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Abstract. The study of information spread in social networks has applications in
viral marketing, rumour modelling, and opinion dynamics. Often, it is crucial to
identify a small set of influential agents that maximize the spread of information
(cases which we refer to as being budget-constrained). These nodes are believed
to have special topological properties and reside in the core of a network. We
introduce the concept of nucleus decomposition, a clique based extension of core
decomposition of graphs, as a new method to locate influential nodes. Our anal-
ysis shows that influential nodes lie in the k-nucleus subgraphs and that these
nodes outperform lower-order decomposition techniques such as truss and core,
while simultaneously focusing on a smaller set of seed nodes. Examining differ-
ent diffusion models on real-world networks, we provide insights as well into the
value of the degree centrality heuristic.

1 Introduction

With the rise of big data tools and platforms, it has become easier to mine social net-
works. One topic of particular interest is the study of information spread through a
network. Finding influential agents is often key, either to stem the spread of harmful
content or to facilitate influence maximization for such positive aims as spreading HIV
awareness among homeless youths [24] or increasing revenue with viral marketing [4].

Many approaches have been developed to locate influencers and track the spread of
their communications to peers. The NP-hard optimization problem known as influence
maximization [8] looks to find a set of n nodes that, when “activated”, can spread in-
formation maximally throughout a given network under a given information diffusion
model (see Li et al. for a survey of approximate algorithms for influence maximiza-
tion [12]). Other heuristics consider properties of a given node such as its degree, as
well as information about its local graph structure (for example, avoid nodes at the
fringes of a graph that have a high degree but weakly connected neighbours [14]).

Two classes of topology-based heuristics to locate influential nodes are centrality
based methods and subgraph decomposition methods. Centrality methods consider the
degree of a node (degree centrality), the length of shortest paths from a node to all
other nodes (closeness centrality), or the number of times a node occurs in the shortest
paths (betweenness centrality). By contrast, [10] and [13] argue that less connected but
strategically placed nodes may be better candidates for disseminating information. They
turn to k-core [20] and k-truss decompositions [5], which identify subgraphs having
high degree or many triangles, respectively (details in the next section). Simulation
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studies have found that k-core methods outperform some centrality based measures
[10] and that k-truss methods, in turn, outperform k-core methods [13].

In this paper, we focus on scenarios where organizations have a limited budget
to expend when engaging with potential influencers, and thus locating a small seed
set of agents is paramount. Our main contribution is the evaluation of a new method
for budget-constrained seed set selection based on nucleus decomposition [19]. A k-
nucleus is a generalization of graph decomposition methods, and it has been observed
that k-nuclei often overlap with the densest parts of k-cores and k-trusses. Using four
real datasets, we compare the effectiveness of topology based methods – k-nucleus
decomposition, k-truss, k-core and degree centrality – under three popular informa-
tion diffusion models: Independent Cascade [8], Linear Threshold [7], and Susceptible-
Infectious-Recovered (SIR) [15]. We further show that degree centrality, an often ig-
nored heuristic, can perform as well as the nucleus in some cases, as long as sufficiently
many high-degree nodes (e.g., as many as there are in a maximal k-nucleus) are se-
lected. This observation is in contrast to prior work that only used the nodes with the
highest degree in the network as influencers, which was not as effective as using core or
truss decomposition [13]. Finally, we show that topology based methods often perform
on par with an approximation algorithm that solves the underlying influence maximiza-
tion problem (IMM [22]). Our analysis enables practitioners to better choose heuristics
according to their choice of information diffusion model and to consider k-nucleus de-
composition and degree centrality as important algorithms in their arsenal.

2 Methods

We start by describing the methods included in our study, followed by a discussion of
the diffusion models. Let G(V,E) be an undirected graph that models the underlying
social network with |V | nodes and |E| edges. Let v ∈ V be a node in G and let e ∈ E
be an edge in G. Finally, let k be a positive integer.

2.1 Graph Decomposition Methods

k-core Decomposition [20]: A k−core is a largest connected subgraph of G where
each node has degree at least k. Each node v ∈ V can be assigned a core value c(v)
that equals k if v belongs to a k−core but not a (k + 1)−core. Using this concept, the
influential nodes are those with the largest value of c(v). To find a k-core subgraph, we
repeatedly remove nodes with a degree of less than k and their adjacent edges. Since
removing edges reduces the degree of some of the remaining nodes, whenever a node
is removed, we decrement the degree of the affected nodes, and we continue until all
the remaining nodes have a degree at least k. The time complexity of this method is
O(|V |+ |E|) since a node or an edge can be removed at most once.

k-truss Decomposition [5]: This method expands on k-core decomposition by con-
sidering triangles, i.e., cycles of length 3. A k-truss is a largest subgraph of G where
each edge is contained in at least k − 2 triangles within the subgraph. Each edge e can
be assigned a truss number te that equals k if e belongs to a k-truss but not a (k + 1)
truss. Furthermore, the truss number tv for a node v is equal to the maximum edge



Locating influential agents in social networks: Budget-constrained seed set selection 3

truss of the edges adjacent to v. Using this concept, the influential nodes are those with
the largest value of tv . To find a k-truss, we follow a similar methodology as that for
k-core decomposition. However, instead of removing nodes directly, we repeatedly re-
move edges that are not part of at least k − 2 triangles, and we output the connected
components that remain at the end (time complexity O(|E|1.5)).

k-nucleus Decomposition [19]: This method generalizes k-truss and k-core de-
composition by finding subgraphs of cliques. Let r and s be two positive integers such
that r < s. Let Kr be an r-clique, i.e., a clique with r nodes. Intuitively, a k-(r, s)-
nucleus is a maximal subset of smaller r-cliques, each of which is part of many larger
s-cliques. Formally, let χ be a set of s-cliques Ks in G. Let Kr(χ) be a set of smaller
r-cliques Kr in some S ∈ χ. The χ-degree of an r-clique u ∈ Kr(χ) is the number of
larger s-cliques in χ that contain u. χ-connected: Two Kr, call them u and u′, are χ-
connected if there exists a sequence of r-cliques u = u1, u2, ..., uk = u′ in Kr(χ) such
that for each i, some s-clique S ∈ χ contains ui ∪ ui+1. Finally, we define a k-(r, s)
nucleus as a maximal union χ of s-cliques Ks such that the χ-degree of any r-clique
u ∈ Kr(χ) is at least k and any r-clique pair u, u′ ∈ Kr(χ) is χ-connected.

Setting r = 1 and s = 2 allows us to recover the definition of k-core from k-(r, s)
nucleus. To see this, observe that any node is a 1-clique, and any edge is a 2-clique.
Thus, the χ degree of a 1-clique is the degree of the node, and, by the χ-connected
property, we simply get a set of edges connecting nodes of degree at least k. Similarly,
setting r = 2 and s = 3 reduces to k-truss decomposition. Triangles are 3-cliques, and
we get a set χ that is part of at least k triangles.

Let RT (Kr) and RT (Ks) be the time complexity of enumerating all Kr ∈ G and
all Ks ∈ G, respectively. The complexity of nucleus decomposition was shown to be
bounded by O(RT (Ks) + RT (Kr)) [19]. In this paper, we consider k-(3, 4) nucleus
decomposition as complexity grows rapidly forK4 and above. From now on, we refer to
a k-(3, 4) nucleus as k-nucleus for simplicity3. As in k-core and k-truss decomposition,
each node can be assigned a nucleus value n(v) that equals k if v belongs to a k-nucleus
but not a (k+1)-nucleus. The influential nodes are those with the largest value of n(v).
Some nodes of a k+1 core are part of a k-truss and some nodes of a k+1-truss are part
of a nucleus. Figure 1 illustrates a graph and the corresponding 3-core, 2-trusses and
1-nuclei. The entire graph is a maximal 3-core (as each node has at least three edges).
In the 3-core, there are two 2-trusses and two 1-nuclei. Note that the nuclei and trusses
are smaller and identify denser subgraphs than the core.

2.2 Information Diffusion Models

Independent Cascade (IC) Model [8]: In this model, nodes that are activated can
influence their neighbours. Activation proceeds one step at a time. Each directed edge
(v, v′) : v → v′ in the underlying graph has a threshold value pv,v′ ∈ [0, 1] denoting the
propagation probability of information from v to v′. We begin with a set of nodes that
are initially assumed to be active. The information then flows as follows. At time t, any
active node v ∈ V has a chance to activate an inactive child node v′ with probability

3 [19] showed that (3, 4)-nucleus provides high-quality outputs in terms of density and network
hierarchy; e.g., it finds both small sets of high density and large sets of low density.
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Fig. 1. Comparison of subgraph decompositions

pv,v′ . If v succeeds then v′ becomes active in step t + 1. If multiple parents of v′ are
active at the same time, their activation attempts are arbitrarily sequenced at time t. v
only gets one chance to activate v′ and cannot activate v′ in subsequent rounds. The
process terminates when no more activations are possible.

Linear Threshold Model (LT) [7]: In this model, a node is influenced by every
incoming neighbour v′ with a weight bv′,v ∈ [0, 1]. Each v ∈ V also has a threshold
θv ∈ [0, 1], which represents the minimum pressure that has to be exerted on v to
activate it. v is activated iff the sum of the weights of the active neighbours of v is
greater than a threshold θv:

∑
v′→v,v′active bv′,v ≥ θv . The information flow proceeds

in discrete steps (from t = 0), with a seed set of active nodes S. For each neighbour v
of v′ ∈ S ⊆ V , we check the threshold condition. If a node satisfies its condition, it is
activated in the next step. The algorithm continues until no more activations occur.

Susceptible Infected Recovered (SIR) Model [9]: In this model, a node can be
in one of three states: Susceptible (S): not yet infected; Infected (I): can spread infor-
mation to the rest of the population; Recovered (R): after a node has been infected for
some period of time, it is considered to be immune and cannot further spread the infor-
mation. To examine the spreading power of a set of nodes, we initially set these nodes
as infected, and we set all other nodes as susceptible. Then, at each time step t of the
process, every infected node can infect its susceptible neighbours with probability β
(called infection rate), and afterwards, it can recover with probability γ (called recov-
ery rate). A node cannot directly pass from state I to state R during the same time step.
The process ends when no more nodes can be infected.

3 Results

We now explore the performance of k-core, k-truss, k-nucleus and degree centrality in
locating influential nodes using four real-world social networks. We start by showing
that k-nucleus decomposition identifies fewer nodes as being influential. We then show
that despite being lower in number, the nucleus nodes have similar or better information
spreading power than those identified by other methods. We also show that the nodes
selected by nucleus decomposition are robust to low diffusion rates under the IC and
SIR models. Finally, we show that choosing a sufficient number of high degree nodes
can work well as the nucleus, and these topology based methods often perform on par
with an approximation algorithm that solves the underlying influence maximization
problem.
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Table 1. Properties of datasets and their subgraph decompositions.

Dataset Nodes Edges τ
kmax vmax

Nucleus Truss Core Nucleus Truss Core
WikiVote 7,115 88,750 0.00720 15 19 49 37 80 332
Slashdot 81,871 545,671 0.00074 26 34 54 65 77 118
Epinions 131,828 841,372 0.00540 97 105 121 112 135 149
EuEmail 265,214 420,045 0.00970 13 18 37 56 62 292

3.1 Datasets

We use four publicly available datasets [11]. Slashdot is a technology news website
whose users form a signed social network as they can tag each other as “friend” or
“foe”. Epinions is a trust-based (who-trusts-whom) network between members of the
Epinions.com product review website. WikiVote is a dataset showing who voted for
whom in the Wikipedia election for membership. EuEmail is a “who talked to whom”
network with an edge between two nodes, A and B, meaning A sent an email to B.

To compute subgraph decompositions, we use the code from [19], available at
http://sariyuce.com/nucleus-master.zip. Table 1 summarizes the datasets
and the properties of the corresponding k-core, truss and nucleus decompositions (vmax

is the number of nodes in the maximal subgraph of order kmax ). The dataset statistics
we report are the number of nodes and edges, and the inverse of the largest eigenvalue
of the corresponding adjacency matrix, τ . It is known that epidemic spreading can be
achieved by setting the propagation probabilities to be at least τ [3]. Below this thresh-
old, the number of affected nodes decreases exponentially.

3.2 Subgraph Decomposition Properties

For the subgraph decompositions, Table 1 shows the largest values of k, denoted as
kmax, that gave a non-empty core, truss and nucleus, and the number of nodes that
were identified as influential, i.e., the number of nodes belonging to the kmax-cores,
trusses and nuclei, denoted by vmax. As shown in Table 1, the number of maximal nu-
cleus nodes (vmax) is smaller than the number of maximal truss nodes, which is smaller
than the number of maximal core nodes. This is expected as truss decomposition relies
on triangles and nucleus decomposition relies on cliques, which are increasingly stricter
criteria. Furthermore, Table 2 reports the overlap between influential nodes identified
by the different decompositions. Many nodes are common among the three decompo-
sitions. In fact, the entire kmax-nucleus is often a subset of a kmax-truss or kmax-core
subgraph. This was also seen in our illustrative example in Figure 1.

3.3 Analyzing Trust

Two datasets, Epinions and Slashdot, contain ground truth about who trusts whom in
the network. This allows us to explore the contextual properties of our subgraphs. These
two graphs have directed edges with binary edge weights: An edge from A to B has
a weight of one if A marks B as a “friend” and zero if A marks B as a “foe”. Only

http://sariyuce.com/nucleus-master.zip
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Table 2. Overlap among various selected sets: N is the maximal set of Nucleus nodes, T is the
maximal set of Truss nodes, C is the maximal set of Core nodes, D is the set of top 100 Degree
centrality nodes, and IIC,τ is the set of nodes (number of nodes equal to the size of N ) found by
IMM under the IC model at τ . The left table is the percentage overlap with N and the right is the
percentage overlap with D.

Dataset N ∩ T N ∩ C N ∩ T ∩ C
WikiVote 100% 94.6% 94.6%
Slashdot 96.9% 96.9% 96.9%
Epinions 100% 100% 100%
EuEmail 71.4% 100% 71.4%

Dataset C ∩D T ∩D N ∩D IIC,τ ∩D
Wikivote 19% 15% 38.8% 5.4%
Slashdot 5.9% 3.9% 24.6% 23.1%
Epinions 0% 0% 0% 29.5%
Euemail 6.8% 3.2% 33.9% 53.57%

Table 3. Average trust metrics for Slashdot and Epinions.

Dataset Subgraph Trusted by In Degree Out Degree Reputability (in %)

Slashdot

Whole 5.159 6.665 6.665 77.4
core 176.0 186.4 180.9 95.0
truss 180.7 191.2 185.5 96.2

nucleus 183.3 191.1 194.1 96.8

Epinions

Whole 5.444 6.382 6.392 49.0
core 177.4 183.1 239.3 96.9
truss 182.3 188.5 245.3 96.8

nucleus 191.5 197.4 254.3 96.9

15 percent of edges in Epinions are foe edges, and 23 percent of edges in Slashdot
are foe edges. We assume that individuals trust their friends but not their foes. This
is important in the context of influence maximization because, in practice, influential
people are generally those who are trusted by others.

Table 3 presents the following statistics for the entire graphs and for their respective
maximal core, truss and nuclei: the average number of nodes that trust a given node,
the average node in and out degrees, and the average node reputability, defined as the
percentage of nodes who trust the given node v and the node v’s in-degree. We see that
higher-order decompositions are more densely connected and have higher reputability
(on average), reinforcing our belief that subgraph decomposition identifies topologi-
cally and contextually essential nodes. As users often rate things they like or not rate at
all [17], being connected to more people makes one more likely to be positively rated
and may have a cascading effect on reputability. The influential nodes identified by nu-
cleus decomposition have the highest reputability in Slashdot, whereas in Epinions, all
three tested methods have similar reputability scores.

3.4 Evaluating Spreading Performance

We now evaluate spreading effectiveness using the three information diffusion mod-
els. We test k-core, truss and nucleus decomposition as well as the Degree Centrality
method for selecting the seed set. For degree centrality, we take the top-n highest de-
gree centrality nodes, where n is the number of nodes in a maximal nucleus. While [13]
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use only the nodes having the highest degree as the seed set, we found that the number
of highest-degree nodes can often be too small to be of any practical significance.

Furthermore, we compare our methods to the IMM algorithm [22], which is an ap-
proximation algorithm to solve the underlying NP-hard influence maximization prob-
lem.

Given the desired number of seed nodes, IMM identifies the (approximately) best
such nodes given the underlying diffusion model. As we did in the degree centrality
method, we set the desired number of seed nodes to be the number of nodes in a maxi-
mal nucleus.

We also note that previous work often used undirected versions of datasets. How-
ever, an undirected edge means that “if A trusts B, B also trusts A.” This reciprocal
behaviour may not always be true, which may affect the efficacy of the diffusion pro-
cess. Thus, we use directed graphs in our simulations. The experimental setup for the
three diffusion models is given below:

– Independent Cascade Model: We draw propagation probabilities from a uniform
distribution. We set the propagation probability, or activation rate, of an edge
(v, v′) to pv,v′ = u(0, t), where u(0, t) is a uniform function between 0 and t
for some t ∈ (0, 1]. We choose the uniform distribution as we do not have com-
plete knowledge about users’ propagation probabilities [4]. We limit the propaga-
tion probabilities to t and use this as a parameter for our experiments. For instance,
a low value of t means that nodes are not easily influenced and thus can be thought
of as low-trust networks. We start with t = τ as per Table 1.

– Linear Threshold Model: We set the activation thresholds based on a uniform
distribution as we do not know the real thresholds for the nodes. Thus, θv = u(0, 1)
where u(0, 1) is a uniform function.

– SIR Model: We set the infection rate to be the threshold τ (see Table 1) and the
recovery rate to be 0.08 as suggested in [13].

Table 4. Average Spreading performance (number of nodes activated per seed set node).
Note: for SIR and IC, we use threshold τ .

Dataset Subgraph LT SIR IC

WikiVote

Core 7.85 1.15 0.16
Truss 14.99 1.15 0.30

Nucleus 17.65 2.00 0.35
DC 28.44 0.24 0.25

IMM 28.66 3.34 0.72

Slashdot

Core 47.6 0.68 0.04
Truss 71 0.24 0.05

Nucleus 87.46 1.12 0.05
DC 79.42 1.08 0.05

IMM 85.2 1.27 0.06

Dataset Subgraph LT SIR IC

Epinions

Core 8.23 6.01 0.32
Truss 9.79 6.50 0.36

Nucleus 11.01 8.47 0.43
DC 38.2 14.41 1.13

IMM 68.39 7.16 1.76

EuEmail

Core 9.45 2.82 0.79
Truss 58.21 3.15 1.39

Nucleus 78.27 6.96 2.48
DC 74.71 4.02 2.46

IMM 76.67 9.48 2.52

For each trial, we activate all the nodes that were reported by a given method as
being influential. We then run the diffusion process until no new nodes can be activated.
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Fig. 2. Impact of propagation probabilities on spreading performance (number of nodes
activated per seed set node) for IC model. Note: the standard errors were too small to report
(standard error < 0.15).

We repeat the simulation 1, 000 times and report the average number of nodes activated
divided by the seed set size. This metric is our spreading efficiency.

Table 4 shows the results. We present the spreading performance for IC and SIR at
the minimum threshold chosen (τ ). We see that the absolute value of the final spreading
efficiency is low for SIR and IC. This is because the reported values are at the lowest
threshold we tested. Furthermore, we see that both Degree Centrality (DC) and nucleus
decomposition performs better than core and truss decompositions, even at low thresh-
olds. In some cases, DC outperforms the tested graph decomposition methods.

Impact of Propagation Probabilities We now illustrate the impact of propagation
probabilities in the Independent Cascade (IC) Model. We focus on the IC model as
SIR has been discussed in depth in [13], and SIR reduces to IC when the propagation
probability is the same for all nodes (called infection rate for SIR).

For each method and dataset, Figure 2 shows the number of activated nodes for the
following propagation probabilities, shown from left to right: τ , 0.01, 0.03, 0.05, 0.1 and
0.5 (recall that τ is the inverse of the largest eigenvalue of the corresponding adjacency
matrix and gives a reasonable lower bound for the propagation probability threshold).
We stop at 0.5 as information spread tends to saturate at some propagation probability
threshold, typically ≈ 0.5. As expected, the number of activated nodes increases for
all methods as the propagation probability increases. Second, as nucleus decomposition
starts with a smaller seed set, nucleus nodes have better per-node spreading efficiency
on average. The degree centrality nodes also perform on par with the nucleus nodes.

Comparison with IMM Algorithm The methods we considered so far select in-
fluential nodes based on graph properties. In contrast, IMM selects influential nodes by
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solving the underlying influence maximization problem approximately to 1− 1/e− ε,
where ε controls the approximation (a higher value trades solution quality for runtime).
Since we randomly assign propagation probabilities in our simulations, we found that
different experimental runs of IMM on the same graph gave different influential nodes.
To account for this, for each experiment, we run IMM 100 times and output the nodes
that were most frequently identified as influential over the 100 runs. (Again, as men-
tioned earlier, the total number of influential nodes we select is equal to the number
of nodes in a maximal nucleus.) IMM requires the user to set ε, which we set to 0.1
following prior work [22].

From Figure 2 and Table 4, we conclude that IMM has the best average spreading
performance in many situations, and is nearly as good as nucleus decomposition for
Slashdot and EuEmail. Our results align with those from [1], which shows that there is
no single state of the art technique in Influence Maximization. We also note that IMM
took about 1500 seconds per iteration for the Epinions dataset (IC model, 0.5 threshold),
while nucleus decomposition took 126 seconds, truss took 5.2 seconds, and core took
0.2 seconds. The runtimes on all the datasets are shown in Table 5. As we explained
above, we ran IMM 100 times to arrive at a “stable” set of seed nodes, giving a total
runtime of over 41 hours. Moreover, the memory footprint of IMM is high (> 30GB of
RAM for the EuEmail dataset). Thus, nucleus decomposition may be the algorithm of
choice for practitioners willing to sacrifice some effectiveness for much faster runtime.

Comparison with Degree Centrality According to Figure 2 and Table 4, DC per-
forms better than nucleus decomposition in some cases. In Table 2, we see that the top
100 nodes ranked by degree centrality contain ∼ 20% of nucleus nodes. Interestingly,
there is no overlap between the top degree centrality nodes and subgraphs for Epinions.
One possible reason for this could be the sparse nature of the Epinions graph, as seen
in Table 1. We also see that DC has a high overlap with the nodes found by IMM,
indicating that the optimal nodes chosen by IMM often have high degree as well.

Table 5. Runtimes in seconds. For IMM, we report the time at threshold 0.5 for IC

Dataset Core Truss Nucleus IMM
WikiVote 0.16 0.35 4.1 83.13
Slashdot 0.10 0.81 5.2 373.8
Epinions 0.19 4.00 126.2 1275.2
EuEmail 0.11 0.38 2.0 786.7

4 Discussion

Identifying influential nodes that can disseminate information to a large part of a net-
work is of particular interest in social network research. k-core, a subgraph decom-
position based on maximal node degrees, has mainly been studied in this context and
found to be effective [10] [15]. However, even k-core can overlook critical features
in the graph, motivating the use of a higher-order decomposition called k-truss [13].
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The promising results using k-truss decomposition motivated us to consider even more
dense substructures, and we arrived at a generalized notion of nucleus decomposition
[19]. By imposing more restrictions on nodes in terms of topological and positional fac-
tors, our experiments reveal that nucleus decomposition significantly reduces the num-
ber of candidates for influential spreaders. This means that in practice, fewer nodes need
to be engaged to obtain similar spreading performance. Nucleus decomposition can be
used in conjunction with other influence maximization algorithms to reduce their search
space for even better results. For example, one may start with a set of nucleus nodes and
choose a subset of them with the highest degree. However, as seen in the experimental
results using the Epinions dataset, nucleus decomposition may not always produce the
most influential nodes.

We explored three models for information spread in order to gauge the performance
of topology-based IM methods. The Linear Threshold (LT) model is sensitive to the
number of neighbours that can influence a node: a large number of neighbours make
it more likely for information to spread. Thus, Degree Centrality works well in the LT
model. The SIR and Independent Cascade (IC) models use propagation probabilities
that may be different for different node pairs. In these cases, nucleus decomposition
performs better as it tends to identify strategically placed nodes. We notice that De-
gree Centrality often performs on par with nucleus decomposition, especially for higher
propagation probabilities. This may be due to the high overlap between the nucleus and
high degree-centrality nodes, as seen in Table 2. Furthermore, we found that in many
situations, DC and nucleus decomposition performs similar to IMM in terms of average
spreading performance. However, they take much less time to be computed. This sug-
gests the benefits of topology-based methods such as nucleus decomposition compared
to approaches that solve the underlying influence maximization problem.

Modeling and optimizing influence spread has garnered much interest from multi-
agent systems researchers. Some researchers in this field contend that graph properties
may be prone to an error in predictions of information spread, and that actual behaviour
in certain networks, especially ones of more modest sizes (e.g., for homeless youth
HIV prevention [23]) may play out differently, integrating more connection to those
currently outside the network. These authors also advocate considering the set of seed
nodes as a multiagent team, with inter-connections. We view the work in this paper as
complementary to these research threads in the multiagent systems domain. For one,
if it is indeed critical to be examining relationships between the nodes in the seed set,
this can be done all the more effectively if operating with a smaller set of nodes, the
behaviour of which can be examined in detail. It is also possible to use nucleus de-
composition together with other models of diffusion, which are more generous to the
integration of external nodes.

5 Conclusions and Future Extensions

This work provides vital new insights into how to track influence within social networks
when operating with constrained resources, revealing the effectiveness of smaller seed
sets, of use for a host of applications. Calibrating the value of k-nucleus is an important
part of our effort. Recall that truss and core can be thought of as (2, 3) and (1, 2)-nuclei,



Locating influential agents in social networks: Budget-constrained seed set selection 11

respectively. A (3, 4)-nucleus is an even denser subgraph with fewer nodes that have the
potential to exhibit good spreading power. While there is a marked improvement, there
will be a diminishing return on computation time investment on successively mining
denser subgraphs (as noted by [19]). This opens several avenues for future work.

A limitation of subgraph mining methods is that they usually consider undirected
graphs, and thus some information may be lost. A potential solution is to identify d-
cores [6], which separately consider the in-degree and out-degree of nodes and thus may
be more suitable for directed graphs. Furthermore, other graph decomposition based
approaches have been proposed, such as k-meanoid [25] and modified k-shell [2]. A
comparison of k-nucleus against these methods would be an ideal next step.

Various empirical studies to date have provided insights into the theoretical advan-
tages of different algorithms (e.g. [8]); for future work, it would be valuable to expand
these kinds of discussions to nucleus decomposition. Additionally, since nucleus de-
composition gives a verifiably smaller set of nodes with better-spreading properties
than other methods such as core and truss, it can also be used as a preprocessing step
for optimal algorithms. Moreover, there are now parallelized algorithms available for
nucleus decomposition, which can improve the efficiency of our approach [18].

Interestingly, the work of [15] on tracking real-world information flow found that
the most influential nodes lie in the k-core subgraph, and it would be valuable to show
that they lie in the nucleus or truss subgraphs as well. It would also be interesting to
empirically compare subgraph based methods with the greedy algorithm of [8]. [16] as-
signs a “Klout Score” of influence to 750 million users by extracting features from user
interactions in multiple social networks and then aggregating them into a hierarchical
scoring structure. Combining these content-based methods with k-nucleus decomposi-
tion is another potential direction for future work.

One final avenue for future work is to experiment with something other than a uni-
form propagation probability distribution, determining which scenarios benefit from
lifting that assumption. Examining other methods for measuring influence would also
be valuable (for example, [21] uses social media posts to create a content based metric).
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