
Distributed Programming

Gabriel Oteniya and Milton Chau Keng Fong

UNU-IIST

�����������	�

The Course
1) objectives - what do we intend to achieve?

2) outline - what content will be taught?

3) resources - what teaching resources will be available?

4) organization - duration, major activities, daily schedule

�����������	�	

Course Objectives
1) learn the fundamental concepts of distributed programming for

enterprise application development
2) learn the various distributed programming architectures and how to

apply them
3) lean the importance of distributed computing and outline the factors to

consider when designing a distributed system

4) presents different Distributed Architecture

�����������	��

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	��

Outline: Introduction
Presents an overview of the distributed programming.
Main points:

1) what are distributed systems?.

2) why distributed programming?.
3) nature and design considerations.

4) types of networks.

5) distributed architectures.

�����������	��

Outline: Stream
Presents the java.io package

Main points:

1) what is a stream?

2) types of Streams

3) characteristics of Streams

4) working with streams

5) bridging Streams

6) stream chaining

�����������	�

Outline: Networking
Presents the network programming in Java language.

Main points:

1) review the basic network concepts and Java Implementation

2) discuss the usage of java.net package.

3) introduce the Secure Socket.

4) introduce the New I/O API.

5) introduce the Java implementation for UDP protocol.

�����������	��

Outline: Database Connectivity
Presents JDBC API from the basics of SQL to the more esoteric features of
advanced JDBC.

Main points:

1) introduction to Database and Structured Query Language

2) JDBC architecture

3) JDBC core interfaces

4) query processing

5) transaction Management

�����������	��

Outline: Message Orientation
Presents how to build a loosely coupled application using messaging
mechanism.

Main points:

1) JavaMail – to provide asynchronous communication between
application components and human users.

2) Java Message Service – to provide asynchronous/synchronous
communication software components

�����������	���

Outline: Distributed Objects
This section basically addresses:

1) Remote Method Invocation (RMI)

2) Common Object Request Broker Architecture (CORBA)

3) Interface Definition Language (IDL)

4) IDL to Java mapping (JavaIDL)

�����������	���

Outline: Summary
Revision of the material introduced during the course.

How this course provides a foundation for the remaining courses:

1) Java XML processing

2) Java Web Services

3) J2EE web components

4) J2EE business components

�����������	��

Course Resources
1) books

a) Distributed Programming with Java, Qusay H. Mahmoud, Manning
Publisher 2000

b) Java in Distributed Systems: Concurrency, Distribution and
Persistence, Marko Boger, 2001

c) Developing Distributed and E-commerce Applications, 2nd edition,
Darrel Ince, 2nd edition, Pearson Addison Westly, 2004.

d) Java Message Service (O'Reilly Java Series), Richard Monson-
Haefel, David Chappell

2) tools

a) mySQL Database engine

b) JBoss 4.0.1

c) JBossMQ

d) Hermes 1.8 (JBossMQ Browser)

�����������	��	

Course Logistics
1) duration - 36 hours

2) activities - lecture (hands-on), development

3) sessions/day - morning 09:00–13:00 and afternoon 14:30–16:30

4) number of sessions - 6 morning and 6 afternoon

5) style – interactive, Lab work and tutorial

�����������	���

Course Prerequisite
1) some experience in object-oriented programming:

a) C++

b) Delphi

c) Java Programming Language

d) any other object-oriented language

2) basic understanding of TCP/IP networking concepts

������������

�����������	���

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	��

Distributed System
Distributed system can be defined as a combination of several computers
with separate memory, linked over a network, and on which it is possible to
run a distributed applications.

Characteristics:

1) capable of communicating over a network

2) the network is usually stable

3) fail-safe

4) each device has a permanent identification within the network

Hence, it is a collection of independent computers, interconnected via a
network, capable of collaborating on a task.

�����������	���

Distributed Application
A distributed application consist of several parts of a program
communicating with each other, which cooperate to carry out a common
task.

For example, client server application.

Typically, but not necessarily, the parts of the application are distributed
across several computers.

The distribution can also be simulated on one computer.

In this case, however, information is not transmitted via a common memory
or address space, but with the aid of techniques of remote communication.

�����������	���

Distributed Programming
Distributed programming is a model in which processing occurs in many
different places (or nodes) around a network.

Characteristics:

1) processing can occur whenever it makes the most sense

2) carried out on a distributed system

3) making calls to other address spaces possibly on different machines

4) tasks are handled in parallel

�����������	�
�

Why Distributed Programming?

1) balance resource loading

2) lower cost of development since clients can access remote codes for

services

3) separation of concerns

4) Platform independence

�����������	�
�

Design Considerations
In general, three aspects need to be put into consideration:

1) Concurrency – actual or apparent parallelism of control flows

issues: how to manage both heavy and light weight processes

2) Distribution – is the logical and spatial distance of objects from each other

Issue: how these object can locate, access and communicate with each
other

3) Persistence – is the long-term storage of data or objects on non-volatile
media

issues: how to persist data and objects. Persistence achives the
distribution of data or objects in time.

�����������	�

Protocol Layers
1) Communications betweens processes takes place using agreed

conventions - protocols

2) Network communications requires protocols to cover high-level
application communication all the way down to wire communication

3) Complexity handled by encapsulation in protocol layers

�����������	�
	

ISO OSI Protocol

�����������	�
�

OSI layers
1) Network layer provides switching and routing technologies

2) Transport layer provides transparent transfer of data between end
systems and is responsible for end-to-end error recovery and flow
control

3) Session layer establishes, manages and terminates connections
between applications.

4) Presentation layer provides independence from differences in data
representation (e.g. encryption)

5) Application layer supports application and end-user processes

�����������	�
�

TCP/IP Protocol

�����������	�
�

Port and Socket
1) port

a) conduit into a computer through which information flows and
assigned a unique number

b) usually port numbers 0 to 1023 are reserved for special
purposes (e.g. HTTP – 80, FTP – 21, SMTP – 25

c) TCP/IP-based computer is identified by a pair of IP address
and Port number

2) socket

a) a socket is one end of a process that an application is using
to communicate

b) defined by two addresses: the IP address of the host
computer; and the port address of the application or process
running on the host

�����������	�

Connection Models
There are two types of connection models:

1) Connection oriented
2) Connectionless

Connection oriented transports may be established on top of connectionless
ones –TCP over IP

Connectionless transports my be established on top of connection oriented
ones – HTTP over TCP

�����������	�
�

Connection oriented
1) A single connection is established for the session

2) Two-way communications flow along the connection

3) When the session is over, the connection is broken

4) The analogy is to a phone conversation

5) An example is TCP

�����������	�
�

Connectionless
1) In a connectionless system, messages are sent independent of each

other

2) Ordinary mail is the analogy

3) Connectionless messages may arrive out of order

4) An example is the IP protocol

�����������	�	�

Communications Model
Message passing

�����������	�	�

Distributed Computing Models

�����������	�	

Client/Server System

�����������	�		

Client/Server Application

�����������	�	�

Server Distribution 1
Single client, single server

multiple clients, single server

�����������	�	�

Server Distribution 2

single client, multiple servers

multiple clients, multiple servers

�����������	�	�

Component Distribution
Every distribution is made up of three components:

1) Presentation component
2) Application logic
3) Data access

�����������	�	

Middleware 1
1) intermediate layers between client and server

2) what exactly is it?

a) a vague term that covers all the distributed software
needed to support interactions between client and server

3) where does the middleware start and where does it end?

a) It starts with the API set on the client side that is used to
invoke a service, and it covers the transmission of the
request over the network and the resulting response”

�����������	�	�

Middleware 2
1) The network services include things like TCP/IP

2) The middleware layer is application-independent s/w using the network
services

3) Examples of middleware are: DCE, RPC, Corba

4) Middleware may only perform one function (such as RPC) or many
(such as DCE)

�����������	�	�

Middleware Model
The middleware model is

�����������	���

Example: Middleware
1) Primitive services such as terminal emulators, file transfer, email

• Basic services such as RPC

1) Integrated services such as DCE, Network O/S

• Distributed object services such as CORBA, OLE/ActiveX

• Mobile object services such as RMI, Jini

• World Wide Web

�����������	���

Middleware Functions
1) Initiation of processes at different computers

• Session management

1) Directory services to allow clients to locate servers

• remote data access

• Concurrency control to allow servers to handle multiple clients

• Security and integrity

• Monitoring

• Termination of processes both local and remote

�����������	��

Project Exercise 1
1) Describe a typical distributed system in use in your agency

2) Which of the following distributed architecture models best represents the
distributed system described in question 1?

3) List the different components of the systems listed in 1

4) Provide a model of the system described in question 1 using a UML
deployment diagram showing the various components listed in question
two as well as the nodes hosting these components.

5) Identify the possible points of failures in the distributed system using the
model presented in question 4.

�������

�����������	���

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	���

Overview

1) what is a stream?
2) types of Streams
3) characteristics of Streams
4) working with streams
5) bridging Streams
6) stream chaining

�����������	���

Introduction
Most programs use data in one form or another, whether as input, output,
or both.

The sources of input and output can vary between a local file, a socket on
the network, a database, variables in memory, or another program.

Even the type of data can vary between objects, characters, multimedia,
and others.

�����������	��

Reading Data
To bring data into a program, a Java program:

1) opens a stream to a data source, such as a file or remote socket
2) and reads the information serially

�����������	���

Writing Data
On the flip side, a program can open a stream to a data source and write to it
in a serial fashion.

�����������	���

Reading and Writing Data
The concept of serially reading from, and writing to different data sources is
the same.

For that very reason, once you understand the top level classes the
remaining classes are straightforward to work with.

These classes are stored in the java.io package.

�����������	���

Streams and Data Sources 1

�����������	���

Streams and Data Sources 2

�����������	��

Streams and Data Sources 3

�����������	��	

Streams and Data Sources 4

�����������	���

Streams and Data Sources 5

�����������	���

Reading and Writing Algorithms
No matter where the data is coming from or going to and no matter what its
type, the algorithms for sequentially reading and writing data are basically
the same:

Writing:
open a stream

while more information

write information

close the stream

Reading:
open a stream

while more information

read information

close the stream

�����������	���

Example: Reading Text from File

try {

BufferedReader in = new BufferedReader(new
FileReader("file"));

String str;

while ((str = in.readLine()) != null) {

process(str);

}

in.close();

} catch (IOException e) {

e.printStacktrace();

}

�����������	��

Lab Work: Reading a File
1) Based on the code snippet write a program to read a file and displays the

content to the console.

�����������	���

Stream Types
There are two categories of streams:

1) 8-bit byte streams
2) 16-bit Unicode character streams

Prior to JDK 1.1, the input and output classes (mostly found in the
java.io package) only supported 8-bit byte streams.

The concept of 16-bit Unicode character streams was introduced in JDK
1.1.

�����������	���

Stream Support

Support for byte streams are provided by:
1) java.io.InputStream abstract class
2) java.io.OutputStream abstract class
3) and their subclasses.

While the support for character streams are provided by:
1) java.io.Reader abstract class
2) java.io.Writer abstract class
3) and their subclasses.

�����������	���

Character versus Byte 1

Most of the functionality available for byte streams is also provided for
character streams.

Methods for character streams generally accept parameters of data type
char while methods for byte streams accept byte.

The names of the methods in both sets of classes are almost identical
except for the suffix

1) character-stream classes end with the suffix Reader or Writer

2) byte-stream classes end with the suffix InputStream and
OutputStream

�����������	���

Character versus Byte 2
For example:

1) to read files using character streams you would use
java.io.FileReader class.

2) to read files using byte streams you would use
java.io.FileInputStream.

Unless you are working with binary data, such as image and sound files,
you should use readers and writers (character streams) to read and
write the data.

Why?

�����������	��

Character versus Byte 3
Character streams are always preferred to byte streams when reading
and writing information because:

1) They can handle any character in the Unicode character set (while the
byte streams are limited to ISO-Latin-1 8-bit bytes).

2) They are easier to internationalize because they are not dependent
upon a specific character encoding.

3) They use buffering techniques internally and are therefore potentially
much more efficient than byte streams.

�����������	��	

I/O Streams Organization
java.io is a large collection of classes, consisting of over 50 classes.

For the purpose of understanding the relationships that exist among these
classes, they are categorized using the following criteria:

1) Data flow
2) Function and
3) Type of Data they process

�����������	���

Data Flow
Stream classes that channel data into a program are called input streams.
Example:

1) FileInputStream
2) FileReader
3) ObjectInputStream
4) PipedInputStream
5) etc.

Stream classes that channel data out of a program are called output
streams.
Example:

1) FileOutStream
2) FileWriter
3) ObjectOutputStream
4) PipedOutputStream
5) etc.

�����������	���

Function
Streams can also be grouped by the function they perform.

There are two categories:

1) Node or Data sink Streams - nature of the resource at the other end of
the stream, For example,
a) FileInputStream reads byte data from a file,
b) PipedWriter writes character data to a pipe (Thread)

2) Process or Filter Streams - type of processing performed on the
contents of the stream,
For example,
a) BufferedReader to buffer reading to reduce disk/network access
b) ObjectOutputStream for object serialization

�����������	���

Data Sink Streams

For reading from or writing to byte buffers in memory ByteArrayInputStream

ByteArrayOutputStream

For reading from or writing bytes to files FileInpuStream,

FileOutputStream

Used to forward the output of one thread as the input

to another thread

PipedInputStream,

PipedOutputStream

For reading from or writing to strings in memory StringReader

StringWriter

Used to forward the output of one thread as the input

to another thread

PipedReader,

PipedWriter

For reading from or writing to files FileReader, FileWriter

For reading from or writing to character buffers in

memory

CharArrayReader,

CharArrayWriter

�����������	��

Example: Data Sink Streams
Displays contents of a file.

import java.io.*;

public class Type{

public static void main(String args[]) throws
Exception{

FileReader fr = new FileReader(args[0]);

PrintWriter pw = new PrintWriter(System.out,
true);

char c[] = new char[4096];

int read = 0;

while ((read = fr.read(c)) != -1)

pw.write(c, 0, read);

fr.close(); pw.close();

}}

�����������	���

Filter Streams

Allows to "peek" ahead in a stream by one

character.

PushbackReader

Use for object serialization. ObjectInputStream ,

ObjectOutputStream
For reading/writing raw bytes to Java native data

types.

DataInputStream ,

DataOutputStream

For reading while keep tracking of the line number. LineNumberReader

Concatenates multiple input streams. SequenceInputStream

Provide a bridge between byte and character

streams

InputStreamReader ,

OutputStreamWriter

For buffered reading/writing to reduce disk/network

access for more efficiency

BufferedReader ,

BufferedWriter

�����������	���

Example: Filter Streams
Displays contents of many files

import java.io.*;

class cat {

public static void main (String args[]) {

String thisLine;

for (int i=0; i < args.length; i++) {

try {

BufferedReader br = new BufferedReader(new
FileReader(args[i]));

while ((thisLine = br.readLine()) != null) {

System.out.println(thisLine);

}

}catch (IOException e) {

System.err.println("Error: " + e);

}}}}

�����������	�
�

Data Type
At the Simplest level, the java.io package can be decomposed into
classes that process either of two types of data:

1) Byte Stream
2) Character Stream

Fundamental Stream Classes

OutputStream

InputStream

Byte Stream

WriterWrite data

ReaderRead Data

Character Stream

�����������	�
�

Byte Stream Classes
They process raw bytes.

They come in two basic forms:
1) InputStreams – channel byte data into the program

Example:
java.io.FileInputStream

2) OutputStreams – channel byte data from the program
Example:

java.io.FileOutputStream

Byte-stream classes end with the suffix InputStream and OutputStream

�����������	�

Byte-Stream Parent Classes
InputStream and OutputStream are the abstract parent classes for
byte-stream based classes in the java.io package.

Usage:
1) InputStream classes are used to read 8-bit byte streams and

2) OutputStream classes are used to write to 8-bit byte streams.

Methods for reading and writing to streams:
int read()

int read(byte[] b)

int read(byte[] b, int offset, int length)

int write(int b)

int write(byte[] b)

int write(byte[] b, int offset, int length)

�����������	�
	

InputStream
This abstract class provides the core methods used to read bytes from an
input node.

The methods are:

int read()

int read(byte[] b)

int read(byte[] b, int offset, int length)

void close()

int available()

long skip(long l)

boolean markSupported()

void mark(int i)

void reset()

�����������	�
�

InputStream Hierarchy

�����������	�
�

OutputStream
This abstract class provides the core methods used to write bytes to an
output node.

The methods are:

int write(int b)

int write(byte[] b)

int write(byte[] b, int offset, int length)

void close()

void flush()

�����������	�
�

OutputStream Hierarchy

�����������	�

Data Sink Byte-Stream
Classes that take byte input from different types of nodes (file, pipe, byte
array, etc)

Example:
FileInputStream

PipedInputStrean

Classes that send byte output to different types of node (file, pipe, byte
array, etc)

Example:
FileOutputStream

PipedOutputStream

�����������	�
�

Example: Data Sink Byte-Stream
1) FileInputStream/FileOutputStream

Usage: is meant for reading/writing streams of raw bytes such as image
data to/from files

File f = new File("mydata.txt");
FileInputStream fis = new FileInputStream(f);
BufferedInputStream bis = new
BufferedInputStream(fis);
DataInputStream dis = new DataInputStream(bis);

2) ByteArrayInputStream/ByteArrayOutputStream
Usage: are useful for holding data when the underlying data type is
irrelevant to the purpose of the application

byte[] c

...

ByteArrayInputSteam r = new ByteArrayInputSteam(c);

�����������	�
�

Example: Data Sink Byte-Stream
3) PipedInputStream/PipedOutputStrea

Usage: read from or write to pipes. Often used to exchange data
between threads.

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream(pi);

Or

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream(pi);

Or
PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream();
pi.connect(po);

�����������	���

Example: FileInputStream 1
import java.io.*;

class FileInputStreamDemo {
public static void main(String args[]) throws
Exception {
int size;
InputStream f =
new FileInputStream("FileInputStreamDemo.java");

System.out.print("Total Available Bytes: ")
System.out.println((size = f.available()));
int n = size/40;
System.out.println("First " + n +

" bytes of the file one read() at a time");
for (int i=0; i < n; i++) {
System.out.print((char) f.read());

}

�����������	���

Example: FileInputStream 2
System.out.println("\nStill Available: " +

f.available());
System.out.println("Reading the next " + n +

" with one read(b[])");
byte b[] = new byte[n];
if (f.read(b) != n) {
System.err.println("couldn't read " + n + "

bytes.");
}
System.out.println(new String(b, 0, n));
System.out.println("\nStill Available: " + (size =

f.available()));
System.out.println("Skipping half of remaining

bytes with skip()");
f.skip(size/2);
System.out.println("Still Available: " +

f.available());

�����������	��

Example: FileInputStream 3
System.out.println("Reading " + n/2 + " into the

end of array");
if (f.read(b, n/2, n/2) != n/2) {
System.err.println("couldn't read " + n/2 + "

bytes.");
}
System.out.println(new String(b, 0, b.length));
System.out.println("\nStill Available: " +

f.available());
f.close();

}
}

�����������	��	

Lab Work: Reading a File
1) Write a program that reads an MP3 file.

�����������	���

PipedInput/Output Stream 1

�����������	���

PipedInput/Output Stream 2

�����������	���

PipedInput/Output Stream 3

�����������	��

Example: Piped Stream 1
Shows how to exchange data between two threads

import java.io.*;

class ReadThread extends Thread implements Runnable {

InputStream pi = null;

OutputStream po = null;

String process = null;

ReadThread(String process, InputStream pi,
OutputStream po) {

this.pi = pi;

this.po = po;

this.process = process;

}

�����������	���

Example: Piped Stream 2
public void run() {

int ch;

byte[] buffer = new byte[512];

int bytes_read;

try {

for(;;) {

bytes_read = pi.read(buffer);

if (bytes_read == -1) { return; }

po.write(buffer, 0, bytes_read);

}

} catch (Exception e) {

e.printStackTrace();

} finally { }

}

}

�����������	���

Example: Piped Stream 3
class SystemStream {
public static void main(String [] args) {

try {
int ch;
while (true) {
PipedInputStream in = new PipedInputStream();
PipedOutputStream out = new PipedOutputStream(

in);
FileOutputStream writeOut = new

FileOutputStream("out");

ReadThread rt = new ReadThread("reader",
System.in, out);

ReadThread wt = new ReadThread("writer", in,
System.out);

rt.start();
wt.start();

}

�����������	���

Example: Piped Stream 4
} catch (Exception e) {
e.printStackTrace();

}
}

}

�����������	���

Filter Byte-Stream
They convert bytes to primitive data

They write primitive data

Example:

BufferedInputStream/BufferedOutputStream

DataInputStream/DataoutputStream

�����������	��

Example: Filter Byte-Stream 1
1) BufferedInputStream/BufferedOutputStream

Usage:
These classes buffer data emanating from an InputStream object or in
route to an OutputStream object.

Benefits:
a) Improved performance - Buffered streams cache data to reduce the

need to access slower transmission media.
b) Simplicity - Buffered streams manage the data cache themselves, so

you do not have to.

File f = new File("mydata.txt");

FileInputStream fis = new FileInputStream(f);

BufferedInputStream bis = new BufferedInputStream(fis);

DataInputStream dis = new DataInputStream(bis);

�����������	��	

Example: Filter Byte-Stream 2
2) DataInputStream/DataoutputStream

Usage:
These classes transform bytes emanating from an InputStream type into
primitives (such as int, long, or double) or primitives in route to an
OutputStream type into bytes.

Attach a DataInputStream filter to an InputStream object when you
need to read primitives from a stream.

Attach a DataOutputStream filter to an OutputStream object when you need to
write primitives to a stream.

File f = new File("mydata.txt");

FileInputStream fis = new FileInputStream(f);

BufferedInputStream bis = new BufferedInputStream(fis);

DataInputStream dis = new DataInputStream(bis);

�����������	���

Example: BufferedInputStream 1
import java.io.*;

class BufferedInputStreamDemo {

public static void main(String args[]) throws
IOException {

String s = "This is a © copyright symbol " +

"but this is © not.\n";

byte buf[] = s.getBytes();

ByteArrayInputStream in = new

ByteArrayInputStream(buf);

BufferedInputStream f = new BufferedInputStream(in);

int c;

boolean marked = false;

�����������	���

Example: BufferedInputStream 2
while ((c = f.read()) != -1) {

switch(c) {

case '&':

if (!marked) {

f.mark(32);

marked = true;

} else {

marked = false;

}

break;

case ';':

if (marked) {

marked = false;

System.out.print("(c)");

} else

�����������	���

Example: BufferedInputStream 3
System.out.print((char) c);

break;

case ' ':

if (marked) {

marked = false;

f.reset();

System.out.print("&");

} else

System.out.print((char) c);

break;

default:

if (!marked)

System.out.print((char) c);

break;

}}}}

�����������	��

Serialization
Serialization is a process of writing an object to a byte stream.

Writing an Object

FileOutputStream out = new FileOutputStream("tmp");
ObjectOutput objOut = new ObjectOutputStream(out);

objOut.writeObject(Color.red);

Reading an Object
FileInputStream in = new FileInputStream("tmp");
ObjectInputStream objIn = new ObjectInputStream(in);
Color c = (Color)objIn.readObject();

�����������	���

Object Serialization 1
Provides a way for objects to be written as a stream of bytes and then later
recreated from that stream of bytes.

The job of an ObjectInputStream class is to convert collections of bytes
into objects.

Sending an object over a stream was a cumbersome process. How?

Essentially, you had to decompose the object into its constituent parts,
sending each to the stream individually, and then reconstruct the object
manually at the other end of the stream.

Process is cumbersome. Solution?

�����������	���

Object Serialization 2
The introduction of new interface to the java.io package, the
Serializable interface

The Serializable interface eliminates the drawbacks of sending objects
across streams.

Each object to be sent has to implement this interface

import java.io.* ;

class Date implements Serializable {

int m, d, y ;

public Date(int m, int d, int y) {

this.m = m ; this.d = d ; this.y = y ;

}

}

�����������	����

Object Serialization 3

�����������	����

Object Serialization 4

�����������	���

Object Serialization 5

�����������	���	

Object Serialization 6

�����������	����

Object Serialization 7

�����������	����

Object Serialization 8

�����������	����

Character Stream Classes
They process 16 bits Unicode characters.

They come in two basic forms:
1) Reader – channel character data into the program

Example:
java.io.FileReader

2) Writer – channel character data from the program
Example:

java.io.FileReader

Character-stream classes end with the suffix Reader and Writer

�����������	���

Character Parent Classes
Reader and Reader are the abstract parent classes for byte-stream
based classes in the java.io package.

Usage:
1) Reader classes are used to read 16-bit character streams and

2) Writer classes are used to write to 16-bit character streams.

Methods for reading and writing to streams:
int read()

int read(char[] c)

int read(char[] c, int offset, int length)

int write(int c)

int write(char[] c)

int write(char[] c, int offset, int length)

�����������	����

Reader
This abstract class provides the core methods used to read characters
from an input node.

The methods are:

int read()

int read(char[] c)

int read(char[] c, int offset, int length)

void close()

long skip(long l)

boolean markSupported()

void mark(int i)

void reset()

�����������	����

Reader Hierarchy

�����������	����

Writer
This abstract class provides the core methods used to write characters to
an output node.

The methods are:

int write(int b)

int write(char[] c)

int write(char[] c, int offset, int length)

void close()

void flush()

�����������	����

Writer Hierarchy

�����������	���

Data Sink Character-Stream
Classes that take input from different types of nodes (file, pipe, char
array, etc)

Example:
FileReader

PipedReader

Classes that send output to different types of node (file, pipe, char
array, etc)

Example:
FileWriter

PipedWriter

�����������	���	

Example: Node Character-Stream
1) FileReader/FileWriter

Usage: is meant for reading/writing streams of character data to/from
files

File f = new File("mydata.txt");
FileReader fis = new FileReader(f);

2) CharArrayReader/CharArrayWriter
Usage: are useful for holding data when the underlying data type is
irrelevant to the purpose of the application

char[] c

...

CharArrayReader r = new CharArrayReader(c);

�����������	����

Bridging Streams 1
To bridge the gap between the byte and character stream classes, JDK
1.1 and JDK 1.2 provide the java.io.InputStreamReader and
java.io.OutputStreamWriter classes.

Usage:
The only purpose of these classes is to convert byte data into character-
based data according to a specified (or the platform default) encoding.

For example, the static data member "in" in the "System" class is
essentially a handle to the Standard Input (stdin) device. If you want to wrap
this inside the java.io.BufferedReader class that works with
character-streams, you use InputStreamReader class as follows:

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

�����������	����

Bridging Streams 2

�����������	����

Bridging Streams 3

�����������	���

Bridging Streams 4

�����������	����

Bridging Streams 5

�����������	����

Summary: Filter Streams

�����������	��
�

Reading Text from Standard Input
try {

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

String str = "";

while (str != null) {

System.out.print("> prompt ");

str = in.readLine();

process(str);

}

} catch (IOException e) {

}

�����������	��
�

Reading Text from a File
try {

BufferedReader in = new BufferedReader(new
FileReader("infilename"));

String str;

while ((str = in.readLine()) != null) {

process(str);

}

in.close();

} catch (IOException e) {

}

�����������	��

Writing to a File

try {

BufferedWriter out = new BufferedWriter(new
FileWriter("outfilename"));

out.write("aString");

out.close();

} catch (IOException e) {

}

�����������	��
	

Appending to a File

try {

BufferedWriter out = new BufferedWriter(new
FileWriter("filename", true));

out.write("aString");

out.close();

} catch (IOException e) {

}

�����������	��
�

Serializing an Object
Object object = new javax.swing.JButton("push");
try {

// Serialize to a file
ObjectOutputStream out = new

ObjectOutputStream(new
FileOutputStream("filename.ser"));

out.writeObject(object);
out.close();
// Serialize to a byte array
ByteArrayOutputStream bos = new

ByteArrayOutputStream() ;
out = new ObjectOutputStream(bos) ;
out.writeObject(object);
out.close();
// Get the bytes of the serialized object
byte[] buf = bos.toByteArray();
} catch (IOException e) {

�����������	��
�

Deserializing an Object

try {
// Deserialize from a file
File file = new File("filename.ser");
ObjectInputStream in = new

ObjectInputStream(new
FileInputStream(file));

// Deserialize the object
javax.swing.JButton button =

(javax.swing.JButton) in.readObject();
in.close();

} catch (ClassNotFoundException e) {

} catch (IOException e) {

}

�����������	��
�

Lab Work: Reading and Writing
Based on the code snippets, write a program that

1) reads text from standard input

2) copies the content of one file and writes to another file

3) appends “This is emacao training” to the end a text file

4) a program that joins series of files together

�����������	��

Stream Chaining
Stream chaining is a way of connecting several stream classes together to
get the data in the form required.

Each class performs a specific task on the data and forwards it to the next
class in the chain.

The output produced by one component becomes the input to the next
component in the chain.

Consider this.

�����������	��
�

Example: Stream Chaining 1

�����������	��
�

Example: Stream Chaining 2

�����������	��	�

Example: Stream Chaining 3

�����������	��	�

Example: Stream Chaining 4

�����������	��	

Example: Stream Chaining 5

�����������	��		

Example: Stream Chaining 6

�����������	��	�

Example: Stream Chaining 7

�����������	��	�

Example: Stream Chaining 8

�����������	��	�

IntputStream Chain

�����������	��	

OutputStream Chain

�����������	��	�

File Operations
There are three non stream classes in java.io package.

1) File Class - represents a file on the local system

2) FilenameFilter class - is an interface used to filter a list of filenames

Each will be considered in details.

�����������	��	�

File Class
Represents a file on the local filesystem.

Usage:
1) to identify a file
2) obtain information about the file
3) and even change information about the file

Constructors:
1) File(File parent, String child)

2) File(String pathname)

3) File(String parent, String child)

4) File(URI uri)

�����������	����

Example: File 1
import java.io.File;

class FileDemo {
static void p(String s) {
System.out.println(s);

}

public static void main(String args[]) {
File f1 = new File(“filename here");
p("File Name: " + f1.getName());
p("Path: " + f1.getPath());
p("Abs Path: " + f1.getAbsolutePath());
p("Parent: " + f1.getParent());
p(f1.exists() ? "exists" : "does not exist");
p(f1.canWrite() ? "writeable" : "not writeable");
p(f1.canRead() ? "is readable" : "is not readable");

�����������	����

Example: File 2
p("is " + (f1.isDirectory()?"" :"not a directory"));
p(f1.isFile() ?"normal file":" a named pipe");
p(f1.isAbsolute() ? "absolute" : "not absolute");
p("File last modified: " + f1.lastModified());
p("File size: " + f1.length() + " Bytes");

}
}

�����������	���

Directories
A directory is a File that contains a list of other files and directories.

When you create a File object and it is a directory, the isDirectory()
method will return true.

In this case you can call list() on that object to extract the list of other
files and directories inside.

The form of list() is

String[] list();

The list of file is returned in an array of String objects.

�����������	���	

Example: Directories 1
import java.io.File;

class DirList {
public static void main(String args[]) {
String dirname = "/java";
File f1 = new File(dirname);

if (f1.isDirectory()) {
System.out.println("Directory of " + dirname);
String s[] = f1.list();

for (int i=0; i < s.length; i++) {
File f = new File(dirname + "/" + s[i]);
if (f.isDirectory()) {
System.out.println(s[i] + " is a directory");

} else {
System.out.println(s[i] + " is a file");

}

�����������	����

Example: Directories 2
}

} else {
System.out.print(dirname + " is not a”);

System.out.println(“directory");
}

}
}

�����������	����

Creating Directories
Another two useful File utility methods are:

1) mkdir() – creates a directory , returning true on success and false
on failure.

Failure indicates that the path specified in the File object already exists,
or that the directory cannot be created because the entire path does not
exist yet.

2) mkdirs() – to create directories for which no path exists, it creates both
a directory and all the parents of the directory

�����������	����

FilenameFilter
To limit the number of files returned by the list() method to include only
those files that match a certain type of filename pattern, or filter, use the
second form of list().

The second form of list() is:
String[] list(FilenameFilter ffobj);

FilenameFilter defines only a single method, accept(), which is
called once for each file in a list.

The accept() method returns true for files in the directory specified by
directory that should be included in the list and returns false if otherwise.

�����������	���

Example: FilenameFilter 1
import java.io.*;

public class OnlyExt implements FilenameFilter {

String ext;

public OnlyExt(String ext) {

this.ext = "." + ext;

}

public boolean accept(File dir, String name) {

return name.endsWith(ext);

}

}

�����������	����

Example: FilenameFilter 2
Here is a modified version of directory listing program. Now it display only
classes that use .html extension.

import java.io.*;

class DirListOnly {

public static void main(String args[]) {

String dirname = "/java";

File f1 = new File(dirname);

FilenameFilter only = new OnlyExt("html");

String s[] = f1.list(only);

for (int i=0; i < s.length; i++) {

System.out.println(s[i]);

}

}

}

�����������	����

Stream Benefits
The Streaming interface to I/O in Java provides:

1) A clean abstraction for complex and often cumbersome
task.

2) The composition of filtered stream classes allows you to dynamically
build the custom streaming interface to suit your data transfer
requirements.

3) Java programs written to adhere to the abstract, high level-level
InputStream,OutputStream, Reader and Writer classes will
function properly in the future even when new and improved concrete
stream classes are invented.

4) Serialization of object is expected to play an increasingly important role
in Java Programming in the future.

�����������	����

Lab Work: Input and output
1) Write a program that reads the content of “C:\Documents and

Settings\All Users” on your local system.

2) Write a program that counts the total number of directories and files you
have in the path.

3) Archive at least one of the subdirectories of All Users folder and save
it in zip format in your folder on the network.

4) Study and use java.util.zip package by referring to the API
documentation for the appropriate classes to use in this exercise.

�����������	����

Project Exercise 2
1) Implement the client component of your software architecture which

satisfies your use case model. Provide a web interface for users and
desktop interface for back office processing. Implementation should be
carried out using Java swing library.

2) Check for the consistency between your implementation and your design
class diagrams (in your design model). For instance, are all your design
classes implemented?

3) Check for the consistency between the dynamic aspect of your
architecture (instance level collaboration diagrams) and your
implementation

4) Update your implementation model indicating the implementing artifacts
for your client component.

Note: Provide appropriate version control for all artifacts (models and codes)

����������

�����������	���	

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	����

Outline: Networking
Presents the network programming in Java language.

Main points:

1) Review the basic network concepts and Java Implementation.

2) Discuss the usage of java.net package.

3) Introduce the Secure Socket.

4) Introduce the New I/O API.

5) Introduce the Java implementation for UDP protocol.

�����������	����

Overview
1) introduction

2) basic network concepts and Java Implementation

2) Implementation

3) JMS programming model and implementation

4) advance configuration

5) summary

�����������	����

Why Java
Why use Java for Networking?

a) Java was the first programming language designed from the ground
up with networking in mind.

b) Java provides easy solutions to two crucial problem for Internet
networking — platform independence and security.

c) It is far easier to write network programs in Java than in almost any
other language.

• In the fully functional applications, very little code is devoted to
networking.

�����������	���

Network programs with Java 1
Examples that a Network Program can do:

a) Server-Client

Examples: RssOwl (http://rssowl.sourceforge.net/)

b) Peer-to-Peer

Examples: LimeWire (http://limewire.org/)

Azureus (http://azureus.sourceforge.net/)

�����������	����

Network programs with Java 2

• RssOwl combines news from
different sources and allows
the user to browse using a
modern graphical user
interface.

• Unlike a web browser, this
program can continuously
update the data in real time.

��� !""�����#$������%����$���"

�����������	����

Network programs with Java 3

• LimeWire enables the clients
to query each other and
transfer files among
themselves.

• LimeWire is an open source
pure Java application that
uses a Swing GUI and
standard Java networking
classes.

��� !""���$#�������$���"

�����������	����

Network programs with Java 4

• Azureus is one of the BitTorrent
clients written in pure Java.

• BitTorrent is designed to serve
files that can be referenced from
known keys

• Downloaders can sharing a file
while they're still downloading it.

��� !""�&�����$������%����$���

�����������	����

Concepts for network program
Important concepts needed for writing network program in Java

1) Communication protocols: TCP and UDP

2) Ports and Internet Addresses

3) Sockets

4) Uniform Resource Locator (URL)

5) Uniform Resource Identifier (URI)

6) Streams and Threads (Covered in previous sessions)

7) Classes in java.net and java.io packages

�����������	���

Network Layers

' #�������()�*��' #�������()�*��

+���� ���()�*��(

,+-./01.2

+���� ���()�*��(

,+-./01.2

��������()�*��

,�.2

��������()�*��

,�.2

.�*����#()�*��.�*����#()�*��

' #�������()�*��' #�������()�*��

+���� ���()�*��(

,+-./01.2

+���� ���()�*��(

,+-./01.2

��������()�*��

,�.2

��������()�*��

,�.2

Defines arrangement of
data and addressing
scheme.

Java never sees this layer

Ensure that packets are
received in the order and
no data is lost or
corrupted.

Decides what to do with
the data

�����������	���	

TCP and UDP
Java only supports TCP (Transmission Control Protocol), UDP (User
Datagram Protocol) and application layer protocols built on top of these.

Characteristics of TCP and UDP :

� Is an unreliable protocol that does
not guarantee that packets will
arrive at their destination.

� Allow the receiver to detect
corrupted packets but does not
guarantee that packets are
delivered in the correct order.

� Requires less overhead and faster.

� Supported classes in java.net :

DatagramPacket, DatagramSocket,
and MulticastSocket

� Provides the ability to acknowledge
receipt of IP packets and request
retransmission of lost or corrupted
packets.

� Allows the received packets to be
put back together in the order they
were sent.

� Requires a lot of overhead.

� Supported classes in java.net :

URL, URLConnection, Socket, and
ServerSocket

UDPTCP

�����������	����

Ports
Each port from the server can be treated by the clients as a separate
machine offering different services.

Port numbers are represented by 16-bit numbers. (0 to 65,535)

The port numbers ranging from 0 - 1023 reserved for use by well-
known services such as HTTP and FTP and other system services.

�����������	����

Sockets
You can reach required service via its network and port IDs. what
then?

a) If you are a client
• you need an API that will allow you to send messages to

that service and read replies from it
b) If you are a server

• you need to be able to create a port and listen at it.
• you need to be able to read the message comes in and

reply to it.

The Socket and ServerSocket are the Java client and server classes
to do this.

�����������	����

Example : Sending Email 1
E-mail is sent by socket communication with port 25 on a computer
system.

open a socket connected to port 25 on some system, and speak “mail
protocol” to the daemon at the other end.

�����������	���

Example : Sending Email 2
import java.io.*;

import java.net.*;

public class SendEmail {

public static void main(String args[]) throws
IOException {

Socket sock;

DataInputStream dis;

BufferedReader br;

PrintStream ps;

System.out.println(">>> Connect

mailhost.iist.unu.edu");

sock = new Socket(“mailhost.iist.unu.edu", 25);

dis = new DataInputStream(sock.getInputStream());

�����������	����

Example : Sending Email 3
br = new BufferedReader (new

InputStreamReader(dis));

ps = new PrintStream(sock.getOutputStream());

System.out.println(br.readLine());

System.out.println(">>> Hello UNU/IISTT");

ps.println("Hello UNU/IIST");

System.out.println(br.readLine());

System.out.println(">>> Mail From:
oluotes@yahoo.com");

ps.println("MAIL FROM:milton_hm@hotmail.com");

System.out.println(br.readLine());

String Addressee= "milton@iist.unu.edu";

�����������	����

Example : Sending Email 4
System.out.println(">>> Rcpt to: " + Addressee);

ps.println("RCPT TO: " + Addressee);

System.out.println(br.readLine());

System.out.println(">>> Send \"data\"");

ps.println("DATA");

System.out.println(br.readLine());

System.out.println(">>>>>>>>>>");

System.out.println(">>> This is the message\n that
Java sent");

System.out.println(">>> We are testing Socket
Programming");

System.out.println(">>> in eMacao Training
program.");

System.out.println(">>>>>>>>>>");

�����������	��
�

Example : Sending Email 5
ps.println("This is the message\n that Java
sent");

ps.println("We are testing Socket Programming");

ps.println("in eMacao Training program.");

System.out.println(">>> .");

ps.println(".");

System.out.println(br.readLine());

System.out.println(">>> QUIT");

ps.println("QUIT");

System.out.println(br.readLine());

ps.flush();

sock.close();

}

}

�����������	��
�

Internet Addressing
Internet address (IP address) is a unique number for identifying a device
connected to the Internet.

The current standard is IPv4 which are four bytes long.

The hostname and IP address is, in Java, represented by
java.net.InetAddress.

InetAddress is used by many other networking classes, including Socket,
ServerSocket, URL, DatagramSocket, DatagramPacket, and more.

�����������	��

Example
The following program will print out the IP address of the www.iist.unu.edu

import java.net.*;

public class IISTByName {

public static void main (String[] args) {

try { InetAddress address =

InetAddress.getByName ("www.iist.unu.edu") ;

System.out.println(address);

} catch (UnknownHostException ex) {

System.out.println("Could not find

www.iist.unu.edu ");

}

}

}

�����������	��
	

InetAddress methods
Useful methods:

a) static InetAddress getByName(String host)

b) static InetAddress getLocalHost()

c) String getHostAddress(); // in dotted form

d) String getHostName();

�����������	��
�

The URL Class 1
The java.net.URL is an abstraction of a Uniform Resource Locator (URL).

URLs are composed of five pieces:

1. The scheme, also known as the protocol

2. The authority

3. The path

4. The query string

5. The fragment identifier, also known as the section or ref

<scheme>://<authority><path>?<query>#<fragment>

�����������	��
�

The URL Class 2
For example, given the URL :
http://www.ibiblio.org/javafaq/javabooks/index.html?isbn=123456789#toc

1. scheme : http

2. authority : www.ibiblio.org

3. path : /javafaq/books/javabooks/index.html

4. query string : isbn=123456789

5. fragment identifier : toc

�����������	��
�

The URL Class 3
The authority may further be divided into the user info, the host, and the
port.

For example, in the URL http://admin@www.blackstar.com:8080/

1. user info : admin

2. host : www.blackstar.com

3. port : 8080

�����������	��

The URL Class 4
The java.net.URL class provides static methods for getting the above
mentioned information:

a) getFile()

b) getHost()

c) getPort()

d) getProtocol()

e) getRef()

f) getQuery()

g) getPath()

h) getUserInfo()

i) getAuthority()

�����������	��
�

The URL Class 5
Unlike the InetAddress objects, you can construct instances of java.net.URL
using one of its six constructors.

1) public URL(String url) throws
MalformedURLException

2) public URL(String protocol, String hostname,
String file) throws MalformedURLException

3) public URL(String protocol, String host, int port,
String file) throws MalformedURLException

4) public URL(URL base, String relative) throws
MalformedURLException

�����������	��
�

The URL Class 6
5)public URL(URL base, String relative,
URLStreamHandler handler) // 1.2 throws
MalformedURLException

6)public URL(String protocol, String host, int port,
String file, // 1.2 URLStreamHandler handler)
throws MalformedURLException

�����������	����

Example 1
The following program will test the protocol supported by the browser:

import java.net.*;
public class ProtocolTester {

public static void testProtocol(String url) {
try {
URL u = new URL(url);
System.out.println(u.getProtocol() + " is
supported");

}
catch (MalformedURLException ex) {
String protocol =
url.substring(0, url.indexOf(':'));
System.out.println(protocol + " is not
supported");

}
}

}

�����������	����

Example 2
You can test it with the following Tester:

public class Tester {

public static void main(String[] args) {

ProtocolTester.testProtocol("http://www.adc.org");

ProtocolTester.testProtocol("https://www.amazon.co
m/exec/obidos/order2/");

ProtocolTester.testProtocol("ftp://metalab.unc.edu
/pub/languages/java/javafaq/");

�����������	���

Lab Work: URL 1
1) Write a program that will split the input URL into corresponding parts.

Given: java URLSplitter
http://www.unu.iist.edu/demoweb/html-
primer.html#A1.3.3.3

Output:
The output will be:
The URL is http://www.unu.iist.edu/demoweb/html-
primer.html#A1.3.3.3
The scheme is http
The user info is null
The host is www.unu.iist.edu
The port is -1

The path is /demoweb/html-primer.html
The ref is A1.3.3.3
The query string is null

�����������	���	

Lab Work: URL 2
Try to test your program using the following URL:

ftp://mp3:mp3@138.247.121.61:21000/c%3a/
http://www.oreilly.com
http://www.ibiblio.org/nywc/compositions.phtml?catego
ry=Piano
http://admin@www.blackstar.com:8080/

2) What is the difference between file and path?

�����������	����

Retrieving Data from a URL
The URL class provides methods for retrieving data from a URL:

public InputStream openStream() throws IOException

public URLConnection openConnection() throws
IOException

public URLConnection openConnection(Proxy proxy)
throws IOException // 1.5

public Object getContent() throws IOException

public Object getContent(Class[] classes) throws
IOException // 1.3

�����������	����

Retrieving Data from a URL 1
Procedure to use the methods:

1) Create an URL object

e.g. URL u = new URL("http://www.iist.unu.edu");

2) Open an InputStream object directly from the URL object

e.g. InputStream in = u.openStream();

3) Or open an URLConnection object from the URL object and then get
an InputStream object from the URLConnection object .

e.g. URLConnection uc = u.openConnection();
InputStream in = uc.getInputStream();

4) In either case, you will have an InputStream. What’s followed is the
normal I/O procedure for getting data.

5) Don’t forget to put the try catch block for catching the
MalformedURLException and IOException.

�����������	����

Retrieving Data from a URL 2
What is the difference between using the openStream and openConnection
method?

1) openStream method only give you the access to the raw data and
cannot detect the encoding information.

2) openConnection method opens a socket to the specified URL and
returns a URLConnection object.

3) The URLConnection object gives you access to everything sent by
the server. You can access all the metadata specified by the
protocol such as the scheme. The URLConnection class also lets
you write data to as well as read from a URL.

�����������	���

Retrieving Data from a URL 3
The following methods are used to access the header fields and the contents
after the connection is made to the remote object:

1)getContent

2)getHeaderField

3)getInputStream

4)getOutputStream

�����������	����

Retrieving Data from a URL 4
Certain header fields are accessed frequently. The methods:

1) getContentEncoding

2) getContentLength

3) getContentType

4) getDate

5) getExpiration

6) getLastModifed

�����������	����

Example : Reading from URL 1
import java.net.*;

import java.io.*;

public class URLConnectionReader {

ublic static void main(String[] args) throws
Exception {

URL yahoo = new URL("http://www.yahoo.com/");

URLConnection yc = yahoo.openConnection();

BufferedReader in = new BufferedReader(

new InputStreamReader (yc.getInputStream()));

String inputLine;

�����������	����

Example : Reading from URL 2
while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();

}

}

�����������	����

Uniform Resource Identifier (URI)
A Uniform Resource Identifier (URI) is an abstraction of a URL.

Most URIs used in practice are URLs, but most specifications and standards
such as XML are defined in terms of URIs

In Java 1.4 and later, URIs are represented by the java.net.URI class.

you should use the URL class when you want to download the content of a
URL and the URI class when you want to use the URI for identification
rather than retrieval.

When you need to do both, you may convert from a URI to a URL with the
toURL() method, and in Java 1.5 you can also convert from a URL to a URI
using the toURI() method of the URL class.

�����������	���

Uniform Resource Identifier (URI)
A URI reference has up to three parts: a scheme, a scheme-specific part,

and a fragment identifier. The general format is:
scheme:scheme-specific-part:fragment .

Getter methods:

1) public String getScheme()

2) public String getSchemeSpecificPart()

3) public String getRawSchemeSpecificPart()

4) public String getFragment()

5) public String getRawFragment()

�����������	���	

Lab Work: URI
1) Write a program that will split the input URI into corresponding parts.

2) List the methods you can get form the URI class using the javadoc.

�����������	����

Networking Examples
Now you have the basic concepts for different components for Java
networking. Let’s try to start some simple experiments.

�����������	����

A Simple Example

��������������	��
�
���
	
���

����
����

	�
���

���
	�

�� 	��� 	�

�� �

���� �

��

�����������	����

Create a Server
How to create a server?

�����������	���

Echo Server 1
import java.io.*;

import java.net.*;

public class EchoServer {

public static int MYECHOPORT = 8189;

public static void main(String argv[]) {

ServerSocket s = null;

try {

s = new ServerSocket(MYECHOPORT);

} catch(IOException e) {

System.out.println(e);

System.exit(1);

}

�����������	����

Echo Server 2
while (true) {

Socket incoming = null;

try {

incoming = s.accept();

} catch(IOException e) {

System.out.println(e);

continue;

}

try {

incoming.setSoTimeout(10000); //10 seconds

} catch(SocketException e) {

e.printStackTrace();

}

�����������	����

Echo Server 3
try { handleSocket(incoming);

} catch(InterruptedIOException e) {

System.out.println("Time expired " + e);

} catch(IOException e) {

System.out.println(e);

}

try {

incoming.close();

} catch(IOException e) {

// ignore

}

}

}

�����������	�
��

Echo Server 4
public static void handleSocket(Socket incoming)

throws IOException {

BufferedReader reader =

new BufferedReader(new InputStreamReader(

incoming.getInputStream()));

PrintStream out =

new PrintStream(incoming.getOutputStream());

out.println("Hello. Enter BYE to exit");

boolean done = false;

while (! done) {

String str = reader.readLine();

�����������	�
��

Echo Server 5
if (str == null) {

done = true;

System.out.println("Null received");

}

else {

out.println("Echo: " + str);

if (str.trim().equals("BYE"))

done = true;

}

}

incoming.close();

}

}

�����������	�
�

Create a Client
How to create a client connected to a sever?

�����������	�
�	

Echo Client 1
import java.io.*;

import java.net.*;

public class EchoClient {

public static void main(String[] args) throws
IOException {

Socket echoSocket = null;

PrintWriter out = null;

BufferedReader in = null;

BufferedReader stdIn = null;

�����������	�
��

Echo Client 2
try {

echoSocket = new Socket("localhost", 8189);

out = new
PrintWriter(echoSocket.getOutputStream(), true);

in = new BufferedReader(new
InputStreamReader(echoSocket.getInputStream()));

System.out.println (in.readLine());

} catch (UnknownHostException e) {

System.err.println("Don't know about host.");

System.exit(1);

} catch (IOException e) {

System.err.println("Couldn't get I/O for "

+ "the connection to server.");

�����������	�
��

Echo Client 3
System.exit(1);

}

try {

stdIn = new BufferedReader(new InputStreamReader
(System.in));

String userInput;

while ((userInput = stdIn.readLine()) != null) {

out.println(userInput);

System.out.println("echo: " + in.readLine());

}

} catch (SocketException e) {

System.err.println("Socket closed");

}

�����������	�
��

Echo Client 4
finally {

if (out != null)

out.close();

if (in != null)

in.close();

if (stdIn != null)

stdIn.close();

if (echoSocket != null)

echoSocket.close();

}

}

}

�����������	�
�

Lab Work: Chatting Program
1) Modify the previous Echo Sever and Echo Client examples to create a

server-client chatting program.

Hints:

a) You need to create a server which will wait for the client to establish
the connection. Then it will print a statement to the client’s console
notifying that a connection is made.

b) Once the connection is made, both the server and client will be able
read message from the counterpart and write message to it.

�����������	�
��

Exercise : Multiple Clients 1
1) Please modify the previous lab work. you need to make your server to be

able to talk to multiple clients connected the server.

�����������	�
��

Exercise : Multiple Clients 2

���
��
�

����
����

� �	�
�������������	��

������

while (true)

{

Socket s = ss.accept();

CThread ct = new CThread(s);

ct.start();

}

public void run()

{

// get input streams

// read/write client

// loop

}

�
	���

�������	��
������

�
	���

�������	��
������

�
	���

Notes:

1) main thread just
accepts

2) create and start 1
new thread per
client

�����������	�
��

Secure Sockets
Starting from JDK 1.4, Java Secure Sockets Extension (JSSE) is part of the
standard distribution.

JSSE uses the Secure Sockets Layer (SSL) Version 3 and Transport Layer
Security (TLS) protocols and their associated algorithms to secure network
communications.

JSSE abstracts all the low-level details such as keys exchange,
authentication, and data encryption. All you have to do is to send your data
over the streams from the secured sockets obtained.

�����������	�
��

Java Secure Socket Extension
The Java Secure Socket Extension is divided into four packages:

1) javax.net.ssl :The abstract classes that define Java's API for secure
network communication.

2) javax.net :The abstract socket factory classes used instead of
constructors to create secure sockets.

3) javax.security.cert : A minimal set of classes for handling public key
certificates that's needed for SSL in Java 1.1. (In Java 1.2 and later,
the java.security.cert package should be used instead.)

4) com.sun.net.ssl : The concrete classes that implement the encryption
algorithms and protocols in Sun's reference implementation of the
JSSE.

�����������	�
�

SSL Handshake
I can use the following cipher suit

RSA_EXPROT_WITH_RC4_40_MD5
or ...

OK, let’s use the cipher suit
RSA_EXPROT_WITH_RC4_40_MD5.

Receive my certificate

Random key materials encrypted with
server public key

3�������

4�*

3�������

4�*

Confirmation to exchange data

Exchange data

�����������	�
�	

Secure Client Sockets 1
Procedures to create a secure client socket:

1) get an instance of SocketFactory by invoking the static
SSLSocketFactory.getDefault() method. e.g.

SocketFactory sf = SSLSocketFactory.getDefault();

2) use one of these five overloaded createSocket() methods to
build an SSLSocket:

1.public abstract Socket createSocket(String host,
int port) throws IOException,
UnknownHostException

2.public abstract Socket createSocket(InetAddress
host, int port) throws IOException

�����������	�
��

Secure Client Sockets 2

3.public abstract Socket createSocket(String host,
int port, InetAddress interface, int localPort)
throws IOException, UnknownHostException

4.public abstract Socket createSocket(InetAddress
host, int port, InetAddress interface, int
localPort) throws IOException,
UnknownHostException

5.public abstract Socket createSocket(Socket
proxy, String host, int port, boolean autoClose)
throws IOException

�����������	�
��

Secure Client Sockets 3
3) Once the socket has been created, you use it just like any other

socket, through its getInputStream(), getOutputStream(), and other
methods.

For example, if the following purchasing information is required to
be sent over the network:

a) Name: John Smith

b) Product-ID: 67X-89

c) Address: 1280 Deniston Blvd, NY NY 10003

d) Card number: 4000-1234-5678-9017

e) Expires: 08/05

Using JSSE, the following code will do the work for you:

�����������	�
��

Secure Client Sockets 4
try {

SSLSocketFactory factory

= (SSLSocketFactory) SSLSocketFactory.getDefault();

Socket socket = factory.createSocket(“localhost",
7000);

Writer out = new
OutputStreamWriter(socket.getOutputStream(),

"ASCII");

out.write("Name: John Smith\r\n");

�����������	�
�

Secure Client Sockets 5

out.write("Product-ID: 67X-89\r\n");

out.write("Address: 1280 Deniston Blvd, NY NY

10003\r\n");

out.write("Card number: 4000-1234-5678-9017\r\n");

out.write("Expires: 08/05\r\n");

out.flush();

out.close();

socket.close();

} catch (IOException ex) {

ex.printStackTrace();

}

�����������	�
��

Configuring Secure Sockets
Methods are available for configuring how much and what kind of
authentication and encryption is performed.

a) getSupportedCipherSuites() method tells you which combination of
algorithms is available on a given socket

b) getEnabledCipherSuites() method tells you which suites this socket
is willing to use

c) You can change the suites the client attempts to use via the
setEnabledCipherSuites(String[] suites) method

• Sun's JDK 1.4 supports 23 cipher suites. For the list of the
supported cipher suites, please check with JavaDoc.

d) There are still methods for handling handshaking and sessions, and
I will open these for your further study.

�����������	�
��

Secure Server Sockets 1
Procedures to create a secure server socket:

1) get an instance of ServerSocketFactory by invoking the static
SSLSocketFactory.getDefault() method. e.g.

ServerSocketFactory sf =
SSLServerSocketFactory.getDefault();

2) use one of these three overloaded createServerSocket()
methods to build an SSLServerSocket:

1.public abstract ServerSocket
createServerSocket(int port) throws IOException

2.public abstract ServerSocket
createServerSocket(int port, int queueLength)
throws IOException

3.public abstract ServerSocket
createServerSocket(int port, int queueLength,
InetAddress interface) throws IOException

�����������	�

�

Secure Server Sockets 2
3) Unlike creating the client socket, you need to do more to set up the

encryption for the server socket.

This setup varies between different JSSE implementations. In Sun’s
implementation, you may need to do the followings:

1.Generate public keys and certificates using keytool.

2.Pay money to have your certificates authenticated by a trusted
third party such as Verisign.

3.Create an SSLContext for the algorithm you'll use.

4.Create a TrustManagerFactory for the source of certificate material
you'll be using.

�����������	�

�

Secure Server Sockets 3
5.Create a KeyManagerFactory for the type of key material you'll be

using.

6.Create a KeyStore object for the key and certificate database.
(Sun's default is JKS.)

7.Fill the KeyStore object with keys and certificates; for instance, by
loading them from the filesystem using the pass phrase they're
encrypted with.

8.Initialize the KeyManagerFactory with the KeyStore and its pass
phrase.

9.Initialize the context with the necessary key managers from the
KeyManagerFactory, trust managers from the
TrustManagerFactory, and a source of randomness. (The last two
can be null if you're willing to accept the defaults.)

�����������	�

Lab Work: Secure Sockets 1
1) Please try to run through the process for setting up a secure socket

server as following and implement it in java code.

a) Generate public keys and certificates using keytool

• D:\JAVA>keytool -genkey -alias ourstore -keystore
jnp3e.keys

• Answer some questions and please remember the password you
entered. You will need it later.

• A file jnp3e.keys will be generated and protected by the
password you entered.

b) If you don’t want to pay for the digital ID for experiment, you can use
the verified keystore file called testkeys, protected with the password
"passphrase“, included in SUN’s JSSE implementation package.

c) Create a class named SecureServer.

�����������	�

	

Lab Work: Secure Sockets 2
d) Import the necessary packages.

e) Define variables:

• int PORT – default port number

• String ALGORITHM – algorithm for setting the SSLContext (“SSL”)

• String KEYFILE – in our case, “keyfiles”

• String PASSWORD – in our case, “passphrase”

f) Create the context using SSLContext.getInstance(arg) method. You
need to pass the variable ALGORITHM as argument.

g) As accepted the default, we don’t need to create
theTrustManagerFactory

�����������	�

�

Lab Work: Secure Sockets 3
h) Create the KeyManagerFactory using the static method

KeyManagerFactory.getInstance (arg). The Sun implementation will
need "SunX509“ as argument.

i) Create the KeyStore using the static method
KeyStore.getInstance(arg) Use “JKS” as argument.

j) For security, every key store is encrypted with a pass phrase that
must be provided before we can load it from disk. The pass phrase is
stored as a char[] array so it can be wiped from memory quickly rather
than waiting for a garbage collector. Of course using a string literal
here completely defeats that purpose.

k) Use the load method from the KeyStore to load the key file. Check the
javadoc for method usage.

�����������	�

�

Lab Work: Secure Sockets 4
l) Use the init method from the KeyManagerFactory to initialize the

KeyManagerFactory. Check the javadoc for method usage.

m)Use the init method from theSSLContext to initialize the context.
Check the javadoc for method usage.

2) You have completed the setup process at this point. Create a secure
server socket for this server at port 7000.

3) Test your server with the secure client.

�����������	�

�

New I/O (NIO) API
Java introduce the new I/O (NIO) API in v1.4.

New features:

a) Buffers for data of primitive types

b) Character-set encoders and decoders

c) A pattern-matching facility based on Perl-style regular expressions

d) Channels, a new primitive I/O abstraction

e) A file interface that supports locks and memory mapping

f) A multiplexed, non-blocking I/O facility for writing scalable servers

�����������	�

Why NIO?
Allow Java programmers to implement high-speed I/O.

NIO deals with data in blocks which can be much faster than processing
data by the (streamed) byte.

�����������	�

�

NIO Components

1) Buffers

2) Channels

3) Selectors

4) Regular Expressions

5) Character Set Coding

�����������	�

�

Buffers
In the NIO library, all data is handled with buffers.

A buffer is essentially an array. Generally, it is an array of bytes, but other
kinds of arrays can be used.

A buffer also provides structured access to data and also keeps track of the
system's read/write processes.

Types:

a) ByteBuffer

b) CharBuffer

c) ShortBuffer

d) IntBuffer

e) LongBuffer·

f) FloatBuffer

g) DoubleBuffer

�����������	�
	�

Channels
Channel is like a stream in original I/O.

You can read a buffer from and write a buffer to a channel.

Unlike streams, channels are bi-directional.

�����������	�
	�

Read from a file
Codes for reading from a file:

FileInputStream fin = new
FileInputStream("readandshow.txt");

FileChannel fc = fin.getChannel();

ByteBuffer buffer = ByteBuffer.allocate(1024);

fc.read(buffer);

�����������	�
	

Write to a file
Codes for writing to a file:

FileOutputStream fout = new
FileOutputStream("writesomebytes.txt");

FileChannel fc = fout.getChannel();

ByteBuffer buffer = ByteBuffer.allocate(1024);

for (int i=0; i<message.length; ++i) {

buffer.put(message[i]);

}

buffer.flip();//prepares the buffer to have the newly-
//read data written to another channel

fc.write(buffer);

�����������	�
		

Lab Work: NIO
1) Refer to the example, please use the NIO to create a program to write a

String to a text file and store in your computer.

2) Read the text file back and print the content on the screen.

3) You may need to use the WritableByteChannel as following:

WritableByteChannel wbc =
Channels.newChannel(System.out);

�����������	�
	�

Server with NIO
Channels and buffers are really intended for server systems that need to
process many simultaneous connections efficiently.

Handling servers requires the new selectors that allow the server to find all
the connections that are ready to receive output or send input.

�����������	�
	�

Asynchronous I/O
Asynchronous I/O is made possible in NIO with scalable sockets, which consist of
the following components:

a) Selectable Channel - A channel that can be multiplexed

b) Selector - A multiplexor of selectable channel

c) Selection key - A token representing the registration of a selectable channel
with a selector

�����������	�
	�

Selectors, Keys and Channels

�����������	�
	

The Selection Process 1
1) Create a Selector and register channels with it

Use Open() method to create a Selector.

The register() method is on SelectableChannel, not Selector

2) Invoke select()method on the Selector object

3) Retrieve the Selected Set of keys from the Selector

Selected set: Registered keys with non-empty Ready Sets
keys = selector.selectedKeys()

�����������	�
	�

The Selection Process 2
4) Iterate over the Selected Set

1) Check each key's Ready Set

2) Remove the key from the Selected Set (iterator.remove())

1) Bits in the Ready Sets are never reset while
the key is in the Selected Set

2) The Selector never removes keys from
the Selected Set � you must do so

3) Service the channel (key.channel()) as appropriate (read, write, etc)

�����������	�
	�

Example : NIO Server 1
Skeleton dodes for a simple server with NIO:

//Open a ServerSocketChannel

ServerSocketChannel serverChannel =
ServerSocketChannel.open();

//make the ServerSocketChannel non-blocking.

//necessary for asynchronous i/o

serverChannel.configureBlocking(false);

ServerSocket ss = serverChannel.socket();

// bind the socket to a specific port

ss.bind(new InetSocketAddress(PORT_NO));

�����������	�
��

Example : Create NIO Server 2
//Open the selector

Selector selector = Selector.open();

//use the channel's register() method to register the
//ServerSocketchannel with the selector.

serverChannel.register(selector,
SelectionKey.OP_ACCEPT);

�����������	�
��

Example : Create NIO Server 3
//check whether anything is ready to be acted on, call
//the selector's select() method. For a long-running
//server, this normally goes in an infinite loop:

while (true) {

try {

selector.select();

}

catch (IOException ex) {

ex.printStackTrace();

break;

}

�����������	�
�

Example : Create NIO Server 4
// process selected keys...

//selectedKeys() method returns a java.util.Set
//containing one SelectionKey object for each ready
//channel

Set readyKeys = selector.selectedKeys();
Iterator iterator = readyKeys.iterator();
while (iterator.hasNext()) {

SelectionKey key = (SelectionKey)

(iterator.next());

// Remove key from set

iterator.remove();

�����������	�
�	

Example : Create NIO Server 5
// You can obtain the channel using the channel()

//methods of the SelectionKey. Catch the IOExcepton.

try{

if (key.isAcceptable())

{ ServerSocketChannel

server = (ServerSocketChannel) key.channel();

SocketChannel client = server.accept();

// Data manipulation

System.err.println("Got connection from
"+client.socket().getInetAddress().getHostName());

�����������	�
��

Example : Create NIO Server 6
//Send some message to client

ByteBuffer bb =
ByteBuffer.allocateDirect(1024);

byte[] message = "Hello... You are
reaching NIO Server".getBytes();

bb.put(message);

bb.flip();

client.write(bb);

}

} catch (IOException e) { }

}

}

�����������	�
��

User Datagram Protocol
The User Datagram Protocol (UDP) is an alternative protocol for sending
data over IP

UDP is very quick, but not reliable.

Java's implementation of UDP is split into two classes: DatagramPacket and
DatagramSocket.

The DatagramPacket class stuffs bytes of data into UDP packets called
datagrams and lets you unstuff datagrams that you receive.

A DatagramSocket sends as well as receives UDP datagrams.

�����������	�
��

Constructors for DatagramPacket
For receiving datagrams:

a) public DatagramPacket(byte[] buffer, int length)

b) public DatagramPacket(byte[] buffer, int offset,
int length)

For sending datagrams:
a) public DatagramPacket(byte[] data, int length,

InetAddress destination, int port)

b) public DatagramPacket(byte[] data, int offset, int
length, InetAddress destination, int port)
// Java 1.2

c) public DatagramPacket(byte[] data, int length,
SocketAddress destination, int port) // Java 1.4

d) public DatagramPacket(byte[] data, int offset, int
length, SocketAddress destination, int port)
//Java 1.4

�����������	�
�

Constructors for DatagramSocket
For socket bound to an anonymous port:

a) public DatagramSocket() throws SocketException

For socket listen for incoming datagrams on a particular port :

a) public DatagramSocket(int port) throws
SocketException

Others constructors:

a) public DatagramSocket(int port, InetAddress
interface) throws SocketException

b) public DatagramSocket(SocketAddress interface)
throws SocketException // Java 1.4

c) protected DatagramSocket(DatagramSocketImpl impl)
throws SocketException // Java 1.4

�����������	�
��

Sending and Receiving
After constructed the DatagramPacket, you can send and receive datagram
from it :

a)public void send(DatagramPacket dp) throws
IOException

b)public void receive(DatagramPacket dp) throws
IOException

�����������	�
��

Lab Work: UDP
1) Write a EchoUDP server which will send back any message received

from client.

2) Write a UDPclient which sends some message to the EchoUDP server
for testing it.

�����������	�
��

Summary
In this session, we cover the followings:

1) Review the basic concepts for networking.

2) Discuss how to create simple server-client program.

3) Discuss the secure socket implementation in Java.

4) Introduce the NIO API.

5) Introduce the Java implementation for User Datagram Protocol.

1���5���(-�������6��*

�����������	�
�

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	�
�	

Overview
We are going to consider the following under this section:

1) Introduction
2) JDBC Overview
3) Information Processing

�����������	�
��

Introduction
Buried within the term "enterprise" is the idea of a business taken
wholistically.

An enterprise solution identifies common problem domains within a
business and provides a shared infrastructure for solving those problems.

Example:

If your business is running a bank, your individual branches may have
different business cultures, but those cultures do not alter the fact that they
all deal with customers and accounts. Looking at this business from an
enterprise perspective means abstracting away from irrelevant differences
in the way the individual branches do things, and instead approaching the
business from their common ground. It does not mean dismissing
meaningful distinctions, such as the need for bilingual support in Macao
SAR.

�����������	�
��

Enterprise Systems: What?
Enterprise Systems are Information systems that support many or all of the
various parts of a firm.

They can also refer to many mission-critical applications which are
mainframe-based (also referred to as legacy systems).

Also known as enterprise-wide information systems.

Information systems that allow companies to integrate information across
operations on a company-wide basis.

�����������	�
��

Enterprise Systems: Types
Enterprise systems are broadly categorized into two:

1) Relational - Relational Database Management Systems (RDBMS)

2) Non-Relational
a) Non Relational Databases (Legacy Database Systems)
b) Legacy Systems (Older systems like old Cobol Applications)
c) Enterprise Resource Planning
d) Customer Relationship Management (CRM)
e) Supply Chain Management

�����������	�
�

Enterprise Systems Integration
Enterprise Systems Integration is normally defined as the bringing together
of:

1) People,
2) Processes and
3) Information

to work together in an harmonized way, and supported by appropriate
information systems.

It is also the bringing together of both old and new applications to achieve
the overall goal of an organization.

�����������	�
��

Reasons for Integration
There are many reasons why Enterprise information systems need to be
integrated. Some are stated below:

1) need to persist and retrieve information from data repositories.

2) need to leverage existing systems and resources while adopting and
developing new technologies and architectures

3) concern over the past years, that the mainframe was going away and
that all legacy applications would be scrapped and completely rewritten.

�����������	�
��

Java Integration Mechanisms
Java provides some technologies to integrate Enterprise systems:

1) Java Database connectivity (JDBC) for connecting applications to
relational Database systems

2) JavaIDL and Java Connector Architecture (JCA) for connecting to Non-
Relational systems

The focus of this section is JDBC.

JavaIDL will be addressed later in the course while JCA will be addressed
sometimes in the training.

�����������	�
��

Relational Database 1
Programming is all about data processing; data is central to everything you
do with a computer.

Databases, like filesystems are nothing more than specialized tools for
data storage.

Filesystems are good for storing and retrieving a single volume of
information associated with a single virtual location.

In other words, when you want to save a WordPerfect document, a
filesystem allows you to associate it with a location in a directory tree for
easy retrieval later.

�����������	�
��

Relational Database 2
Databases provide applications with a more powerful data storage and
retrieval system based on mathematical theories about data devised by Dr.
E. F. Codd.

Conceptually, a relational database can be pictured as a set of
spreadsheets in which rows from one spreadsheet can be related to rows
from another.

Each spreadsheet in a database is called a table. As with a spreadsheet, a
table is made up of rows and columns.

A database engine is a process instance of the software accessing your
database. For example Oracle, mySQL, Sybase etc

Database engines use a standard query language to retrieve information
from databases and is called Structured Query Language (SQL).

�����������	�
�

SQL
SQL is not much like any programming language you might be familiar
with.

Instead, it is more of a structured English for talking to a database.

Characteristics:
1) SQL keywords are case-insensitive

2) table and column names may or may not be case-insensitive depending
on your database engine

3) the space between words in a SQL statement is unimportant

4) have a newline after each word, several spaces, or just a single space

�����������	�
�	

SQL Usage
With SQL you can ask the following question:

1) How do you get the data into the database?
2) And how do you get it out once it is in there?

Much of the simplest database access comes in the form of equally simple
SQL statements.

Some of these commands are:

1) Create
2) Insert
3) Select
4) Update
5) Delete

�����������	�
��

Create Statement
SQL CREATE statement handles the creation of database entities.

The major database engines provide GUI utilities that allow you to create
tables without issuing any SQL.

Uses:
1) To create database

Syntax:
CREATE DATABASE database_name

2) To create tables
Syntax:
CREATE TABLE table_name (
column_name column_type column_modifiers,

...,

column_name column_type column_modifiers)

�����������	�
��

Lab Work: Create Statement

2) Open another console and type

C:\mysql\bin>mysql –u root

2) Test your connection by typing

mysql>show databases;

5) Create emacao database

mysql>create database emacao;

6) Change to the database

mysql>Use emacao;

6) Create license table

mysql>create table license (id int, name
varchar(40), sex varchar(10), date varchar(12),
licenseType varchar(10));

�����������	�
��

Lab Work: Console 1

�����������	�
�

Lab Work: Console 2

�����������	�
��

Lab Work: Console 3

�����������	�
��

Insert Statement
With the tables in place, you use the INSERT statement to add data to
them.

Its form is:

INSERT INTO table_name(column_name, ..., column_name)

VALUES (value, ..., value)

The first column name matches to the first value you specify, the second
column name to the second value you specify, and so on for as many
columns as you are inserting.

If you fail to specify a value for a column that is marked as NOT NULL, you
will get an error on insert.

�����������	�

�

Lab Work: Insert Statement
1) Insert the following records into the license table.

a) Id = 123

Name = Chong Gabriel

Sex = male

Date = 27/12/2004

LicenceType = Export

b) Id = 124

Name = martins Gabriel

Sex = Female

Date = 23/12/2004

LicenceType = Import

�����������	�

�

Update Statement
The UPDATE statement enables you to modify data that you previously
inserted into the database.

Its form is:

UPDATE table_name

SET column_name = value,

...,

column_name = value

WHERE column_name = value

This statement introduces the WHERE clause. It is used to help identify one
or more rows in the database.

�����������	�

Lab Work: Update Statement
1) Change the ID and Name of the record with ID 124 to 126 and

Martins Leo Gabriel respectively.

�����������	�

	

Select Statement
The most common SQL command you will use is the SELECT statement.

It allows you to select specific rows from the database based on search
criteria.

It takes the following form:

SELECT column_name, ..., column_name

FROM table_name

WHERE column_name = value

�����������	�

�

Lab Work: Select Statement
1) Retrieve all records from the table.

2) Retrieve all records from the table where ID is 126.

�����������	�

�

Delete Statement
The DELETE command looks a lot like the UPDATE statement.

Its syntax is:

DELETE FROM table_name WHERE column_name = value

Instead of changing particular values in the row, DELETE removes the
entire row from the table.

�����������	�

�

Lab Work: Delete Statement
1) Remove all records from the table where ID is 125.

2) Retrieve all records from the table
3) Remove all records from the table.

�����������	�

Database Programming
Database programming has traditionally been a technological Tower of
Babel.

You are faced with dozens of available database products, and each one
talks to your applications in its own private language.

If your application needs to talk to a new database engine, you have to
teach it (and yourself) a new language.

As Java programmers, however, you should not worry about such
translation issues.

Java is supposed to bring you the ability to "write once, compile once, and
run anywhere," so it should bring it to you with database programming, as
well.

�����������	�

�

JDBC Overview
JDBC API is a set of interfaces designed to insulate a database application
developer from a specific database vendor.

It enables the developer to concentrate on writing the application - making
sure that queries to the database are correct and that the data is
manipulated as designed.

Sun developed a single API for database access—JDBC.

Three main design goals:

1) JDBC should be a SQL-level API.
2) JDBC should capitalize on the experience of existing database APIs.
3) JDBC should be simple.

�����������	�

�

JDBC and Developer
What does JDBC provide the developer?

1) the developer can write an application using the interface names and
methods described in the API, regardless of how they were
implemented in the driver

2) the developer writes an application using the interfaces described in the
API as though they are actual class implementations

3) the driver vendor provides a class implementation of every interface in
the API so that when an interface method is used, it is actually referring
to an object instance of a class that implemented the interface.

�����������	�
��

JDBC and Driver Vendors
What do the driver vendors provide?

Driver vendors provide implementations of JDBC interfaces.

The JDBC API also enables developers to pass any string directly to the
driver.

This makes it possible for developers to make use of custom features of
their database without requiring that the application use ANSI SQL

With JBDC you can :

1) establish a connection with a database or access any tabular data
source

2) send SQL statement
3) process the results

�����������	�
��

JDBC Structure
JDBC accomplishes its goals through a set of Java interfaces, each
implemented differently by individual vendors.

The set of classes that implement the JDBC interfaces for a particular
database engine is called a JDBC driver.

In building a database application, you do not have to think about the
implementation of these underlying classes at all.

The whole point of JDBC is to hide the specifics of each database and let
you worry about just your application.

�����������	�
�

JDBC Architecture

�����������	�
�	

JDBC Driver Type 1

JDBC Driver fit into one of the following:

1) Type 1:JDBC-ODBC Bridge plus ODBC Driver

2) Type 2:A native API partly Java technology-enabled

3) Type 3:Pure Java Driver for Database Middleware

4) Type 4:Direct-to-Database Pure Java Driver

�����������	�
��

Type 1: JDBC-ODBC Bridge 1
Type 1: JDBC-ODBC Bridge provides JDBC access via one or more Open
Database Connectivity (ODBC) drivers.

Advantage:
1) a good approach for learning JDBC

2) may be useful for companies that already have ODBC drivers installed
on each client machine

3) may be the only way to gain access to some low-end desktop
databases

�����������	�
��

Type 1: JDBC-ODBC Bridge 2

Disadvantage:
1) Not for large-scale applications. Performance suffers because there's

some overhead associated with the translation work to go from JDBC
to ODBC.

2) doesn't support all the features of Java

3) user is limited by the functionality of the underlying ODBC driver

�����������	�
��

Type 2: Partial Java driver 1
Converts calls to the JDBC API into calls that connect to the client
machine's application programming interface for a specific database, such
as IBM, Informix, Oracle or Sybase.

Advantage:
1) Performance is better than that of Type 1, in part because the Type 2

driver contains compiled code that is optimized for the back-end
database server's operating system.

�����������	�
�

Type 2: Partial Java driver 2

Disadvantage:

1) user needs to make sure the JDBC driver of the database vendor is
loaded onto each client machine

2) must have compiled code for every operating system that the
application will run on

3) best use is for controlled environments, such as an intranet

�����������	�
��

Type 3: Pure Java Middleware 1
Type 3: Pure Java driver for database middleware translates JDBC calls
into the middleware vendor's protocol, which is then converted to a
database-specific protocol by the middleware server software.

Advantage:
1) used when a company has multiple databases and wants to use a single
JDBC driver to connect to all of them

2) Server-based, so no need for JDBC driver code on client machine

3) the back-end server component is optimized for the operating system
that the database is running on

�����������	�
��

Type 3: Pure Java Middleware 2
Type 3: Pure Java driver for database middleware translates JDBC calls
into the middleware vendor's protocol, which is then converted to a
database-specific protocol by the middleware server software.

Advantage:
1) used when a company has multiple databases and wants to use a single
JDBC driver to connect to all of them

2) Server-based, so no need for JDBC driver code on client machine

3) the back-end server component is optimized for the operating system
that the database is running on

Disadvantage:
1) Needs some database-specific code on the middleware server.

�����������	�
��

Type 4: Direct-to-database Pure
Type 4: Direct-to-database pure Java driver converts JDBC calls into
packets that are sent over the network in the proprietary format used by the
specific database. Allows a direct call from the client machine to the
database.

Advantage:
1) No need to install special software on client or server. Can be
downloaded dynamically.

Disadvantage:
1) not optimized for server operating system, so the driver can't
take advantage of operating system features

�����������	�
��

JDBC Driver Type 2

Type 1 Type 2

�����������	�
�

JDBC Driver Type 3

Type 4 Type 3

�����������	�
�	

JDBC Drivers

�����������	�
��

JDBC Class Diagram

�����������	�
��

Connecting to Database
JDBC shields an application from the specifics of individual database
implementation.

�����������	�
��

Connection Troubles
The JDBC Connection process is the most difficult part of JDBC to get
right.

There are generally two basic connection problems:

1) Connection fails with the message "Class not found“
Solution: Set your JDBC driver in your CLASSPATH

2) Connection fails with the message "Driver not found"
Solution: register the JDBC driver with the DriverManager class

�����������	�
�

Connection Process 1
When you write a Java database applet or application, the only driver-
specific information JDBC requires from you is the database URL.

You can even have your application derive the URL at runtime—based on
user input or applet parameters.

What happens when the URL and whatever properties the JDBC driver
requires (generally a user ID and password) is passed?

1) the application will first request a java.sql.Connection
implementation from the DriverManager

2) the DriverManager in turn will search through all of the known
java.sql.Driver implementations for the one that connects with the
URL you provided

�����������	�
��

Connection Process 2
3) if it exhausts all the implementations without finding a match, it throws

an exception back to the application

4) once a Driver recognizes the URL, it creates a database connection
using the properties specified

5) it then provides the DriverManager with a java.sql.Connection
implementation representing that database connection

6) the DriverManager then passes that Connection object back to the
application

7) the entire database connection process is handled by these two lines

Connection con = null;

con = DriverManager.getConnection(url, uid, password);

�����������	�
��

Connection Process 3
How does the JDBC DriverManager learn about a new driver
implementation?

1) the DriverManager actually keeps a list of classes that implement the
java.sql.Driver interface

2) Driver implementations has to be registered for any potential database
drivers it might require with the DriverManager

3) The act of instantiating a Driver class thus enters it in the
DriverManager's list

4) The process is called Driver Loading

�����������	�	��

Connection Process 4

�����������	�	��

Loading JDBC Drivers
There are three basic ways of loading the drivers:

1) explicitly call new to load your driver's implementation of Driver

2) use the jdbc.drivers property

>java –Djdbc.drivers=jdbc.odbc.JdbcOdbcDriver queryDB

3) load the class using Class.forName

Class.forName("com.mysql.jdbc.Driver").newInstance();

�����������	�	�

Class for Creating a Connection 1
A class and two Interfaces are used for creating a connection to a
database:

1) java.sql.Driver
a) unless you are writing your own JDBC implementation, you should

never have to deal with this class from your application

b) a launching point for database connectivity by responding to
DriverManager connection requests and providing
information about the implementation in question

�����������	�	�	

Class for Creating a Connection 2
2) java.sql.DriverManager

a) Its main responsibility is to maintain a list of Driver
implementations and present an application with one that matches a
requested URL.

b) has two methods registerDriver() and
deregisterDriver()

c) the methods allow Driver implementation to register and
unregister itself with the DriverManager

d) You can get an enumeration of registered drivers through the
getDrivers() method

3) java.sql.Connection
a) The Connection class represents a single logical database

connection.

�����������	�	��

Example: Simple Connection 1
import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

public class SimpleConnection {

static public void main(String args[]) {

Connection connection = null;

// Process the command line

if(args.length != 4) {

System.out.print("Syntax: java SimpleConnection “);
System.out.println("DRIVER URL UID PASSWORD");

return;

}

�����������	�	��

Example: Simple Connection 2
try { // load the driver

Class.forName(args[0]).newInstance();

}catch(Exception e) {

e.printStackTrace();

return;

}

try {

connection = DriverManager.getConnection(args[1],
args[2], args[3]);

System.out.println("Connection successful!");

// Do whatever queries or updates you want here!!!

}catch(SQLException e) {

e.printStackTrace();

}

�����������	�	��

Example: Simple Connection 3
`finally {

if(connection != null) {

try { connection.close();

}catch(SQLException e) {

e.printStackTrace();

}

}

}

}

}

�����������	�	�

Lab Work: Creating Connection
1) Open LicenseApp.java file stored on the server

2) The program creates an interface for you to enter your license
information into the database you created. Study the code and
understand what it does.

3) Import appropriate packages into the program. Locate
connectToDB()

4) Write a code to connect to the database you have created in mySQL
using the following parameters

url = "jdbc:mysql://localhost/emacao“

username = root, Password = “”

Driver = “com.mysql.jdbc.Driver”

Note: set your classpath to the jar files provided along with the

code. Print out the Connection object.

�����������	�	��

Database Access
The most basic kind of database access involves writing

1) updates- INSERT, UPDATE, or DELETE
2) queries – SELECT

With these you know ahead of time the type of statements you are sending
to the database.

�����������	�	��

Database Access Steps
Accessing database involves:
1) creating a Connection object

2) generating implementation of java.sql.Statement tied to the
database

3) use the statement to rollback or commit the statement object associated
with that Connection

4) with the Statement object you can execute updates and queries

5) The result of executing queries and update is java.sql.ResultSet

6) ResultSet provides you with access to the data retrieved by a
query.

�����������	�	��

Basic JDBC Classes
JDBC's most fundamental classes are :

1) java.sql.Connection
2) java.sql.Statement
3) java.sql.ResultSet

We have discussed (1), we now consider (2) and (3)

�����������	�	��

Statement
Statement class represents SQL statements.

It has three generic forms of statement execution methods:

1) executeQuery(String query)
Usage: for any SQL calls that expect to return data from database

2) executeUpdate(String query)

Usage: when SQL calls are not expected to return data from database
It returns the number of row affected by query

3) execute()
Usage: when you cannot determine whether SQL is an update or query
return true if row is returned, use getResultset() to get the row
otherwise returns false

�����������	�	�

Submitting a Query 1
Submitting a query involves

1) create a Statement object

try {

Statement stmt = con.createStatement ();

} catch (SQLException e) {

System.out.println (e.getMessage());

}

SQL exceptions occur when there is a database access error.

Errors are detected when a connection is broken or the database server
goes down.

�����������	�	�	

Submitting a Query 2

2) use the one the statement query method to submit the SQL statement
to the database depending on the type of the SQL.

JDBC does not attempt to interpret queries.

Example:

ResultSet rs = null;

rs = stmt.execteQuery("select * from license");

�����������	�	��

Example: Statement 1
import java.sql.*;

public class Update {

public static void main(String args[]) {

Connection connection = null;

if(args.length != 2) {

System.out.print("Syntax: <java Update [number]”);
System.out.println(“[string]>");

return;

}

try {

String driver = "com.mysql.jdbc.Driver";

Class.forName(driver).newInstance();

String url =“jdbc:mysql://localhost/emacao";

con = DriverManager.getConnection(url, “root", "");

�����������	�	��

Example: Statement 2
Statement s = con.createStatement();

String test_id = args[0];

String test_val = args[1];

int update_count =

s.executeUpdate("INSERT INTO test (test_id, test_val)
" + "VALUES(" + test_id + ", '" + test_val + "')");

System.out.println(update_count + " rows inserted.");

s.close();

}catch(Exception e) {

e.printStackTrace();

}

�����������	�	��

Example: Statement 3
finally {

if(con != null) {

try {

con.close();

}catch(SQLException e) {

e.printStackTrace();

}

}

}

}

}

�����������	�	�

Lab Work: Statement
1) Using the LicenseApp.java program stored on the server insert

records into license table in emacao database

�����������	�	��

PreparedStatement
Prepared Statement is a precompiled SQL statement.

It is more efficient than calling the same SQL statement over and over.

The PreparedStatement class extends the Statement class by adding
the capability of setting parameters inside of a statement.

�����������	�	��

PreparedStatement Inheritance

�����������	�	
�

setXXX Methods 1
The PreparedStatement class extends the Statement class by adding
the capability of setting parameters inside of a statement.

The setXXX methods are used to set SQL IN parameters values.

Must specify the types that are compatible with the defined SQL input type
parameters.

For example, if the IN parameter has SQL type Integer, then you should
use the setInt method

�����������	�	
�

setXXX Methods 2

�����������	�	

Example: PreparedStatement

public boolean prepStatement(String name, String sex){

String query = null;

PreparedStatement prepStmnt = null;

query = "update license set name = ?, sex = ? where
id= 126";

prepStmnt = con.preparedStatement (query);

prepStmnt.setFloat(1, name);

prepStmnt.setString(2, sex);

Int rowsUpdate = prepStmnt.executeUpdate();

return (rowUpdate > 0);

}

�����������	�	
	

CallableStatement
CallableStatement allows non-SQL statements (such as stored
procedures) to be executed against the database.

CallableStatement class extends the PreparedStatement class,
which provides the methods for setting IN parameters.

Methods for retrieving multiple results with a stored Procedure are
supported with the Statement.getMoreResults() method.

�����������	�	
�

Example: CallableStatement
int id= 126;

CallableStatement callStm = null;

String storProcName="{?=call return_license(?)}"

querySales = con.prepareCall(storProcName);

try {

callStm.registerOutParameter(1, Type.VARCHAR);

callStm.setInt(2, id);

callStm.execute();

String license = callStm.getString(1);

} catch (SQLException e) {

e.printStackTrace();

}

�����������	�	
�

CallableStatement Inheritance

�����������	�	
�

Transaction Management
A transaction is a set of one or more statements that are executed together
as a unit.

Either all of the statements are executed, or none of the statements is
executed.

There are times when you do not want one statement to take effect unless
another one also succeeds.

This is achieved through the setAutoCommit() method of Connection
object.

�����������	�	

Transaction Management
A transaction is a set of one or more statements that are executed together
as a unit.

Either all of the statements are executed, or none of the statements is
executed.

There are times when you do not want one statement to take effect unless
another one also succeeds.

This is achieved through the setAutoCommit() method of Connection
object.

The method takes a boolean value as a parameter.

�����������	�	
�

Disabling Auto-commit Mode
When a connection is created, it is in auto-commit mode.

Each individual SQL statement is treated as a transaction and will be
automatically committed right after it is executed.

The way to allow two or more statements to be grouped into a transaction
is to disable auto-commit mode.

Example:

con.setAutoCommit(false);

�����������	�	
�

Committing a Transaction
Once auto-commit mode is disabled, no SQL statements will be committed
until you call the method commit explicitly.

This is achieved through the commit() method of connection objects.

All statements executed after the previous call to the commit() method
will be included in the current transaction and will be committed together as
a unit.

If you are trying to execute one or more statements in a transaction and get
an SQLException , you should call the rollback() method to abort the
transaction and start the transaction all over again.

�����������	�		�

Example: Transaction Commit
con.setAutoCommit(false);

PreparedStatement updateName =null;

String query = null;

Query="UPDATE license SET name = ? WHERE id = 126"

updateName= con.prepareStatement(query);

updateName.setString(1, name);

updateName.executeUpdate();

PreparedStatement updateSex = null;

query = "UPDATE test SET test_value =?”

updateSex = con.prepareStatement(query);

updateSex.setString(1, "Male");

updateSex.executeUpdate();

con.commit();

con.setAutoCommit(true);

�����������	�		�

ResultSet
A ResultSet is one or more rows of data returned by a database query.

The class simply provides a series of methods for retrieving columns from
the results of a database query

General form:

type gettype(int | String)

in which the argument represents either the column number or column
name desired

can store values in the database as one type and retrieve them as a
completely different type

�����������	�		

ResultSet getXXX() Methods

�����������	�			

SQL and Java Type Mapping

�����������	�		�

Getting the Next Record
ResultSet class handles only a single row from the database at any
given time.

The class provides the next() method for making it reference the next
row of a result set.

If next() returns true, you have another row to process and any
subsequent calls you make to the ResultSet object will be in reference to
that next row.

If there are no rows left, it returns false.

�����������	�		�

Example: ResultSet
String query = “select * from license”;

Statement stm = null;

stm = con.getStatement();

ResultSet rs = stm.executeQuery(query);

while(rs.next()) {

int a;

String str;

a = rs.getInt("id");

if(rs.wasNull()) {

a = -1;

}

str = rs.getString(“name");

if(rs.wasNull()) {

str = null;

}

}

�����������	�		�

SQL Null Versus Java null
SQL and Java have a serious mismatch in handling null values.

Java ResultSet has no way of representing a SQL NULL value for any
numeric SQL column.

After retrieving a value from a ResultSet, it is therefore necessary to ask
the ResultSet if the retrieved value represents a SQL NULL.

To avoid running into database oddities, however, it is recommended that
you always check for SQL NULL.

Checking for SQL NULL involves a single call to the wasNull() method
in your ResultSet after you retrieve a value.

�����������	�		

Example: wasNull()
rs.afterLast();

while(rs.previous()) {

int a;

String str;

a = rs.getInt("test_id");

if(rs.wasNull()) {

a = -1;

}

str = rs.getString("test_val");

if(rs.wasNull()) {

str = null;

}

}

�����������	�		�

Scrollable ResultSet 1
The single most visible addition to the JDBC API in its 2.0 specification is
support for scrollable result sets.

Using scrollable result sets starts with the way in which you create
statements.

The Connection class actually has two versions of createStatement()

1) the zero parameter version

Example:

Statement stm = con.createStatement();

�����������	�		�

Scrollable ResultSet 2
2) a two parameter version that supports the creation of Statement

instances that generate scrollable ResultSet objects.

createStatement(int rsType,int rSConcurrency)

Parameters:

rsType - a result set type; one of ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_INSENSITIVE, or
ResultSet.TYPE_SCROLL_SENSITIVE

rsConcurrency - a concurrency type; one of
ResultSet.CONCUR_READ_ONLY or
ResultSet.CONCUR_UPDATABLE

�����������	�	��

ResultSet Constants
JDBC defines three types of result sets:
1) TYPE_FORWARD_ONLY
2) TYPE_SCROLL_SENSITIVE
3) TYPE_SCROLL_INSENSITIVE

Out of these three TYPE_FORWARD_ONLY is the only type that is not
scrollable.

The other two types are distinguished by how they reflect changes made to
them.

TYPE_SCROLL_INSENSITIVE ResultSet is unaware of in-place edits
made to modifiable instances.

TYPE_SCROLL_SENSITIVE, on the other hand, means that you can see
changes made to the results if you scroll back to the modified row at a later
time.

�����������	�	��

Result Set Navigation 1
When ResultSet is first created, it is considered to be positioned before the
first row.

Positioning methods such as next() point a ResultSet to actual rows.

Your first call to next(), for example, positions the cursor on the first row.

Subsequent calls to next() move the ResultSet ahead one row at a time.

With a scrollable ResultSet, however, a call to next() is not the only way to
position a result set.

�����������	�	�

Result Set Navigation 2
The method previous() works in an almost identical fashion to next().

While next() moves one row forward, previous() moves one row
backward.

If it moves back beyond the first row, it returns false. Otherwise, it returns
true.

Because a ResultSet is initially positioned before the first row, you need to
move the ResultSet using some other method before you can call
previous().

�����������	�	�	

Example: Result Set Navigation 1
import java.sql.*;

import java.util.*;

public class ReverseSelect {

public static void main(String argv[]) {

Connection con = null;

try {

String url = "jdbc:mysql://localhost/emacao";

String driver = "com.mysql.jdbc.Driver";

Statement stmt;

ResultSet rs;

Class.forName(driver).newInstance();

con = DriverManager.getConnection(url, "root", "");

stmt =con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

rs = stmt.executeQuery("SELECT * from license ORDER BY id");

System.out.println("Got results:");

�����������	�	��

Example: Result Set Navigation 2
rs.afterLast();

while(rs.previous()) {

int a;

String str;

a = rs.getInt("id");

a = rs.wasNull() ? -1 : a;

str = rs.getString("name");

str = rs.wasNull() ? null : str;

System.out.print("\tid= " + a);

System.out.println("/str= '" + str + "'");

}

System.out.println("Done.");

}catch(Exception e) {

e.printStackTrace();

}

�����������	�	��

Example: Result Set Navigation 3
finally {

if(con != null) {

try {

con.close();

}catch(SQLException e) {

e.printStackTrace();

}

}

}

}

}

�����������	�	��

Other Navigation Methods
JDBC 2.0 provides new methods to navigate around rows in result sets:

1) beforeFirst()
2) first()
3) last()
4) isBeforeFirst()
5) isFirst()
6) isLast()
7) isAfterLast()
8) getRow()
9) relative()
10) absolute()

Except for absolute() and relative(), the names of the methods say
exactly what they do. Each take integer arguments.

�����������	�	�

absolute() 1
For absolute(), the argument specifies a row to navigate to.

Example:
A call to absolute(5) moves the ResultSet to row 5 unless there are four
or fewer rows in the ResultSet.

A call to absolute() with a row number beyond the last row is therefore
identical to a call to afterLast()

�����������	�	��

absolute() 2
You can also pass negative numbers to absolute().

A negative number specifies absolute navigation backwards from the last row

Example:
absolute(1) is identical to first(), absolute(-1) is identical to
last()

Similarly, absolute(-3) is the third to last row in the ResultSet. If
there are fewer than three rows in the ResultSet.

�����������	�	��

relative()
The relative() method handles relative navigation through a ResultSet.

In other words, it tells the ResultSet how many rows to move forward or
backward.

Example:

A value of 1 behaves just like next() and a value of -1 just like
previous().

�����������	�	��

Clean Up
The Connection, Statement, and ResultSet classes all have
close().

It is always a good idea to close any instance of these objects when you
are done with them.

It is useful to remember that closing a Connection implicitly closes all
Statement instances associated with the Connection.

Similarly, closing a Statement implicitly closes ResultSet instances
associated with it.

�����������	�	��

Example: Clean Up
try{

// Connection, Statements here

}catch(SQLException ex){

ex.printStarkTrace();

}finally {

if(con != null) {

try {

con.close();

}catch(SQLException e) {

e.printStackTrace();

}

}

}

}

}

�����������	�	�

Lab Work: ResultSet
1) Using the LicenseApp.java, before you save, check if the data you

are saving exists, if it is update with the new values else insert a new
record.

�����������	�	�	

Exercise: JDBC

��������7����������

�����������	�	��

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

8�6����#

�����������	�	�

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) message-orientation

a) javamail
b) jms

6) distributed objects
a) rmi
b) corba
c) Javaidl

7) summary

�����������	�	��

Overview
Email was the Internet's first killer application and still generates more
Internet traffic than any protocol except HTTP.

One of the most frequently asked questions about Java is how to send
email from a Java applet or application or how to send asynchronous
messages between a Java application and homo-sapiens?

We shall be considering:
1) Introduction to JavaMail API
2) Protocols – SMTP, POP, IMAP MIME
3) Installation and configuration
4) Core Classes – Session, Message, Address, Authenticator,

Transport, Store and Folder
5) Usage – sending and receiving email, processing HTML messages etc

�����������	�	��

What Is the JavaMail API?
The JavaMail API is a standard extension to Java that provides a class
library for email clients.

Is an optional package (standard extension) for reading, composing, and
sending electronic messages.

You use the package to create Mail User Agent (MUA) type
programs, similar to Eudora, Pine, and Microsoft Outlook.

Purpose:
1) transporting
2) delivering and
3) Forwarding messages like sendmail or other Mail Transfer Agents

�����������	�	��

Mail Client and Server

�����������	�	��

Why Mail?
There are situation in which an application may need to send an email

1) an error situation occurs

2) when the next step in some workflow must be started

3) or in response to some events that has occurred

�����������	�	�

JavaMail Applications
There are several areas in which JavaMail is useful.
Some are discussed below:

1) A server-monitoring application such as Whistle Blower can periodically
load pages from a web server running on a different host and email the
webmaster if the web server has crashed.

2) An applet can use email to send data to any process or person on the
Internet that has an email address, in essence using the web server's
SMTP server as a simple proxy to bypass the usual security restrictions
about whom an applet is allowed to talk to. In reverse, an applet can talk
to an IMAP server on the applet host to receive data from many hosts
around the Net.

3) A newsreader could be implemented as a custom service provider that
treats NNTP as just one more means of exchanging messages.

�����������	�	�	

Related Protocols 1
There are four protocols are commonly used with the API:

1) Simple Mail Transfer Protocol (SMTP)

2) Post Office Protocol (POP)

3) Internet Message Access Protocol (IMAP)

4) Multipurpose Internet Mail Extensions (MIME)

Each will be considered.

�����������	�	��

Related Protocols 2

�����������	�	��

SMTP
The Simple Mail Transfer Protocol (SMTP) is the mechanism for delivery of
email.

In the context of JavaMail,

• JavaMail-based program will communicate with company or
Internet Service Provider's (ISP's) SMTP server.

2) The SMTP server will relay the message on to the SMTP server of the
recipient to be acquired eventually by the user through POP or IMAP

�����������	�	��

POP
Post Office Protocol (POP) is the mechanism most people on the Internet
use to get their mail.

It defines support for a single mailbox for each user.

Currently in version 3, also known as POP3

The ability to see how many new mail messages you have, are not
supported by POP at all.

These capabilities are built into programs like Eudora or Microsoft Outlook,
which remember things like the last mail received and calculate how many
are new for you. So, when using the JavaMail API, if you want this type of
information, you have to calculate it yourself.

�����������	�	�

IMAP
Internet Message Access Protocol (IMAP) more advanced protocol for
receiving messages.

Currently in version 4, also known as IMAP4

Your mail server must support the protocol before you can use it.

You can't just change your program to use IMAP instead of POP and
expect everything in IMAP to be supported.

Assuming your mail server supports IMAP, your JavaMail-based program
can take advantage of users having multiple folders on the server and
these folders can be shared by multiple users.

�����������	�	��

IMAP Drawbacks
It places a much heavier burden on the mail server requiring the server
to receive the new messages, deliver them to users when requested, and
maintain them in multiple folders for each user.

While this does centralize backups, as users' long-term mail folders get
larger and larger, everyone suffers when disk space is exhausted.

But with POP, saved messages get offloaded from the mail.

�����������	�	��

MIME
MIME stands for Multipurpose Internet Mail Extensions

It is not a mail transfer protocol.

Instead, it defines the content of what is transferred.

For example:
1) format of the messages
2) attachments, and
3) etc

�����������	�	
�

Installation
There are three versions of the JavaMail API commonly used today:

1) version 1.1.3

2) version 1.2

3) version 1.3.2

Version 1.3.2 is the latest.

The version of the JavaMail API you want to use affects what you
download and install.

�����������	�	
�

Installing JavaMail 1.3.2
1) Download javamail-1_3_2.zip from

http://java.sun.com/products/javamail

2) Extract the zip file into a folder

3) set it in the CLASSPATH environment variable

4) Include the following archive files in the CLASSPATH

a) imap.jar

b) mailapi.jar

c) pop3.jar

d) smtp.jar

JavaMail needs a framework in order to complete its functions.

This framework is known as JavaBeans Activation Framework (JAF).

�����������	�	

JAF

JavaBeans Activation Framework (JAF) is a standard extension that
enables developers who use Java technology to take advantage of
standard services:

1) to determine the type of an arbitrary piece of data,

2) encapsulate access to it,

3) discover the operations available on it,

4) and to instantiate the appropriate bean to perform the said operation(s).

It is the basic MIME-type support found in many browsers and mail tools.

�����������	�	
	

Example: JAF
If a browser obtained a JPEG image JAF:

1) enables the browser to identify that stream of data as a JPEG image

2) and from that type, the browser could locate and instantiate an object

that could manipulate, or view that image

3) discover the operations available on it,

4) and to instantiate the appropriate bean to perform the said operation(s).

�����������	�	
�

Installing JAF

1) Download jaf-1_0_2-upd.zip from
http://java.sun.com/products/javabeans/glasgow/jaf.html

2) extract the zip file into a folder

3) set it in the CLASSPATH environment variable

4) include activation.jar in the CLASSPATH

�����������	�	
�

Installing JavaMail Using J2EE

JavaMail is bundled with J2EE

There is nothing special you have to do to use the basic JavaMail API.

Just make sure the j2ee.jar file is in your CLASSPATH and you are set.

Note: This will be deferred to J2EE courses!

�����������	�	
�

Other Referencing Options

If you don't want to change the CLASSPATH environment variable:

1) copy the JAR files to your lib/ext directory under the Java Runtime
environment (JRE) directory

2) for instance, %JAVA_HOME%\lib\ext on a Windows platform

�����������	�	

Exercise
1) Download the latest version of the JavaMail API implementation.

2) Download the latest version of the JavaBeans Activation Framework.

3) Extract the zip files to a folder

4) Install the archive files.

�����������	�	
�

Core Classes
There are seven core classes that make JavaMail API:

1) Session

2) Message

3) Address

4) Authenticator

5) Transport

6) Store

7) Folder

Each will be considered.

�����������	�	
�

Session
It defines a basic mail session.

It is through this session that everything else works.

The Session object takes advantage of a java.util.Properties
object to get information like mail server, username, password, and other
information that can be shared across your entire application.

Session class is singleton

�����������	�	��

Session: Singleton 1
The constructors for the class are private.

An instance of the class can be created in four ways by calling the
following methods of the class:

1) getDefaultInstance(Properties props)

2) getDefaultInstance(Properties props,

Authenticator authenticator)

3) getInstance(Properties props)

4) getInstance(Properties props,
Authenticator authenticator)

�����������	�	��

Session: Singleton 2
Each method returns either a default or new Session object.

The (1) and (2) methods get the default instance if one exists and if not a
new session object is created.

The (3) and (4) create a new instance.

props is the Properties object that holds relevant properties

authenticator is Authenticator object used to call back to the
application when a user name and password is needed.

�����������	�	�

Session: Usage
1) Get a default instance
Properties props = new Properties();

// fill props with any information

Session session = Session.getDefaultInstance(props,
null);

2) Create a unique session
Properties props = new Properties();

// fill props with any information

Session session = Session.getInstance(props, null);

In both cases here the null argument is an Authenticator object.

�����������	�	�	

Message 1
This class models an email message. It is an abstract class.

Subclasses provide actual implementations.

Characteristics:
• Message implements the Part interface.

• Direct subclass is MimeMessage

2) Message contains a set of attributes and a "content".

3) Messages within a folder also have a set of flags that describe its state
within the folder.

�����������	�	��

Message 2

Message defines some new attributes in addition to those defined in the
Part interface.

These attributes specify meta-data for the message - i.e., addressing and
descriptive information about the message.

Message objects are obtained either from a Folder or by constructing a
new Message object of the appropriate subclass.

Messages that have been received are normally retrieved from a folder
named "INBOX".

Message is an abstract class, you cannot work with it. Use the subclasses.

�����������	�	��

MimeMessage
MimeMessage is the direct subclass of Message

It is an email message that understands MIME types and headers.

Message headers are restricted to US-ASCII characters only, though non-
ASCII characters can be encoded in certain header fields.

Once you have your Session object, then you can create the
message to send.

�����������	�	��

Creating a Message
1) pass along the Session object to the MimeMessage constructor.

MimeMessage message = new MimeMessage(session);

2) set its parts, as Message implements the Part interface (with
MimeMessage implementing MimePart).

message.setContent("Hello", "text/plain");

3) If, however, you know you are working with a MimeMessage and your
message is plain text, then use setText() method

message.setText("Hello");

4) set the subject using the setSubject() method
message.setSubject("First");

�����������	�	�

Simple Message

�����������	�	��

Multipart Message

�����������	�	��

Address
Once you've created the Session and the Message, as well as filled the
message with content, it is time to address your letter with an Address.

This is done using Address Class.

Characteristics:

1) like Message, Address is an abstract class, hence use the subclass

2) you use the javax.mail.internet.InternetAddress class

�����������	�	��

Creating an Address 1

1) To create an address with just the email address, pass the email
address to the constructor

Address address = new InternetAddress(“xx@server.com");

2) If you want a name to appear next to the email address

Address address = new InternetAddress(xx@server.com,
“Mr. Gabriel”);

�����������	�	��

Creating an Address 2
Once you have created the Addresses you connect them to a message in
one of two ways:

1) For identifying the sender, you use the setFrom() and setReplyTo()
methods.

message.setFrom(address);

or If your message needs to show multiple from addresses, use the
addFrom() method

Address address[] = ...;

message.addFrom(address);

�����������	�	�

Creating an Address 3
2) For identifying the message recipients, you use the addRecipient()

method.

This requires a Message.RecipientType besides the address.

The three predefined types of address are:

a) Message.RecipientType.TO
b) Message.RecipientType.CC
c) Message.RecipientType.BCC

�����������	�	�	

Creating an Address 4
…

Address toAddress = new
InternetAddress("president@server.com");

Address ccAddress = new
InternetAddress("first.lady@server.com");

message.addRecipient(Message.RecipientType.TO,
toAddress);

message.addRecipient(Message.RecipientType.CC,
ccAddress);

…

�����������	�	��

Authenticator
Authenticator Class provide access to protected resources (mail
server) via a username and password

To use the Authenticator, you subclass the abstract class and return a
PasswordAuthentication instance from the
getPasswordAuthentication() method.

Example:

Properties props = new Properties();

// fill props with any information

Authenticator auth = new MyAuthenticator();

Session session = Session.getDefaultInstance(props,
auth);

�����������	�	��

Transport 1
The final part of sending a message is to use the Transport class.

This class speaks the protocol-specific language for sending the
message (usually SMTP).

It's an abstract class and works something like Session.

There are two ways of sending a message:

1) You can use the default version of the class by just calling the
static send() method:

Transport.send(message);

�����������	�	��

Transport 2

2) You can get a specific instance from the session for your protocol, pass
along the username and password (blank if unnecessary), send the
message, and close the connection:

message.saveChanges(); // implicit with send()

Transport transport = session.getTransport("smtp");

transport.connect(host, username, password);

transport.sendMessage(message,message.getAllRecipients(
));

transport.close();

�����������	�	�

Transport 3
This latter way is better when you need to send multiple messages.

It will keep the connection with the mail server active between messages.

The basic send() mechanism makes a separate connection to the
server for each method call.

�����������	�	��

Store and Folder 1
Getting messages starts similarly to sending messages:

1) Get a Session Object

2) You connect to a Store, quite possibly with a username and password
or Authenticator.

3) Like Transport, you tell the Store what protocol to use

//Store store = session.getStore("imap");

Store store = session.getStore("pop3");

store.connect(host, username, password);

�����������	�	��

Store and Folder 2
4) Get a Folder, which must be opened before you can read messages

from it:

Folder folder = store.getFolder("INBOX");
folder.open(Folder.READ_ONLY);

Message message[] = folder.getMessages();

5) Get its content with getContent() or write its content to a stream with
writeTo(). The getContent() method only gets the message content,
while writeTo() output includes headers.

System.out.println(((MimeMessage)message).getContent());

�����������	����

Store and Folder 3

6) Once you're done reading mail, close the connection to the folder and
store.

folder.close(aBoolean);

store.close();

The boolean passed to the close() method of folder states whether or
not to update the folder by removing deleted messages.

�����������	����

Using JavaMail API
We are going to demonstrate the usage of the API with the following:

1) sending messages
2) fetching messages
3) deleting Messages and Flags
4) authenticating Yourself
5) replying to Messages
6) forwarding Messages
7) working with attachments – sending and getting
8) processing HTML Messages – sending and including images

�����������	���

Sending Messages
This involves three steps:

1) getting a session
2) creating and filling a message
3) Send the message using the static Transport.send() method

You can specify your SMTP server by setting the mail.smtp.host
property for the Properties object passed when getting the Session

�����������	���	

Example: Sending Messages 1
import java.util.Properties;

import javax.mail.*;

import javax.mail.internet.*;

…

String host = pop3.iist.unu.edu;

String from = gab@iist.unu.edu;

String to = milton@iist.unu.edu;

// Get system properties

Properties props = System.getProperties();

// Setup mail server

props.put("mail.smtp.host", host);

�����������	����

Example: Sending Messages 2
// Get session

Session session = Session.getDefaultInstance(props,
null);

// Define message

MimeMessage message = new MimeMessage(session);

message.setFrom(new InternetAddress(from));

message.addRecipient(Message.RecipientType.TO,

new InternetAddress(to));

message.setSubject("Hello JavaMail");

message.setText("Welcome to JavaMail");

// Send message

Transport.send(message);

�����������	����

Lab Work: Sending Messages

1) Starting with the skeleton code, get the system Properties.

2) Add the name of your SMTP server to the properties for the
mail.smtp.host key.

3) Get a Session object based on the Properties.

4) Create a MimeMessage from the session.

5) Set the from field of the message.

6) Set the to field of the message.

7) Set the subject of the message.

8) Set the content of the message.

9) Use a Transport to send the message.

10) Compile and run the program, passing your SMTP server, from
address, and to address on the command line.

�����������	����

Lab Work : Skeleton Code 1
import java.util.Properties;

import javax.mail.*;

import javax.mail.internet.*;

public class MailExample {

public static void main (String args[]) throws

Exception {

String host = args[0];

String from = args[1];

String to = args[2];

// Get system properties

// Setup mail server

// Get session

// Define message

// Set the from address

�����������	���

Lab Work : Skeleton Code 2
// Set the to address

// Set the subject

// Set the content

// Send message

}

}

�����������	����

Fetching Messages
Reading messages involves five steps:

1) getting a session
2) get and connect to an appropriate store for your mailbox
3) open the appropriate folder
4) get your message(s)
5) and close the connection when done.

�����������	����

Example: Fetching Messages 1
import java.util.Properties;

import javax.mail.*;

import javax.mail.Internet.*;

…

String host = ...;

String username = ...;

String password = ...;

// Create empty properties

Properties props = new Properties();

// Get session

Session session = Session.getDefaultInstance(props,
null);

�����������	����

Example: Fetching Messages 2
// Get the store

Store store = session.getStore("pop3");

store.connect(host, username, password);

// Get folder

Folder folder = store.getFolder("INBOX");

folder.open(Folder.READ_ONLY);

// Get directory

Message message[] = folder.getMessages();

for (int i=0, n=message.length; i<n; i++) {

System.out.print(i + ": " + message[i].getFrom()[0]);

System.out.println("\t" + message[i].getSubject());

}

�����������	����

Example: Fetching Messages 3
// Close connection

folder.close(false);

store.close();

This code snippet displays the subjects of the messages.

To display the whole message:
1) you can prompt the user after seeing the from and subject fields,

2) and then call the message's writeTo() method if they want to see it

�����������	���

Example: Displaying Content 1
BufferedReader reader = new BufferedReader (

new InputStreamReader(System.in));

// Get directory

Message message[] = folder.getMessages();

for (int i=0, n=message.length; i<n; i++) {

System.out.print(i + ": " + message[i].getFrom()[0]);

System.out.println("\t" + message[i].getSubject());

System.out.print("Do you want to read message? “);

System.out.println("[YES to read/QUIT to end]");

String line = reader.readLine();

}

�����������	���	

Example: Displaying Content 2
if ("YES".equals(line)) {

message[i].writeTo(System.out);

} else if ("QUIT".equals(line)) {

break;

}

}

�����������	����

Lab Work: Fetching Messages 1

1) Starting with the skeleton code, get or create a Properties object.

2) Get a Session object based on the Properties.

3) Get a Store for your email protocol, either pop3 or imap.

4) Connect to your mail host's store with the appropriate username and
password.

5) Get the folder you want to read. More than likely, this will be the
INBOX.

6) Open the folder read-only.

7) Get a directory of the messages in the folder. Save the message list
in an array variable named message.

8) For each message, display the from field and the subject.

9) Display the message content when prompted.

�����������	����

Lab Work: Fetching Messages 2

10) Close the connection to the folder and store.

11) Compile and run the program, passing your mail server,
username, and password on the command line. Answer YES to the
messages you want to read. Just hit ENTER if you don't. If you want
to stop reading your mail before making your way through all the
messages, enter QUIT.

�����������	����

Lab Work : Skeleton Code 1

import java.io.*;

import java.util.Properties;

import javax.mail.*;

import javax.mail.internet.*;

public class GetMessageExample {

public static void main (String args[]) throws

Exception{

String host = args[0];

String username = args[1];

String password = args[2];

// Create empty properties

// Get session

�����������	���

Lab Work : Skeleton Code 2
// Get the store

// Connect to store

// Get folder

// Open read-only

BufferedReader reader = new BufferedReader (new

InputStreamReader(System.in));

// Get directory

for (int i=0, n=message.length; i<n; i++) {

// Display from field and subject

System.out.print("Do you want to read message?”);
System.out.println(“[YES to read/QUIT to

end]");

String line = reader.readLine();

�����������	����

Lab Work : Skeleton Code 3

if ("YES".equals(line)) {

// Display message content

} else if ("QUIT".equals(line)) {

break;

}

} // Close connection

}

}

�����������	����

Flags
The Flags class represents the set of flags on a Message. Flags are
composed of predefined system flags, and user defined flags.

A System flag is represented by the Flags.Flag inner class.
1) Flags.Flag.ANSWERED
2) Flags.Flag.DELETED
3) Flags.Flag.DRAFT
4) Flags.Flag.FLAGGED
5) Flags.Flag.RECENT
6) Flags.Flag.SEEN
7) Flags.Flag.USER

Use the getPermanentFlags() method of Folder class to find out
what flags are supported
A User defined flag is represented as a String.

�����������	��
�

Deleting Messages
To delete messages, you set the message's DELETED flag:

message.setFlag(Flags.Flag.DELETED, true);

Open up the folder in READ_WRITE mode first though:

folder.open(Folder.READ_WRITE);

Then, when you are done processing all messages, close the folder,
passing in a true value to expunge the deleted messages.

To unset a flag, just pass false to the setFlag() method.

To see if a flag is set, check with isSet().

�����������	��
�

Authentication 1
How do you achieve something like this using JavaMail?

�����������	��

Authentication 2
Use an Authenticator to prompt for username and password when
needed.

Instead of connecting to the Store with the host, username, and
password, you configure the Properties to have the host, and tell the
Session about your custom Authenticator instance.

Example:
Properties props = System.getProperties();

props.put("mail.pop3.host", host);

// Setup authentication, get session

Authenticator auth = new PopupAuthenticator();

Session session = Session.getDefaultInstance(props,
auth);

�����������	��
	

Authentication 3

// Get the store

Store store = session.getStore("pop3");

store.connect();

�����������	��
�

PopupAuthenticator 1
import javax.mail.*;

import javax.swing.*;

import java.util.*;

public class PopupAuthenticator extends Authenticator {

public PasswordAuthentication
getPasswordAuthentication(){

String username, password;

String result = JOptionPane.showInputDialog("Enter
'username,password'");

StringTokenizer st = new StringTokenizer(result,
",");

�����������	��
�

PopupAuthenticator 2

username = st.nextToken();

password = st.nextToken();

return new PasswordAuthentication(username,
password);

}

}

�����������	��
�

Replying to Messages
The Message class includes a reply() method to configure a new
message with the proper recipient and subject, adding "Re: " if not already
there.

This does not add any content to the message, only copying the from or
reply-to header to the new recipient.

The method takes a boolean parameter indicating whether to reply to
only the sender (false) or reply to all (true).

Example:
MimeMessage reply = (MimeMessage)message.reply(false);

reply.setFrom(new InternetAddress(“xxx@server.com"));

reply.setText("Thanks");

Transport.send(reply);

�����������	��

Lab Work: Replying to Messages

1) The skeleton code already includes the code to get the list of
messages from the folder and prompt you to create a reply.

2) When answered affirmatively, create a new MimeMessage from the
original message.

3) Set the from field to your email address.

4) Create the text for the reply. Include a canned message to start.
When the original message is plain text, add each line of the original
message, prefix each line with the "> " characters.

5) Set the message's content, once the message content is fully
determined. Send the message.

6) Compile and run the program, passing your mail server, SMTP
server, username, password, and from address on the command line.
Answer YES to the messages you want to send replies. Just hit
ENTER if you don't. If you want to stop going through your mail
before making your way through all the messages, enter QUIT.

�����������	��
�

Lab Work: Skeleton Code 1
import java.io.*;

import java.util.Properties;

import javax.mail.*;

import javax.mail.internet.*;

public class ReplyExample {

public static void main (String args[]) throws

Exception {

String host = args[0];

String sendHost = args[1];

String username = args[2];

String password = args[3];

String from = args[4];

�����������	��
�

Lab Work: Skeleton Code 2
// Create empty properties

Properties props = System.getProperties();

props.put("mail.smtp.host", sendHost);

// Get session

Session session = Session.getDefaultInstance
(props, null);

// Get the store

Store store = session.getStore("pop3");

store.connect(host, username, password);

// Get folder

Folder folder = store.getFolder("INBOX");

folder.open(Folder.READ_ONLY);

�����������	��	�

Lab Work: Skeleton Code 3
BufferedReader reader = new BufferedReader

(new InputStreamReader(System.in));

// Get directory

Message message[] = folder.getMessages();

for (int i=0, n=message.length; i<n; i++) {

System.out.println(i + ": “) +
message[i].getFrom()[0] + "\t" +

message[i].getSubject());

System.out.println("Do you want to reply to
the message? [YES to reply/QUIT to

end]");

String line = reader.readLine();

�����������	��	�

Lab Work: Skeleton Code 4
if ("YES".equals(line)) {

// Create a reply message

// Set the from field

// Create the reply content, copying
//over the original if text

// Set the content

// Send the message

}else if ("QUIT".equals(line)) {

break;

}

}

�����������	��	

Lab Work: Skeleton Code 5
// Close connection

folder.close(false);

store.close();

}

}

�����������	��		

Message Parts
A mail message can be made up of multiple parts

Each part is a BodyPart, or more specifically, a MimeBodyPart when
working with MIME messages.

The different body parts get combined into a container called Multipart
or, again, more specifically a MimeMultipart.

�����������	��	�

Forwarding Message 1
To forward a message:

1) you create one part for the text of your message

2) and a second part with the message to forward,

3) and combine the two into a multipart.

4) Then you add the multipart to a properly addressed message and send
it.

To copy the content from one message to another, just copy over its

DataHandler, a class from the JavaBeans Activation Framework.

�����������	��	�

Forwarding Message 2

�����������	��	�

Example: Forwarding Message 1
// Create the message to forward

Message forward = new MimeMessage(session);

// Fill in header

forward.setSubject("Fwd: " + message.getSubject());

forward.setFrom(new InternetAddress(from));

forward.addRecipient(Message.RecipientType.TO,

new InternetAddress(to));

// Create your new message part

BodyPart messageBodyPart = new MimeBodyPart();

messageBodyPart.setText("Here you go with the original
message:\n\n");

�����������	��	

Example: Forwarding Message 2
// Create a multi-part to combine the parts

Multipart multipart = new MimeMultipart();

multipart.addBodyPart(messageBodyPart);

// Create and fill part for the forwarded content

messageBodyPart = new MimeBodyPart();

messageBodyPart.setDataHandler(message.getDataHandler());

// Add part to multi part

multipart.addBodyPart(messageBodyPart);

// Associate multi-part with message

forward.setContent(multipart);

// Send message

Transport.send(forward);

�����������	��	�

Working with Attachments
Attachments are resources associated with a mail message, usually kept
outside of the message like a text file, spreadsheet, or image.

With JavaMail you can:

1) attach resources to your mail message with the JavaMail API

2) and get those attachments when you receive the message

�����������	��	�

Sending Attachments
To send an attachment with your mail

1) Create a new MimeBodyPart

2) Create a DataSource object. A DataSource object is part of JAF
defined in javax.activation package.

3) Wrap the DataSource object in a DataHandler. This will allow us to
pass the DataHandler to the body part object.

�����������	����

Example: Sending Attachments 1
// Define message

Message message = new MimeMessage(session);

message.setFrom(new InternetAddress(from));

message.addRecipient(Message.RecipientType.TO,
new InternetAddress(to));

message.setSubject("Hello JavaMail Attachment");

// Create the message part

BodyPart messageBodyPart = new MimeBodyPart();

// Fill the message

messageBodyPart.setText("Pardon Ideas");

Multipart multipart = new MimeMultipart();

multipart.addBodyPart(messageBodyPart);

�����������	����

Example: Sending Attachments 2
// Part two is attachment

messageBodyPart = new MimeBodyPart();

DataSource source = new FileDataSource(filename);

messageBodyPart.setDataHandler(new
DataHandler(source));

messageBodyPart.setFileName(filename);

multipart.addBodyPart(messageBodyPart);

// Put parts in message

message.setContent(multipart);

// Send the message

Transport.send(message);

�����������	���

Lab Work: Sending Attachment 1
1) The skeleton code already includes the code to get the initial mail

session.

2) From the session, get a Message and set its header fields: to, from, and
subject.

3) Create a BodyPart for the main message cotent and fill its content with
the text of the message.

4) Create a Multipart to combine the main content with the attachment.
Add the main content to the multipart.

5) Create a second BodyPart for the attachment.

6) Get the attachment as a DataSource.

7) Set the DataHandler for the message part to the data source. Carry the
original filename along.

8) Add the second part of the message to the multipart.

�����������	���	

Lab Work: Sending Attachment 2

9) Set the content of the message to the multipart.

10)Compile and run the program, passing your SMTP server, from
address, to address, and filename on the command line. This will
send the file as an attachment.

�����������	����

Lab Work: Skeleton Code 1
import java.util.Properties;

import javax.mail.*;

import javax.mail.internet.*;

import javax.activation.*;

public class AttachExample {

public static void main (String args[]) throws
Exception {

String host = args[0];

String from = args[1];

String to = args[2];

String filename = args[3];

// Get system properties

Properties props = System.getProperties();

�����������	����

Lab Work: Skeleton Code 2
// Setup mail server

props.put("mail.smtp.host", host);

// Get session

Session session = Session.getInstance(props,

null);

// Define message

// Create the message part

// Fill the message

// Create a Multipart

// Add part one //

// Part two is attachment //

// Create second body part

�����������	����

Exercise : Skeleton Code 3
// Get the attachment

// Set the data handler to the attachment

// Set the filename

// Add part two

// Put parts in message

// Send the message

}

}

�����������	���

Getting Attachments
The content of your message is a Multipart object when it has
attachments.

You then need to process each Part, to get the main content and
the attachment(s).

Parts marked with a disposition of Part.ATTACHMENT from
part.getDisposition() are clearly attachments.

However, attachments can also come across with no disposition
(and a non-text MIME type) or a disposition of Part.INLINE.

Just get the original filename with getFileName() and the input
stream with getInputStream().

�����������	����

Example: Getting Attachments
Multipart mp = (Multipart)message.getContent();

for (int i=0, n=multipart.getCount(); i<n; i++) {

Part part = multipart.getBodyPart(i));

String disposition = part.getDisposition();

if ((disposition != null) &&

((disposition.equals(Part.ATTACHMENT) ||

(disposition.equals(Part.INLINE))) {

saveFile(part.getFileName(),
part.getInputStream());

}

}

�����������	����

Writing Attachments
The saveFile() method just creates a File from the filename, reads the
bytes from the input stream, and writes them off to the file.

In case the file already exists, a number is added to the end of the
filename until one is found that doesn't exist.

// from saveFile()

File file = new File(filename);

for (int i=0; file.exists(); i++) {

file = new File(filename+i);

}

�����������	����

Attachment: General Case
The code above covers the simplest case where message parts
are flagged appropriately.

To cover all cases, handle when the disposition is null and get
the MIME type of the part to handle accordingly.

if (disposition == null) {

// Check if plain

MimeBodyPart mbp = (MimeBodyPart)part;

if (mbp.isMimeType("text/plain")) {

// Handle plain

} else {

// Special non-attachment cases here of

// image/gif, text/html, ...

}... }

�����������	����

Sending HTML Messages
To send a HTML file as the message and let the mail reader worry about
fetching any embedded images or related pieces

1) use the setContent() method of Message
2) passing along the content as a String and setting the content type to

text/html.

Example:

String htmlText = "<H1>Hello</H1>" +
"<imgsrc=\"http://www.jguru.com/images/logo.gif\">";

message.setContent(htmlText, "text/html"));

�����������	���

Including Images in HTML
if you want your HTML content message to be complete, with embedded
images included as part of the message:

1) you must treat the image as an attachment

2) and reference the image with a special cid URL, where the cid is a
reference to the Content-ID header of the image attachment.

3) tell the MimeMultipart that the parts are related by setting its subtype
in the constructor (or with setSubType())

4) and set the Content-ID header for the image to a random string which is
used as the src for the image in the tag.

�����������	���	

Example: Including Images 1
String file = ...;

// Create the message

Message message = new MimeMessage(session);

// Fill its headers

message.setSubject("Embedded Image");

message.setFrom(new InternetAddress(from));

message.addRecipient(Message.RecipientType.TO,

new InternetAddress(to));

// Create your new message part

BodyPart messageBodyPart = new MimeBodyPart();

String htmlText = "<H1>Hello</H1>" + "<img
src=\"cid:memememe\">";

�����������	����

Example: Including Images 2
messageBodyPart.setContent(htmlText, "text/html");

// Create a related multi-part to combine the parts

MimeMultipart multipart = new MimeMultipart("related");

multipart.addBodyPart(messageBodyPart);

// Create part for the image

messageBodyPart = new MimeBodyPart();

// Fetch the image and associate to part

DataSource fds = new FileDataSource(file);

messageBodyPart.setDataHandler(new DataHandler(fds));

messageBodyPart.setHeader("Content-ID","<memememe>");

�����������	����

Example: Including Images 3
// Add part to multi-part

multipart.addBodyPart(messageBodyPart);

// Associate multi-part with message

message.setContent(multipart);

�����������	����

Lab Work: Sending HTML

1) The skeleton code already includes the code to get the initial mail
session, create the main message, and fill its headers (to, from,
subject).

2) Create a BodyPart for the HTML message content.

3) Create a text string of the HTML content. Include a reference in the
HTML to an image () that is local to the mail message.

4) Set the content of the message part. Be sure to specify the MIME
type is text/html.

5) Create a Multipart to combine the main content with the attachment.
Be sure to specify that the parts are related. Add the main content to
the multipart.

6) Create a second BodyPart for the attachment.

7) Get the attachment as a DataSource, and set the DataHandler for the
message part to the data source.

�����������	���

Lab Work:

8) Set the Content-ID header for the part to match the image reference
specified in the HTML.

9) Add the second part of the message to the multipart, and set the
content of the message to the multipart.

10)Send the message.

11)Compile and run the program, passing your SMTP server, from
address, to address, and filename on the command line. This will
send the images as an inline image within the HTML text.

�����������	����

Lab Work: Skeleton Code 1
import java.util.Properties;

import javax.mail.*;

import javax.mail.internet.*;

import javax.activation.*;

public class HtmlImageExample {

public static void main (String args[]) throws

Exception {

String host = args[0];

String from = args[1];

String to = args[2];

String file = args[3];

�����������	����

Lab Work: Skeleton Code 2
// Get system properties

Properties props = System.getProperties();

// Setup mail server

props.put("mail.smtp.host", host);

// Get session

Session session = ession.getDefaultInstance(props,

null);

// Create the message

Message message = new MimeMessage(session);

// Fill its headers

message.setSubject("Embedded Image");

message.setFrom(new InternetAddress(from));

�����������	����

Lab Work: Skeleton Code 3
message.addRecipient(Message.RecipientType.TO,

new InternetAddress(to));

// Create your new message part

// Set the HTML content, be sure it references
//the attachment

// Set the content of the body part

// Create a related multi-part to combine the

parts

// Add body part to multipart

// Create part for the image

// Fetch the image and associate to part

// Add a header to connect to the HTML

// Add part to multi-part

// Associate multi-part with message

// Send message } }

�����������	����

Exercise: JavaMail

8�6�(�������(���6���

�����������	���	

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	����

Overview
1) introduction
2) JMS Messaging Model
3) JMS programming model and implementation
4) advance configuration
5) summary

�����������	����

Introduction 1
Information systems are increasingly based on distributed architectures

Needs for integrating existing stand-alone systems are increasing

Middleware is an attempt to ease distributed system development, and try to
embedded complexity of communication between programs such as:

a) Different data representations & encodings

b) Different transport protocols

c) Different programming languages, ...

�����������	����

Introduction 2
Types of middleware

1) Procedure-oriented

a) Client/Server e.g. RPC

2) Object-oriented

a) Distributed Objects e.g. CORBA, RMI

3) Message Oriented Middlewares(MOMs)

a) Asynchronous messaging e.g. JMS

�����������	���

What is Messaging ?
1) A method of peer-to-peer communication between software components

or applications.

2) Enables distributed communication that is loosely coupled; differs from
tightly coupled technologies, such as Remote Method Invocation (RMI),
which require an application to know a remote application's methods.

JMS
Client

Message
Server

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

Local "server"

JMS
Client

Local "server"

JMS
Client

Local "server"

JMS
Client

Application A

Local "server"

Application B Application C Application D

Router

�����������	����

Reliable Messaging With Queues
MOMs provide asynchronous messaging

If one party is unavailable, messaging subsystem is still available and
functional

Queues exist independent from the applications

�����������	����

Queuing Basics 1
Queues are uni-directional, but multiple queues may be used to provide
bi-directional messaging

�����������	��
�

Queuing Basics 2
Queues can work in different models and make one to many and many to
one relations possible

�����������	��
�

Producer and Consumer

����������

��		���

�����
�����

��������

�����
������

���	�� ��

����� ��		
������������� ������
��

��	���
����

�����������	��

The Java Messaging Service 1
A J2EE API to access MOM products from Java

Vendor-neutral API for higher-interoperability

Has two models:

1) Publish and Subscribe

a)0 or more recipients

b)Messages passed between publishers and subscribers via topics

c)Message can be subscribed to in a durable manner

d)Message are consumed at least once

2) Point-to-Point

a)One recipient only

b)Messages are consumed at most once and only once

�����������	��
	

The Java Messaging Service 2

Point to Point (1 to 1)

Publish and Subscribe (1 to Many)

QueueSender
Potential Receiver

TopicPublisher
Subscriber

Subscriber

Potential Receiver

�����������	��
�

The Promises of JMS
1) “Messaging for the masses”

a) Could have similar impact that SQL had on databases

b) Similar to JDBC (which all vendors now support)

2) First enterprise messaging API to achieve wide industry support
(standard)

3) Simplifies development of enterprise applications (ease of use)

4) Leverages existing enterprise-proven messaging systems
(implementation)

5) Easy to write portable messaging based business applications (write
once, run anywhere)

�����������	��
�

The Promises of JMS
1) “Messaging for the masses”

a) Could have similar impact that SQL had on databases

2) First enterprise messaging API to achieve wide industry support

3) Simplifies development of enterprise applications

4) Leverages existing enterprise-proven messaging systems

5) Easy to write portable messaging based business applications

�����������	��
�

Limitations of the JMS
JMS does not address

a) Security

b) Load Balancing

c) Fault Tolerance

d) Error Notification (apart from Exceptions)

e) Administration API

f) Transport protocol for messaging

�����������	��

Overview
1) introduction
2) JMS messaging model
3) JMS programming model and implementation
4) advance configuration
5) summary

�����������	��
�

JMS API Concepts 1
A JMS application is composed of the following parts:

1) JMS Provider

a) messaging system that implements JMS and administrative
functionality, e.g. IBM’s MQSeries and JBossMQ message server.

2) JMS Clients

a) Java programs that send/receive messages

3) Messages

a) Items of information sent between JMS clients.

4) Administered Objects

a) preconfigured JMS objects created by an admin for the use of clients

b)ConnectionFactory, Destination (queue or topic)

�����������	��
�

JMS API Concepts 2
Interaction between different parts of JMS:

�����������	����

JMS Messaging Domains
Point-to-Point (PTP)

a) built around the concept of message queues

b) each message has only one consumer

Publish-Subscribe systems

a) uses a “topic” to send and receive messages

b) each message has multiple consumers

�����������	����

Point-to-Point Messaging 1
Each message is addressed to a specific queue

Receiving clients extract messages from the queue(s)

Queues retain all messages sent to them until:

a) the messages are consumed

b) the messages expire

�����������	���

Point-to-Point Messaging 2
Characteristics of Point-to-Point Messaging :

a) Each message has only one consumer.

b) A sender and a receiver of a message have no timing dependencies.

c) The receiver acknowledges the successful processing of a message.

d) Should be used when every message send must be processed
successfully by one consumer.

�����������	���	

Publish/Subscribe Messaging 1
Clients address messages to a topic.
The system takes care of distributing the messages.
Topics retain messages only as long as it takes to distribute them to
current subscribers.

�����������	����

Publish/Subscribe Messaging 2
Characteristics of Pub/Sub Messaging :

a) Each message may have multiple consumers.
b) A client that subscribes to a topic can consume only messages

published after the client has created a subscription.
c) The subscriber must continue to be active in order for it to

consume messages.
d) Exception for time dependency is allowed for durable subscription.

(Will be discussed later)

�����������	����

JMS Message
A JMS message has three parts:

1) Message Header
a) used for identifying and routing messages
b) contains vendor-specified values, but could also contain

application-specific data
c) typically name/value pairs

2) Message Properties (optional)
a) act like additional headers

3) Message Body(optional)
a) contains the data
b) five different message body types in the JMS specification

�����������	����

JMS Header

JMSPriority

JMSRedelivered

JMSExpiration

JMSTimestamp

JMSMessageID

JMSDeliveryMode

JMSDestination

Automatically assigned headers

JMSType

JMSCorrelationID

JMSReplyTo

Developer-assigned headers

�����������	���

JMS Message Types

setObject,getObjectserialize objectObjectMessage

writeString,writeDouble
,writeLong,
readString

stream of
primitive values

StreamMessage

writeBytes,readBytes,
writeString,
readString

stream of
uninterpreted
bytes

BytesMessage

setString,setDouble,set
Long,getDouble,
getString

set of name/value
pairs

MapMessage

getText,setTextStringTextMessage

Some MethodsContainsMessage Type

�����������	����

Accessing JMS Message

Message

TextMessage ObjectMessage StreamMessage BytesMessage

getText(); getObject();

get<type>(Name);

read<type>();

MapMessage

�����������	����

Messages Consumption
In the JMS Specification, messages can be consumed in either of two
ways:

Synchronously
a) A subscriber or a receiver explicitly fetches the message from the

destination by calling the receive method.
b) The receive method can block until a message arrives or can time

out if a message does not arrive within a specified time limit.

Asynchronously
a) A client can register a message listener with a consumer.
b) Whenever a message arrives at the destination, the JMS provider

delivers the message by calling the listener's onMessage()
method.

�����������	����

Overview
1) introduction

2) JMS Messaging Model

3) JMS programming model and implementation

4) advance configuration

5) summary

�����������	����

JMS API Programming Model
The basic building blocks of a JMS application:

1) Administered objects
2) Sessions
3) Message producers
4) Message consumers
5) Messages

�����������	���

JMS Client Setup Procedure
A typical pub/sub JMS client executes the following setup procedure:

1) Use JNDI to find a ConnectionFactory object
2) Use JNDI to find one or more Destination objects
3) Use the ConnectionFactory to create a JMS Connection
4) Use the Connection to create one or more JMS Sessions
5) Use a Session and the Destinations to create the

TopicPublisher and TopicSubscriber needed
6) Enable the Connection to start delivering messages to

TopicSubscriber

�����������	���	

What is JNDI
Java Naming and Directory Interface (JNDI) is an integral component of
J2EE technology

JNDI is an application programming interface (API) that provides
directory and naming services to Java applications.

JNDI is defined to be independent of any specific naming or directory
service implementation. A variety of services can be accessed in a
common way.

�����������	����

JNDI package
Following are the JNDI packages:

1) javax.naming

2) javax.naming.directory

3) javax.naming.event

4) javax.naming.ldap

5) javax.naming.spi

�����������	����

Obtain JNDI Connection 1
1) Instantiate an Properties object:

Properties env = new Properties();

2) Specify the JNDI properties specific to the vendor:
env.put("java.naming.factory.initial",

"org.jnp.interfaces.NamingContextFactory");

env.put("java.naming.provider.url",

"jnp://localhost:1099");
env.put("java.naming.factory.url.pkgs",

"org.jboss.naming:org.jnp.interfaces");

3) Obtain JNDI Connection
Context jndi=new InitialContext(env);

�����������	����

Obtain JNDI Connection 2
If a file named jndi.properties is in the classpath of the client program,
you can use the following setting:

Context jndi = new

InitialContext(System.getProperties());

This can remove the vendor specific code from the client program.

�����������	���

Setup Using JNDI
1) Use JNDI to find a ConnectionFactory object :

TopicConnectionFactory conFactory =

(TopicConnectionFactory)jndi.lookup

("ConnectionFactory");

2) Use JNDI to find one or more Destination objects :
Topic myTopic =

(Topic)jndi.lookup(topicName);

remark: In JBoss, the topic name can be found in the file :
<Jboss_Home>\server\default\deploy\jms\jbossmq-
destinations-service.xml

�����������	����

Setup Connection and Session
1) Use ConnectionFactory to create a JMS Connection

TopicConnection connection =

conFactory.createTopicConnection();

2) Use the Connection to create one or more JMS Sessions
TopicSession pubSession =

connection.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

TopicSession subSession =

connection.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

�����������	����

Message Publisher
1) Creating producer

MessageProducer producer=

pubSession.createProducer(myTopic);

2) Send a message
TextMessage m=pubSession.createTextMessage();

m.setText(“just another message”);

publisher.publish(m);

3) Closing the connection
connection.close();

�����������	����

Message Subscriber
1) Creating subscriber

TopicSubscriber subscriber =

subSession.createSubscriber(myTopic);

2) Set a JMS message listener
subscriber.setMessageListener(<Message Listener>);

�����������	����

Message Listener 1
A Message Listener is a class implements interface
javax.jms.MessageListener and has to implement the
onMessage(javax.jms.Message message) method

Example of onMessage method:

public void onMessage(Message message) {

TextMessage msg = null;

try {

if (message instanceof TextMessage) {

msg = (TextMessage) message;

System.out.println("Reading message: " +

msg.getText());

}

�����������	���

Message Listener 2
else {

System.out.println("Message of wrong type: “

+ message.getClass().getName());

}

} catch (JMSException e) {

System.out.println("JMSException in

onMessage(): " + e.toString());

} catch (Throwable t) {

System.out.println("Exception in onMessage():“

+ t.getMessage());

}

}

�����������	���	

Start and Close the Connection
Enable the Connection to start delivering messages to TopicSubscriber

connection.start();

Stop the Connection before ending the client program.
connection.close();

Both methods throws javax.jms.JMSException

�����������	����

Lab Work: A JMS Chat Client 1
1) According to the procedure we discussed, write a pub/sub chatting

program using JMS.
a) Use JBoss as the JMS server.
b) Create a topic “emacao” in JBoss. You can modify the file

<JBoss Home>\server\default\deploy\jms\
jbossmq-destinations-service.xml for creating a topic.

c) Execute the program from the command line:
1. Java Chat topic/emacao username

2. Note: for JBoss, the default JNDI name for a topic is
topic/<topic name>

3. and is queue/<queue name> for a queue.

�����������	����

Lab Work: A JMS Chat Client 2

8��(

���6��

8��(

���6��

8��(
-#����

8��(
-#����

8��(
-#����

8��(
-#����

8��(
-#����

8��(
-#����

8��(
-#����

8��(
-#����

-���

-���

-���

-���

�����������	����

Point-to-Point Messaging 1
Point-to-Point (PTP) application is built around the concept of message
queues, sender and receivers.

a) Each message is addressed to a specific queue and the receiving
clients extract messages from the queues established to hold their
messages.

b) Each message has only one consumer.
c) A sender and receiver have no time dependencies.
d) The receiver acknowledges the successful processing of a

message.
e) Use PTP when every message you send must be processed

successfully by one consumer

�����������	���

Point-to-Point Messaging 2

Message
Server

Message MessageDestination

JMS Client

Connection

Session

Producer

JMS Client

Connection

Session

Consumer

�����������	����

Message Queue Sender
1) Performs a Java Naming and Directory Interface (JNDI) API lookup of

the QueueConnectionFactory and Queue.

2) Creates a QueueConnection and a QueueSession.
3) Creating Queue Sender

javax.jms.QueueSender

sender=session.createSender(<queue name>);

4) Send a message
Message m=session.createTextMessage();

m.setText(“just another message”);

sender.send(m);

5) Closing the connection
connection.close();

�����������	����

Message Queue Receiver
1) Performs a Java Naming and Directory Interface (JNDI) API lookup of

the QueueConnectionFactory and Queue.

2) Creates a QueueConnection and a QueueSession.
3) Creating Queue Receiver

javax.jms.QueueReceiver

queueReceiver=session.createReceiver(<queue name>);

4) Starts the connection, causing message delivery to begin
5) Receives the messages sent to the queue until the end-of-message-

stream
– Message m = queueReceiver.receive();

– Message m = queueReceiver.receive(0);

6) Closing the connection
connection.close();

�����������	����

Timed Synchronous Receive
If you do not want your program to consume system resources
unnecessarily, do one of the following:

1) Call the receive method with a timeout argument greater than 0:
Message m = queueReceiver.receive(1); // 1 ms

2) Call the receiveNoWait method, which receives a message only if one is
available:
Message m = queueReceiver.receiveNoWait();

3) The receive() method is also available for the TopicSubscriber
and will negate the use of the onMessage() callback.

�����������	����

Basic Reliability Mechanisms
1) Specifying message persistence.

a) You can specify that messages are persistent, meaning that they
must not be lost in the event of a provider failure.

2) Controlling message acknowledgment.
a) You can specify various levels of control over message

acknowledgment.

3) Setting message priority levels.

4) Allowing messages to expire.
a) You can specify an expiration time for messages

�����������	���

Persistent Messages
Messages can be marked as persistent.
The implementation of the storage mechanism is up to the JMS provider.

Message
Server

Persistent store

Non-persistent message
not guaranteed to
survive provider failure

Persistent message
guaranteed to survive
provider failure

�����������	���	

Exercise: Message Queue
1) Create Point-to-Point messaging program

a) Create a queue in JBoss with a name qex.
b) According to our discussion, please create a JMS client for

sending message to the qex queue.
c) Create a Queue Receiver for the qex queue.
d) Try to stop the receiver and use the sender to send some

message. Restart the receiver and check if it receive the
message.

�����������	����

Overview
1) introduction

2) JMS Messaging Model

3) JMS programming model and implementation

4) advance configuration

5) summary

�����������	����

Temporary Topics 1
Is a topic that is dynamically created by the JMS provider, using the
createTemporaryTopic() of the TopicSession object.

Is a topic associated with the connection that belongs to the TopicSesson
that created it.

It lasts only as long as its associated client connection is active.

Topic identity is transferred using the JMSReplyTo header.

�����������	����

Temporary Topics 2
Procedure to create a temporary topic:

1) After a session,mySession, is created, the client can create a dynamic
topic:
javax.jmx.Topic tempTopic =

mySession.createTemporaryTopic();

2) Create a message for the subscriber to reply to:
javax.jmx.TextMessage message =

mySession.createTextMessage();

3) Set up the JMSReplyTo destination
message.setJMSReplyTo(tempTopic);

�����������	���

Temporary Topics 3
When a client needs to respond to the message, it can use the JMSReplyTo
Desination:

public void onMessage(javax.jms.Message amessage){

...

TextMessage message = (TextMessage)amessage;

javax.jms.Topic tempTopic =

(javax.jms.Topic)message.getJMSReplyTo();

�����������	����

Durable Subscriptions
By default a subscriber gets only messages published on a topic while a
subscriber is alive

Durable subscription retains messages until they are received by a
subscriber or expire

You can use the createDurableScubsriber method of the
java.jms.TopicSession to create a durable subscription:

...

javax.jms.TopicSubscriber subscriber =
session.createDurableSubscriber(tempTopic,”subsc
ription name”);

...

�����������	����

Unsubscribing
In order to explicitly unsubscribe a subscription, you can use the follow
methods:

For nondurable subscription:
...

subcriber.close();

For durable subscription:
...

session.unsubscribe

(“<subscription name>”);

�����������	��
�

Lab Work: Temporary Topic 1
1) Write two JMS clients to simulate the following scenario :

a) An event organizer is constantly promoting events for its
agents. It will publish the event message to and deliver to all
the subscribed agents.

b) After received the message, the Agents’ program will evaluate
the event according to certain criteria and decide to either
joining the event or not. In the exercise, you can make up
your own criteria such as cost or date.

c) If the agent decided to join the event, it’s program will
automatically send a message back to the organizer.

d) Your organizer’s program required to create a temporary topic
and attached it as the destination for the agents to reply to.

�����������	��
�

Lab Work: Temporary Topic 2

JMS

Server

Event

Organizer

Event

Organizer

Agent_BAgent_B

1. Create Topic
“Event”

2. create a temporary
topic joinEvent

3. publish() message
on “Event” topic

4. subscribe() to
“Event” topic

5. receive
message on
“Event” topic

6. publish () join
message to
joinEvent if
condition fitted

7. Receive
message on
joinEvent
topic

�����������	��

Overview
1) introduction

2) JMS Messaging Model

3) JMS programming model and implementation

4) advance configuration

5) summary

�����������	��
	

Summary
In this session, we cover the followings:

1) Concepts of Message Oriented Middleware

2) Concepts of Messaging

3) Design model of Java Message Service

4) Programming Model of Java Message Service

5) Programming publisher/subscriber JMS application

6) Programming Point-to-Point JMS application

1�����5����(759����

�����������	��
�

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	��
�

Overview
What options do I have for distributed application development?

Developers who program using the Java programming language can
choose several solutions for creating distributed applications programs.

1) Java RMI technology

2) Java IDL technology (for CORBA programmers)

3) Enterprise JavaBeans technology

In this section we shall be talking about Java RMI and IDL technologies.

8�6�(:��

�����������	��
�

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	��
�

Overview
1) introduction

2) RMI architecture

3) implementing and running RMI system

4) Implementing activatable RMI server

5) summary

�����������	��	�

Introduction 1
Remote Method Invocation (RMI) technology was first introduced in JDK1.1.

RMI allows programmers to develop distributed Java programs with the
same syntax and semantics used for non-distributed programs.

RMI is based on a similar, earlier technology for procedural programming
called remote procedure call (RPC)

�����������	��	�

Introduction 2
Disadvantages of RPC

a) RPC supports a limited set of data types

Therefore it is not suitable for passing and returning Java Objects

b) RPC requires the programmer to learn a special interface definition
language (IDL) to describe the functions that can be invoked remotely

�����������	��	

Introduction 3
The RMI architecture defines

a) How objects behave.

b) How and when exceptions can occur.

c) How memory is managed.

d) How parameters are passed to, and returned from, remote methods.
The remote object model for Enterprise JavaBeans (EJB) is RMI-
based.

�����������	��		

Introduction 4
RMI is designed for Java-to-Java distributed applications.

RMI is simpler and easier to maintain than using socket.

Other options for creating Java-to-non-Java distributed applications are:

a) Java Interface Definition Language (IDL)

b) Remote Method Invocation (RMI) over Internet Inter-ORB Protocol
(IIOP) -- RMI-IIOP.

�����������	��	�

Overview
1) introduction

2) RMI architecture

3) implementing and running RMI system

4) Implementing activatable RMI server

5) summary

�����������	��	�

Architecture 1
RMI allows the code that defines the behavior and the code that
implements the behavior to remain separate and to run on separate
JVMs.

At client side, RMI uses interfaces to define behavior.

At server side, RMI uses classes to define implementation.

�����������	��	�

Architecture 2
The service interface is implements by two classes.

a) The first one is at the server side which implements the behavior.
b) The second one is at the client side which acts as a proxy.

�����������	��	

Layers
The RMI implementation is built from three abstraction layers.

a) The Stub and Skeleton layer
b) The Remote Reference Layer
c) The transport layer

�����������	��	�

Stub and Skeleton Layer 1
The first layer lies beneath the view of the developer intercepts method
calls made by the client to the interface reference variable and redirects
these calls to a remote RMI service.

RMI uses the Proxy design pattern in this layer.

����(�#���
�� #����������(
�#���

�����������	��	�

Stub and Skeleton Layer 2
A skeleton is a helper class that is generated for to communicate with the
stub across the RMI link

In the Java 2 SDK implementation of RMI, the new wire protocol has
made skeleton classes obsolete.

You only have to worry about skeleton classes and objects in JDK 1.1
and JDK 1.1 compatible system implementations.

�����������	����

Remote Reference Layer
This layer provides a RemoteRef object that represents the link to the
remote service implementation object.

In JDK 1.1, only unicast, point-to-point connection is supported. Before a
client can use a remote service, the remote service must be instantiated
on the server and ran all the time.

In Java 2 SDK, client-server connection is added and activatable remote
objects is supported . With the introduction of the RMI daemon, rmid,
remote objects can be created and execute "on demand," rather than
running all the time.

�����������	����

Transport Layer 1
The Transport Layer makes the connection between JVMs. All
connections are stream-based network connections that use TCP/IP.

-������������(
5������(���(
����(����(�����(
+-."�.

-������������(
5������(��%%�����(
����(�����(
+-."�.

�����������	���

Transport Layer 2
On top of TCP/IP, RMI uses a wire level protocol called Java Remote
Method Protocol (JRMP).

JRMP is a proprietary, stream-based protocol.

Sun and IBM have jointly worked on another version of RMI, called RMI-
IIOP(Remote Method Invocation over Internet Inter-ORB Protocol), which
combines RMI-style ease of use with CORBA cross-language
interoperability.

The remote object model for Enterprise Java Beans(EJBs) is RMI-based.

�����������	���	

Naming Remote Objects
In RMI, clients find remote services by using a naming or directory
service.

RMI can use many different directory services, including the Java Naming
and Directory Interface (JNDI).

RMI itself includes a simple service called the RMI Registry, rmiregistry.
The RMI Registry runs on each machine that hosts remote service
objects and accepts queries for services, by default on port 1099.

�����������	����

Overview
1) introduction

2) RMI architecture

3) implementing and running RMI system

4) Implementing activatable RMI server

5) summary

�����������	����

Example : build a RMI system
In this example, we shall build a simple remote calculator service and use

it from a client program.

A working RMI system is composed of several parts.
a) Interface definitions for the remote services
b) Implementations of the remote services
c) Stub and Skeleton files
d) A server to host the remote services
e) An RMI Naming service that allows clients to find the remote

services
f) A class file provider (an HTTP or FTP server)
g) A client program that needs the remote services

�����������	����

Interface 1
The first step is to write and compile the Java code for the service
interface.

All the interface has to extend the java.rmi.Remote interface and all
the methods has to declare that it may throw a RemoteException
object.

�����������	���

Interface 2
The interface may look like the following:

public interface Calculator extends
java.rmi.Remote

{ public long add(long a, long b) throws
java.rmi.RemoteException;

public long sub(long a, long b) throws
java.rmi.RemoteException;

public long mul(long a, long b) throws
java.rmi.RemoteException;

public long div(long a, long b) throws
java.rmi.RemoteException;

}

�����������	����

Implement 1
The second step is to write the implementation for the remote service.

The implementation class may extend from the
java.rmi.server.UnicastRemoteObject to link into the RMI
system.

It must also provide an explicit default constructor throwing
RemoteException. When this constructor calls super(), it activates code
in UnicastRemoteObject that performs the RMI linking and remote
object initialization.

�����������	����

Implement 2
public class CalculatorImpl extends

java.rmi.server.UnicastRemoteObject implements
Calculator {

// Implementations must have an

// explicit default constructor

// in order to declare the

// RemoteException exception

public CalculatorImpl() throws

java.rmi.RemoteException

{ super(); }

public long add(long a, long b) throws

java.rmi.RemoteException

{ return a + b; }

...

�����������	����

Lab Work: Implementation
1) Please write the rest of implementation for the Calculator interface.

Note: If your must extend some other classes other than extending from
UnicastRemoteObject, the implementation may use the static
exportObject() method of the UnicastRemoteObject instead.

Be careful that you may need to synchronize some portions of your
remotely available method. But it is not necessary for this example.

�����������	����

Stubs and Skeletons
To generate the Stub and Skeleton files, use the RMI complier, rmic as
the following:
>rmic CalculatorImpl

The default option will create stubs/skeletons compatible with both JDK
1.1 and Java 2.

RMI system

Java Virtual Machine (JVM)

Remote
Object

Reference

Java Virtual Machine (JVM)

RMI system

Remote
Object

Implementation

RMI Stub

�����������	���

Host Server 1
Remote RMI services must be hosted in a server process. The following
code is a very simple server that provides the bare essentials for hosting.

import java.rmi.Naming;

public class CalculatorServer {

public CalculatorServer() {

try {

Calculator c = new CalculatorImpl();

Naming.rebind("rmi://localhost:1099/Calculator
Service", c);

} catch (Exception e) {

System.out.println("Trouble: " + e);

}

}

�����������	���	

Host Server 2

public static void main(String args[]) {

new CalculatorServer();

}

}

�����������	����

Client 1
1) In the client’s code, all you need to do is to lookup the object and use

it’s methods as local methods.
2) The client’s code may look like the following:

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.net.MalformedURLException;

import java.rmi.NotBoundException;

public class CalculatorClient {

public static void main(String[] args) {

try {

Calculator c = (Calculator)Naming.lookup (

"rmi://localhost/CalculatorService");

�����������	����

Client 2
System.out.println(c.sub(4, 3));

System.out.println(c.add(4, 5));

System.out.println(c.mul(3, 6));

System.out.println(c.div(9, 3));

}

catch (MalformedURLException murle) {}

catch (RemoteException re){}

catch (NotBoundException nbe){}

catch (java.lang.ArithmeticException ae)
{}

}

}

�����������	����

Running the RMI System
1) Start up three consoles, one for the server, one for the client, and one

for the RMIRegistry.
2) Type rmiregistry in the directory that contains the classes you

have written.
3) In the server’s console, type java CalculatorServer to start the

server.
4) In the client’s console, type java CalculatorClient to start the

cleint program.
5) The output should look like:

1

9

18

3

�����������	���

Lab Work: RMI System
1) Please follow what we have discussed to develop a RMI server which

hosts a service for calculating the square root of a number.

2) Compile your RMI server and generate the corresponding stub class.

3) Create a client to test the RMI service.

�����������	����

Passing Parameters
All parameters passed from an RMI client to an RMI server must either be
serializable or be a remote object.

For serializable:
a) Data is extracted from the local object and sent across the

network to the remote server.
b) Object is then reconstructed in the remote server.
c) Any changes to the object in the RMIServer will not be

reflected in the object held in the RMI client and vice versa.

For a remote object:
a) Stub information, not a copy of data, is actually sent over RMI.
b) Any call made to the parameter object become a remote calls

back to the actual object.
c) Changes made in one JVM are reflected in the original JVM.

�����������	����

Conditions for serializability
If an object is to be serialized:

a) The class must be declared as public
b) The class must implement Serializable
c) The class must have a default (no-argument) constructor
d) All fields of the class must be serializable: either primitive types

or serializable objects

�����������	����

Remote interfaces and class
A Remote class has two parts:

a) The interface (used by both client and server):
1. Must be public
2. Must extend the interface java.rmi.Remote
3. Every method in the interface must declare that it throws

java.rmi.RemoteException (other exceptions may
also be thrown)

b) The class itself (used only by the server):
1. Must implement a Remote interface
2. Should extend

java.rmi.server.UnicastRemoteObject

3. May have locally accessible methods that are not in its
Remote interface

�����������	����

Security
Your program should guarantee that the classes that get loaded do not
perform operations that they are not allowed to perform.

A more conservative security manager than the default should be
installed. The following code should be added to the main method of the
server and client program:

if (System.getSecurityManager() == null{

System.setSecurityManager(new
RMISecurityManager());

}

�����������	���

Overview
1) introduction

2) RMI architecture

3) implementing and running RMI system

4) Implementing activatable RMI server

5) summary

�����������	���	

Activatable Server
Enable server programs to wake up and start to run when they are
needed.

Java RMI Activation System Daemon (rmid) is introduced to handle this
task.

When a client requests a reference to the server from the rmiregistry,
the rmid program, which holds the servers details, will be requested to
start up the server and return the reference to the client. After that, the
rmiregistry will be able to provide the reference of the server directly.

�����������	����

Activatable Server:Implementation
1) Subcalss the java.rmi.activation.Activatable class and

implement the remote interface.
2) Implement the following constructor:

public Server(ActivationID id, MarshalledObject
data) throws RemoteException{

super(id,0);//register activatable object and

// export on anonymous port

}

3) Create an activation description used by the rmid program.
4) Register the activation description with the rmid program.
5) Compile the activatable server with javac and rmic compiler.
6) The client program needs no modification.

�����������	����

Activatable Server:Setup 1
Before we can use the activatable server, you need to generate the
activation description used by the rmid and register the description with
the rmid program. We will group these processes into a utility program
for illustration.

The structure of the utility program may look like this:
//1. Make the appropriate imports

import java.rmi.*;

import java.rmi.activation.*;

import java.util.Properties;

public class SetupServer{

public static void main(String args[]){

try{

�����������	����

Activatable Server:Setup 2
//2. Declare for a security policy file

System.setSecurityManager(new RMISecurityManager());

Properties props =
(Properties)System.getProperties();

props.put(“java.security.policy”,<location of
security policy file>);

//3.Create an activation group description even there

// is only one server

ActivationGroupDesc agd = new ActivationGroupDesc
(props, null);

//4. Create a new activation group

ActivationGroupID agid =
ActivationGroup.getSystem().registerGroup(agd);

�����������	���

Activatable Server:Setup 3
//5. Create the actual activation description

// Don’t miss the trailing slash (/)

String codebase = “file:/<location of server
implementation file>/”;

ActivationDesc desc = new ActivationDesc(agid,

“<name of the server>”,codebase, null);

//6. Register the activation description to the rmid

// program. Suppose the remote interface of the

// server is RemoteInterface, the code will look
like this:

RemoteInterface ref =
(RemoteInterface)Activatable.register(desc);

�����������	����

Activatable Server:Setup 4
//7. Bind the server in rmiregistry

Naming.rebind(“Server”, ref);

//8. Exit the setup program

System.exit(0);

}catch (Exception e){}

}

}

�����������	����

Compile and Run 1
1) Compile all the classes use javac.
2) Run rmic on the implementation class
3) Start rmi registry use rmiregistry.

a) make sure that the shell or window in which you will run the
registry, either has no CLASSPATH set or has a CLASSPATH that
does not include the path to any classes that you want
downloaded to your client, including the stubs for your remote
object implementation classes.

b) If you start the rmiregistry, and it can find your stub classes
in its CLASSPATH, it will ignore the server's
java.rmi.server.codebase property, and as a result, your
client(s) will not be able to download the stub code for your
remote object.

�����������	��
�

Compile and Run 2
4) Start the activation daemon, rmid. Use –J option for a runtime flag.

rmid -J-Djava.security.policy=rmid.policy

The policy file may look like this:
grant{

permission com.sun.rmi.rmid.ExecOptionPermission
"-Djava.*";

permission com.sun.rmi.rmid.ExecOptionPermission
"-Dsun.*";

permission com.sun.rmi.rmid.ExecOptionPermission
"-Dfile.*";

�����������	��
�

Compile and Run (3)
permission com.sun.rmi.rmid.ExecOptionPermission "-

Dpath.separator=*";

permission com.sun.rmi.rmid.ExecOptionPermission "-
Duser.*";

permission com.sun.rmi.rmid.ExecOptionPermission "-
Dos.*";

permission com.sun.rmi.rmid.ExecOptionPermission "-
Dline.separator=*";

permission com.sun.rmi.rmid.ExecOptionPermission "-
Dawt.*";

�����������	��

Compile and Run (4)
5) Running the setup program.

java

-Djava.security.policy

=<full path of the policy file>

-Djava.rmi.server.codebase

=file:/<location of the implementation stubs>/

<class name of the setup program>

�����������	��
	

Compile and Run (5)
6) Running the client program.

java

-Djava.security.policy

=<full path of the policy file>

<client name>

For testing purpose, use the following security.policy:
grant {

permission java.security.AllPermission "", "";

};

�����������	��
�

Exercise: Activatable RMI
1) Write a remote interface called HelloInterface.
2) Define a method getMessage (String s) in it. This method has

a return type as a String. Don’t forget to throw the proper exception.
3) Create a class named Server which has to be a subclass of the

java.rmi.activation.Activatalbe class.
4) Implement the getMessage method which will append “Hello” the

argument and return it as a String.
5) Create the Setup program for the server.
6) Create a client program which should look up the activatable server

and use the getMessage method of it.
7) Compile and generate the corresponding files.
8) Run the client and check the result.

�����������	��
�

Overview
1) introduction

2) RMI architecture

3) implementing and running RMI system

4) summary

�����������	��
�

Summary
In this session, we cover the followings:

1) Architecture of RMI

2) Building RMI system including both client and server

3) Implementation for activatable RMI server

�����������	��

Lab Work: Activatable RMI 1
1) Build an activatable RMIServer for a chatting system.

As our focus will be on building an activatable RMIServer, all the
codes for the client program and interfaces will be provided. You only
need to implement the activatable RMIServer.

The interface for the server is provided as
chat.interface.ChatServer.java. You need to write an
implementation class for it naming
chat.server.ChatServerImpl.java.

�����������	��
�

Lab Work: Activatable RMI 2
2) Write a setup program for the server.

3) Write a class chat.Message.java to represent the message
sending between the server and client. It is required to keep the
information of the sender and the message content.

�����������	��
�

Lab Work: Activatable RMI 3
4) Test the program

a) For testing the dynamic class downloading, please download a
basic HTTP server form the following address:
java.sun.com/products/jdk/rmi/class-
server.zip

b) Extract the files and compile them using the following
command:
javac –d . *.java

c) After starting the rmid, you can start the HTTP server using
the following command:
java examples.classServer.ClassFileServer
<port number> <path for server’s download
directory>

�����������	����

Lab Work: Activatable RMI 4
d) The directory structure and .class files of the exercise should

be copied to the server’s download directory.
e) Start the setup program of your server. And for the codebase

option, you should use http protocol instead of file this time.
-Djava.rmi.server.codebase =

http://localhost:port/

f) You can use the security policy file in the example for testing
purpose.

6) Examine the files in chat.client.packages. These are the classes for
the client program. You will notice that the client needs no
modification for dealing with the activatable RMIServer.

�����������	����

Lab Work: Activatable RMI 5
ChatServer interface:
package interfaces;

import java.rmi.*;

import chat.Message;

public interface ChatServer extends Remote {

// register new ChatClient with ChatServer

// In implementation, you may need to choose a

// collection type for storing the connected client

public void registerClient (ChatClient
client)throws RemoteException;

public void unregisterClient(ChatClient
client)throws RemoteException;

�����������	���

Lab Work: Activatable RMI 6
// post new message to ChatServer

public void postMessage(Message message) throws
RemoteException;

// sending message to the clients that the server

// is stopping

public void stopServer()throws RemoteException;

}

�����������	���	

Lab Work: Activatable RMI 7
ChatClient interface:
package interfaces;

import java.rmi.*;

import chat.Message;

public interface ChatClient extends Remote{

//call back method allows the server to send

//message to client

public void deliverMessage(Message message)throws
RemoteException;

// method called when server shuting down

public void serverStopping()throws
RemoteException ;

}

�����������	����

Lab Work: Activatable RMI 8
MessageManager interface:
package interfaces;

public interface MessageManager {

//connect to the server. Check the code in

//RMIMessageManager for implementation

public void connect (MessageListener listener)
throws Exception;

//disconnect to the server. Check the code in

//RMIMessageManager for implementation

public void disconnect (MessageListener
listener)throws Exception;

�����������	����

Lab Work: Activatable RMI 9
//send message to the server. Check the code in

//RMIMessageManager for implementation

public void sendMessage(String from, String
message)throws Exception;

//Registers a DisconnectListener to be notified
//when the ChatServer disconnects the client.

//Each ClientGUI will do the registration when

//connection is made to the server.

public void setDisconnectListener
(DisconnectListener Listener);

}

�����������	����

Lab Work: Activatable RMI 10
MessageListenr interface:
package interfaces;

public interface MessageListener {

//The inner class MyMessageListener defined inside

//the ClientGUI implements this interface for

//handling the message received.

public void messageReceived (String from, String
message);

}

�����������	���

Lab Work: Activatable RMI 11
DisconnectHandler interface:
package interfaces;

//An inner class DisconnectHandler actually

//implements this interface.

//The DisconnectHandler will update GUI in thread

//safe manner after received disconnect notifcation.

public interface DisconnectListener {

public void serverDisconnected(String message);

}

�����������	����

Overview
1) introduction

2) RMI architecture

3) implementing and running RMI system

4) summary

�����������	����

Summary
In this session, we cover the followings:

1) Architecture of RMI

2) Building RMI system including both client and server

3) Implementation and environment set up procedure for activatable RMI
server

-7:;'

�����������	����

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	���

1) Object Management Group

a) Founded in 1989

b) Not-for-Profit organization

c) Vendor neutral

d) ~800 member companies

2) Key Specifications

a) UML

b) CORBA

The OMG

�����������	���	

What is CORBA?
Defines a framework for object-oriented distributed applications.

Defined by a consortium of vendors under the direction of OMG.

Allows distributed programs in different languages and different platforms
to interact as though they were in a single programming language on one
computer.

Brings advantages of OO to distributed systems.

Allows you design a distributed application as a set of cooperating objects
and to reuse existing objects.

�����������	����

Key CORBA Features
1) Application Development Transparencies

a) Hardware/Language neutral
b) Vendor neutral
c) Object oriented paradigm

2) CORBA Interface Definition Language (IDL)

3) CORBAServices
a) Naming
b) Event
c) Transaction
d) Security

4) Interoperability

�����������	����

Object Request Broker (ORB)
1) A software component that mediates transfer of messages from a

program to an object located on a remote host.

2) Hides underlying network communications from a programmer.

3) ORB allows you to create software objects whose member functions can
be invoked by client programs located anywhere.

4) A server program contains instances of CORBA objects.

�����������	����

ORB: Conceptual View
1) When a client invokes a member function on a CORBA object, the ORB

intercepts the function call.

2) ORB directs the function call across the network to the target object.

3) The ORB then collects the results from the function call returns these to
the function call.

�����������	���

Implementation Details

Access to the services provided by an Object

ORB : (Object-oriented middleware) Object Request Broker
ORB mediates transfer between client program and server object.

Client

ORB

Object

Object
Stub

Client
Stub

�����������	����

CORBA: A “Software Bus”
All CORBA objects connect to each other via ORB.

Shopping
Cart

Object Request Broker

Client
Object etc, … Legacy

Mainframe

�����������	����

CORBA IDL
1) Interface Definition Language

a) used to generate application code (stubs/skeletons)

b) language neutral (Ada, C++, Java, …)

2) IDL is NOT a programming language

a) lacks control structures

b) provides no implementation details

c) a specification

�����������	����

CORBA Objects and IDL
1) These are standard software objects implemented in any supported

language including Java, C++ and Smalltalk.

2) Each CORBA object has a clearly defined interface specified in CORBA
interface definition language (IDL).

3) The interface definition specifies the member functions available to the
client without any assumption about the implementation of the object.

�����������	����

Client and IDL
1) To call a member function on a CORBA object the client needs only the

object’s IDL.

2) Client need not know the object’s implementation, location or operating
system on which the object runs.

�����������	���

Interface and Implementation
1) Interface and implementation can be in two different languages.

2) Interface abstracts and protects details (trade secrets) from client

3) Interface offers a means of expressing design without worrying about
implementation.

4) Interface is separated from implementation

�����������	���	

Example: CORBA IDL
module BankExample {

interface Account {
exception BadCheck {

float fee;
};

float deposit(in float amount);
float writeCheck(in float amount)

raises (BadCheck);
};
interface AccountManager {

Account openAccount(in string name);
};

};

�����������	����

CORBA Application Diagram
Objects are identified by Interoperable Object References (IORs)

IDL
Skeleton

IDL
Stub

Object
Implementation

(Servant)
Client

Request

Object Request Broker

IDL
File

�����������	����

CORBA Development Steps
1) Design the Application

2) IDL Specification

3) IDL Compilation (Code Generation)

4) Write the Client & Server implementation specific code

5) Compile the source code

6) Run the application

���

JavaIDL

�����������	���

Course Outline
1) introduction
2) streams
3) networking
4) database connectivity
5) architectures

a) message-orientation
1) javamail
2) jms

b) distributed objects
1) rmi
2) corba
3) JavaIDL

6) summary

�����������	����

Modules and Interfaces
• IDL modules

module MyStuff
{
…
};

– Provide a namespace to
group a set of interfaces.
Names are scoped using
the “::” operator.

• IDL interface
interface Foo { };

• Java packages
package MyStuff;
…

– Provide Internet-wide
namespaces. Scoped
using the “.” operator.

• Java interface
public interface Foo
{…};

�����������	����

IDL to Java: Parameters
1) Java uses pass-by-value for parameters (including parameters that are

references)

2) IDL has in, out and inout types of parameters

3) The in parameter type maps to a normal Java parameter since it does
not need to be changed

4) out and inout parameter types are passed via instances of Java
Holder classes

�����������	����

Holder Classes
1) Holder classes encapsulate the real value of a parameter which

can then be reassigned to

a) a member “value”

// user code

// select a target object
Example.Modes target = …;
// prepare to receive out
IntHolder outHolder = new IntHolder();
// set up the in side of the inout
IntHolder inoutHolder = new IntHolder (131);
// make the invocation
int result = target.operation (

outHolder, inoutHolder);
// use the values of holders
…outHolder.value…
…inoutHoulder.value…

// user code

// select a target object
Example.Modes target = …;
// prepare to receive out
IntHolder outHolder = new IntHolder();
// set up the in side of the inout
IntHolder inoutHolder = new IntHolder (131);
// make the invocation
int result = target.operation (

outHolder, inoutHolder);
// use the values of holders
…outHolder.value…
…inoutHoulder.value…

// generated java

package Example;
public interface Modes {
int operation (IntHolder outArg,

IntHolder inoutArg);
}

// generated java

package Example;
public interface Modes {
int operation (IntHolder outArg,

IntHolder inoutArg);
}

�����������	����

Helper Classes
1) all user-defined IDL types have a Helper Java class

2) insert and extract Any

3) get CORBA::TypeCode of the type

4) narrow (for interfaces only)

�����������	���

IDL to Java: Attributes
• IDL attributes

attribute long assignable;

readonly attribute long
fetchable;

• Java “get” and “set” methods

public int assignable();

public void assignable(int
val);

public int fetchable();

�����������	���	

Basic Types
IDL Type Java Type Exception
boolean boolean

char char CORBA::DATA_CONVERSION

octet byte

string java.lang.String CORBA::MARSHAL…

short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long long

float float

double double

�����������	����

IDL to Java: Basic Types
• IDL char

const char MyChar = ’A’;
• Java char

final public class MyChar
{
final public static char
value = (char)’A’;
}

�����������	����

IDL to Java: Basic Types
• IDL octet

void foo(in octet x);
• Java byte

public void foo(byte x);

�����������	����

IDL to Java: Basic Types
• IDL boolean

const boolean truth =
TRUE;

• IDL constants TRUE and FALSE

• Java boolean
final public class truth
{
final public static
boolean value = true;
}

• Java constants true and false

�����������	���

IDL to Java: Basic Types
• IDL string

const string MyString =
“Hello World”;

• Java java.lang.String
final public class MyString
{
final public static String

value = “Hello World”;
}

�����������	����

IDL to Java: Basic Types
• IDL integers

– (unsigned) short
– (unsigned) long
– (unsigned) long long?

const unsigned short
MyUnsignedShort = 1580;

• Java integers
– short
– int
– long

final public class
MyUnsignedShort
{

final public static
short value =
(short)1580;
}

�����������	����

IDL to Java: Basic Types
• IDL floating-point float, double

const double MyDouble =
1.23456789;

• Java floating-point float, double

final public class
MyDouble
{

final public static
double value =

(double)1.23456789;
}

�����������	��
�

IDL to Java: Constructed Types

• IDL Enum
enum MyEnum
{none,first,second};

• Java class
final public class MyEnum
{
final public static int
none = 0;
final public static int
first = 1;
final public static int
second = 2;
final public static int
narrow(int i) throws
CORBA.BAD_PARAM {..};
}

• the narrow method is for checking
enum values

�����������	��
�

IDL to Java: Constructed Types
• IDL struct

struct MyStruct
{
long mylong;
string mystring;
};

• Java class
final public class
MyStruct
{
public MyStruct(int
_mylong, String
_mystring) {…};
public MyStruct() {…};

public int mylong;
public String mystring;
}

�����������	��

The Big Picture

IDL InterfacesIDL Interfaces

Java Interfaces and ClassesJava Interfaces and Classes

IDL Compiler

Java Servant Implementation
Classes
Java Servant Implementation
Classes

Java Client Implementation
Classes
Java Client Implementation
Classes

Uses

1) Compiler outputs:

a) Client stubs

b) Server skeletons

c) Utility classes

2) IDL -> Java mapping standardized

�����������	��
	

Big Picture (Invocation)

StubStub

NetworkNetwork

ORBORB ORBORB

SkeletonSkeleton

Servant ImplementationServant ImplementationClient ApplicationClient Application

Generated from IDL

Logical Client Logical Server

�����������	��
�

Example: File Transfer
This presents a file download CORBA application

The client request for a file and the server in turn sends the file to the client
which then saves it on the local machine.

There are a number of steps involved:

1) Define an interface in IDL

2) Map the IDL interface to Java (done automatically)

3) Implement the interface

4) Develop the server

5) Develop a client

6) Run the naming service, the server, and the client.

�����������	��
�

Step 1: Define the IDL Interface 1
The first thing to do is to determine the operation that the server will support.

In this application, the client will invoke a method to download a file.

Here is the code.

interface FileInterface {

typedef sequence<octet> Data;

Data downloadFile(in string fileName);

};

Save this file as FileInterface.idl

�����������	��
�

Step 1: Define the IDL Interface 2
Data is a new type introduced using the typedef keyword.

A sequence in IDL is similar to an array except that a sequence does not
have a fixed size

An octet is an 8-bit quantity that is equivalent to the Java type byte

The downloadFile method takes one parameter of type string that is
declared in.

IDL defines three parameter-passing modes: in (for input from client to
server), out (for output from server to client), and inout (used for both input
and output).

�����������	��

Step 2: Map IDL to Java
Once you finish defining the IDL interface, you are ready to map the IDL
interface to Java.

Java comes with the idlj compiler, which is used to map IDL definitions
into Java declarations and statements.

The idlj compiler accepts options that allow you to specify if you wish to
generate client stubs, server skeletons, or both.

let's compile the FileInterface.idl and generate both client and server-
side files.

�����������	��
�

Step 3: Compile the IDL Interface
1) Compile the IDL Interface using:

prompt> idlj –oldImplBase -fall FileInterface.idl

2) IDL compilation produces many java constructs (interfaces and classes).

3) Each one is placed with a <filename>.java

�����������	��
�

Files Generated by IDL Compiler
1) Each file generated contains a Java interface or class scoped within a

package.

2) This package is physically located in a directory of the same name
according to Java conventions.

�����������	��	�

Client Side Files

1) FileInterface.java - an interface to provide a client a view of the
methods in the IDL.

2) _FileInterfaceStub.java - a Java class that implements the
methods defined in interface Grid. Provides functionality that allows client
method invocations to be forwarded to a server.

�����������	��	�

Server Side Files

1) _FileInterfaceImplBase.java - an abstract Java class that allows
server-side developers to implement the FileInterface interface.

2) Other files: FileInterfaceHelper.java,
FileInterfaceHolder.java,
FileInterfaceOperations.java,

�����������	��	

Step 4: Implement the Interface 1
Provide an implementation to the downloadFile() method. This
implementation is known as a servant.

import java.io.*;

public class FileServant extends _FileInterfaceImplBase
{

public byte[] downloadFile(String fileName){

File file = new File(fileName);

byte buffer[] = new byte[(int)file.length()];

try {

BufferedInputStream input = new

BufferedInputStream(new
FileInputStream(fileName));

input.read(buffer,0,buffer.length);

input.close();

�����������	��		

Step 4: Implement the Interface 2
} catch(Exception e) {

System.out.println("FileServant Error:
"+e.getMessage());

e.printStackTrace();

}

return(buffer);

}

}

�����������	��	�

Step 5: Develop the Server 1
The next step is developing the CORBA server.

Write FileServer class that implements a CORBA server that does the
following:

1) Initializes the ORB
2) Creates a FileServant object
3) Registers the object in the CORBA Naming Service (COS Naming)
4) Prints a status message
5) Waits for incoming client requests

�����������	��	�

Step 5: Develop the Server 2
import java.io.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

public class FileServer {

public static void main(String args[]) {

try{

// create and initialize the ORB

ORB orb = ORB.init(args, null);

// create the servant and register it with ORB

FileServant fileRef = new FileServant();

orb.connect(fileRef);

�����������	��	�

Step 5: Develop the Server 3

// get the root naming context

org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");

NamingContext ncRef =
NamingContextHelper.narrow(objRef);

// Bind the object reference in naming

NameComponent nc = new
NameComponent("FileTransfer", " ");

NameComponent path[] = {nc};

ncRef.rebind(path, fileRef);

System.out.println("Server started....");

�����������	��	

Step 5: Develop the Server 4

// Wait for invocations from clients

java.lang.Object sync = new java.lang.Object();

synchronized(sync){

sync.wait();

}

} catch(Exception e) {

System.err.println("ERROR: " + e.getMessage());

e.printStackTrace(System.out);

}

}

}

�����������	��	�

Step 6: Develop the Client 1
The next step is developing the CORBA client.

Write FileClient class that implements a CORBA client that does the
following:

1) Initializes the ORB
2) Retrieve the FileTransfer service from the naming server
3) Call the downloadFile method.

�����������	��	�

Step 6: Develop the Client 2
import java.io.*;

import java.util.*;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

public class FileClient {

public static void main(String argv[]) {

try {

// create and initialize the ORB

ORB orb = ORB.init(argv, null);

// get the root naming context

org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");

�����������	����

Step 6: Develop the Client 2

NamingContext ncRef =
NamingContextHelper.narrow(objRef);

NameComponent nc = new
NameComponent("FileTransfer", " ");

// Resolve the object reference in naming

NameComponent path[] = {nc};

FileInterfaceOperations fileRef =

FileInterfaceHelper.narrow(ncRef.resolve(path));

if(argv.length < 1) {

System.out.println("Usage: java FileClient
filename");

}

�����������	����

Step 6: Develop the Client 2
// save the file

File file = new File(argv[0]);

byte data[] = fileRef.downloadFile(argv[0]);

BufferedOutputStream output = new

BufferedOutputStream(new FileOutputStream(argv[0]));

output.write(data, 0, data.length);

output.flush();

output.close();

}catch(Exception e) {

System.out.println("FileClient Error: " +
e.getMessage());

e.printStackTrace();

}

}}

�����������	���

Step 7: Run the Application
1) Running the the CORBA naming service.

prompt> tnameserv -ORBInitialPort 2500

2) Start the server
prompt> java FileServer -ORBInitialPort 2500

3) Run the client
prompt> java FileClient c:\hello.txt -ORBInitialHost

mycomputerName -ORBInitialPort 2500

�����������	���	

Summary
1) We introduced general operation of CORBA.

2) Also details of specifying a client, server application, compiling them and
registering and running.

3) You will have to configure your system before you try to do these steps.

�����������	����

Project Exercise
1) Implement the controller of your project as a distributed object by

using either RMI or JavaIDL.
2) Device an approach through which the controller would locate a

requested business object to handle a particular request and also
invoke the appropriate operation requested for.

3) Persist your data using mySQL database engine.
4) See how you can make use of Java Message Service in your project.

