
1

Distributed
Programming in Java

Distribution (5)

2/24

RPC-style middleware

•Disadvantages:
•Strongly coupled
•Synchronous
•Limited extensibility

•Advantages:
•Transparency ….
• Type safety

3/24

Space-based middleware

• Based upon tuple spaces
• A tuple space is an implementation of the associative

memory paradigm for parallel/distributed computing.
• It provides a repository of tuples that can be accessed

concurrently.

• Producers post their data as tuples in the space, and the
consumers then retrieve data from the space that match a
certain pattern. This is also known as the Blackboard
metaphor.

• Tuple spaces were the theoretical underpinning of the Linda
language developed by David Gelernter and Nicholas
Carriero at Yale University.

2

4/24

Space-based Design•Requires design of distributed data
structures and distributed protocols that
operate over them.
•Distributed data structure is made up of

multiple objects stored in one or more
spaces.•E.g., ordered list of items represented by a

set of objects, each of which holds the
value and position of a single list item.

•Using collection of objects in shared space
allows multiple processes to concurrently
access and modify the data structure.

5/24

JavaSpaces I

• JavaSpaces is a service specification providing a
distributed object exchange and coordination
mechanism (which may or may not be persistent) for
Java objects.

• It can be used to store the system state and implement
distributed algorithms.

• In a JavaSpace all communication partners (peers)
communicate by sharing state.

• Using JavaSpaces, distributed applications are
modeled as a flow of objects between participants,
which is different from classic distributed models such
as RMI.

6/24

JavaSpaces II
•Achieves scalability through parallel

processing
•Provides for reliable storage of objects

while reducing the complexity of
traditional distributed systems.
•Processes perform simple operations:
•Write new objects into a JavaSpace,
•Take objects from a JavaSpace, or
•Make copies of objects the JavaSpace.
•JavaSpaces is part of Jini technology

3

7/24

JavaSpaces Architecture

8/24

Coordination

9/24

JavaSpace Services and
Operations

•Application components (or processes)
use the persistent storage of a space to
store objects and to communicate.
•The components coordinate actions by

exchanging objects through spaces; the
objects do not communicate directly.
•Processes interact with a space through

a simple set of operations…

4

10/24

JavaSpace Primary Operations

•write(): Writes new objects into a space
• take(): Retrieves objects from a space
•read(): Makes a copy of objects in a

space
•notify(): Notifies a specified object when

entries that match the given template
are written into a space

11/24

JavaSpaces Technology
Application Model

• JavaSpaces service holds entries, each of which is a
typed group of objects expressed in a class that
implements the interface
net.jini.core.entry.Entry.

• Once an entry is written into a JavaSpaces service, it
can be used in future look-up operations.

• Looking up entries is performed using templates, which
are entry objects that have some or all of their fields
set to specified values that must be matched exactly.
All remaining fields, which are not used in the lookup,
are left as wildcards.

12/24

JavaSpace Entry Details

•Entries in a JavaSpace are simple Java
Objects that follow a few simple rules:
•All data persisted in the space must be

exposed in public fields.
•The Entry interface must be

implemented.
•This is a marker interface, requiring no

methods to conform to the interface
contract
•Objects must be used for the

properties (i.e., no primitive fields.)

5

13/24

Simple Server Example

Fields must be public

14/24

Simple Client Example

15/24

JavaSpaces Technology
Application

6

16/24

JavaSpaces: Multi-user Chat
System

• All the messages that make up the discussion are written to
a space that acts as a chat area.

• Participants write message objects into the space, while
other members wait for new message objects to appear,
then read them out and display their contents.

• The list of participants can be kept in the space and updated
whenever someone joins or leaves the discussion.

• Because the space is persistent, a new member can read
and view the entire discussion.

17/24

Discussion: Advantages

•You can implement such a multi-user
chat system in RMI by creating remote
interfaces for the interactions discussed.
•Using JavaSpaces technology, you need

only one interface

18/24

Multi-user Chat: The Message

7

19/24

Multi-user Chat: Writing the
Message

Leases can be shorter: e.g. 60*60*1000 ms

20/24

Multi-user Chat: Reading the
Message

-- Template has null fields -- act as wildcards
-- Read will match any MessageEntry
-- Will block if no MessageEntry
-- Can use readIfExists(…) to avoid blocking

21/24

The “Full” Client

Code to find
JavaSpace service
(see course page)

8

22/24

Using JavaSpaces

• Download jini distribution (www.jini.org)

• Create subclasses of Entry for your application
tuple(s)

• Compile including jini-ext.jar in classpath.

• Run Launch-All from installverify directory

• Select Register and choose IP address

• Run your clients including:
• jini-ext.jar, jini-core.jar,
• reggie.jar and outrigger.jar

23/24

JavaSpace Advantages

•Simple: very straightforward API

•Expressive: small set of operations but
complex distributed applications possible.

•Supports loosely-coupled protocols:
•Uncouples senders and receivers
•Dynamic: servers can come and go

•Eases burden of writing client/server systems
•Concurrency issues dealt with by space
•Transactions supported (not described

here).

24/24

Further Reading
• Books･
• Eric Freeman, Susanne Hupfer, Ken Arnold:

JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley Professional, 1. June 1999, ISBN
0-201-30955-6

• Phil Bishop, Nigel Warren: JavaSpaces in Practice.
Addison Wesley, 2002, ISBN 0-321-11231-8

• Articles
• Brogden, William (2007). How Web services can

use JavaSpaces. SearchWebServices.com
• Angerer, Bernhard (2003). Space-Based

Programming. onjava.com

