oorschot‡

‡School of Computer Science, †School of Information Technology
Carleton University

Ottawa, ON, Canada

ABSTRACT
Delay-based Internet geolocation techniques are repeatedly
positioned as well suited for security-sensitive applications,
e.g., location-based access control, and credit-card verifi-
cation. We present new strategies enabling adversaries to
accurately control the forged location. Evaluation showed
that using the new strategies, adversaries could misrepre-
sent their true locations by over 15000km, and in some cases
within 100km of an intended geographic location. This work
significantly improves the adversary’s control in misrepre-
senting its location, directly refuting the appropriateness of
current techniques for security-sensitive applications. We
finally discuss countermeasures to mitigate such strategies.

CCS Concepts
•Security and privacy→ Authentication; •Networks→
Protocol correctness;

Keywords
Location-aware Authentication; Location-based Services; Lo-
cation Verification; Internet Measurements; Geolocation

1. INTRODUCTION

The recent proliferation of Location-Based Services (LBSs)
in the Internet has highlighted the requirement for reliable
and accurate Internet geolocation tools. Some of these ser-
vices employ location-based access policies [11], or restrict
operations by clients’ geographic locations. Examples in-
clude media streaming [6], online voting/gambling, location-
based social networking [35], fraud prevention [7], and geog-
raphy based routing [26]. Nanjee.net is one example that
provides commercial geolocation services based on active
network (delay) measurements [45]. Tabulation-based IP ge-
olocation service providers maintain lookup tables that map
IP addresses to locations. Studies have found that many of
the major tabulation providers, e.g., hostip.info, are unreli-
able [34] and evadable [30].

Delay-based IP geolocation techniques have accuracy ad-
vantages over other techniques [40]. They are also resilient
to attacks that other techniques fall to [16], such as clients
submitting false location information [45, 30]. The W3C ge-
olocation API [36] defines an interface for LBSs to obtain a

* Email: abdou@scs.carleton.ca
The final version of this paper is published in the proceedings of ACM

Asia Conference on Computer and Communications Security

(AsiaCCS 2017). This is the authors’ copy for personal use. c©ACM.

client’s location from the browser, which uses technologies
such as WiFi Positioning Systems (WPS) [48], Global Posi-
tioning System (GPS) [21], or IP address to location map-
ping, to determine its location. Technologies that allow users
to hide their IP addresses, such as Virtual Private Networks
(VPNs) and proxies, can be detected [7] and thwarted [3];
some LBSs, e.g., Hulu,1 have recently started employing
these practices [43]. For these reasons, delay-based tech-
niques are gaining increasing community support [14], specif-
ically advocated [34], and repeatedly positioned as well suited
for security-aware contexts, e.g., ensuring legitimate storage
of data in the cloud [19], or locating hidden servers [8].

Since 2001, more than 10 delay-based geolocation tech-
niques have been proposed [20, 4, 13, 24, 27]. The round-trip
time (RTT) delay is first measured between the client and
a set of landmarks with known locations. These delays then
get mapped to distances according to some predefined and
usually landmark-specific function, and the client’s location
is estimated relative to the landmarks. Delay-based geoloca-
tion requires some way of measuring delays; because Internet
Control Message Protocol (ICMP) [38] utilities, e.g., ping
and traceroute, are ubiquitous and facilitate delay measure-
ments, they are commonly used for that purpose [47, 12].

Gill et al. [16] studied an adversary’s ability to distort
delay-based techniques by selectively delaying response mes-
sages thereby increasing the observed RTTs. They modeled
an adversary that uses the speed of light in fiber as an es-
timate to the traffic propagation speed over the Internet.
Although such an adversary succeeded to misrepresent its
location, it failed to control the country where it appears
to be at [16], which is the granularity of general interest in
practice [44, 33]. To the best of our knowledge, none of the
delay-based geolocation techniques published to date have
addressed these adversarial manipulations.

In this paper, we explain new attacks that enable an ad-
versary to accurately control the forged location, with ad-
versarial errors less than one-fifth of those achieved in pre-
vious literature [16],2 allowing country-level control of the
forged location. To achieve such an accuracy, we devise
new strategies whereby adversaries can model the speed of
traffic propagation, without knowing the predefined delay-
to-distance mapping function as assumed in previous litera-
ture [16]. Additionally, our attacks exploit how delay-based
geolocation techniques often fail to measure delays in an
integrity-preserving manner. As we show, delay-measuring
utilities commonly used by geolocation techniques lack in-

1http://www.hulu.com/
2See the distance error of adversaries A and B in Table 3.

http://www.hulu.com/


(a) Attempted distance on CBG= 15,092 km. Distance
error = 70.7 km.

(b) Attempted distance on GeoPing = 8,055 km. Distance
error = 71.4 km.

(c) Attempted distance on SegPoly = 6,617 km. Distance
error = 75.2 km.

Figure 1: Examples of adversarial accuracy in evad-
ing geolocation. • = true location of adversary; ×
= intended location of adversary; ◦ = locations cal-
culated by (a) CBG [20], (b) GeoPing [31], and (c)
SegPoly [12]; attempted dist is that between • and ×;
dist error for the adversary is that between × and
◦. Map data: Google, INEGI, Basarsoft.

tegrity checking, as they are subject to (1) modifying and/or
(2) predicting packet contents, enabling an adversary to
fully manipulate, i.e., increase and decrease (versus increase
only [16]), the observed RTTs.

We analyze the effectiveness of the modeled adversaries
on delay-based geolocation—the class of techniques shown
to be most resilient to attacks [16]. We implemented three
delay-based techniques, CBG [20], GeoPing [31] and seg-
mented polynomial (SegPoly for short) [12], and evaluated
adversarial location-forging accuracy. Some modeled adver-
saries forged their locations with distance errors <100 km
(see Section 6.1). The distance error is that between the
adversary’s intended location and the one calculated by the
geolocation technique. This relatively fine-grained location
control was possible even for some who attempted fraudulent
relocation more than 15,000 km away from their true loca-
tions. Figure 1 shows an example while manipulating each
technique. No prior scientific literature clearly demonstrates
that this level of adversarial location control is possible. We
make the following contributions:

1. We devise strategies that enable an adversary to ac-
curately forge the location calculated by delay-based
geolocation techniques.

2. We show how an adversary can fully manipulate the
delays measured by common utilities, and make avail-
able a proof-of-concept implementation.

3. We evaluate the manipulation effectiveness on three

delay-based techniques, which is the class of techniques
previously believed to be the most resilient to attacks [16],
showing how powerful an adversary can be upon con-
ducting such attacks on delay-based geolocation.

The rest of this paper is organized as follows. Section 2
reviews delay-based geolocation, and common delay mea-
suring utilities. Section 3 discusses related work. Section 4
explains how RTTs can be fully manipulated (increased and
decreased). The adversarial models and attack strategies are
explained in Section 5. Section 6 analyzes the effect of ma-
nipulating RTTs on delay-based geolocation, and Section 7
compares that across different adversarial models. Section 8
suggests countermeasures, and Section 9 concludes.

2. BACKGROUND

2.1 Delay-based IP Geolocation
In delay-based IP geolocation, the geographic location of

the client machine is determined based on the observed net-
work delays between the machine and a set of landmarks
with known locations. These techniques assume the client
is able to receive and respond to delay-measurement probes,
but fail to use/propose mechanisms for preserving the in-
tegrity of the measured delays. Common ICMP-based utili-
ties, like ping and traceroute, are often relied upon for that
purpose [47, 12].

Despite a plethora of factors that affect the Internet delays
between two nodes [46], numerous studies established that
there is a strong correlation between delays and geographic
distances [31, 20, 25]. The main characteristic relied on is
the propagation delay. Most, if not all, delay-based geoloca-
tion techniques mitigate the effect of other undesired delay
factors, such as queueing due to congestion, by using the
minimum of multiple delays measurements to the client from
each landmark. Typical values lie in the range of 10 to 20
RTT measurements. The research question then addressed
by most techniques becomes finding the best function to
map these delays to distances.

One exception is GeoPing [31]. Instead of mapping delays
to distances, GeoPing matches the location of the client to a
location where the most similar delay behavior would be ob-
served. Assuming n landmarks and m reference nodes with
known locations, the landmarks in GeoPing first create a de-
lay vector to each of the m nodes. A delay vector of a node
contains n values corresponding to the RTTs between the
landmarks and the node. Each landmark then measures the
RTT between itself and the client, enabling the landmarks
to create a delay vector for that client. The client’s location
is then matched to the node with the nearest delay vector,
calculated as the n-dimensional Euclidean distance between
the two vectors.

A key contribution of delay-based techniques is a function
that accurately maps delays to distances. CBG [20] uses
a linear mapping function called the best line, which is the
one closest to all {RTT, distance} coordinates, lies above
all of them, and has a non-positive intersection with the y-
axis (the distance). An example of the best line from our
experiments is shown in Fig. 2(a). The baseline function,
which represents the speed of data in fiber [32], is also plot-
ted on the same chart for reference. After calibration, each
landmark measures the RTT to the client, and maps it to
distance using the best line function. The client’s location is



0 200 400
0

1

2
·104

RTT (ms)

D
is

ta
n
ce

(k
m

)
Baseline Best line

(a) CBG [20] calibration

0 200 400
0

1

2
·104

RTT (ms)

D
is

ta
n
ce

(k
m

)

Linear regression

(b) SegPoly [12] calibration

Figure 2: An example of delay-distance calibration
from our experiments. (a) circled markers deter-
mine the best line; (b) 3-cluster polynomial fitting.

then estimated as the centroid of the intersection of circles
whose centers are the landmarks and radii are the distances.

Dong et al. [12] proposed to cluster the {RTT, distance}
coordinates of the landmarks into k clusters. The coordi-
nates in each cluster are then fitted to a polynomial function,
which is then used by the landmark to map delays to dis-
tances. Such a segmented polynomial approach exploits that
delay-to-distance ratios vary according to the spanned geo-
graphic distance [12]. Figure 2(b) shows an example from
our experiments of segmented polynomial regression with
k = 3. Coordinates in the first two clusters in Fig. 2(b)
are fitted using a quartic polynomial (degree 4), and in the
third using a quadratic one (degree 2). A least-square linear
fitting is also plotted on the same chart for referencing.

2.2 Common RTT Measurement Techniques
A sender can measure RTTs between itself and a receiver

by having the receiver respond to special packets of the
sender, and timing these responses. Assuming the sender
issues these packets to the receiver every t ms, and the first
one was created at time T , then the sender’s system time
when packet i was created, for packets i ≥ 0 is:

si = T + i · t (1)

If the packets take γ1 ms one-way delay from the sender to
the receiver, they reach the receiver at times:

mi = si + γ1 = T + i · t+ γ1 (2)

Assuming the receiver responds promptly, if packets take
γ2 ms one-way delay from the receiver back to the sender,
the responses arrive at times:

ri = mi + γ2 = T + i · t+ γ1 + γ2

The sender calculates the RTT for packet i as:

RTTi = ri − si = γ1 + γ2 (3)

To measure RTTs, network utilities commonly use the
ICMP protocol [38],3 as it is implemented by default in most
systems’ protocol stack. An ICMP packet gets wrapped by

3Some utilities rely on TCP messages, e.g., tcptraceroute.

(a) (b) (c)

(d)

Figure 3: Packet/segment formats for (a) ICMP
echo-request/reply; (b) ICMP destination-
unreachable; (c) UDP; and (d) IPv4.

an IP packet for delivery. Eleven ICMP types are specified
by RFC 792. The type is indicated by the type field of
an ICMP header. Echo-request/reply, types 8 and 0 respec-
tively, and destination-unreachable, type 3, are the options
commonly used to measure RTTs. The RFC does not spec-
ify a mechanism to calculate RTTs for either types [38].

Echo-request/reply. To construct an echo-request, the
sender sets the type and code fields to 8 and 0 respectively
(see Fig. 3(a)), chooses two 16-bit values for the identifier
and sequence number fields, and finally after filling the
data calculates the checksum and places it in its field. The
implementer can choose any values for the data, identifier
and sequence number fields [38]. We found that many, if
not all, ping implementations on Linux,4 BSD5and Mac OS6

use the echo-request/reply, and place the process ID (PID)
of the issuing process in the identifier field. When echo-
ing the message, RFC 792 specifies that the receiver should
only change the type field to 0 and recalculate the check-
sum, without defining a mechanism to ensure the described
behavior, thus no integrity checking.

To calculate the RTT using the echo-request/reply op-
tions, two common implementations exist: stateless and
stateful. In the former, the sender places the timestamp si
(packet-creation time) in the data field of the ICMP packet.
When the echo-reply is received, the sender observes the re-
ceiving time ri, reads si from the echoed packet, and uses
them to calculate the RTT using (3). Other examples of
such stateless implementation include, but not limited to,
ping on FreeBSD and Mac OS.

In the stateful echo-request/reply implementation, the sender
records si in its local memory. The RTT is calculated also
using (3), but reading si from the sender’s local memory
instead of the echo-reply packet. Examples of this stateful
implementation that use the echo-request/reply options in-
clude GNU’s traceroute using the ICMP option (i.e., tracer-
oute -I <host>), and hping7 again using the ICMP option
(i.e., hping3 -1 <host>). These utilities commonly fill the

4http://ftp.gnu.org/gnu/inetutils/
5https://svnweb.freebsd.org/base/
6http://www.opensource.apple.com/source/network cmds/
network cmds-433/ping.tproj/
7http://www.hping.org/download.php

http://ftp.gnu.org/gnu/inetutils/
https://svnweb.freebsd.org/base/
http://www.opensource.apple.com/source/network_cmds/network_cmds-433/ping.tproj/
http://www.opensource.apple.com/source/network_cmds/network_cmds-433/ping.tproj/
http://www.hping.org/download.php


data field using a fixed predefined pattern, e.g., all zeros, a
list of sequential ASCII characters, or hard-coded strings.

Destination Unreachable. To calculate the RTT using
this option, the sender issues a UDP segment destined to a
port that is unlikely to be open on the receiver’s machine. It
then records si in its local memory, and commonly fills the
data field with some fixed predefined patterns. If the port
was actually closed, the receiver is expected to respond with
an ICMP destination-unreachable message [5]. The sender
records the receiving time ri, and calculates the RTT us-
ing (3). Utilities implementing this behavior are commonly
stateful, si is recorded locally, because the receiver is not
echoing an exact copy of the sender’s packets. GNU’s tracer-
oute is an example employing this implementation through
its default UDP probes.

To construct a destination-unreachable message (Fig. 3(b)),
the type and code fields are set to 3, and the unused field
to 0. To enable the sender to match responses with their cor-
responding processes, RFC 792 specifies that the IP header
and the first 8 payload bytes of the originally received IP
packet are to be placed in the data field of the destination-
unreachable message [38].

3. RELATED WORK
Gill et al. [16] studied the effect of delay increases on

topology-aware and delay-based geolocation techniques, choos-
ing one representative technique for each. The former, such
as Octant [46], leverages the network topology to generate a
richer set of constraints to geolocate clients. The authors [16]
modeled two classes of adversaries: simple (controls only its
own machine) and sophisticated (controls a full wide area
network). The former was able to increase delays (adver-
saries B and E herein—Section 5 below) and the latter
was able to increase the number of hops to the landmarks.
Against delay-based techniques, both adversaries were found
to have limited control over the forged location [16]. Ad-
ditionally, the authors found that delay-based techniques
are generally more resilient to attacks than topology-aware
ones [16], making them more suitable for security-sensitive
applications than others. We thus focus on analyzing the ef-
fect of manipulations on delay-based geolocation techniques.

Contrary to what Gill et al. [16] concluded, we found that
country-level control of forged locations is indeed possible
while attacking delay-based geolocation, and that detecting
these attacks is not trivial. Even when the adversary is only
able to increase delays, we show below that devious traffic
modeling strategies can almost double adversarial accuracy,
compared to the strategies of Gill et al. [16].8

Muir et al. [30] investigated geolocation over the Internet
from a security perspective, and enumerated a broad spec-
trum of tactics for an adversary to manipulate geolocation
techniques, including using proxies to hide the IP address,
and falsifying location records of public registries like whois
databases. They argued that despite a plethora of propos-
als to geolocate Internet hosts, none appears to be robust
against all classes of adversaries. Our work is complemen-
tary as it provides concrete evidence, based on practical eval-
uations, supporting their assertion with respect to popular
implementations of delay-based geolocation techniques.

Goldberg et al. [18] addressed the problem of path qual-
ity monitoring, devising protocols to detect if an adversary

8See the distance error of adversaries B and C in Table 3.

Table 1: Properties of ICMP-based utilities, and the
effects of exploiting them on the observed RTTs. A
bullet (•) means Method i has property j.

Property (vulnerability)
Effect Method

Discovered↑ RTT ↓ RTT 1 2 3

1 Suspendable responses X • • • [16]
2 Modifiable pkt contents X X • herein
3 Predictable pkt contents X • • herein

sitting in the path between two end systems is manipulating
their traffic. Although their research is motivated, in part,
by the lack of integrity checking in network-monitoring util-
ities, their solutions assume the collaboration of the two end
systems. In our case, one of the end systems is the adversary
itself and therefore collaboration cannot be assumed. Thus,
none of their solutions fit the problem studied herein.

Delay-based location verification techniques have been pro-
posed [2]. However, proposals for single-hop wireless net-
works [49] cannot be directly applied to the Internet because
of the difference in delay nature between both domains [16].

In Network Coordinate Systems (NCSs) [10], network nodes
are assigned coordinates according to the delays between
them. NCSs are generally seen as different from geolocation
because the coordinates of a node reflect its network loca-
tion rather than geographic longitude and latitude; thus, no
delay-to-distance mapping is required. Adversarial environ-
ments to disrupt an NCS were explored [17], and proposals
for securing NCSs addressed adversarial delay-increase [22].

4. FULL DELAY MANIPULATION
From Section 2.2, the methods whereby a sender can mea-

sure RTTs using ICMP are:

• M1: stateless using echo-request/reply.

• M2: stateful using echo-request/reply.

• M3: stateful using destination-unreachable.

Table 1 lists potentially-exploitable properties of common
ICMP-based network utilities. These properties become vul-
nerabilities when the measured RTTs are relied upon by
security-sensitive applications; because we investigate the
effect of using ICMP-based utilities in security-sensitive ge-
olocation purposes, we refer to the properties in Table 1
as vulnerabilities. Note that despite having the same ef-
fect on RTTs, the first and second vulnerabilities in Ta-
ble 1 enable an adversary to increase RTTs in a differ-
ent way; likewise, the second and third decrease differently.
The table also shows which of the three commonly-used
RTT-measuring methods listed above has which vulnera-
bility (third column). In each method, there are two ICMP
vulnerabilities (•) that enable and adversary to increase and
decrease RTTs.

Exploiting the first vulnerability in Table 1 enables the
adversary to increase RTTs in all three methods, because
the adversary needs only hold on to the response messages
to increase the RTTs. Decreasing RTTs, in each method, is
achieved as follows.

M1. stateless-echo: The packet-creation time, si, is recorded
in the ICMP echo-request in this method. To decrease RTTs,
the adversary increases the value of si before including it in
the echo-reply. Changing si to si + δ decreases the observed
RTTs by δ. Using (3), the sender calculates the manipulated



RTT of packet i as:

RTT′i = ri − (si + δ) = RTTi − δ (4)

RTTs can also be fraudulently increased by δ ms by chang-
ing si to si − δ. If the adversary knows the actual RTT
between itself and the sender, it can mislead the sender into
calculating the RTT as a specific value of its choosing, τ , by
setting:

δ = RTTi − τ (5)

causing the sender to calculate the manipulated RTT as:

RTT′i = ri − (si + δ) = RTTi − δ = τ (6)

To demonstrate a proof-of-concept, we set up a machine
which manipulates RTTs when measured as in Method 1.
When this machine is pinged from most Linux, BSD or Mac
machines, it behaves as follows: for the first 5 packets, the
actual RTT is returned; for the next 25 packets, the actual
RTT keeps decreasing by 2 ms. The same procedure repeats
starting the 30th packet, 60th packet, etc.

M2. stateful-echo: To decrease RTTs, the adversary first
estimates the sender waiting time, t in (1), between send-
ing echo-requests. Recall that delay-based geolocation tech-
niques take multiple RTT measurements to a client, and use
the smallest in geolocation. To estimate t, the adversary
refrains from responding to the first n > 1 echo-requests,
or drastically delays their responses to ensure none of them
will be chosen as the smallest. It then subtracts the re-
ceiving time of the echo-request, mi in (2), from mi+1 for
all 0 ≤ i < n − 1 (Section 2.2). Because the accuracy of
this method depends on the stability of the one-way delay
from the sender to the adversary, the adversary averages the
waiting time over multiple packets:

t =
1

n− 1

n−2∑
i=0

(mi+1 −mi) (7)

The adversary then estimates the receiving time of the
next echo-request packet as:

mi = mi−1 + t (8)

To decrease the RTT that the sender observes from packet
i by δ ms, the adversary issues an early fake echo-reply at
times m′i, instead of mi, such that:

m′i = mi − δ = si + γ1 − δ (9)

The sender will then receive replies at times r′i, such that:

r′i = m′i + γ2 = si + γ1 − δ + γ2 (10)

and hence, calculate the RTT of packet i as:

RTT′i = r′i − si = γ1 + γ2 − δ (11)

If the adversary knows the actual RTT, it can use (5) to
mislead the sender into calculating the RTT as τ .

Issuing early ICMP echo replies requires the adversary
to craft them before receiving their corresponding requests.
Exploiting the third vulnerability in Table 1 enables the ad-
versary achieve this because the values in the header of an
echo-reply message, Fig. 3(a), are highly predictable. When
the sender receives an echo-reply (type 0, code 0), it only
uses the identifier and sequence number fields to match
them with corresponding requests; they are the only two

fields an adversary needs to predict, before receiving them in
echo-requests. The identifier, commonly being the PID of
the issuing process, is usually constant across echo-requests
issued within the same session, the sequence number is
usually 1 plus the previous echo-request, e.g., fping9 and
hping. After receiving the first echo-request, which the ad-
versary ignores, it predicts the values of those two fields
for subsequent requests. Because the previous stateless ap-
proach requires the adversary to only modify echo reply mes-
sages, it might be easier for the adversary to manipulate
delays if the stateless approach was used.

M3. stateful-unreachable: Similar to the previous method,
the adversary decreases RTTs by sending early fake destination-
unreachable messages. Timing analysis is, thus, similar to
that of M2. From the destination-unreachable header, Fig. 3(b),
we see that the ICMP header constitutes no difficulties for
the adversary to predict; the type and code fields are set to
3, the unused bytes must be set to 0 [38], and the checksum
is calculated after placing the data. Predicting the data field
requires the adversary to predict the sender’s IP header and
the first 8 bytes of the IP payload. We found that given com-
mon implementations of ICMP-based utilities, both headers
are highly predictable after receiving the first UDP segment
from the sender.

For the IP header (Fig. 3(d)), the following fields are not
expected to change across multiple packets issued within the
same session: version, Internet header length (IHL), total
length, fragmentation bytes (flags + offset), protocol, and
source and destination IP addresses. Fragmentation is likely
to remain zero because UDP segments are typically small in
size; otherwise, they may distort the measured RTTs due
to extra processing and transmission delays of large pack-
ets. The protocol number will be set to 17 for UDP [37].
The following fields are already prone to changes by inter-
mediate systems (e.g., routers) [39]: differentiated services
(DSCP), congestion notification (ECN), time to live (TTL),
and header checksum. Thus, the sender cannot rely on those
fields to match the returned ICMP messages to an issuing
process; we noticed no utilities relying on them. For the
remaining field, IP identification, most systems increment
it by 1 in each subsequent IP packet. This summarizes the
adversary’s ability to predict the contents of the next IP
header after receiving at least one.

The first 8 bytes of the IP payload constitute the UDP
header (Fig. 3(c)). On many implementations, including
the traceroute utility of GNU, FreeBSD, and Mac OS X, the
source and destination port numbers are fixed over a single
session, or incremented by one in each UDP segment. Sim-
ilar to the stateful echo-request utilities (Section 2.2), the
data field of UDP segments is commonly a fixed predefined
pattern. However, we found that many utilities overlook the
returned values in this field, as well as the returned UDP
header length and checksum; that is, only the UDP source
and destination port numbers are used to match responses
with corresponding UDP segments.

5. ADVERSARIAL MODELS

5.1 Common Capabilities
The adversary is a client that tries to misrepresent its own

location by manipulating geolocation. The adversary’s ob-

9http://fping.org/dist/fping-3.10.tar.gz

http://fping.org/dist/fping-3.10.tar.gz


Table 2: Capabilities and assumptions of five mod-
eled classes of adversaries, their assumed traffic
propagation speed, and where they are discussed.

Adv. Able to Knows Traffic
Proposed §

class ↑ RTT ↓ RTT G T F Speed
A X X X (1/3)c herein 6
B X X (2/3)c [16] 7
C X X (1/3)c herein 7
D X X X X Variable herein 7
E X X X Variable [16] —

G = landmarks’ locations; T = adversary-to-landmark
RTT; F = landmarks’ calibrated delay-distance function;

c = speed of light.

jective is to have the technique return a location as close
as possible to its intended location, rather than its true lo-
cation. We assume the LBS uses a delay-based geolocation
technique that relies on ICMP messages to measure delays.
The adversary can lead the LBS to rely on ICMP-responses
simply by filtering all TCP ports, i.e., no TCP response
messages are sent on attempted connections to any port.

The adversary has full control over its own machine, but
no other machines. It cannot influence the process of cali-
brating the delay-to-distance mapping function of the land-
marks (see Section 2.1), nor infer the calibrated functions.
Note that the adversary is nonetheless a powerful one since,
as shown below, the adversary can achieve high accuracies
while manipulating geolocation, even lacking knowledge of
those parameters. The adversary is able to selectively ma-
nipulate the delays between itself and any landmark, as ex-
plained in Section 4. We assume the adversary knows the
geographic locations of the landmarks (e.g., the information
got leaked over time), but does not know the RTT between
each landmark and its intended location, which is where the
adversary wants to appear to be, in terms of the result com-
puted by the geolocation technique.

5.2 Strategies for Modeling Traffic Speed
We model four adversary situations, three of which are

newly introduced herein—namely adversaries A, C and D
(see Table 2). Adversary B was introduced by Gill et al. [16],
which we involve in the discussion for comparative assess-
ment. All the modeled adversary situations have similar as-
sumptions (see Section 5.1), except for the factors in Table 2.
Note that in contrast to the achieved ability in the second
column of the table, the third column presents an assumed
knowledge. Adversary class E in the table was proposed
by Gill et al. [16], and was assumed to have access to each
landmark’s calibration function; it then uses this function
to directly calculate the traffic propagation speed. We only
list this adversary in the table for completeness; we do not
explore it further.

Let the adversary’s true location be a, the set of land-
marks be L, and the RTT at a given time between the ad-
versary’s true location and each landmark l ∈ L be α(a, l).
To deceive a geolocation process, the adversary manipulates
the RTTs, observed by each landmark l ∈ L, between itself
and l. To forge its location to a′, the adversary ideally de-
ceives each l ∈ L to measure the RTT as one that would be
consistent with α(a′, l) instead of α(a, l).

Adversary A. This adversary does not know both α(a, l)
and α(a′, l). For example, the landmarks could be taking
measures to prevent anyone from pinging their addresses ex-

cept, perhaps, themselves. However, Adversary A is able to
fully manipulate, i.e., increase and decrease RTTs, e.g., by
exploiting the properties discussed in Section 4. If it guesses
the speed of traffic propagation, it can estimate the RTT at
current time because it knows the distances between itself
and the landmarks. Katz-Bassett et al. [23] found that a
speed between (2/9)c and (4/9)c describes the one-way de-
lay nature of the typically multi-hop Internet routes, where
c is the speed of light in vacuum. We study the adversary’s
manipulation capabilities when it uses (3/9)c = (1/3)c as an
approximation to the traffic propagation speed. The adver-
sary estimates the RTT between its true/intended location
and l as:

β(a, l) =
2× dis(a, l)

(1/3)c
(12)

and

β(a′, l) =
2× dis(a′, l)

(1/3)c
(13)

where dis(a, l) and dis(a′, l) are the great circle geographic
distances [15] between the adversary’s true/intended loca-
tion and landmark l. A great circle is one whose center and
radius are those of the Earth. The distance in the numerator
is doubled because β(.) is a round-trip, rather than one-way,
delay. To forge its location from a to a′, the adversary sets
δ in (5) as:

δ = β(a, l)− β(a′, l) (14)

The difference between the adversary’s estimated RTT, β(.),
and the actual, α(.), contributes to the adversary’s errors in
forging location.

Adversary B . Gill et al. [16] studied the effect of an
adversary that is only able to increase the RTT observed
by a measuring party by delaying response messages, ex-
ploiting the first property in Table 1. They modeled an
adversary that uses the constant (2/3)c, which is the speed
of light in fiber [32], as an estimate to the traffic propaga-
tion speed [16]. We implemented the manipulation tactic of
Gill et al. [16],10 which is equivalent to adversary class B
in Table 2, to compare it with the new adversary situations
modeled herein.

Adversary C . Adversary C is assumed the ability of
only increasing RTTs, e.g., by exploiting the first property
in Table 1. It is similar to adversary class B in that sense.
However, C uses (1/3)c to model traffic speed. We model
this adversary to understand the reasons behind any retro-
gressions/improvements of B over A, and the impact of the
delay-manipulation ability versus the traffic speed parame-
terization on the accuracy of the forged location.

Adversary D . This adversary is assumed to have the
ability of full delay manipulation (see Section 4). It also
knows the RTT between itself and each landmark l ∈ L,
α(a, l), e.g., by pinging l or a nearby server. However, it
does not know the RTT between the landmarks and its in-
tended location, α(a′, l). To estimate it, D benefits from its
knowledge of α(a, l), and calculates the traffic speed between

10The results obtained from our implementation closely
match those reported by Gill et al. [16]; we believe that any
dissimilarities arise from differences in the data sets and the
experimental environment.



(a)

0 7,600 20,000
0

0.5

1

Attempted distance (km)

CDF

(b)

Figure 4: (a) Distance and direction errors; the cal-
culated location is the one returned by the geoloca-
tion technique, whereas the intended location is the
one the adversary intends to appear at fraudulently.
(b) CDF of attempted distances; a point (x,y) means
a fraction y of all 2,550 manipulations attempted to
move x km or less away from the true location.

itself and each l ∈ L as follows:11

λl = max

(
2× dis(a, l)
α(a, l)

, (2/9)c

)
(15)

The calculated speed λl reflects l’s access network speed;
it increases with fast access network, and decreases other-
wise. Since l’s calibrated delay-to-distance function (recall
Section 2.1) would have already been affected by the speed
of its access network, using λl increases l’s accuracy in calcu-
lating the distance between itself and D ’s intended location,
i.e., in favor of the adversary. The lower bound (2/9)c in
(15) is applied to avoid the effect of increased circuitousness,
or indirectness, and highly varying delay-to-distance ratios
occurring with short distances over the Internet [42]. D then
estimates the RTT that l should observe at the intended lo-
cation, a′, using the speed λl:

β(a′, l) =
2× dis(a′, l)

λl
(16)

And finally sets δ in (5) to:

δ = α(a, l)− β(a′, l) (17)

Summary of adversarial categories. We consider Ad-
versary A to be the most realistic one of all five listed in Ta-
ble 2. It makes use of the vulnerabilities discovered herein,
enabling it to increase and decrease the measured RTTs;
it also uses a relatively accurate constant to represent the
speed of data propagation over the Internet. As such, we
evaluate this adversary independently first in the next sec-
tion. The next three Adversaries in Table 2 (B, C, and D)
are introduced to enable us to study the impact of their
dissimilar abilities on the location-forging accuracy. Their
efficacy is compared to Adversary A later in Section 7.

6. EVALUATING ADVERSARY “A”
The primary evaluation metrics we use are the adversary’s

distance error and direction error (Fig. 4(a)). The first is the
distance between the adversary’s intended location and the
location calculated by the geolocation technique. We used,
again, the great circle distance to calculate this metric. The
second metric is the absolute spherical angle, i.e., ≤180◦,
between the lines passing through both locations and the

11max(x, y) returns the larger between x and y.

adversary’s true location. This metric is equally important
because a large distance error may still be in the same di-
rection, i.e., small direction error (see Fig. 4(a)). Evalu-
ating the direction error independently highlights the cases
where the adversary’s manipulated location was not only
far away from its intended one, but also at a different direc-
tion. We used spherical trigonometry to calculate direction
errors, where we adopted 6,371 km as an approximation to
the Earth’s radius [29].

We implemented three prominent delay-based techniques
as representatives: GeoPing [31], CBG [20], and SegPoly [12].
We choose more than one technique to study similarities
and/or differences in the results, if any. To evaluate the
manipulations, we used PlanetLab [9], selecting as many of
the available nodes as possible, and in diverse regions in
the world. This is important in order to evaluate location-
forging attempts from arbitrary locations in the world to
other near-by or remote countries. Ground-truth locations
of PlanetLab nodes are available on the testbed’s website.

In total, experiments were conducted using 144 nodes
(Fig. 5), which represented 122 landmarks and 51 adver-
saries; some nodes acted as both. The delays between the
chosen nodes were obtained from the iPlane project [28].
Each client made 50 location-forging attempts, marked by
× in Fig. 5, giving a total of 2,550 attempts.

Figure 4(b) shows a Cumulative Distribution Function
(CDF) of the attempted distances; 50% of all attempts in-
tended to move at least ∼7,600 km away from the true lo-
cations. Such large distances are not typically state or city
level relocation, but rather country or continent level.

6.1 Manipulation Accuracy
Figure 6(a) shows a CDF of A’s distance errors; more than

50 adversarial attempts to manipulate CBG resulted in dis-
tance errors <100 km, and two-thirds of all 2,550 manipula-
tions to CBG resulted in <1,700 km. This is less than half
the width of the US. For example, if Pandora12 used CBG
to enforce US geographic restriction policies, at least two-
thirds of non US-based clients are expected to bypass these
restrictions. These adversarial errors arise in part due to in-
herent inaccuracies of the geolocation methods themselves,
making the relatively smaller errors more noteworthy.

The adversary’s distance errors were larger while manip-
ulating GeoPing; one-fifth of all manipulations resulted in
errors <850 km, and half had errors <1,800 km. The dif-
ference between CBG and GeoPing, however, partly stems
from CBG being generally more accurate than GeoPing [20].
Using the manipulation strategies of adversary A, such a
higher accuracy may unfortunately help adversaries more
accurately control the calculated location.

For SegPoly, 80% of manipulation attempts resulted in
>1,200 km error, which is due to the linear function adver-
sary A uses to map distances to delays (distance = delay ×
(1/3)c). The function leads to a large deflection between the
distance it wants a landmark to calculate, and the one the
landmark actually calculates. Despite using linear mapping
against a technique that uses polynomial mapping, 44% of
A’s manipulations resulted in <2,000 km distance error.

The CDF of the direction error for the three techniques
is shown in Fig. 6(b); 88%, 82%, and 63% of adversary A’s
manipulations to CBG, GeoPing and SegPoly respectively
resulted in direction errors less than 50◦. To interpret this

12http://www.pandora.com/

http://www.pandora.com/


Figure 5: True locations of the 51 modeled adversaries. Each adversary attempted to forge its location to 50
intended locations, for a total of 2,550 modeled attempts to manipulate geolocation. A total of 122 landmarks
are used. N = landmarks; • = true locations of adversaries; × = intended locations of adversaries. (best
viewed in color) Map data: Google, INEGI.

result, one can think of a US bank restricting credit card
transactions to the US, e.g., for fraud prevention [7, 24].
Using CBG, and assuming relatively small distance errors,
about 88% of European-based adversaries are expected to
succeed to pretend to be in the contiguous US. That is be-
cause for most adversaries whose true locations are Europe,
excluding Iceland, and who intend to be in the US, a direc-
tion error <50◦ enables them achieve their objective (pro-
vided the distance error remains <5,000 km—the country’s
approximate width). Figure 7 shows the spherical angle at
the intersection point, close to the extreme west of Europe,
of two lines enclosing the contiguous US.

Next we explore the relationship between A’s attempted
distance and its distance error. We use the Pearson Cor-
relation Coefficient, which ranges from -1 to +1, such that
0 = no correlation, and ±1 = extreme +/-ve correlation. A
powerful adversary should exhibit lower correlation between
both variables, meaning that its accuracy does not degrade
when its intended location is far away from its true one.

The correlation between the two variables is 0.55 for both
CBG and GeoPing. This relatively moderate correlation
means that the adversary was able to accurately control the
location calculated by the geolocation technique, even when
that location is extremely remote. Note that the correla-
tion is positive because manipulations of small attempted
distances result in small distance errors.13

The correlation for SegPoly is 0.68; it is higher because of
the discrepancy between SegPoly’s segmented polynomial
mapping function and the linear function that A uses. For
example, in the third blue cluster of Fig. 2(b) (Section 2.1),

13See technical report [1] for further discussion.

Figure 7: The spherical angle at the intersection
point, close to the extreme west of Europe, of two
lines enclosing the contiguous US is ∼49◦. Map data:
Google, SIO, NOAA, U.S. Navy, NGA, GEBCO.

the difference in the mapped distances between both func-
tions at 400 ms is 6,706 km, which is more than double 3,286
km—the value at 100 ms (second cluster in green).

6.2 Manipulation Detection
CBG calculates a client’s geographic location as the cen-

troid of a convex region enclosed by the intersection of mul-
tiple circles. Gill et al. [16] suggested the area of this re-
gion could be used to detect manipulations, which involves
an adversary increasing the RTT, because larger adversary-
landmark RTTs increase the area. We analyze detection
abilities of this against adversary A. GeoPing generates no
intersection regions; we are not immediately aware of a method
to precisely detect manipulations against GeoPing.



0 5,000 10,000
0

0.2

0.4

0.6

0.8

1

Dist error (km)

C
D

F

CBG

GeoPing

SegPoly

(a)

0 45 90 135 180
0

0.2

0.4

0.6

0.8

1

Direction error (degrees)

C
D

F

CBG

GeoPing

SegPoly

(b)

0 1 2 3 4
·106

0

0.2

0.4

0.6

0.8

1

Area ×106 (km2)

C
D

F

CBG true

SegPoly true

CBG manipulated

SegPoly manipulated

(c)

Figure 6: CDFs of (a) distance and (b) direction errors for adversary A upon manipulating geolocation;
a point (x,y) means a fraction y of all manipulation attempts resulted in error of ≤ x (km or deg.). (c)
Intersection-region areas while determining the 51 true and 2,550 manipulated locations; a point (x,y) means
a fraction y had areas of ≤ x km2. Higher manipulated curves indicate less detectable manipulations.

Figure 6(c) shows a CDF of the intersection-region areas
while operating CBG and SegPoly to calculate the forged
locations of adversary A, and its true locations. These true
locations are calculated from the original delays between
the landmarks and the 51 PlanetLab nodes, before changing
these delays to model A’s manipulations. The speed that ad-
versary A uses, (1/3)c, is slow relative to the average traffic
propagation speed [23]. This results in relatively large RTT
estimates to the intended location, β(a′, l) in (13), increasing
the distances the landmarks calculate from mapping those
RTTs. This explains the large areas depicted by the low
curves in Fig. 6(c) while manipulating geolocation.

However, 92% of the areas that CBG calculated while ge-
olocating the true positions were equivalent to 71% of those
while calculating the forged locations, at x = 2×106 km2.
This implies that if the geolocating party decides to reject
clients whose intersection-region areas are greater than this
value, it falsely rejects 8% of legitimate clients and falsely ac-
cepts 71% of adversaries. As such, detecting manipulations
based on the intersection-region areas is not trivial.

7. ADVERSARIAL MODEL COMPARISON
We compare the adversaries modeled in Table 2 (Sec-

tion 5). The same delay dataset was used across them to
establish a comparable experimental set up.

7.1 Manipulation Accuracy
From Fig. 8, ∼80% of the manipulations of adversary B

by Gill et al. [16] to the three techniques resulted in distance
errors >1,900 km; only 29%, 48% and 59% of A’s manipu-
lations to CBG, GeoPing, and SegPoly respectively resulted
in errors >1,900 km. This highlights significant adversar-
ial improvements achieved herein compared to adversaries
proposed in previous literature [16].

The charts also show that C is more accurate than B ;
one-quarter of C ’s manipulations to CBG and GeoPing re-
sulted in <1,500 km distance error and <1,800 km for Seg-
Poly, whereas three-quarters of B ’s manipulations resulted

Adversary A Adversary B

Adversary C Adversary D

0 0.2 0.4 0.6 0.8 1
·104

0

1

Dist error ×104

C
D

F

(a) CBG

0 0.2 0.4 0.6 0.8 1
·104

0

1

Dist error ×104

C
D

F

(b) GeoPing

0 0.2 0.4 0.6 0.8 1
·104

0

1

Dist error ×104

C
D

F

(c) SegPoly

Figure 8: Distance errors (km) for the adversaries
in Table 2.

in >2,200 km error. This highlights the effect of different
traffic speed models on location-forging accuracy.

As for adversary D, 66% of its manipulations result in er-
rors <1,000 km, versus 46% of A’s manipulations. Surpris-
ingly, A showed slight improvement over D while manipu-
lating GeoPing. One possible explanation for this could be
D ’s access network; if it is relatively slow, the varying delay-
distance mapping decreases the mapped delays between D
and all landmarks. A constant traffic speed protects A from
the effect of a slow access network. For SegPoly, almost
unnoticeable distance error improvements were made by ad-
versary D ’s manipulations over A.

Figure 9 compares the direction errors; 50%, 38% and 53%
of adversary B ’s manipulations to CBG, GeoPing and Seg-
Poly respectively resulted in direction errors <45◦, versus
87%, 80% and 60% of A’s manipulations. A lower direc-
tion error for the adversary indicates a more accurate, hence
more worrisome, adversary. Similar to the distance errors,
adversary C ’s overall direction error was better than that
of B but worse than A, again highlighting A’s devastating



abilities. Adversary D showed direction error improvements
over A only while manipulating CBG, but no considerable
improvements were observed upon manipulating the other
two geolocation techniques.

7.2 Manipulation Detection
Figure 10 shows CDFs of the intersection regions areas;

58% of B ’s manipulations to CBG resulted in areas above
2×106 km2, versus only 29% of A’s. Clearly, adversary A’s
manipulations to CBG are harder to detect using the area
as the detection factor.

Areas resulting from B ’s manipulations to SegPoly were
much smaller compared to its manipulations to CBG, and
more interestingly, were close to those resulting from A’s
manipulations to SegPoly (the curves A and B are close in
Fig. 10(b) than in Fig. 10(a)). This is because B uses double
the traffic modeling speed used by A. Nonetheless, the aver-
age distances resulting from B ’s modeling will be relatively
large since B can only increase RTTs. This, combined with
B ’s ability to only increase delays, explains B ’s area similar-
ity with A. This argument does not apply to CBG because
the linear calibration the landmarks use blindly maps larger
delays to larger distances.

Adversary C had the largest intersection-region areas com-
pared to A and B because it combines two area-increasing
factors: only increasing RTTs and modeling a slow traffic
speed. It is thus the most exposed to being detected based
on the intersection region area. Finally, the chart shows that
D is least detectable compared to all others.

7.3 Summary
Table 3 summarizes the differences between the four mod-

eled adversaries. For any pair of adversaries X and Y in the
table, we can calculate X ’s achieved percentage reduction to
the median distance error over Y as follows:

Median error of Y - Median error of X

Median error of Y
× 100

Accordingly, Adversary A achieves 83%, 73% and 58% re-
ductions to the median distance errors over B while ma-
nipulating CBG, GeoPing, and SegPoly respectively; and
achieves 71%, 41.94% and 37.5% over C while manipulating
the three techniques. A’s improvement over C is solely due
to its ability to fully manipulate delays, since it is the only
difference between them, highlighting the powerful nature
of manipulation when an adversary is able to decrease and
increase the RTTs.

Compared to B, C achieves 40%, 54%, and 33% improve-
ment to the median distance error while manipulating CBG,
GeoPing, and SegPoly respectively (see Table 3). The dif-
ference between both adversaries is traffic speed modeling,
thus a devious strategy alone can increase the adversary’s
location-forging accuracy drastically.

Adversary D achieves 36%, 9.4%, and 2.2% improvement
to the median distance error over A while manipulating the
three techniques respectively. Thus, against GeoPing and
SegPoly, an adversary’s knowledge of the RTTs between
itself and the landmarks did not significantly improve its
location forging accuracy. Furthermore, knowing this in-
formation does not provide significant advantages in hiding
attempts to manipulate SegPoly since all attempts resulted
in very small areas. Thus, the accuracy that SegPoly gains
using polynomial regression comes at the cost of lower ability
to detect manipulations by the constrained region area.

Adversary A Adversary B

Adversary C Adversary D

0 50 100 150
0

1

Direction error

C
D

F

(a) CBG

0 50 100 150
0

1

Direction error

C
D

F

(b) GeoPing

0 50 100 150
0

1

Direction error

C
D

F

(c) SegPoly

Figure 9: Direction errors (degrees) for the adver-
saries in Table 2.

Adversary A Adversary B

Adversary C Adversary D

0 1 2 3 4
·106

0

0.5

1

Area ×106 (km2)

CDF

(a) CBG

0 1 2 3 4
·106

0

0.5

1

Area ×106 (km2)

CDF

(b) SegPoly

Figure 10: CDFs of the intersection-region areas for
the adversaries in Table 2; a point (x,y) means a
fraction y of all attempts resulted in areas of x km2

or less; higher curves indicate less detectable manip-
ulations.

Finally, adversaries A and D have the lowest correlation
between attempted distances and distance errors (Table 3),
enabling them to fraudulently relocate themselves at ex-
tremely remote locations accurately. Thus, the combined
ability of increasing and decreasing delays reduces the im-
pact on distance errors when large distances are attempted.

8. COUNTERMEASURES
We analyzed above the effectiveness of one possible factor,

the area of the constrained region, in detecting if the geolo-
cation mechanisms are being manipulated. Although this
factor was found to be potentially effective in some cases
with an adversary that can only increase RTTs [16], our
analysis shows it becomes largely unreliable with an adver-
sary that fully controls RTTs. It is thus crucial to discuss
possible countermeasures that specifically aim to preserve
the integrity of delay measurements used by a geolocation
technique, which is a crucial step prior to geolocation itself.

We stress that the root cause of the vulnerabilities lies not
in the ICMP utilities themselves but rather in improperly



Table 3: Median distance (km) & direction errors (degrees), median areas of intersection regions (km2),
and correlation coefficients between the distance errors and the attempted distances for the adversaries in
Table 2; Adversary B is similar to that of Gill et al. [16]. Smaller values indicate a more powerful adversary.

Geolocation Dist error (km) Direction error (deg) Area ×106 (km2) Correlation

method A B C D A B C D A B C D A B C D

CBG 1,100 6,300 3,800 700 9.5 44 33 6 2 4.1 17.3 <1 0.54 0.89 0.73 0.33

GeoPing 1,800 6,700 3,100 1,630 14 58 29 14 – – – – 0.55 0.86 0.64 0.57

SegPoly 2,250 5,350 3,600 2,200 28 41 34 29 <1 <1 <1 <1 0.68 0.85 0.8 0.64

leveraging them for geolocation—a task for which they were
not designed. A high level countermeasure would therefore
be to avoid using ICMP-based utilities for geolocation. If
ICMP-based utilities are to be used nonetheless, the follow-
ing countermeasures could be considered. These measures
require only the landmarks conducting geolocation to mod-
ify their network stacks.

As discussed in Section 4, the vulnerabilities lie in the ad-
versary’s ability to tamper with both the sending (s) and
receiving (r) times of ICMP-based network utilities. Every
landmark must ensure the integrity of both parameters. Lo-
cally recording s enables a landmark to retrieve s from its
memory instead of the data field of an echo-reply packet.
Obviously, the landmark’s own local memory is more reliable
than an unprotected packet returned from the receiver/ad-
versary. This precludes the adversary from undetectably
tampering with the value of s. If a stateless implementation
is desired, landmarks may use a Message Authentication
Code (MAC) protecting: s, the ICMP identifier, and the
ICMP sequence number of the echo request. The landmarks
can then place the MAC in the data field of the packet
along with s (see Fig. 3(a)). Note that a landmark cannot
include the type and checksum fields in the MAC because
the receiver must change them in the echo reply, as specified
by RFC 792 [38]. The landmark can store the non-shared
key of the MAC locally. A single key suffices for multiple
sessions. Landmarks can then verify the integrity of their
own timestamp s retrieved from a received echo reply.

As for the receiving time r, recall that a key factor for
an adversary to beneficially manipulate it is the adversary’s
ability to measure the waiting time between a successive
pair of echo requests. Consequently, randomizing the wait-
ing times raises the bar for the adversary to accurately pre-
dict this time. Such a precaution is simple to implement as
it may not necessarily require modifications to local utilities
like ping and traceroute. However, because the adversary
calculates the average waiting time, this precaution does not
stop the adversary from undetectably manipulating r; it only
increases the adversary’s error range. Another countermea-
sure to provide timestamp integrity is to include an element
of randomness in the data field of echo requests, i.e., similar
to DNS cache-poisoning countermeasures [41]. For all prac-
tical purposes, ample unpredictability should prevent the
adversary from successfully issuing fraudulent echo replies,
forcing it to wait for echo requests first.

9. CONCLUSION
This paper shows how to manipulate delay-based geolo-

cation techniques using new strategies that enable an ad-
versary to not only misrepresent its location, but also ac-
curately control the forged location mostly at the country-

level.14 This may defeat location-aware security systems,
e.g., a cloud provider violating service level agreements [19],
especially given that such geolocation techniques are increas-
ingly being advocated for use in security-aware contexts [8].

We show that full delay manipulation, i.e., both increas-
ing and decreasing the measured delays, is possible under
certain conditions; these are present in conventional network
utilities such as ping and traceroute, as they fail to check
the integrity of the measured RTTs. Unfortunately, delay-
based geolocation techniques commonly misuse such utilities
for delay-measurements [47, 12]. We also show that better
modeling to the traffic propagation speed can enhance the
adversary’s accuracy in controlling the forged location, even
when the adversary is only capable of increasing RTTs; e.g.,
an adversary that uses (1/3)c as an estimate to the traf-
fic speed as shown herein is 40% more accurate in forging
a CBG-calculated location [20] than the one using (2/3)c
studied in previous literature [16].

The analysis herein provides some useful insights. For
example, landmarks in CBG [20] would ideally allow only
themselves to measure RTTs between each other; in our ex-
periments, an adversary knowing the RTTs between itself
and the landmarks was 36% more accurate. Additionally, if
SegPoly [12] is used, the areas of the constrained region can-
not be relied upon for detecting manipulations since they be-
come almost indistinguishable from the constrained regions’
areas of legitimate clients. In fact, security-sensitive applica-
tions [19] should not rely on the constrained region areas for
detecting manipulations because, while geolocating adver-
saries who can fully manipulate delays, these regions become
almost indistinguishable from those of legitimate clients.

For completeness, technically simple countermeasures are
discussed as a minor point. However, these add overhead
to core ICMP utilities, and thus we expect will likely face
deployment resistance since they might be unnecessary for
many services. Designers of delay-based geolocation usu-
ally focus on achieving high location accuracy, but to date
have failed to propose integrity-preserving yet deployable
delay-measurement algorithms—despite being motivated by
security-sensitive applications [20, 24, 4, 12].

Finally, our work shows the importance of not relying on
measurement primitives that lack integrity checking. We
hope this work raises awareness of the importance of em-
ploying integrity-protection in geolocation mechanisms, and
encourages further research in the area of secure geolocation.

14Related to geolocating cloud data, Peterson et al. [33] em-
phasize: “Of particular interest is establishing data location
at a granularity sufficient for placing it within the borders
of a particular nation-state.”



Acknowledgements
We thank members of the Carleton Computer Security Lab
for discussions on this topic. This research is supported by
the Natural Sciences and Engineering Research Council of
Canada (NSERC)—the second author through a Discovery
Grant; the third through a Discovery Grant and as Canada
Research Chair in Authentication and Computer Security.

10. REFERENCES
[1] A. Abdou, A. Matrawy, and P. C. van Oorschot. On the Evasion

of Delay-Based IP Geolocation. Technical report, Carleton
University TR-14-03, June 2014. For further information, see:
A. Abdou, Internet Location Verification: Challenges and
Solutions, PhD thesis, 2015, Carleton University, Canada.

[2] A. Abdou, A. Matrawy, and P. C. van Oorschot. CPV:
Delay-based Location Verification for the Internet. IEEE
Trans. Dependable and Secure Computing, TDSC (to appear;
accepted June 14), 2015.

[3] A. Abdou, A. Matrawy, and P. C. van Oorschot. Taxing the
Queue: Hindering Middleboxes from Unauthorized Large-Scale
Traffic Relaying. IEEE Commun. Lett., 19(1):42–45, 2015.

[4] M. Arif, S. Karunasekera, S. Kulkarni, A. Gunatilaka, and
B. Ristic. Internet Host Geolocation Using Maximum
Likelihood Estimation Technique. In AINA, pages 422–429.
IEEE, 2010.

[5] R. Braden. Requirements for Internet Hosts - Communication
Layers. RFC 1122 (Internet Standard), Oct. 1989.

[6] J. Burnett. Geographically Restricted Streaming Content and
Evasion of Geolocation: the Applicability of the Copyright
Anticircumvention Rules. HeinOnline MTTLR, 19(2):461,
2012.

[7] M. Casado and M. J. Freedman. Peering Through the Shroud:
The Effect of Edge Opacity on IP-based Client Identification.
In NSDI. USENIX, 2007.

[8] C. Castelluccia, M. A. Kaafar, P. Manils, and D. Perito.
Geolocalization of Proxied Services and Its Application to
Fast-flux Hidden Servers. In IMC, pages 184–189. ACM, 2009.

[9] Chun et al. PlanetLab: An Overlay Testbed for Broad-coverage
Services. ACM SIGCOMM Comput. Commun. Rev.,
33(3):3–12, 2003.

[10] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
decentralized network coordinate system. In SIGCOMM, pages
15–26. ACM, 2004.

[11] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca.
Geo-rbac: A spatially aware rbac. ACM Trans. Inf. Syst.
Secur., 10(1), 2007.

[12] Z. Dong, R. D. Perera, R. Chandramouli, and K. Subbalakshmi.
Network measurement based modeling and optimization for IP
geolocation. Elsevier Computer Networks, 56(1):85–98, 2012.

[13] B. Eriksson, P. Barford, J. Sommers, and R. Nowak. A
Learning-Based Approach for IP Geolocation. In PAM, pages
171–180. Springer, 2010.

[14] B. Eriksson and M. Crovella. Understanding Geolocation
Accuracy using Network Geometry. In INFOCOM
Miniconference, pages 75–79. IEEE, 2013.

[15] Geoscience Australia. Geodetic Calculation Methods.
http://www.ga.gov.au/earth-monitoring/geodesy/
geodetic-techniques/calculation-methods.html, 2015.

[16] P. Gill, Y. Ganjali, B. Wong, and D. Lie. Dude, where’s that
IP? Circumventing measurement-based IP geolocation. In
USENIX Security. USENIX, 2010.

[17] F. Girlich, M. Rossberg, G. Schaefer, T. Boehme, and
J. Schreyer. Bounds for the Security of the Vivaldi Network
Coordinate System. In NetSys, pages 66–75. IEEE, 2013.

[18] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford.
Path-quality Monitoring in the Presence of Adversaries. In
SIGMETRICS, pages 193–204. ACM, 2008.

[19] M. Gondree and Z. N. Peterson. Geolocation of data in the
cloud. In CODASPY, pages 25–36. ACM, 2013.

[20] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida.
Constraint-based geolocation of Internet hosts. IEEE/ACM
Trans. Netw., 14(6):1219–1232, 2006.

[21] D. Hu and C.-L. Wang. GPS-Based Location Extraction and
Presence Management for Mobile Instant Messenger. LNCS
Embedded and Ubiquitous Computing, 4808:309–320, 2007.

[22] M. A. Kaafar, L. Mathy, C. Barakat, K. Salamatian,

T. Turletti, and W. Dabbous. Securing Internet Coordinate
Embedding Systems. In SIGCOMM, pages 61–72. ACM, 2007.

[23] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall,
T. Anderson, and Y. Chawathe. Towards IP geolocation using
delay and topology measurements. In IMC, pages 71–84. ACM,
2006.

[24] S. Laki, P. Mátray, P. Hága, T. Sebók, I. Csabai, and
G. Vattay. Spotter: A Model Based Active Geolocation Service.
In INFOCOM, pages 3173–3181. IEEE, 2011.

[25] R. Landa, R. G. Clegg, J. T. Araújo, E. Mykoniati, D. Griffin,
and M. Rio. Measuring the Relationships between Internet
Geography and RTT. In ICCCN, pages 1–7. IEEE, 2013.

[26] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumezanu,
N. Spring, and B. Bhattacharjee. Alibi Routing. In ACM
SIGCOMM, pages 611–624. ACM, 2015.

[27] Li et al. IP-Geolocation Mapping for Moderately Connected
Internet Regions. IEEE Trans. Parallel Distrib. Syst.,
24(2):381–391, 2013.

[28] Madhyastha et al. iPlane: An Information Plane for
Distributed Services. In OSDI, pages 367–380. USENIX, 2006.

[29] H. Moritz. Geodetic Reference System 1980. Springer-Verlag
Geodesy, 74(1):395–405, 2000.

[30] J. A. Muir and P. C. van Oorschot. Internet geolocation:
Evasion and counterevasion. ACM Comput. Surv., 42(1):4–26,
2009.

[31] V. N. Padmanabhan and L. Subramanian. An investigation of
geographic mapping techniques for Internet hosts. In
SIGCOMM, pages 173–185. ACM, 2001.

[32] R. Percacci and A. Vespignani. Scale-free behavior of the
Internet global performance. Springer EPJ B—Condensed
Matter and Complex Systems, 32(4):411–414, 2003.

[33] Peterson et al. A position paper on data sovereignty: The
importance of geolocating data in the cloud. In HotCloud.
USENIX, 2011.

[34] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye. IP
geolocation databases: unreliable? ACM SIGCOMM Comput.
Commun. Rev., 41(2):53–56, 2011.

[35] I. Polakis, S. Volanis, E. Athanasopoulos, and E. P. Markatos.
The Man Who Was There: Validating Check-ins in
Location-based Services. In ACSAC, pages 19–28. ACM, 2013.

[36] A. Popescu. Geolocation API Specification.
http://www.w3.org/TR/geolocation-API/, Oct 2013.

[37] J. Postel. User Datagram Protocol. RFC 768 (Internet
Standard), Aug. 1980.

[38] J. Postel. Internet Control Message Protocol. RFC 792
(Internet Standard), Sept. 1981.

[39] J. Postel. Internet Protocol. RFC 791 (Internet Standard),
1981.

[40] S. Siwpersad, B. Gueye, and S. Uhlig. Assessing the Geographic
Resolution of Exhaustive Tabulation for Geolocating Internet
Hosts. In PAM, pages 11–20. Springer, 2008.

[41] S. Son and V. Shmatikov. The hitchhiker’s guide to DNS cache
poisoning. LNCS Security and Privacy in Communication
Networks, 50:466–483, 2010.

[42] L. Subramanian, V. N. Padmanabhan, and R. H. Katz.
Geographic properties of Internet routing. In ATC, pages
243–259. USENIX, 2002.

[43] TorrentFreak. Hulu Blocks VPN Users Over Piracy Concerns.
http://bit.ly/1839GT2, Apr 2014.

[44] M. Trimble. The Future of Cybertravel: Legal Implications of
the Evasion of Geolocation. HeinOnline Fordham Intell. Prop.
Media & Ent. LJ, 22, 2011.

[45] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and
C. Huang. Towards street-level client-independent IP
geolocation. In NSDI, pages 27–27. USENIX, 2011.

[46] B. Wong, I. Stoyanov, and E. G. Sirer. Octant: a
comprehensive framework for the geolocalization of Internet
hosts. In NSDI, pages 23–23. USENIX, 2007.

[47] I. Youn, B. Mark, and D. Richards. Statistical Geolocation of
Internet Hosts. In ICCCN., pages 1–6. IEEE, 2009.

[48] P. A. Zandbergen. Accuracy of iPhone locations: A Comparison
of Assisted GPS, WiFi and Cellular Positioning. Blackwell
Transactions in GIS, 13(s1):5–25, 2009.

[49] Y. Zeng, J. Cao, J. Hong, S. Zhang, and L. Xie. Secure
localization and location verification in wireless sensor
networks: a survey. Springer The Journal of Supercomputing,
64(3):685–701, 2013.

http://www.ga.gov.au/earth-monitoring/geodesy/geodetic-techniques/calculation-methods.html
http://www.ga.gov.au/earth-monitoring/geodesy/geodetic-techniques/calculation-methods.html
http://www.w3.org/TR/geolocation-API/
http://bit.ly/1839GT2

	Introduction
	Background
	Delay-based IP Geolocation
	Common RTT Measurement Techniques

	Related work
	Full Delay Manipulation
	Adversarial Models
	Common Capabilities
	Strategies for Modeling Traffic Speed

	Evaluating Adversary ``A''
	Manipulation Accuracy
	Manipulation Detection

	Adversarial Model Comparison
	Manipulation Accuracy
	Manipulation Detection
	Summary

	Countermeasures
	Conclusion
	References

