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ABSTRACT
In certain voting problems, a central authority must infer a hidden
ground truth by aggregating the opinions of an electorate. When
individual assessments are drawn i.i.d. and are correct with proba-
bility p > 0.5, aggregating enough votes will yield the ground truth
with high probability. However, in reality voters’ opinions are often
influenced by those of their friends. In certain social networks, this
interaction may cause the aggregated opinions to be misleading. A
center may use the network structure to recover the original dis-
tribution of votes from the post-interaction opinions of voters, and
so recover the ground truth in spite of confounding discussions. In
this paper, we consider a series of novel models of these underly-
ing social interactions, and derive maximum likelihood estimators
for the ground truth in these models, given the social network and
votes. We also evaluate these new estimators, as well as existing
ones, on common classes of social networks, and derive analytical
bounds on the estimators’ performance in different environments.
In all, we provide important insights into admitting influence from
peers during voting.

1. INTRODUCTION
The study of voting is conventionally divided into two distinct,

but related, perspectives. In one view, voting is the process of arriv-
ing at some compromise given the subjective opinions of the vot-
ers. In a political contest for instance, voters’ different interests
are expressed as preferences, and aggregated to select a winner that
represents the will of the electorate. Voters may have deep-seated
philosophical differences, and tend to (subjectively) view various
outcomes in distinct ways because of these differences. In this view
of voting, there is no presumption on the ‘correctness’ of any par-
ticular view, and instead winners are ultimately selected for voters
on the basis of a rule that allows a collective compromise.

In contrast, we can view voting as the process of aggregating
individuals’ beliefs regarding an objective truth about the world.
This view starts from the assumption that voters are casting ballots
representing their (potentially noisy or erroneous) impressions of
some event. For example, imagine a sporting event where view-
ers perceive the field from many different angles (as in a circu-
lar stadium). When a ball comes close to a goal line, different
viewers will have different perceptions about whether the ball has
crossed the line. Despite their distinct viewpoints, there is a true

Appears at: 2nd Workshop on Exploring Beyond the Worst Case in Com-
putational Social Choice. Held as part of the 14th International Conference
on Autonomous Agents and Multiagent Systems. May 4th, 2015. Istanbul,
Turkey.

answer (either the ball really did cross the line, or it really did not).
By having the viewers vote on whether the ball crossed, we could
aggregate their perspectives on what has really happened, and re-
cover the underlying truth. Early in the history of social choice,
Condorcet formalized this notion with the Jury Theorem, stating
that, provided voters have a better than even chance of observing
the truth (rather than observing the incorrect answer), aggregating
enough votes will yield the truth with high probability [3].

This paper focuses on the second view, which has applications to
many problems in artificial intelligence, and to multiagent systems
in particular (e.g. multiagent resource allocation, aggregating noisy
sensor data from a cooporative swarm of agents, recommender sys-
tems).

To date, most existing work in the domain of voting with a ground
truth has assumed that voters’ individual impressions of the truth
are generated independently. In practice, however, this may not
be so. In recent work, Conitzer [8] considers the possibility that
voters’ impressions of the truth might be influenced by discussions
with other members of the electorate, raising the question “Should
social network structure be taken into account in elections?”. This
additional factor can confound attempts to recover the truth by ag-
gregating individual opinions. As a trivial example, consider the
social network depicted in Figure 1.

Figure 1: An example of voting on a social network.

Each node represents a voter in this social network. A central
4-clique have the belief that the correct answer is ‘white’, while
peripheral neighbors connected only to the members of the clique
believe the correct answer is ‘black’. Suppose the true answer is
black, and, consistent with the requirements of the Jury Theorem,
nodes are more likely (by a 2:1 ratio) to have observed the truth.
However, if social interactions occur according to this graph, the
members of the clique could reinforce each others’ opinions, while
the isolated perimeter nodes would perceive only opinions opposed
to their own, and consequently might change their minds, and cast
a vote for ‘white’ based on the local aggregation of information
from their neighbors. Naively aggregating the views of the voters
after social interactions of this kind take place (e.g. on the basis of
majority opinion) could, thus, result in an overwhelming majority
for white, when in fact, the true answer is black. This suggests that



aggregation in the presence of a social network should incorporate
information about the network structure into its decisions.

In Conitzer’s earlier work [7, 8], two preliminary models for
social interaction were considered, but neither was entirely sat-
isfactory. In this paper, we present a new model for recovering
the ground truth under the assumption that it is easier to convince
someone of the truth than of a falsehood, which we call the “righ-
teous argument” model. We derive a maximum likelihood estima-
tor for the truth given the social network and the observed votes
after social interactions, under this assumption, which can be com-
puted efficiently. The model is extended to the case of hierarchical
social networks, and to the case where outcomes are non-binary.
The model is evaluated using simulations, and compared to a naive
model that does not take the structure of the social network into
account. We also provide a theoretical assessment of the model,
and describe the class of problems where it will provide an ad-
vantage over counting the votes without heed for the structure of
the social network. We conclude with a discussion of the model
and directions for future work, and by answering Conitzer’s ques-
tion “Should social network structure be taken into account in elec-
tions?” in the affirmative, at least for some elections.

2. RELATED WORK
Social networks represent a model of how people communicate,

interact and influence each other in their daily lives. Properly har-
nessed, a social network could be used to promote the spread of
certain ideas, and curtail others. This idea motivated much of early
research in the area. The field of innovation diffusion investigates
the adoption of new technologies by members of a community [6,
15]. The core premise of innovation diffusion is the notion of peer
imitation: once a number of peers have ‘vetted’ and adopted a new
technology, one is incentivized to adopt the technology as well, or
risk being left behind.

More recent work on diffusion in social networks focuses on the
diffusion of opinions. At its core, the idea is that as people inter-
act with their peers, their opinions (modeled as a continuous value)
will become more similar. Early mathematicians explored linear
models of such opinion dynamics, which admitted closed form so-
lutions [11]. Kraus was the first to investigate nonlinear systems,
bringing in agent based modeling techniques from the artificial in-
telligence community to simulate networks that were hard to ex-
amine analytically [12]. Since then, AI researchers have become
increasingly interested in social networks. Subsequent works ex-
plore opinion dynamics using random graph models such as scale-
free networks which mimic key characteristics of real world net-
works [2]. More recent works incorporate elements of social choice
in social network settings. An early work by Martins combines the
continuous ’opinion space’ with discrete expressions reminiscent
of voting [13]. Gasper et al. [10] investigate voting behavior in the
presence of social influence; Tsang and Larson explore the effects
of skepticism between agents [16].

Our work follows in a similar vein of examining social choice
mechanisms in the presence of a social network. Our approach dif-
fers most markedly from that of opinion dynamics in that we are
not examining long term behavior of the network; rather, we em-
ulate the time critical aspects of real world problems, and conduct
only a brief round of interactions before measuring opinions from
the network.

Other researchers have also examined the design of social choice
mechanisms for a social network. Boldi et al. [4] propose a system
of delegative democracy that operates on a social network. Here,
the goal is to create and analyze a concrete voting system for im-
plementing representative democracy, where each agent may dele-

gate another to vote for them by proxy. This delegation process is
transitive, with the weight of the delegated ballot diminishing ex-
ponentially with distance. This work differs from ours in that it
proposes a mechanism that allows agents to correlate their votes
(by allowing another to vote in their stead), whereas our system
assumes that opinion correlation will occur among neighbors in a
social network, and examines the impact this has on how voting
may be used to uncover a hidden ground truth.

Salehi-Abari and Boutilier [14] also examine the voting behav-
ior of agents within a social network. Their motivating example is a
group of friends selecting a restaurant together. While people may
have subjective preferences over the restaurants, the enjoyment ex-
perienced by their friends will play a crucial role. They propose
an efficient mechanism by which social welfare may be maximized
while accounting for these empathic utilities. Thus, Salehi-Abari
and Boutilier examine the other side of the social network coin,
where utilities depend not only on one’s own preferences (and the
outcome), but also those of one’s friends.

The work most closely related to our own is Conitzer’s recent
work proposing a maximum likelihood approach to voting over a
social network [8]. Conitzer considers the problem of estimating
the winner given the network structure and the votes cast after some
(unspecified) social interactions have taken place on the network.
The initial model considered by Conitzer [7] was shown to reduce
to a naive counting of votes, without incorporating network struc-
ture at all. Recognizing this, Conitzer [8] proposed an alternative
model where instead of opinions being distributed over the vertices
of the graph (i.e. the voters), opinions were distributed over the
edges of the graph (i.e. the conversations or interactions between
voters). In this model, the assumption is that individual conversa-
tions are more likely to produce the correct answer than an incorrect
one, and that voters cast their ballot according to the majority of the
opinions present in their interactions. The center (the entity that is
aggregating the votes) still observes only the final ballots cast, and
does not directly observe the edges. The MLE for this model is
somewhat complex, because there are many possible assignments
of opinions to the edges that could have generated a given vote pro-
file. Finding the correct winner under this model was shown to be
#P -hard, but an efficient estimator exists for a reasonable variation
of the model.

Although this model provides an interesting view, it seems counter-
intuitive to assign opinions to edges (conversations) rather than ver-
tices (voters). Presumably the opinions that arise from a given con-
versation follow from the information (and thus opinions) of the
participants, and are not an intrinsic property of the conversation
itself. Additionally, the fact that the opinions of the conversations
are distributed independent of the participants creates peculiar sit-
uations where voters who both ultimately agree (and vote) that the
answer is correct, might actually have a conversation where they
agree that the answer is a different, incorrect, alternative. These
drawbacks motivate the creation of a new model.

3. A MODEL FOR SOCIAL INTERACTIONS
Let G = 〈V,E〉 denote an undirected graph representation of a

social structure where V is the set of all vertices where |V | = n,
and E is the set of all edges between the vertices. In our social
structure, each voter is represented by a vertex v ∈ V , and each
edge (u, v) ∈ E represents an edge between the vertices u and v.

Given a set of alternatives C, the goal of a voting problem in the
presence of social network is to select a winner c ∈ C, according to
a voting rule, that represents the will of the voters in the underlying
social network. For simplicity, we first assume binary alternatives,



i.e., C = {c, c′}.1 Each voter casts a vote Av ∈ AV . The collec-
tive votes of voter v’s neighbors is ANei(v), and is simply defined
as ANei(v) = {Au|(u, v) ∈ E}. The probability of a voter casting
a ballot for a candidate, denoted by f , is a function of its idiosyn-
cratic belief about the correct outcome and its neighbors votes.

3.1 The Naive Model
We first review the model proposed by Conitzer [7] and dis-

cuss its drawbacks. In this model, the probability distribution of
a voter’s report is comprised from two independent parameters, the
probability of observing a vote Av given that c was the correct an-
swer is denoted by g(Av|c), and the probability of observing the
joint profile of votes for Av and its neighbors ANei(v) is repre-
sented by h(Av, ANei(v)).

Given a social network, the probability of a voter v casting a
particular ballot, along with the ballot profile of its neighbors, given
that the correct answer is c, is given by

f(Av, ANei(v)|c) = g(Av|c) h(Av, ANei(v))

Intuitively, g captures the tendency of voters to vote for the cor-
rect answer (like in the Jury Theorem), and h captures the tendency
of voters to agree (or perhaps disagree) with their neighbors. If we
then wished to estimate the likelihood of an observed ballot pro-
file, under the assumption that a candidate c is the true winner, the
likelihood is then proportionate to

L(AV |ĉ = c) ∝
∏
v

f(Av, ANei(v)|c)

under the assumption that the votes are conditionally indepen-
dent of each other except with respect to their neighbors. The win-
ner is the candidate c ∈ C that maximizes the likelihood of the vote
profile.

The main drawback of this model is the independence of the so-
cial interactions h from the outcome c, which results in identical
values of h when computing the likelihood under each candidate.
Thus, the social interaction value h can be ignored when maximiz-
ing the likelihood, and the model reduces to

L(AV |ĉ = c) ∝
∏
v

g(Av|c)

which does not incorporate information from the social network
structure at all. Indeed, under the assumption that g(Av|c) is> 0.5
when c is the correct answer, and < 0.5 otherwise, this model rep-
resents Condorcet’s Jury Theorem [3], and is maximized by picking
the candidate with the most votes as the winner.

These shortcomings in particular arose from the fact that h, the
joint probability of a voter’s reported opinion and the opinions of its
neighbors, did not depend on the outcome c. Therefore, we propose
a new model based on the notion of righteous argument that takes
the social interactions into account.

3.2 The Righteous Argument Model
A more realistic model of social interactions is to suppose that

the social influence of neighbors in a network depends on the true
outcome. The righteous argument model assumes that between two
connected voters, the voter with the correct opinion about the truth
is more likely to convince the voter with an incorrect opinion, than
the other way around.

We assume that the social influence h is dependent on ĉ (the true
outcome), and that the social influence h(Av, ANei(v)|ĉ) can be

1Section 3.4 provides a thorough consideration of multi-candidate
voting.

partitioned into a product of independent pairwise interactions. Let
h′(Av, Au|ĉ = c) be the probability that we observe vertices v
and u, which are connected in the social network, cast votes Av

and Au respectively, given that the correct answer is c. Then, the
joint probability of observing a particular vote alongside those in
the neighborhood of the voter that cast it is given by

h(Av, ANei(v)|ĉ = c) =
∏

u∈Nei(v)

h′(Av, Au|ĉ = c)

Given the pair-wise interaction function h′, the Maximum Like-
lihood Estimator (MLE) for the observed vote profile can be written
as

L(AV |ĉ = c) ∝
∏
v

g(Av|ĉ = c) h(Av, ANei(v)|ĉ = c)

A winner is a candidate that satisfies the following

arg max
c∈C
L(AV |ĉ = c)

For binary candidates, we assume g(Av|c) = p when Av = c
and ṗ = 1− p otherwise. Thus, the likelihood function reduces to

L(AV |ĉ = c) ∝ piṗn−i
∏
V

h(Av, ANei(v)|ĉ = c)

where i is the total number of reported votes for c in AV . No-
tice that, if two adjacent nodes u and v cast differing votes, then the
terms h′(Av = c, Au = c′|ĉ = c) and h′(Av = c, Au = c′|ĉ = c)
will appear in the likelihood for both candidates, and so such dis-
cordant edges need not be considered. This leaves only the con-
cordant edges where both parties agreed. Suppose that h′(Av =
c, Au = c|ĉ = c) = q for some q > 0.3, and that h′(Av =
c′, Au = c′|ĉ = c) = q̇ for some q̇ < 0.32. Then we can write the
final likelihood as

L(AV |ĉ = c) ∝ piṗ(n−i)qxq̇y

where x is the number of connections between nodes with opin-
ion c, and y is the the number of connections between nodes with a
different opinion.

Recall that p, q and q̇ are actually unknown quantities. It follows
that this model can produce a certain result only when one candi-
date has both a majority of votes and a majority of the concordant
edges in the graph between vertices that voted for the winning can-
didate. Computing the most likely candidate is then linear in the
total size of the social network.

Observe also, that although this model assumes the function h
can be decomposed into h′ (and so that the probabilities of ob-
serving particular correlations between votes is distributed inde-
pendently), it will recover the truth on models which generate votes
in a correlated fashion, provided that such models are anonymous
(i.e. voters have the same prior probability of being connected to
one another, and of having particular opinions). That is, voters’ ini-
tial votes (Vi ∈ V ) and connections are distributed independently
prior to the realization of the social structure and votes. The model
assumes that the probabilityP (Vi = c|c), prior to knowledge of the
particular graph structure or exact distribution of opinions among
the voters, is symmetric across all voters. In a similar vein, prior to
exact knowledge of the graph structure, one can compute the prior
probability that P (Vi = Vj = c|c), and the prior probability that
any two voters i and j are connected in the graph. As long as these
prior probabilities are symmetric for all pairs and individuals, then

2By the Righteous Argument assumption, P (c, c|c) > P (c, c′) =
P (c′, c) > P (c′, c′). It follows that q ≥ 1

3
and q̇ < 1

3
.



the assumptions of the model hold. Note that even if a process is
much more likely to generate graphs with homophily, or to cause
voters to adopt the correct opinion according to the joint distribu-
tion over their neighbors’ views, the prior probability of such con-
cordant pairs (before knowledge of the graph structure) will still be
symmetric unless the method cares about the names of the voters.
This allows for decomposition.

3.3 Asymmetric Social Influence
A natural extension to our righteous argument model with sym-

metric social influence (i.e. where when A influences B, B also
influences A) is to consider social structures wherein individuals’
have different social interactions with their neighbors in social net-
works such as boss-employee relationships, the reach of popular
media, and unusually stubborn and steadfast individuals. In partic-
ular, pairwise interactions are not necessarily symmetric, that is, for
each pair of nodes v and u in graphG = 〈V,E〉, (u, v) ∈ E repre-
sents a directed edge from u to v, and does not imply (v, u) ∈ E.

Let the in-neighbors of v be
←−−−−
Nei(v) = {u | (u, v) ∈ E} and

the out-neighbors of v be
−−−−→
Nei(v) = {u | (v, u) ∈ E}. The sets

of votes by in- and out- neighbors are represented by A←−−−−
Nei(v)

and
A−−−−→

Nei(v)
respectively. The in-neighbors of v represent those indi-

viduals who are influenced by v’s opinion, and the out-neighbors
of v represent the individuals who influence v’s opinion; these sets
need not be disjoint.

Note that the Naive model [7] explained in Section 3.1 does not
change under the asymmetric assumption as the social influence
function h is independent of the outcome c, thus the network struc-
ture has no impact on maximizing the likelihood of the observed
votes.

Incorporating the objective truth of voters’ opinions into their
ability to influence their in-neighbors, function f(Av, ANei(v)|ĉ) is
decomposed into three components: g(Av|ĉ),

←−
h (Av, A←−−−−Nei(v)

|ĉ),

and
−→
h (Av, A−−−−→Nei(v)

|ĉ).3 Expanding the social influence model to
independent pairwise factors, we have

←−
h (Av, A←−−−−Nei(v)

|ĉ) =
∏

Au∈A←−−−−
Nei(v)

h′(Au, Av|ĉ)

−→
h (Av, A−−−−→Nei(v)

|ĉ) =
∏

Au∈A−−−−→
Nei(v)

h′(Av, Au|ĉ)

Here, h′(Av, Au|ĉ) represents the probability that the configu-
ration Av and Au was achieved after v attempted to influence u’s
opinion ((u, v) ∈ E), given the correct choice ĉ. Based on the
pairwise interactions, we define the following distinct interaction
cases:

I Enlightened pair: Let q = h′(Av = Au = c|ĉ = c) be the
probability that two vertices with an interaction agree on the
correct outcome.

II Unenlightened pair: Let q̇ = h′(Av = Au = c′|ĉ = c) be
the probability that two vertices with an interaction agree on
the incorrect outcome.

III Successful Resistance: Let r = h′(Av = c′, Au = c|ĉ =
c) denote the probability that node u was unconvinced by the
arguments of node v toward the incorrect alternative.

3Despite the state of a node being influenced only by its out-
neighbors, we need to examine both

←−
h and

−→
h , because we are

evaluating likelihood of observing the configuration of the entire
graph.

IV Failed to Enlighten: Let ṙ = h′(Av = c, Aj = c′|ĉ = c)
denote the probability that node u was unconvinced by the
arguments of v toward the correct alternative.

If we assume that interactions increase the likelihood of finding
the correct outcome, then it follows that q > q̇, and r > ṙ. We can
calculate the probability of a voting profile, proportionate to:

L(AV |ĉ) ∝
∏
v∈V

g(Av|ĉ)
[∏

u∈
←−−−−
Nei(v)

h′(Av, Au|ĉ)
∏

u∈
−−−−→
Nei(v

h′(Au, Av|ĉ)
]

And selecting the most likely winner is equivalent to:

arg max
c∈C
L(AV |ĉ = c)

Then, let x be the number of votes for c, y be the number of
edges where both end points voted for c (case I), ȳ be the number
of edges where both endpoints voted for c′ (case II), and z and z̄
be the number of edges that disagree according to case III and case
IV respectively. Then, the likelihood for c is maximized as

pxṗn−xqy q̇ȳrz ṙz̄

Conversely, the likelihood for c′ is

pn−xṗxqȳ q̇yrz̄ ṙz

Therefore, c wins if and only the following holds true:

pxṗn−xqy q̇ȳrz ṙz̄ > pn−xṗxqȳ q̇yrz̄ ṙz

Which can be simplified to

p2x−nqy−ȳrz−z̄ > ṗ2x−nq̇y−ȳ ṙz−z̄

This implies that there is a clear solution for a winning outcome
if 2x > n, y > ȳ and z > z̄; or 2x < n, y < ȳ and z < z̄. That is,
a clear winner exists when one candidate has a majority of votes,
a majority of both Case I over Case II, and Case III over Case IV
edges. Again, this can be computed in time proportional to the size
of the social network.

3.4 Multiple Candidates
In this section, we consider an extension to the binary voting

model presented thus far when there are more than two candidates,
where there is only one correct choice among those candidates.4

Let C be the set of alternatives under consideration. Define the
probability that voter v votes for candidateAv , given that candidate
c is the correct alternative, as f(Av, ANei(v)|ĉ = c). For simplicity
we assume that voters cast a ballot containing only a single candi-
date, and not a full rank ordering. As in the naive model, suppose
that f(Av, ANei(v)|ĉ = c) = g(Av|ĉ = c) h(Av, ANei(v)). Then,
similar to the undirected case, the structure of the social network
cannot influence the outcome. Assuming that voters in general will
vote for the true outcome c = ĉ more often than for any other, an
MLE for this model is simply to count the votes as they appear. If
we extend the model using our assumption of righteous argument,
there are four possible cases for any pair of adjacent vertices, with
unique interpretations:

I Enlightened Pair: Let q = h′(Av = Au = c|ĉ = c) be
the probability that two adjacent vertices agree on the correct
outcome.

4Crucially, the ground truth does not specify a ranking of the can-
didates, but that one of them is intrinsically correct while the others
are equally incorrect.



II Failed to Enlighten: Let ṙ = h′(Av = c, Au = c2|ĉ =
c), where c2 ∈ C \ c be the probability that a vertex with
the correct outcome is adjacent to a vertex with an incorrect
outcome.

III Unenlightened Pair: Let q̇ = h′(Av = Au = c2|ĉ =
c), where c2 ∈ C \ c be the probability that two adjacent
vertices both vote for the same incorrect candidate.

IV Unenlightened Argument: Let r = h′(Av = c2, Au =
c3|ĉ = c), where c2, c3 ∈ C \ c be the probability that two
adjacent vertices both vote for a different incorrect candi-
dates.

Finding the MLE for this model is equivalent to finding:

arg max
ĉ∈C

pxṗn−xqy q̇ȳrz ṙz̄

which imposes constraints on declaring a winner similar to the
directed case discussed above.

Note that this model conforms only to the case where there is
a single candidate that is correct, and the other outcomes are, in
some sense, equally wrong. If instead there exists a ranking over
the outcomes, such that some outcomes are perhaps “more true”
than others, the inference problem is substantially altered. A nat-
ural extension would be to assume an order on the probabilities
associated with different pairs of candidates appearing in adjacent
votes.

4. EVALUATION
We now evaluate the performance of the models described above

on simulated votes held within various social networks. We con-
sider only the case of binary outcomes, but evaluate across several
families of random graphs, including both directed and undirected
graphs, and a range of possible problem parameterizations.

To generate a problem instance, we generate a social network
with n vertices (the voters), according to a particular (parameter-
ized) graph generation algorithm. We then assign an initial opinion
to each voter, with nc of the n voters starting with the correct opin-
ion, and the remainder receiving the incorrect opinion. A model of
influence dynamics is then applied to the graph, so that opinions of
voters tend to change to match those of their neighbours. The final
product is a social network where each vertex is assigned a vote,
and where the votes are the result of initial opinions modified by
discussion between the voters.

4.1 Influence Dynamics
Let Nei(v) denote those voters whose opinions have a direct in-

fluence on v when the latter updates. In undirected graphs, Nei(v)
includes exactly the neighbors of v and v itself. In directed graphs,
Nei(v) includes exactly the in-neighbors of v and v itself.

We consider a process by which voters revise their opinions one
by one, with parameter k controlling the total number of voters
whose opinions have changed. The process also incorporates the
idea of righteous argument, where each discussion has a higher
chance of swaying a voter toward the correct state than the incorrect
state. Voters who hold an incorrect opinion are more likely to be
swayed to the correct position when many of their friends already
hold the correct opinion. On the other hand, a voter who already
holds the correct opinion is unlikely to be swayed away from that
position (independent of the number of friends with incorrect opin-
ions).

This simulation models situations where voters are convinced
only by arguments for the truth (or, with some small constant prob-
ability, may revert to a false viewpoint), and where the probability

of an interaction with any given neighbor is constant and indepen-
dent over time (so voters with more neighbors that vote correctly
wait less time to talk to someone with the truth).

Formally, our influence dynamics iteratively picks k voters whose
opinions will be changed. Let P (v) denote the probability a voter
v is selected:

P (v) =

{
1
Z
, if Av = c

1
Z

(|{u|u ∈ Nei(v), Au = c}|+ 1), if Av = c′

where Z is a normalization constant such that the probabilities
over all voters sum to 1. These probabilities are recomputed after
each voter opinion update, and so a voters’ opinion may change
multiple times over the course of a simulation.

4.2 Graph Models
We consider four different models of random graphs: the classic

Erdös-Rényi undirected random graph (ER), the Barabási-Albert
preferential attachment model (BA), and the natural directed coun-
terparts of these models (dER and dBA, respectively).

The Erdös-Rényi random graph [9] is a model that incorporates a
minimum number of assumptions. Given a connection probability
pr, an Erdös-Rényi random graph is generated by connecting dis-
tinct vertices u, v with probability pr. The natural extension of this
model to directed graphs adds the edge (u, v) with probability pr,
which is independent from the addition of the reverse edge (v, u).

The Barabási-Albert random graph [1] is generated via preferen-
tial attachment, where new vertices are ‘drawn’ toward high-degree
vertices. It leads to the generation of several high degree ‘hub’
nodes that characterize scale-free networks, and are frequently used
to model human generated social networks. A Barabási-Albert ran-
dom graph with attachment parameterm is generated by repeatedly
adding vertices to a network, and connecting the new vertex with
m existing vertices, each chosen with probability proportional to
their respective degrees.

Our extension of the Barabási-Albert model to the directed case
depicts a strongly hierarchical network, where newly added ver-
tices will look towards influential older vertices as an example and
a source of sound judgment. Each new vertex v is added with an
edge to m existing vertices; an existing vertex u is chosen to an in-
neighbor of v with probability proportional to din(u) + δ.5 This is
a simplification of the directed scale-free graphs proposed by Bol-
lobás [5], and produces directed acyclic graphs.

4.3 Aggregation
We compare two methods of aggregating opinions from nodes

in a social network: (1) The naive model, where the aggregated
opinion is the majority opinion from the votes at the vertices, and
(2) the Righteous Arguments model, where we examine both the
majority opinion from the vertices, as well as the distribution of
opinions along the edges of the network.

In an undirected graph, we need only examine the opinions from
concordant edges. An edge (u, v) in G is a concordant edge for c
if Au = Av = c. If state c wins a majority from both the vertices
and concordant edges, then the model has successfully determined
the correct outcome; if c′ wins a majority from both, the model
has failed. If the majority outcomes are different, then the model is
undecided: it cannot decide on an outcome without further assump-
tions about the underlying probabilities, and outputs "Undecided".

In a directed graph, we examine both the opinions from con-
cordant edges and discordant edges (those whose incident vertices

5δ > 0 is necessary to allow any existing vertex, even one with no
in-neighbors, to be chosen as an in-neighbor of a new node.



have different opinions). As described in Section 3.3, a discordant
edge (u, v) is either an example of Successful Resistance (Au =
c, Av = c′) or a Failure to Enlighten (Au = c′, Av = c). We de-
clare the discordant edge criterion to be successful if the majority
of discordant edges are examples of Successful Resistance. There-
fore, in a directed graph, there are three criteria to evaluate. A tie
within a criterion causes that criterion to be discarded. If the re-
maining criteria agree on a result, then that result is declared. Oth-
erwise, if all criteria are discarded, or if the criteria have conflict-
ing outputs, then without further assumptions about the underlying
probabilities, the mechanism must output "Undecided".

4.4 Experiment Design
We investigate the performance of the two aggregation methods,

across the four random graph models, and a variety of parameters.
In each experiment, nc of the population of n voters are initialized
to the correct state c, and then k voters will change their opinions
in sequence, as selected by our influence dynamics model.

We set the parameter δ = 1, so that in the directed Barabási-
Albert network, each new node has half the chance of connecting
to an existing in-neighbor-less node as a node that has in-degree
one. We examine our models on graphs of sizes n ∈ {20, 40}, with
nc ∈ [0, n/2] and k ∈ [0, 3n/4]. The simulation was implemented
using Python version 3.3.2. Each data point is the result of 1,000
replications at each combination of parameter settings.

5. RESULTS
We measured the performance of our models in terms of the im-

provement in ability to accurately predict the correct winner. Since
our models cannot decide a winner on every possible graph, we
compute the performance of the Righteous Argument Model by de-
ciding ties uniformly at random. We compare performance of our
model to the performance of the naive model, by defining accnaive

to be the accuracy of the naive model, accsg to be the accuracy
of our model, and ∆sg,naive = accsg − accnaive to be the per-
formance improvement from using our model instead of the naive
model. For instance, a value of 0.05 indicates that our model is 5%
more accurate (in absolute difference) in deciding the outcome of
the election.

The results of our experiments are summarized in Figure 2. The
rows of Figure 2 depict sets of heatmaps showing every combi-
nation of parameter settings for nc and k considered. Each map
is labeled with the graph generation algorithm used. The hori-
zontal axis of each graph shows increasing values of k (the num-
ber of votes flipped by opinion dynamics), while the vertical axis
shows increasing values of nc (the proportion of voters initially
holding the correct opinion). The color of the cells corresponds
to ∆sg,naive, and darker cells indicate greater advantage for our
model. A red X indicates parameter values where the naive model
performs better than the new model.

The first row of the results shows performance differences on
randomly generated undirected BA graphs, with different graph at-
tachment parameters m, and number of voters n held constant. In
all cases, there exists a white region in the top left of the diagram
where neither the counts of the votes nor the edges give the correct
winner, because all voters begin with the incorrect opinion and have
no opportunity to change. In this case, the performance of both
models is exactly zero. In the lower right portion of each graph,
a similar region exists where, after opinion dynamics, essentially
every voter on every run has the correct opinion, so both the naive
and Righteous Argument models give the correct answer. In some
of the more extreme parameter settings the Naive model actually
performs better, but this effect is very small (typically around 1-

2%), and not significantly different from zero. In between however,
there is a band where the Righteous Argument enjoys a consider-
able (roughly 20%) advantage. The band is wider when the degree
distribution of the graph is relatively flatter.

The second row of results shows similar heatmaps for ER graphs.
Here, different values of n are used for the left and center maps (re-
spectively 20 and 40), and exhibit behavior similar to that in the BA
graph. The rightmost graph shows performance if counting concor-
dant edges is used as a predictor alone, rather than in combination
with the count of the votes as in the Righteous Argument Model.

The third row of results shows heatmaps for directed BA graphs
with attachment parameters m = 2, m = 3, and m = 4 from left
to right. Here we observe exceptional advantages for the Righteous
Argument model in the upper left region, but also some perfor-
mance deficiencies in the lower right region. Since these perfor-
mance differences are not present in the undirected case, and the
naive model does not make use of edge information, we attribute
this to the additional count of Failed Enlightenments and Success-
ful Resistance cases (r and ṙ) in the model. This is discussed in
some detail in the next section.

The fourth row shows maps for directed ER graphs, with broadly
similar results to the directed BA case, though with less extreme
values.

6. DISCUSSION
Overall our findings confirm the utility of incorporating social

network structure into elections. In the undirected case the model’s
performance improvement on the class of simulated networks arises
primarily because of the homophily generated by that process: when
many votes are flipped with a bias toward those with many correct
neighbors, a disproportionately large number of concordant edges
are created for the correct winner. More formally, since the model
decides ties randomly, then it will be right on all cases where the
models agree, and half of those where they disagree. It is easy to
show that this means the model’s performance is an average of the
performance of just counting the edges and just counting the votes
respectively. This is illustrated by the rightmost figure in the undi-
rected ER case (second row of Figure 2), which is simply a linear
transform of the Righteous Argument model’s performance (mid-
dle of second row of Figure 2). We can thus interpret the Righteous
Argument model as a “safe” choice. More formally, if the values
of p

1−p
and q

q̇
are unknown, then the model avoids the worst case

performance of selecting based on a single criteria. We note further
that, using a tie-breaking rule that is sensitive to the specific graph
structure considered could also provide significant advantages.

Despite demonstrating conclusive advantages for the undirected
case, the new model’s benefits on directed graphs appear mixed.
This appears to result from a failure to constrain the ratio of r

ṙ
rel-

ative to the ratio of q
q̇

, which means that the model is vulnerable to
making poor decisions on the basis of meager evidence.

In particular, when the opinions of voters are highly homoge-
neous, the vote and edge counts used by the Righteous Argument
model will nearly always agree. As an extreme example, when
no voter starts with the correct opinion, and only a single flip is
made in the opinion dynamics phase, the correct opinion can not
have a majority of the votes, and certainly cannot have a majority
of the concordant edges (since there is only one voter with the cor-
rect opinion, there are certain to be no correct concordant edges).
However, if the flipped voter has more in edges than out edges,
the count of successful resistances will be greater than the count
of failed conversions for the correct candidate, and not for the in-
correct one. This causes the Righteous Argument model to decide
using its tie breaking rules instead. This explains the relatively po-
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Left and Center: Heatmaps summarizing our
results of our voting model. Note that (f) de-
picts results using only the concordant edge
model. Darker colors indicate relative advan-
tage for our model over the naive competitor.
The scales to the right of each map show the
values corresponding to different colors. Note
that (a)-(f) use the same color scale, while the
colors in (g)-(k) are only comparable within
the same map. Cells with negative values are
marked with a red X.

Figure 2



larized performance of the model in the directed case.
The addition of a further constraint on the model ( r

ṙ
< q

q̇
) al-

lows for a consistent estimator that would avoid these erratic per-
formance issues on some classes of graphs. This estimator would
still be efficient to compute, but would under-perform dispropor-
tionately on social networks which did not satisfy the assumption.

7. CONCLUSIONS
In this paper, we proposed a new maximum likelihood approach

to finding the winner in elections in the presence of a social net-
work. Our new model started from the assumption of righteous
argument: that it is easier to convince someone of the truth, than
of a falsehood. We derived efficiently computable maximum like-
lihood estimators for the correct judgment under this assumption
for the case of a binary election over an undirected graph, and then
extended the model to di-graphs and elections with more than two
alternatives. We validated the new approach with extensive simu-
lations over many parameter settings of four different graph gener-
ation algorithms, and found significant advantages to incorporating
the information present in the structure of the social network, under
the righteous argument assumption.

We were also able to characterize the properties of graphs on
which our model sees the largest performance advantages, in terms
of the expected margin of victory for the different components of
the model. The model will outperform naive vote counting when
the social network exhibits homophily, but will perform less well
when that assumption is violated (which corresponds to the new
model’s assumption being violated). We also detected situations
where the model performed less well on directed graphs, and ex-
plained how this behavior could be reconciled with the addition of
another constraint into the MLE.

Overall, we have demonstrated that there exists a novel and effi-
cient model for incorporating information about the structure of so-
cial networks into social choice problems, which offers increased
confidence in the outcomes it predicts over not incorporating the
structure of the social network.

8. FUTURE WORK
The proposed model offers several interesting avenues for future

work. The Righteous Argument model is a general model, that
works over a large family of problems. However, additional perfor-
mance advantages may be possible over a more restricted family
of problems. For instance, a model that incorporates knowledge of
the social dynamics used could consider possible starting positions
that generated a particular configuration, in much the same way as
Conitzer’s edge model.

Further analysis under specific opinion dynamics could also al-
low for the development of more robust theoretical guarantees, and
allow for answering interesting questions in the areas of manipu-
lation and control over elections that take place in the presence of
a social network. For instance, if the center can control the length
of time for social interactions occur over, within some bounds, can
they sway the outcome of a given election?

Another possible direction concerns the proper design and eval-
uation of a system that incorporates the additional constraints on
the ratios of r

ṙ
and q

q̇
. The fact that decisions are made on the basis

of minimal evidence also suggests that a Bayesian approach might
be used to decide ties more effectively in the existing model.

9. REFERENCES
[1] Reka Albert and Albert-Laszlo Barabasi. Statistical

mechanics of complex networks. Reviews of Modern

Physics, 74:47–97, 2002.
[2] Marco Bartolozzi, Derek Bruce Leinweber, and

Anthony William Thomas. Stochastic opinion formation in
scale-free networks. Physical Review E, 72(4):046113, 2005.

[3] Duncan Black, Robert Albert Newing, Iain McLean, Alistair
McMillan, and Burt L Monroe. The theory of committees and
elections. Springer, 1958.

[4] Paolo Boldi, Francesco Bonchi, Carlos Castillo, and
Sebastiano Vigna. Voting in social networks. In Proceedings
of the 18th ACM conference on Information and knowledge
management, pages 777–786. ACM, 2009.

[5] Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver
Riordan. Directed scale-free graphs. In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 132–139. Society for Industrial and
Applied Mathematics, 2003.

[6] James Coleman, Elihu Katz, and Herbert Menzel. The
diffusion of an innovation among physicians. Sociometry,
pages 253–270, 1957.

[7] Vincent Conitzer. Should social network structure be taken
into account in elections? Mathematical Social Sciences,
64(1):100–102, 2012.

[8] Vincent Conitzer. The maximum likelihood approach to
voting on social networks. In Proceedings of the 51st Annual
Allerton Conference on Communication, Control, and
Computing (Allerton-13), pages 1482–1487. Allerton Retreat
Center, Monticello, IL, USA, 2013.
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