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ABSTRACT
Most frameworks for computing solution concepts in hedonic games
are theoretical in nature, and require complete knowledge of all
agent preferences, an impractical assumption in real-world settings.
Recent work lays the theoretical foundation of Probably Approxi-
mately Correct (PAC) stability to model stability under uncertainty
through sampling. This paper presents the first application of strate-
gic hedonic game models on real-world data. We show that PAC
stable solutions can reflect Members of Knesset’ political positions
at large. Moreover, these comparisons also reveal politicians who
are known to deviate from party lines. Finally, we show that PAC
hedonic game models compare favorably to both 𝑘-means clustering
and stochastic block models, which do not account for strategic
behavior, for uncovering voting patterns.

1 INTRODUCTION
Hedonic games are a standard model for preference-constrained
coalition formation, offering a variety of solution concepts account-
ing for criteria of justice and strategic considerations. They consider
both cooperative aspects as well as individual preferences, combin-
ing, in a sense, cooperative and non-cooperative game theoretical
settings.
Much of the work on these models focuses on theoretical analysis,
rather than empirical or data-driven aspects (with the notable excep-
tion of stable matching problems, which, while can be modeled as
hedonic games, have developed unto a field of their own). This is due
to several factors: first, there are no available large-scale datasets of
player preferences over coalitions. Second, most hedonic coalition
formation algorithms are meant to be used in full-information do-
mains, and cannot be immediately applied when only observations
of partial player preferences are available. Even in domains where
preferences are available, there is often no “ground truth” coalition
structure to evaluate success.
In this work, we propose a methodology for addressing these issues,
via a case-study identifying probably core-stable partitions in the
Israeli parliament (the Knesset). In March 2017, Knesset historical
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voting data was made publicly available1. In the parliamentary set-
ting, Members of Knesset (MKs) can be thought of as players, whose
preferences can be induced from their voting patterns. The Israeli
parliament votes frequently: more than 7000 bills and proposals
within approximately 4 years (March 2015–April 2019). More im-
portantly, the Knesset offers a natural ground truth for comparison:
its members’ actual political party affiliations.
Exploiting this novel data source and recent theoretical frameworks
for applying hedonic solution concepts on data, we present a novel
application of strategic hedonic games models on a real-world
dataset. Our work addresses the following research questions: (1)
Can hedonic games model real-world collaborations? (2) Are he-
donic game outcomes comparable to the ground truth? (3) How do
these outcomes compare to machine learning (ML) models?

1.1 Our Contributions
We use voting records of the Israeli Knesset to construct hedo-
nic game models and corresponding solutions. We compare these
against the outputs of standard clustering and community detection
techniques, using party affiliations as ground truth. Our hedonic
game-based partitions reveal Members of Knesset’ political posi-
tions at large; moreover, our methodology compares well to standard
ML techniques, even identifying ‘rogue’ MKs who break from party
lines.
We utilize the notion of PAC stability, introduced in Sliwinski and
Zick [17]; this methodology allows us to directly find probably
stable coalition structures. That is, we are able to create coalition
structure that is stable according to the information we have (though
there is a small probability we have not seen a datapoint that would
render our coalition structure unstable). To do so, we design efficient
algorithms that compute PAC stable outcomes under various player
preference models. We provide an intuitive graphic environment to
present our results (https://knesset.s3.amazonaws.com/index.html,
which contains additional models and analysis not included in this
paper2).

1https://main.knesset.gov.il/Activity/Info/pages/databases.aspx
2We will provide access to the source code and cleaned datasets upon publication.

https://knesset.s3.amazonaws.com/index.html
https://main.knesset.gov.il/Activity/Info/pages/databases.aspx
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1.2 Related Work
Most works on coalition formation games are theoretical; specif-
ically, studies on hedonic games focus on the existence and com-
putational aspects of stability concepts under various player utility
models [1–4, 7, 18]. These works provide solid theoretical and algo-
rithmic foundations for diverse classes of hedonic games; however,
they all assume knowledge of player preferences, which is often
unattainable in real-world settings.
There exist datasets of election data (e.g., PrefLib [14]), but unlike
the Knesset dataset, they consist of voters ranking a fixed set of
candidates, rather than repeatedly voting on different issues. Thus,
the resulting datasets are far less heterogeneous and smaller in size.
Some works study coalition formation under uncertainty, taking
a Bayesian reinforcement learning approach [8, 9]. In this model,
players reason about other players’ capabilities and actions, and
learn their preferences via repeated interactions, converging to a
Bayesian variant of the core.
We take a data-driven approach to cooperative games, where one
assumes access to a dataset (rather than a prior) of coalitions and
their values, and uses the dataset to generate approximately stable
solutions [6, 12, 13, 17]. The models we use rely in part on the
theoretical foundations of PAC stability laid out in these works.

2 PRELIMINARIES
In this work, we model Members of Knesset (MKs) as players
in a hedonic game. A hedonic game is given by a set of players
𝑁 = {1, . . . , 𝑛}. Let N𝑖 = {𝑆 ⊆ 𝑁 : 𝑖 ∈ 𝑆} be the set of all subsets
(known as coalitions) containing player 𝑖. Each player 𝑖 ∈ 𝑁 has
a complete preference order ≻𝑖 over N𝑖 . Most works assume that
players’ ordinal preferences are encoded via cardinal utilities; in
other words, players have a utility function 𝑣𝑖 : N𝑖 → R such that
𝑆 ≻𝑖 𝑇 iff 𝑣𝑖 (𝑆) > 𝑣𝑖 (𝑇 ). A solution to a hedonic game is a mapping
whose input is a hedonic game, outputting a set of partitions (known
as coalition structures) satisfying certain fairness/stability criteria.
The core is one of the more popular solution concepts in the literature.
A coalition structure 𝜋 is in the core if for every coalition 𝑆 ⊆ 𝑁 , at
least one member of 𝑆 weakly prefers their assigned coalition to 𝑆;
in other words, if 𝜋 (𝑖) is the coalition that 𝑖 is assigned to under 𝜋 ,
then 𝜋 is in the core if for every 𝑆 ⊆ 2𝑁 there exists some 𝑖 ∈ 𝑆 such
that 𝜋 (𝑖) ⪰𝑖 𝑆 . Coalition structures in the core are often referred to
as stable.

2.1 PAC Stability in Hedonic Games
As mentioned earlier, we assume only partial access to player pref-
erences. More specifically, we assume that we are given a dataset
𝑆1, . . . , 𝑆𝑚 of𝑚 observations of formed coalitions, where each data
entry is a coalition 𝑆 𝑗 ⊆ 𝑁 , and the (cardinal) valuations of players
in 𝑆 𝑗 (𝑣𝑖 (𝑆 𝑗 ))𝑖∈𝑆 . We assume that 𝑆1, . . . , 𝑆𝑚 are sampled i.i.d. from
some distributionD, and that future coalitions will be sampled from
the same distribution. This is a natural assumption in data analysis,
where 𝑆1, . . . , 𝑆𝑚 are the training data (used to train a model, or in
our case, a solution concept), and future samples are taken from
the test data. Indeed, in our experimental evaluation, we take i.i.d.
samples from the Knesset voting data, which forms our training data.
Our algorithms are provably guaranteed to offer probably stable
solutions, as described below.

Hedonic core stability can be thought of as capturing a local loss:
given a coalition structure 𝜋 and a coalition 𝑆 ⊆ 𝑁 , let

_ (𝜋, 𝑆) =
{
1 if ∀𝑖 ∈ 𝑆 : 𝑣𝑖 (𝑆) > 𝑣𝑖 (𝜋 (𝑖))
0 otherwise.

In other words, _(𝜋, 𝑆) incurs a loss of 1 if 𝜋 was not able to hedge
against the members of 𝑆 deviating from 𝜋 . Given a distribution D,
one can then naturally define the expected loss of 𝜋 w.r.t. D as

𝐿D (𝜋 ) = Pr
𝑆∼D
[_ (𝜋, 𝑆) = 1] (1)

Equation (1) captures a probabilistic variant of the core condition:
rather than requiring that _(𝜋, 𝑆) = 0 for all 𝑆 ⊆ 𝑁 (as is the case for
the core), we require that it is low w.r.t. D. Thus, our objective is to
find coalition structures that incur low expected loss. More formally,
a PAC stabilizing algorithm takes as input a set of i.i.d. samples
𝑆1, . . . , 𝑆𝑚 ∼ D𝑚 , and outputs a coalition structure 𝜋∗ (a function
of the samples) with the following guarantee:

Pr
(𝑆1,...,𝑆𝑚 )∼D𝑚

[𝐿D (𝜋∗) ≥ Y ] < 𝛿 (2)

Intuitively, 𝛿 captures the probability that the i.i.d. observations
given to our algorithms are ‘badly distributed’ (e.g., D is a uniform
distribution, but by sheer coincidence we sampled the same coalition
every single time). In other words, in a vast majority of the𝑚 samples
(≥ 1 − 𝛿) the output of our PAC stabilizing algorithm incurs < Y

expected loss. We require that𝑚, the number of samples needed to
offer the guarantee in (2), is polynomial in 𝑛, 1

Y and log 1
𝛿

. Note that
the above formulation completely sidesteps the need to learn players’
preferences, directly learning a stable outcome from samples. Indeed,
a series of recent works [12, 13, 17] present efficient algorithms
for computing PAC stable outcomes. In fact, Jha and Zick [13]
show that only consistency with samples is needed to ensure PAC
stability, using a number of samples linear in 𝑛: an algorithm is a
consistent solver if given a set of samples 𝑆1, . . . , 𝑆𝑚 evaluated by
a hedonic game (𝑁, 𝑣), its output 𝜋∗ satisfies _(𝜋∗, 𝑆 𝑗 ) = 0 for all
𝑗 ∈ 1, . . . ,𝑚. In other words, a coalition structure that is stable w.r.t.
to the observed samples is likely to be stable w.r.t. future samples,
for a sufficiently large𝑚.

2.2 The Israeli Knesset Data
The Israeli political system consists of multiple parties, partially due
to its proportional voting system, and diverse political landscape.
The Knesset is the unicameral legislative branch of the national gov-
ernment. We focus on the twentieth Knesset (2015-2019), which was
the longest serving Knesset since the late ’80s. The twentieth Knesset
had ten parties; however, its political landscape is far more nuanced3.
This preponderance of political parties (and respective views) has
favored a multi-dimensional party system, leading to unexpected
coalitions and combinations. However, in the past decades Israeli
parties generally align along a single right-left axis, which mainly
concerns the parties’ approach to the Israeli-Palestinian conflict.
This simplifies our considerations when analyzing and comparing
the models.
No Israeli party has ever held a majority of Knesset seats; all gov-
ernments are made of coalitions. In the past years (including this
dataset) governments strictly enforced coalition voting compliance

3See http://bit.ly/2sJUZEi-knesset20 for an overview.

http://bit.ly/2sJUZEi-knesset20
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via a government committee which issues mandatory voting instruc-
tions for all proposed bills. The opposition is under no such control,
but due to their relative ideologies, display significant agreement.
The Knesset website provides data access through the Open Data
Protocol (OData) on past MKs, bills, and member votes on every bill.
The Knesset has 120 seats, but the twentieth Knesset has 147 mem-
bers due to some MKs resigning or joining mid-term. We retrieve
information on all 147 MKs’ information including name, party
affiliation and their votes for all 7515 bills deliberated4. A member’s
vote can take on one of the following values: 0 (vote canceled), 1
(vote for), 2 (vote against), 3 (abstained), and 4 (did not attend).

3 METHODOLOGY
Previous work [5, 22] involve learning the underlying complete
preference profile before finding a stable partition. The closer the
learned preference profile is to reality, the more likely we are to
observe theoretically stable partitions matching the ground truth
partition in real-world data.
The problem with this approach lies in verifying the fidelity of the
learned preference profile — even simple preference profiles such as
top responsive games have an exponentially large representation in
the number of players (i.e. they have high VC dimension, as noted
in Sliwinski and Zick [17]). In the Knesset dataset, a naive descrip-
tion of player preferences will result in a list with approximately
2146 ≈ 1043 coalitions. Approximating these rankings is not only
computationally intensive, but also somewhat unrealistic: MKs are
not likely to have a complete model of their own preferences.
PAC stability inspires an alternative approach: instead of first learn-
ing the complete profile, and computing a stable partition with re-
spect to the learned preferences, we directly learn a PAC stable par-
tition from the partial preference relations observed in the Knesset
data. This trades off the strong stability guarantees for probabilistic
stability guarantees, but makes the problem much more tractable.
Hedonic game models require players to submit a complete rank-
ing of coalitions they belong to. In the Knesset data however, we
observe only approval/disapproval of bills; we translate the voting
data to preference relations of each parliament member, satisfying
the requirements of the given model. If the formulation results in a
complete preference profile, we use it to compute a deterministic
stable partition. We refer to such models as “full-information” mod-
els. These models reflect the aforementioned approach of learning
the underlying preference profile first, followed by finding a stable
partition. We then attempt to “PAC-ify” the formulation to discover a
PAC stable partition directly from sample data, i.e. partial preference
relations inferred from voting behaviors observed in a subset of all
bills.
For each PAC model, we sample i.i.d. (with replacement) 3

4 of all
bills; we repeat the run 50 times to evaluate the consistency between
different runs. We use an information-theoretic measure, adjusted
mutual information (AMI) [23], to determine if the coalition structure
we generate are robust with respect to the sampling. AMI is sensitive
in detecting very different partitions; however, AMI is not metric, so
it is not meaningful to compare two AMI values. To aggregate these

4The data contains inconsistencies when cross-checked against another dataset on the
Knesset website listing passed / defeated bills. This was likely due to MKs changing
votes manually after the voting period, rather than through the electronic system as
required. We resolve this by removing the 26 conflicting bills.

50 partitions into one single “representative” partition, we select the
conceptual “centroid” of the 50 partitions by finding the partition
that has the least information distance to the other 49 partitions.
Finally, we compare the partition produced by each model to ground
truth party affiliations, both quantitatively and qualitatively. We use
AMI to selected the most promising models and qualitatively exam-
ine them in greater detail. This lets us find subtleties not captured by
quantitative measurements, such as MKs known to hold views that
don’t match party line.

4 HEDONIC GAME MODELS
MKs’ political strategies are no doubt varied and complex. However,
the need for successful voting blocs stylistically resemble coalition
formation games; of these, we focus several more tractable hedonic
games models for analysis.

4.1 Appreciation of Friends
In this model, players classify others as friends or enemies, and
prefer coalitions with more friends and fewer enemies:
Formally, let𝐺𝑖 be player 𝑖’s set of friends, and 𝐵𝑖 the set of enemies.
𝐺𝑖 ∪ 𝐵𝑖 ∪ 𝑖 = 𝑁 and 𝐺𝑖 ∩ 𝐵𝑖 = ∅. A preference profile 𝑃 𝑓 is based
on appreciation of friends if for all players 𝑖 ∈ 𝑁 , 𝑆 ⪰𝑖 𝑇 if and only
if |𝑆 ∩𝐺𝑖 | > |𝑇 ∩𝐺𝑖 |, or |𝑆 ∩𝐺𝑖 | = |𝑇 ∩𝐺𝑖 | and |𝑆 ∩ 𝐵𝑖 | ≤ |𝑇 ∩ 𝐵𝑖 |.
Dimitrov et al. [10] propose Algorithm 1 for finding core stable
partitions for these preference profiles.

Algorithm 1 Appreciation of Friends Core Finding
Input: A preference profile based on appreciation of friends.

1: 𝑅1 ← 𝑁 ; 𝜋 ← ∅.
2: for 𝑘 = 1 to |𝑁 | do
3: Find 𝑆𝑘 , the strongly connected component (SCC) in the graph

induced by 𝑅𝑘 , with the largest # of vertices.
4: 𝜋 ← 𝜋 ∪ {𝑆𝑘 } and 𝑅𝑘+1 ← 𝑅𝑘 \ 𝑆𝑘
5: if 𝑅𝑘+1 = ∅ then
6: return 𝜋

7: end if
8: end for
9: return 𝜋

In the Knesset dataset, we define a player’s friends as anyone whose
votes agreed with the given player’s more often than they disagreed.
Agreed votes are only counted if the given player’s vote is ‘effective’
— when it is either “for” or “against”. We experimented with two dif-
ferent ways of counting the disagreed votes: (1) Broad disagreement
(selective friends): the other player’s vote is different from mine. (2)
Narrow disagreement (general friends): the other player’s vote is
different from mine and is effective.
Broad disagreement leads to players being more selective of their
friends, and friendships can be asymmetric. In both models, those
who are not friends are considered enemies.
Example 4.1. Consider a scenario with 3 MKs voting on 3 bills.

players: 𝑃1 𝑃2 𝑃3
bill A for for against
bill B abstained for abstained
bill C abstained against abstained

Under general friends, 𝑃1 and 𝑃2 are friends because they agree on
bill A. Under selective friends, from 𝑃1’s perspective, 𝑃2 is still a
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friend due to bill A, while 𝑃2 considers 𝑃1 an enemy because 𝑃1 did
not vote with her for bills B and C.

Once the sets of friends and enemies are derived, they define a
complete preference profile. We then apply Algorithm 1 to obtain
a core stable partition for the general friends and selective friends
preference profiles.
The appreciation of friends model is an example of a top responsive
preference profile [10, 18]. Under such preferences, every player
derives its utility from a most preferred subset of players within its
coalition, breaking ties to favor smaller coalitions. Formally, given
player 𝑖 and coalition 𝑆 ∈ 𝑁𝑖 , the choice set of 𝑖 in 𝑆 is Ch(𝑖, 𝑆) =
{𝑆 ′ ⊆ 𝑆 : (𝑖 ∈ 𝑆 ′) ∧ (𝑆 ′ ⪰𝑖 𝑆 ′′ ∀𝑆 ′′ ⊆ 𝑆)}. If |Ch(𝑖, 𝑆) | = 1, the
unique choice set is denoted as ch(𝑖, 𝑆). A top responsive preference
profile requires that for any player 𝑖 ∈ 𝑁 , and any coalitions 𝑆,𝑇 ∈
N𝑖 : (a) |Ch(𝑖, 𝑆) | = 1. (b) if ch(𝑖, 𝑆) ≻𝑖 ch(𝑖,𝑇 ) then 𝑆 ≻𝑖 𝑇 (c) if
ch(𝑖, 𝑆) = ch(𝑖,𝑇 ) and 𝑆 ⊂ 𝑇 then 𝑆 ≻𝑖 𝑇 .
Based on the PAC core finding algorithm introduced by Sliwinski
and Zick [2017], we “PAC-ify” Algorithm 1 as Algorithm 2. In-
tuitively, at each iteration 𝑘, we sample a new set of coalitions to
construct choice sets for each remaining player; Steps-5-13 initial-
izes the choice sets, which are refined through Steps 14-20. Step 21
then selects a coalition 𝑆𝑘 to add to the solution, and then removes its
members from the remaining data (Step 22). In fact, Algorithm 2 can
be applied to samples from any top responsive preference profile.

Algorithm 2 PAC Appreciation of Friends Core Finding

Input: Y, 𝛿 , set S of𝑚 = (2𝑛4 + 2𝑛3) ⌈ 1
Y
log 2𝑛3

𝛿
⌉ samples from D

1: 𝑅1 ← 𝑁 , 𝜋 ← ∅
2: 𝜔 ← ⌈2𝑛2 1

Y
log 2𝑛3

𝛿
⌉

3: for 𝑘 = 1 to |𝑁 | do
4: S′ ← take and remove 𝜔 samples from S
5: S′ ← {𝑇 : 𝑇 ∈ S′,𝑇 ⊆ 𝑅𝑘 }
6: for 𝑖 ∈ 𝑅𝑘 do
7: if 𝑖 ∉

⋃
𝑋 ∈S′ 𝑋 then

8: 𝐵𝑖,𝑘 ← {𝑖 }
9: else

10: 𝐵𝑖,𝑘 ∈ argmax𝑇 ∈S′ 𝑣𝑖 (𝑇 )
11: 𝐵𝑖,𝑘 ←

⋂
{𝑇 ∈S′:ch(𝑖,𝑇 )=ch(𝑖,𝐵𝑖,𝑘 ) }

𝑇 .

12: end if
13: end for
14: for 𝑗 = 1, . . . , |𝑅𝑘 | do
15: S′′ ← take and remove 𝜔 samples from S
16: S′′ ← {𝑇 : 𝑇 ∈ S′′,𝑇 ⊆ 𝑅𝑘 }
17: for 𝑖 ∈ 𝑅𝑘 do
18: 𝐵𝑖,𝑘 ← 𝐵𝑖,𝑘 ∩

⋂
𝑇 ∈S′′:ch(𝑖,𝑇 )=ch(𝑖,𝐵𝑖,𝑘 )

𝑇 .

19: end for
20: end for
21: Find 𝑆𝑘 , the strongly connected component (SCC) in the graph

induced by 𝑅𝑘 with the largest # of vertices.
22: 𝜋 ← 𝜋 ∪ {𝑆𝑘 }; and 𝑅𝑘+1 ← 𝑅𝑘 \ 𝑆𝑘
23: if 𝑅𝑘+1 = ∅ then
24: return 𝜋

25: end if
26: end for
27: return 𝜋

THEOREM 4.2. Algorithm 2 outputs a PAC stable partition for any
top responsive game; its running time is a factor of 𝑛 faster than
that of Sliwinski and Zick [17].

PROOF SKETCH. The correctness of Algorithm 2 is largely derived
from the correctness of a similar algorithm proposed by Sliwinski
and Zick [17]. Briefly, Steps 4–20 are used to identify (probably
correct) proxies for players’ choice set amongst the remaining play-
ers. Steps 21-22 remove a set of players who likely form a stable
coalition, and are the only point of difference between us and Sli-
winski and Zick. Whereas Sliwinski and Zick remove the smallest
connected component, we remove the largest strongly connected
component, i.e. the largest subgraph s.t. there is a path between any
two vertices. Finding the largest SCC maintains the correctness of
the algorithm, and requires a factor of 𝑛 less time (using Tarjan’s
algorithm [20]). □

Beyond the theoretical running time improvement, removing larger
groups in earlier iterations significantly reduces Algorithm 2’s run-
ning time compared to the CC procedure on our data. This reduces
our runtime from 30 to 10 minutes5.
We compute PAC stable outcomes based on the general friends and
selective friends preference models. Due to random sampling in the
PAC version of the experiments, we do not observe all bills every
time we approximate players’ choice sets; since we take intersec-
tions of the best coalitions for players, our PAC approximations
are, intuitively, conservative estimates of the true choice sets; this
is reflected in the performance of the PAC algorithms versus their
full-information counterparts (see § 6.1).

4.2 Boolean Hedonic Games
Under Boolean preferences, each player either likes or dislikes a
coalition, i.e. for every 𝑖 and every 𝑆 ∈ N𝑖 , 𝑣𝑖 (𝑆) ∈ {0, 1}. Aziz
et al. [3] show that Algorithm 3 outputs a core-stable outcome for
Boolean games.

Algorithm 3 Boolean Hedonic Game Core Finding

1: 𝑁 ′ ← 𝑁 ; 𝜋 ← ∅.
2: while 𝑁 ′ ≠ ∅ do
3: Find the largest size 𝑆 ⊂ 𝑁 ′ s.t. for all 𝑖 ∈ 𝑆 , 𝑣𝑖 (𝑆) = 1.
4: 𝜋 ← 𝜋 ∪ {𝑆 }
5: 𝑁 ′ ← 𝑁 ′ \ 𝑆
6: end while
7: return 𝜋

The Knesset data offers a natural method of identifying approved
coalitions: given a bill, “for” voters and “against” voters form two
satisfactory coalitions. This profile is always symmetric — if 𝑆 is
satisfactory for some 𝑖 ∈ 𝑆 , it is satisfactory for all 𝑖 ′ ∈ 𝑆 . Sym-
metry implies that the bill with the broadest support/disapproval
also yields the largest coalition. Any bill with broad inter-party
support/disapproval always generates a multi-party coalition in Al-
gorithm 3.

5On a 2018 MacBook Air (i5 CPU, 16GB RAM)
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Since players are indifferent among satisfactory coalitions, selecting
any coalition (not necessarily the largest) whose members find satis-
factory at Step 3 of Algorithm 3 to add to the output partition 𝜋 main-
tains core stability. To avoid always including the coalition that cor-
responds to the bill with the largest multi-party support/disapproval,
our implementation selects the median-sized coalition among all
satisfactory coalitions in each iteration.
Algorithm 3 can be easily converted to a PAC variant: given a sam-
pled set of coalitions 𝑆1, . . . , 𝑆𝑚 , pick some approved 𝑆 𝑗 from the
samples (say, the largest or median size approved 𝑆 𝑗 ) at every itera-
tion, set its players to be in a group together under 𝜋 , and remove
any coalitions in the sample that intersect with 𝑆 𝑗 ; repeat until no
coalitions are left. Let 𝐿 be the set of unassigned players: place the
members of 𝐿 into singleton coalitions in 𝜋 . The resulting partition
𝜋 is trivially consistent with the samples: the members of every
observed coalition that was added to 𝜋 are known to approve of
their assigned coalition, and would not deviate. In addition, it is not
possible that some approved 𝑆 ∈ {𝑆1, . . . , 𝑆𝑚} exists such that 𝑆 ⊆ 𝐿:
our PAC variant would have added 𝑆 to 𝜋 . Thus, the PAC variant of
Algorithm 3 is a consistent solver, and outputs a PAC stable outcome
given O(𝑛) samples.
Observe that the PAC variant of Algorithm 3 is computationally
efficient in the number of samples, whereas Algorithm 3 runs in
time exponential in 𝑛. This also holds true for the PAC variant of
Algorithm 1. That is, PAC learning approaches offer both a theo-
retically sound method of handling partial information, as well as
computationally efficient performance.

5 MACHINE LEARNING MODELS
To study our models’ effectiveness, we compare them against 2
machine learning techniques for grouping similar points (players):
k-mean clustering (cluster analysis) and stochastic block models
(community detection). These techniques are well studied in litera-
ture; we briefly overview them below:
𝑘-means clustering [19] is a general-purpose method that divides
a given set of samples (vectors of feature values) ®𝑥1, · · · , ®𝑥𝑛 into 𝑘

disjoint sets 𝑇1, . . . ,𝑇𝑘 , where each 𝑇𝑗 is described by the mean ®̀𝑗
of its members. This technique produces a partition minimizing the
within-cluster sum-of-squares:

∑𝑛
𝑖=1 min
®̀𝑗 ∈𝐶
( | | ®𝑥𝑖 − ®̀𝑗 | |2), where 𝐶 is

the set of 𝑘 means. To use 𝑘-means clustering, we generate a vote-
based feature vector ®𝑥𝑖 for each Knesset member 𝑖: each coordinate
of ®𝑥𝑖 represents a bill, and its value is 1 if 𝑖 voted for the bill; −1
if 𝑖 voted against, and 0 otherwise. We use the elbow method [21]
and the average silhouette score [16] to determine the “best” cluster
sizes to be 𝑘 = 2 and 𝑘 = 10.
The stochastic block model (SBM) [11] is a community detection
technique that, given a social network, partitions its nodes (play-
ers) into communities based on interaction intensity. We adopt the
non-parametric weighted stochastic block model implementation by
Peixoto [15] which incorporates edge weights. The stochastic block
model partitions nodes so that nodes belonging to the same group
connect to other groups at roughly the same rates.
We construct two SBM instances. In the first model, we use only
positive edge weights: each edge weight represents the number of
times a pair of politicians voted together, either “for” or “against”
a bill, modeled using the geometric distribution. Our second SBM

takes into account disagreements between politicians: edge weights
are the difference between the number of times their effective votes
agree and disagree, modeled using a normal distribution.
We use SBM and the MCMC algorithm to perform model averaging
to selected the “most representative” model.

6 RESULTS & DISCUSSION
Our main visualization method is the Sankey diagram, which is a
flow diagram representing a change in a system. On the left of each
diagram we have the ground truth state — party affiliation — and on
the right is one of our model partitions. Each link from the left party
partition to the right model partition represents a parliament member.
Richer, more detailed diagrams can be seen in our online demo. We
color parties according to their political position: right wing parties
are in reddish hues and left wing parties in blueish hues.

6.1 Quantitative Analysis
We use AMI to measure roughly each model’s deviation from ground
truth party affiliations. High AMI values represent models that cap-
ture more aspects of the ground truth. While we cannot compare
them directly, we use AMI to select the most promising models
for further investigation. Based on the AMI criterion, we focus our
qualitative analysis on the PAC models (friends, selective friends and
Boolean), and compare them against the SBM geometric community
detection model, and the 2- and 10-group 𝑘-means partitions.
While we omit the AMI values due to space constraints, we highlight
also a stark difference in AMI of full-information models: selective
friends has a high AMI value, while general friends does poorly. This
is a major drawback of these full-information models — sensitivity
to how “friends” are defined; a slight change from narrow to broad
produces two very different, yet each core stable coalition structures.

6.2 Qualitative Analysis
Some MKs participated in a small number of votes due to mid-term
resignations or external duties. In both cases, low participation may
skew cluster assignments. Our interactive demo provides an option
to color the flow links representing MKs by their number of effective
votes.

Coherence. Successful models should accurately separate govern-
ment and opposition parties; indeed, our PAC models avoid group-
ing members from the left and right. Unfortunately, PAC Boolean
also produces a large number of singleton coalitions (as it removes
median sized groups from the samples it leaves several singletons
behind). The 10-group 𝑘-means model, and the community based
SBM geometric model tend to join members with fewer votes, re-
gardless of their actual voting patterns. Examples of such cross-
ideology infrequent-voter groups are Coalition 2 of the 10-group
𝑘-means model (see demo diagram k_10_means, color by vote
count), and Coalition 8 of the SBM geometric model (demo: diagram
smb_discrete-geometric, color by vote count). The 2-group 𝑘-means
model partition includes five members of the right wing parties in
the opposition group (Coalition 2 in demo diagram k_2_means),
out of which only one such assignment makes sense — Orly Levy
left the right/center-right Yisrael Beiteinu and formed her own party
‘Gesher’, which ran together with the center-left Labor Party in the
2019 Knesset elections.
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(a) PAC selective friends (b) PAC Boolean (c) 𝑘-means (𝑘 = 10) (d) SBM geometric

Figure 1: Visualization of Ground Truth vs. Model Generated Partitions

Overall, the PAC models are more coherent: PAC selective friends
has only two cross-ideological groups (demo: diagram pac_friends_selective)
— Coalition 2 involves Levy, a known deviation; Coalition 6 is a
small coalition combining two low-attendance members, one on
the right edge of the left wing (Daniel Atar with 708 effective
votes), and another, who switched between coalition and opposi-
tion (Avigdor Lieberman with 725 effective votes). PAC Boolean
only has one cross-ideological group involving Orly Levy (demo:
diagram pac_boolean). PAC friends exhibits similar behavior, with
both Lieberman and Levy crossing party lines.

Overall structure. All PAC models and the 2-group 𝑘-means model
distinguish between the main government and opposition groups.
This stresses that, despite their differences, MKs still tend to vote
together due to their relative ideological cohesion, especially within
opposition parties who lack binding instructions. The SBM geomet-
ric and 10-group 𝑘-means models, however, commingled govern-
ment and opposition MKs (Figures 1d, 1c); most groups formed
based on attendance. Both variations of PAC friends present low
attendance MKs as singletons, while clustering together ministers,
who tend to miss votes. Ministers cluster in two different coali-
tions in PAC selective friends: Coalitions 3 and 5 (demo: diagram
pac_friends_selective). Both the 10-group 𝑘-means and the SBM
geometric clusters tend to remove more ministers from the overall
main government group, and divide them into more separate coali-
tions (demo: diagram k_10_means and smb_discrete-geometric).
One notable exception is a right-wing subgroup formed under PAC
friends (Coalition 3 in diagram pac_friends): in addition to some
low-attendance members, it consists of right-wing markers of the
Likud party (Oren Hazan and Yehuda Glick), as well as Benjamin
Netanyahu and Moshe Kahlon (Israel’s prime minister and minister
of finance, respectively). In addition, it contains several members of
Shas, a religious right-wing party. We hypothesize this group’s mem-
bers were particularly consistent in their voting patterns; in other
words, these members were likelier to align their vote to government
decisions.

7 CONCLUSION
We examine the Israeli parliament dataset using a data-driven ap-
proach that accounts for strategic behavior of parliament members.

This study is one of the first to bridge the gap between theoretical
aspects of hedonic coalition formation games and its applications to
real world scenarios, using a newly available dataset and theoretical
tools for handling coalitional stability in data-driven environments.
We show that PAC models are not only able to recover the overall
structure of governmental vs. opposition groups, but also are more
coherent compared to machine learning models such as 𝑘-means
and Stochastic Block Models. These PAC models also produce more
robust partitions than their full-information counterparts. To our
knowledge, ours is the first attempt to apply hedonic game models
to make predictions on real data. We hope that future works will
also take a descriptive, rather than prescriptive, approach to hedonic
games.
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