Distributed Programming

Gabriel Oteniya and Milton Chau Keng Fong

UNU-IIST

e-Macao-16-3-2

The Course

1) objectives - what do we intend to achieve?
2) outline - what content will be taught?
)

)

3) resources - what teaching resources will be available?

4) organization - duration, major activities, daily schedule

e-Macao-16-3-3

Course Objectives

1) learn the fundamental concepts of distributed programming for
enterprise application development

2) learn the various distributed programming architectures and how to
apply them

3) lean the importance of distributed computing and outline the factors to
consider when designing a distributed system

4) presents different Distributed Architecture

Course QOutline

e-Macao-16-3-4

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

Outline: Introduction

e-Macao-16-3-5

Presents an overview of the distributed programming.

Main points:

1) what are distributed systems?.

N

)
) why distributed programming?.

) nature and design considerations.
)

)

~ W

types of networks.

distributed architectures.

)

Outline: Stream

e-Macao-16-3-6

Presents the java.io package

Main points:

|

o 01 B~ W DN

)
)
)
)
)
)

what is a stream?

types of Streams
characteristics of Streams
working with streams
bridging Streams

stream chaining

e-Macao-16-3-7

Outline: Networking

Presents the network programming in Java language.

Main points:

|

OO B~ W N

review the basic network concepts and Java Implementation

discuss the usage of java.net package.

introduce the New /O API.

)

)

) introduce the Secure Socket.

)

) introduce the Java implementation for UDP protocol.

e-Macao-16-3-8

Outline: Database Connectivity

Presents JDBC API from the basics of SQL to the more esoteric features of
advanced JDBC.

Main points:

1) introduction to Database and Structured Query Language
2) JDBC architecture

3) JDBC core interfaces

4)

5) transaction Management

query processing

e-Macao-16-3-9

Outline: Message Orientation

Presents how to build a loosely coupled application using messaging
mechanism.

Main points:

1) JavaMail — to provide asynchronous communication between
application components and human users.

2) Java Message Service — to provide asynchronous/synchronous
communication software components

e-Macao-16-3-10

Outline: Distributed Objects

This section basically addresses:

1) Remote Method Invocation (RMI)

2) Common Object Request Broker Architecture (CORBA)
3)

4)

Interface Definition Language (IDL)
IDL to Java mapping (JavalDL)

e-Macao-16-3-11

Outline: Summary

Revision of the material introduced during the course.

How this course provides a foundation for the remaining courses:

:
2
3
4

) Java XML processing

) Java Web Services

) J2EE web components
)

J2EE business components

e-Macao-16-3-12

Course Resources

1) books

a) Distributed Programming with Java, Qusay H. Mahmoud, Manning
Publisher 2000

b) Java in Distributed Systems: Concurrency, Distribution and
Persistence, Marko Boger, 2001

c) Developing Distributed and E-commerce Applications, 2"? edition,
Darrel Ince, 2nd edition, Pearson Addison Westly, 2004.

d) Java Message Service (O'Reilly Java Series), Richard Monson-
Haefel, David Chappell

2) tools
a) mySQL Database engine
b) JBoss 4.0.1
c) JBossMQ
d) Hermes 1.8 (JBossMQ Browser)

e-Macao-16-3-13

Course Logistics

) duration - 36 hours
) activities - lecture (hands-on), development
3) sessions/day - morning 09:00—-13:00 and afternoon 14:30—-16:30
) number of sessions - 6 morning and 6 afternoon
)

style — interactive, Lab work and tutorial

e-Macao-16-3-14

Course Prerequisite

1) some experience in object-oriented programming:
a) C++
b) Delphi
c) Java Programming Language
d) any other object-oriented language
2) basic understanding of TCP/IP networking concepts

Introduction

Course QOutline

e-Macao-16-3-16

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

e-Macao-16-3-17

Distributed System

Distributed system can be defined as a combination of several computers
with separate memory, linked over a network, and on which it is possible to
run a distributed applications.

Characteristics:

1) capable of communicating over a network

2) the network is usually stable

3) fail-safe

4) each device has a permanent identification within the network

Hence, it is a collection of independent computers, interconnected via a
network, capable of collaborating on a task.

e-Macao-16-3-18

Distributed Application

A distributed application consist of several parts of a program
communicating with each other, which cooperate to carry out a common
task.

For example, client server application.

Typically, but not necessarily, the parts of the application are distributed
across several computers.

The distribution can also be simulated on one computer.

In this case, however, information is not transmitted via a common memory
or address space, but with the aid of techniques of remote communication.

e-Macao-16-3-19

Distributed Programming

Distributed programming is a model in which processing occurs in many
different places (or nodes) around a network.

Characteristics:
1) processing can occur whenever it makes the most sense

2) carried out on a distributed system

)
3) making calls to other address spaces possibly on different machines
4) tasks are handled in parallel

e-Macao-16-3-20

Why Distributed Programming?

1) balance resource loading

2) lower cost of development since clients can access remote codes for

services

3) separation of concerns

4) Platform independence

e-Macao-16-3-21

Design Considerations

In general, three aspects need to be put into consideration:
1) Concurrency — actual or apparent parallelism of control flows
issues: how to manage both heavy and light weight processes

2) Distribution — is the logical and spatial distance of objects from each other

Issue: how these object can locate, access and communicate with each
other

3) Persistence —is the long-term storage of data or objects on non-volatile
media

Issues: how to persist data and objects. Persistence achives the
distribution of data or objects in time.

e-Macao-16-3-22

Protocol Layers

1) Communications betweens processes takes place using agreed
conventions - protocols

2) Network communications requires protocols to cover high-level
application communication all the way down to wire communication

3) Complexity handled by encapsulation in protocol layers

e-Macao-16-3-23

ISO OSI Protocol

Application Application
Presentation Presentation
Session SEession
Transport Transport
Network Network
Data Link Data Link
Physical Physical

SN I — —

e-Macao-16-3-24

OSl layers

1) Network layer provides switching and routing technologies

2) Transport layer provides transparent transfer of data between end
systems and is responsible for end-to-end error recovery and flow
control

3) Session layer establishes, manages and terminates connections
between applications.

4) Presentation layer provides independence from differences in data
representation (e.g. encryption)

5) Application layer supports application and end-user processes

TCP/IP Protocol

e-Macao-16-3-25

application | | application
TCF UDP

i

i

P

i

h/w interface

Osl 5-7

OSl 4

OSsl 3

Osl1-2

e-Macao-16-3-26

Port and Socket

1) port

a) conduit into a computer through which information flows and
assigned a unique number

b) usually port numbers 0 to 1023 are reserved for special
purposes (e.g. HTTP — 80, FTP — 21, SMTP — 25

c) TCP/IP-based computer is identified by a pair of IP address
and Port number

2) socket

a) a socket is one end of a process that an application is using
to communicate

b) defined by two addresses: the IP address of the host
computer; and the port address of the application or process
running on the host

e-Macao-16-3-27

Connection Models

There are two types of connection models:

1) Connection oriented
2) Connectionless

Connection oriented transports may be established on top of connectionless
ones —TCP over IP

Connectionless transports my be established on top of connection oriented
ones — HTTP over TCP

Connection oriented

e-Macao-16-3-28

1) A single connection is established for the session

2) Two-way communications flow along the connection
3) When the session is over, the connection is broken
4) The analogy is to a phone conversation

5) An example is TCP

e-Macao-16-3-29

Connectionless

1) Inha connectionless system, messages are sent independent of each
other

2) Ordinary mail is the analogy
3) Connectionless messages may arrive out of order

4) An example is the IP protocol

e-Macao-16-3-30

Communications Model

Message passing

Requestor Responder

send(Msg, Responder)

Receive{ Msg, Requestor)

/ send(Reply, Requestor)

Receive(Reply, Responder)

e-Macao-16-3-31

Distributed Computing Models

peer-to—peer A le—| A
filter A J‘,—‘y C
client-server A B

e-Macao-16-3-32

Client/Server System

User Client Server
request
Q Client ? Server
process € process
response
System System

/\ hardvrare hardware

Client/Server Application

Client

e-Macao-16-3-33

Server

Clig Application
pro 5

SYStet

hardware

System

hardware

Server Distribution 1

e-Macao-16-3-34

Single client, single server

Client

multiple clients, single server

Client

Server

/\

2 Master

Slave

Slave

Client

/

Server Distribution 2

e-Macao-16-3-35

single client, multiple servers

Client

>

Server

multiple clients, multiple servers

Server

e-Macao-16-3-36

Component Distribution

Every distribution is made up of three components:

1) Presentation component
2) Application logic
3) Data access

e-Macao-16-3-37

Middleware 1

1) intermediate layers between client and server

2) what exactly is it?

a) a vague term that covers all the distributed software
needed to support interactions between client and server

3) where does the middleware start and where does it end?

a) It starts with the API set on the client side that is used to
invoke a service, and it covers the transmission of the
request over the network and the resulting response”

e-Macao-16-3-38

Middleware 2

1) The network services include things like TCP/IP

2) The middleware layer is application-independent s/w using the network
services

3) Examples of middleware are: DCE, RPC, Corba

4) Middleware may only perform one function (such as RPC) or many
(such as DCE)

e-Macao-16-3-39

Middleware Model

The middleware model is

Client processes Server processes
Client Server
middleware Exchange middleware

protocol
Local Network Local Network
services services services services
O/S and hiw O/S and hiw

network protocol

e-Macao-16-3-40

Example: Middleware

1) Primitive services such as terminal emulators, file transfer, email
« Basic services such as RPC

1) Integrated services such as DCE, Network O/S

« Distributed object services such as CORBA, OLE/ActiveX

« Mobile object services such as RMI, Jini

« World Wide Web

e-Macao-16-3-41

Middleware Functions

1) Initiation of processes at different computers

« Session management

1) Directory services to allow clients to locate servers

* remote data access

« Concurrency control to allow servers to handle multiple clients
» Security and integrity

« Monitoring

« Termination of processes both local and remote

e-Macao-16-3-42

Project Exercise 1

Describe a typical distributed system in use in your agency

Which of the following distributed architecture models best represents the
distributed system described in question 17

List the different components of the systems listed in 1

Provide a model of the system described in question 1 using a UML
deployment diagram showing the various components listed in question
two as well as the nodes hosting these components.

|dentify the possible points of failures in the distributed system using the
model presented in question 4.

Streams

Course QOutline

e-Macao-16-3-44

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

Overview

e-Macao-16-3-45

|

o 01 &~ W DN

)
)
)
)
)
)

what is a stream?

types of Streams
characteristics of Streams
working with streams
bridging Streams

stream chaining

e-Macao-16-3-46

Introduction

Most programs use data in one form or another, whether as input, output,
or both.

The sources of input and output can vary between a local file, a socket on
the network, a database, variables in memory, or another program.

Even the type of data can vary between objects, characters, multimedia,
and others.

e-Macao-16-3-47

Reading Data

To bring data into a program, a Java program:

1) opens a stream to a data source, such as a file or remote socket
2) and reads the information serially

Source

e-Macao-16-3-48

Writing Data

On the flip side, a program can open a stream to a data source and write to it
in a serial fashion.

. A stream
|F'rugram pinfﬂr‘;f
m dest
a I
[M

e-Macao-16-3-49

Reading and Writing Data

The concept of serially reading from, and writing to different data sources is
the same.

For that very reason, once you understand the top level classes the
remaining classes are straightforward to work with.

These classes are stored in the java. io package.

e-Macao-16-3-50

Streams and Data Sources 1

Applications often need to read data to and write data from other sources. Streams
provide a means for reading and writing sequences of bytes.

e-Macao-16-3-51

Streams and Data Sources 2

Streams are often used for character values, although this is not the only possibility.
The stream concept gives consistent access to any source of data. The source of the data
might be a file.

e-Macao-16-3-52

Streams and Data Sources 3

Streams are often used for character values, although this is not the only possibility.
The stream concept gives consistent access to any source of data. The source of the data
might be a file.

e-Macao-16-3-53

Streams and Data Sources 4

The source of this data might be a network.

e-Macao-16-3-54

Streams and Data Sources 5

The source of this data might even be another process.

e-Macao-16-3-55

Reading and Writing Algorithms

No matter where the data is coming from or going to and no matter what its
type, the algorithms for sequentially reading and writing data are basically

the same:

Reading:
open a stream
while more information
read information

close the stream

Writing:
open a stream
while more information
write information

close the stream

e-Macao-16-3-56

Example: Reading Text from File

try {

BufferedReader in = new BufferedReader (new
FileReader ("file"));

String str;
while ((str = in.readLine()) != null) {
process (str) ;
}
in.close () ;
} catch (IOException e) {

e.printStacktrace();

e-Macao-16-3-57

Lab Work: Reading a File

1) Based on the code snippet write a program to read a file and displays the
content to the console.

e-Macao-16-3-58

Stream Types

There are two categories of streams:

1) 8-bit byte streams
2) 16-bit Unicode character streams

Prior to JDK 1.1, the input and output classes (mostly found in the
java.io package) only supported 8-bit byte streams.

The concept of 16-bit Unicode character streams was introduced in JDK
1.1.

e-Macao-16-3-59

Stream Support

Support for byte streams are provided by:
1) java.io.InputStream abstract class
2) java.lo.0OutputStream abstract class

3) and their subclasses.

While the support for character streams are provided by:
1) java.io.Reader abstract class
2) java.io.Writer abstract class

3) and their subclasses.

e-Macao-16-3-60

Character versus Byte 1

Most of the functionality available for byte streams is also provided for
character streams.

Methods for character streams generally accept parameters of data type
char while methods for byte streams accept byte.

The names of the methods in both sets of classes are almost identical
except for the suffix

1) character-stream classes end with the suffix Reader or Writer

2) byte-stream classes end with the suffix InputStream and
OutputStream

e-Macao-16-3-61

Character versus Byte 2

For example:

1) to read files using character streams you would use
java.lo.FileReader class.

2) to read files using byte streams you would use

java.lo.FileInputStream.

Unless you are working with binary data, such as image and sound files,
you should use readers and writers (character streams) to read and

write the data.

Why?

e-Macao-16-3-62

Character versus Byte 3

Character streams are always preferred to byte streams when reading
and writing information because:

1) They can handle any character in the Unicode character set (while the
byte streams are limited to ISO-Latin-1 8-bit bytes).

2) They are easier to internationalize because they are not dependent
upon a specific character encoding.

3) They use buffering techniques internally and are therefore potentially
much more efficient than byte streams.

e-Macao-16-3-63

/O Streams Organization

java.io is a large collection of classes, consisting of over 50 classes.

For the purpose of understanding the relationships that exist among these
classes, they are categorized using the following criteria:

1) Data flow
2) Function and
3) Type of Data they process

e-Macao-16-3-64

Data Flow

Stream classes that channel data into a program are called input streams.
Example:

1) FileInputStream

2) FileReader

3) ObjectInputStream

4) PipedInputStream

5) etc.

Stream classes that channel data out of a program are called output
streams.

Example:
1) FileOutStream

2) FileWriter

3) ObjectOutputStream
4) PipedOutputStream
d) etc.

e-Macao-16-3-65

Function

Streams can also be grouped by the function they perform.

There are two categories:

1) Node or Data sink Streams - nature of the resource at the other end of

the stream, For example,
a) FileInputStream reads byte data from a file,

b) PipedWriter writes character data to a pipe (Thread)

2) Process or Filter Streams - type of processing performed on the
contents of the stream,

For example,
a) Buf feredReader to buffer reading to reduce disk/network access

b) ObjectOutput St ream for object serialization

e-Macao-16-3-66

Data Sink Streams

CharArrayReader, For reading from or writing to character buffers in

CharArrayWriter memory

F'ileReader, FileWriter [Forreading from or writing to files

PipedReader, Used to forward the output of one thread as the input
PipedWriter to another thread

StringReader For reading from or writing to strings in memory
StringWriter

ByteArrayInputStream [For reading from or writing to byte buffers in memory

ByteArrayOutputStream

FileInpuStream, For reading from or writing bytes to files
F'1ileOutputStream
PlpedInputStream, Used to forward the output of one thread as the input

PipedOutputStream to another thread

e-Macao-16-3-67

Example: Data Sink Streams

Displays contents of a file.

import java.io.*;

public class Type{

public static void main(String args([]) throws
Exception{
FileReader fr = new FileReader (args([0]);
PrintWriter pw = new PrintWriter (System.out,
true) ;
char c[] = new char[40906];
int read = 0;
while ((read = fr.read(c)) != -1)

pw.write(c, 0, read);
fr.close(); pw.close();

I

e-Macao-16-3-68

Filter Streams

BufferedReader ,

BufferedWriter

For buffered reading/writing to reduce disk/network

access for more efficiency

InputStreamReader ,

OutputStreamWriter

Provide a bridge between byte and character

streams

SequencelnputStream

Concatenates multiple input streams.

ObjectInputStream ,

Use for object serialization.

ObjectOutputStream

DatalnputStream , For reading/writing raw bytes to Java native data
DataOutputStream types.

PushbackReader Allows to "peek" ahead in a stream by one

character.

LineNumberReader

For reading while keep tracking of the line number.

e-Macao-16-3-69

Example: Filter Streams

Displays contents of many files

import java.lo.¥*;
class cat {
public static voild main (String argsl[]) {
String thisLine;
for (int 1=0; 1 < args.length; 1i++) {

try

BufferedReader br = new BufferedReader (new
FileReader (args[i]));

while ((thislLine = br.readLine()) != null) {

System.out.println(thisLine);

}
}catch (IOException e) {

System.err.println ("Error: " + e);

Fhb)

e-Macao-16-3-70

Data Type

At the Simplest level, the java.io package can be decomposed into
classes that process either of two types of data:

1) Byte Stream
2) Character Stream

Fundamental Stream Classes

Byte Stream Character Stream

Read Data InputStream Reader

Write data OutputStream Writer

e-Macao-16-3-71

Byte Stream Classes

They process raw bytes.

They come in two basic forms:
1) InputStreams — channel byte data into the program

Example:
java.lo.FileInputStream

2) OutputStreams — channel byt e data from the program

Example:
Jjava.io.FileOutputStream

Byte-stream classes end with the suffix InputStream and OutputStream

e-Macao-16-3-72

Byte-Stream Parent Classes

InputStreamand OutputStream are the abstract parent classes for
byte-stream based classes in the java.io package.

Usage:

1) InputStream classes are used to read 8-bit byte streams and

2) OutputStream classes are used to write to 8-bit byte streams.

Methods for reading and writing to streams:

int
int
int
int
int

int

read ()

read (byte[] Db)

read (byte[] b, i1nt offset, 1nt length)
write (int Db)

write (byte[] Db)

write (byte[] b, int offset, int length)

e-Macao-16-3-73

InputStream

This abstract class provides the core methods used to read bytes from an
input node.

The methods are:

int read()

int read(bytel[] b)

int read(byte[] b, int offset, int length)
vold close ()

int available ()

long skip(long 1)

boolean markSupported ()

vold mark (int 1)

vold reset ()

e-Macao-16-3-74

InputStream Hierarchy

FileInputStream

ObjectInputStream

PipedInputStream

[InputStream }Q]

SequenceInputStream

FilterInputStream

StringBufferInputStream

—[DataInputStream

-{- PushbackInputStream

'{ BufferedInputStream

ByteArrayInputStream

-{ LineNumberInputStream

e-Macao-16-3-75

OutputStream

This abstract class provides the core methods used to write bytes to an
output node.

The methods are:

int write (int Db)

int write (byte[] b)

int write(byte[] b, int offset, int length)
vold close ()

(
void flush({()

e-Macao-16-3-76

OutputStream Hierarchy

OutputStream }Q—

FileOutputStream }

ObjectOutputStream

—

=

DataOutputStream

FilterOutputStream }ij

PipedOutputStream]

ByteArrayQutputStream J

BufferedOutputStream

PrintStream

e-Macao-16-3-77

Data Sink Byte-Stream

Classes that take byte input from different types of nodes (file, pipe, byte
array, etc)

Example:
FileInputStream
PipedInputStrean

Classes that send byte output to different types of node (file, pipe, byte
array, etc)

Example:
FileOutputStream
PipedOutputStream

Example: Data Sink Byte-Sfreéhﬁ

1) FileInputStream/FileOutputStream

Usage: is meant for reading/writing streams of raw bytes such as image
data to/from files

File £ = new File("mydata.txt");
FileInputStream fis = new FileInputStream(f);
BufferedInputStream bis = new
BufferedInputStream(fis);

DatalInputStream dis = new DatalnputStream(bis);

2) ByteArrayInputStream/ByteArrayOutputStream

Usage: are useful for holding data when the underlying data type is
irrelevant to the purpose of the application

byte[] c

ByteArrayInputSteam r = new ByteArrayInputSteam(c);

e-Macao-16-3-79

Example: Data Sink Byte-Stream

3) PipedInputStream/PipedOutputStrea

Usage: read from or write to pipes. Often used to exchange data
between threads.

PipedInputStream pl = new PipedInputStream();
PipedOutputStream po = new PilpedOutputStream(pl);

Or

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream(pi);

Or

PipedInputStream pl = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream() ;
pi.connect (po);

e-Macao-16-3-80

Example: FilelnputStream 1

import java.l1o.*;

class FileInputStreambemo {

public static void main (String args|[]) throws
Exception {

int size;
InputStream f =
new FileInputStream("FilelInputStreamDemo. java");

System.out.print ("Total Availlable Bytes: ")

System.out.println((size = f.available()));
int n = size/40;
System.out.println("First " + n +
" bytes of the file one read() at a time");

for (int 1i=0; i < n; 1i++) {
System.out.print ((char) f.read());

e-Macao-16-3-81

Example: FilelnputStream 2

System.out.println("\nStill Available: " +
f.available());
System.out.println ("Reading the next " + n +
" with one read(b[])");
byte b[] = new byte[n];
if (f.read(b) !'= n) {
System.err.println("couldn't read " + n + "
bytes.");

}
System.out.println(new String (b, 0, n));

System.out.println("\nStill Available: " + (size =
f.available()));
System.out.println ("Skipping half of remaining
bytes with skip()");

f.skip(size/2);

System.out.println("Still Available: " +
f.available());

e-Macao-16-3-82

Example: FilelnputStream 3

+ n/2 + " into the

System.out.println ("Reading "
end of array");

if (f.read(b, n/2, n/2) !'= n/2) |
System.err.println("couldn't read " + n/2 + "
bytes.");
}
0, b.length));

System.out.println (new String (b,

System.out.println("\nStill Available: " +
f.available());

f.close();

e-Macao-16-3-83

Lab Work: Reading a File

1) Write a program that reads an MP3 file.

e-Macao-16-3-84

Pipedinput/Output Stream 1

The PipedlnputStream and PipedOutputStream classes are designed to be used as
a pair. They allow a mechanism for communication among threads, although they have
other uses, too.

e-Macao-16-3-85

PipedInput/Output Stream 2

Java Application

Thread 1

To illustrate how the piped streams can be used, suppose you have an application which
must transfer data between two separate threads.

e-Macao-16-3-86

Pipedinput/Output Stream 3

Thread 1

Thread 2

The PipedlinputStream /PipedOutputStream are created as a pair, so that what is
written into the output stream can be read from the input stream. The effect is much like
a pipeline that carries data from one point in an application to another.

e-Macao-16-3-87

Example: Piped Stream 1

Shows how to exchange data between two threads

import java.io.*;

class ReadThread extends Thread implements Runnable {
InputStream pi = null;
OutputStream po = null;
String process = null;

ReadThread (String process, InputStream pi,
OutputStream po) {
this.pl = pi;
this.po = po;

this.process = process;

e-Macao-16-3-88

Example: Piped Stream 2

public void run () {
int ch;
byte[] buffer = new byte[512];
int bytes_read;
try {
for(;;) A
bytes_read = pi.read(buffer);
if (bytes_read == -1) { return; }
po.write (buffer, 0, bytes_read);
}
} catch (Exception e) {
e.printStackTrace () ;
} finally { }

e-Macao-16-3-89

Example: Piped Stream 3

class SystemStream {

public static void main(String [] args) {
try {

int ch;

while (true) {
PipedInputStream 1in = new PipedInputStream() ;
PipedOutputStream out = new PipedOutputStream (

in);

FileOutputStream writeOut = new

FileOutputStream ("out");

ReadThread rt = new ReadThread ("reader",
System.in, out);
ReadThread wt = new ReadThread ("writer", in,

System.out);
rt.start () ;
wt.start () ;

e-Macao-16-3-90

Example: Piped Stream 4

} catch (Exception e) {
e.printStackTrace () ;

}
}
}

e-Macao-16-3-91

Filter Byte-Stream

They convert bytes to primitive data

They write primitive data

Example:

BufferedInputStream/BufferedOutputStream
DatalInputStream/DataoutputStream

e-Macao-16-3-92

Example: Filter Byte-Stream 1

1) BufferedInputStream/BufferedOutputStream

Usage:
These classes buffer data emanating from an InputStream object or in
route to an OutputStream object.

Benefits:

a) Improved performance - Buffered streams cache data to reduce the
need to access slower transmission media.

b) Simplicity - Buffered streams manage the data cache themselves, so
you do not have to.

File £ = new File("mydata.txt");

FileInputStream fis = new FileInputStream(f);
BufferedInputStream bis = new BufferedInputStream(fis);
DatalnputStream dis = new DatalnputStream(bis);

Example: Filter Byte-Strearﬁ o

2) DatalInputStream/DataoutputStream
Usage:
These classes transform bytes emanating from an InputStream type into

primitives (such as int, long, or double) or primitives in route to an
OutputStream type into bytes.

Attach a DataInputStream filter to an InputStream object when you
need to read primitives from a stream.

Attach a DataOutputstream filter to an OutputStream object when you need to
write primitives to a stream.

File £ = new File("mydata.txt");

FileInputStream fis = new FileInputStream(f);
BufferedInputStream bis = new BufferedInputStream(fis);
DatalInputStream dis = new DatalnputStream(bis);

e-Macao-16-3-94

Example: BufferedinputStream 1

import java.io.*;

class BufferedInputStreamDemo ({

public static void main (String args|[]) throws
TOException {

String s = "This 1s a © copyright symbol " +

"but this 1is © not.\n";
byte buf[] = s.getBytes();

ByteArrayInputStream 1in = new

ByteArrayInputStream (buf) ;
BufferedInputStream f = new BufferedInputStream(in);
int c;

boolean marked = false;

e-Macao-16-3-95

Example: BufferedinputStream 2

while ((c = f.read()) !'= -1) {
switch(c) {
case '&':
1f (!'marked) {
f.mark (32);
marked = true;
} else {
marked = false;
}
break;
case ';':

1f (marked) {
marked = false;
System.out.print ("(c)");

} else

e-Macao-16-3-96

Example: BufferedlnputStream 3

System.out.print ((char) c);

break;
case ' ':
1f (marked) {
marked = false;

f.reset();
System.out.print ("&") ;

} else
System.out.print ((char) c);

break;

default:
1f (!marked)
System.out.print ((char) c);

break;

Frhy

e-Macao-16-3-97

Serialization

Serialization is a process of writing an object to a byte stream.

Writing an Object

FileOutputStream out = new FileOutputStream("tmp");
ObjectOutput objOut = new ObjectOutputStream(out) ;

objOut.writeObject (Color.red) ;

Reading an Object
FileInputStream 1in = new FileInputStream("tmp");
ObjectInputStream objIn = new ObjectInputStream(in);
Color ¢ = (Color)objIn.readObject ();

e-Macao-16-3-98

Object Serialization 1

Provides a way for objects to be written as a stream of bytes and then later
recreated from that stream of bytes.

The job of an Object Input St ream class is to convert collections of bytes
into objects.

Sending an object over a stream was a cumbersome process. How?

Essentially, you had to decompose the object into its constituent parts,
sending each to the stream individually, and then reconstruct the object
manually at the other end of the stream.

Process is cumbersome. Solution?

e-Macao-16-3-99

Object Serialization 2

The introduction of new interface to the java.io package, the
Serializable interface

The serializable interface eliminates the drawbacks of sending objects
across streams.

Each object to be sent has to implement this interface

import java.lo.* ;
class Date implements Serializable {
int m, d, y ;
public Date(int m, int d, int vy) {
this.m = m ; this.d = d ; this.y = v ;

e-Macao-16-3-100

Object Serialization 3

ClassMyObiject
implements Serializabkle

int x=6;
String s="Hello";

MyObhject:field x, type int, wvalue 6:field s, Lype String walus "Hellg"

Serialization takes the state (that is the instance variables) of an object and represents
them as a sequence of bytes

e-Macao-16-3-101

Object Serialization 4

ClassMyObij e \
implementf Serializable

int ==6;
String s="Hello";

MyObject:field =%, type int, walues &6:fisld 5, type String walus "Helleg™

It is important that the class that defines the object declares that the object is serializable.
Otherwise, this process does not work.

e-Macao-16-3-102

Object Serialization 5

ClassMyObject
implements Serializabkle

int x=&;
String s="Hello";

ClassObject
Name (Field Type j (Field Namaj Value

' W
MyﬁbjP”t field x, type Lnt value o6:field s, type String wvalus "Hello"™
A\ FAN

LFieId Nama) [vaie) LFieId Type)

Motice that the sernalized form contains information about the name of the class of the
object, the names and types of the fields, as well as the values themselves.

e-Macao-16-3-103

Object Serialization 6

[—

Most objects have references to other objects within them, and sometimes those
reference objects also have other references to other objects. All the objects that are
reachable through these references form the object graph.

e-Macao-16-3-104

Object Serialization 7

/r""'_"""\ |

[Serializable J

[Serializable]

~—

[Serializable]

~__ - {

}

[Serializable]
~— [Serializable]
‘\“\‘-._____..-’/

Normally, when an object is serialized, all the objects in the object graph must be serialized.
This means that all the objects in the object graph must implement Serializable as well.
Otherwise, the serialization will fail.

e-Macao-16-3-105

Object Serialization 8

/r""'_"""\ |

[Serializable J

[Serializable]

~—

[Serializable]

~__ - {

}

[Serializable]
~— [Serializable]
‘\“\‘-._____..-’/

Normally, when an object is serialized, all the objects in the object graph must be serialized.
This means that all the objects in the object graph must implement Serializable as well.
Otherwise, the serialization will fail.

e-Macao-16-3-106

Character Stream Classes

They process 16 bits Unicode characters.

They come in two basic forms:
1) Reader —channel character data into the program

Example:
java.io.FileReader

2) Writer — channel character data from the program
Example:

Jjava.io.FileReader

Character-stream classes end with the suffix Reader and Writer

e-Macao-16-3-107

Character Parent Classes

Reader and Reader are the abstract parent classes for byte-stream
based classes inthe java.io package.

Usage:

1) Reader classes are used to read 16-bit character streams and

2) Writer classes are used to write to 16-bit character streams.

Methods for reading and writing to streams:

int
int
int
int
int

int

read ()
read (char|[] <)
read (char[] ¢, i1nt offset, 1nt length)

write (int <)
write (char[] <)
write (char[] ¢, int offset, int length)

e-Macao-16-3-108

Reader

This abstract class provides the core methods used to read characters
from an input node.

The methods are:

int read()

int read(char[] c)

int read(char[] ¢, int offset, int length)
vold close ()

long skip(long 1)

boolean markSupported ()

vold mark (int 1)

vold reset ()

Reader Hierarchy

e-Macao-16-3-109

BufferedReader

CharArrayReader

[Reader]17

StringReader

InputStreamReader

PipedReader

FilterReader

e-Macao-16-3-110

Writer

This abstract class provides the core methods used to write characters to
an output node.

The methods are:

int write(int b)

int write(char[] c)

int write(char[] ¢, int offset, int length)
vold close ()

void flush ()

e-Macao-16-3-111

Writer Hierarchy

BufferedWriter

—
4[CharArrayWriter :
4[StringWriter :
[Writer]1 [OutputStreamWriter H FileWriter]
| PrintWriter :
r PipedWriter |

FilterWriter

-~
.

e-Macao-16-3-112

Data Sink Character-Stream

Classes that take input from different types of nodes (file, pipe, char
array, etc)

Example:
FilleReader
PipedReader

Classes that send output to different types of node (file, pipe, char
array, etc)

Example:
FileWriter
PipedWriter

e-Macao-16-3-113

Example: Node Character-Stream

1) FileReader/FileWriter
Usage: is meant for reading/writing streams of character data to/from
files

File £ = new File("mydata.txt");
FileReader fis = new FileReader (f);

2) CharArrayReader/CharArrayWriter
Usage: are useful for holding data when the underlying data type is
irrelevant to the purpose of the application

char[] c¢

CharArrayReader r = new CharArrayReader (c);

e-Macao-16-3-114

Bridging Streams 1

To bridge the gap between the byte and character stream classes, JDK
1.1 and JDK 1.2 provide the java.io.InputStreamReader and
java.io.0utputStreamWriter classes.

Usage:
The only purpose of these classes is to convert byte data into character-
based data according to a specified (or the platform default) encoding.

For example, the static data member "in" in the "System" class is

essentially a handle to the Standard Input (stdin) device. If you want to wrap
this inside the java.io.BufferedReader class that works with

character-streams, you use InputStreamReader class as follows:

BufferedReader in = new BufferedReader (new
InputStreamReader (System.1in)) ;

e-Macao-16-3-115

Bridging Streams 2

When a key is pressed, most platforms produce an 8bit code to represent a character.
There are many different character sets that a platform may use to encode characters.
Internally, the JVM uses 16bit Unicode characters.

e-Macao-16-3-116

Bridging Streams 3

When characters enter or leave the program, they must be converted between these distinct
encoding formats. This is the job of the InputStreamReader and CutputStreamWriter
classes.

e-Macao-16-3-117

Bridging Streams 4

This is the InputstreamReader object. This class uses a Reader type object on the left
hand side, but can plug into an InputStream type object on the right hand side. This
allows it to read data that are encoded in a platorm-specific way from an InputStream
object and convert those data into 16 bit unicode characters that can be read from the
Reader interface by the client program.

e-Macao-16-3-118

Bridging Streams 5

When an application wants to write data out to the local platform, the
OutputStreamWriter performs the inverse conversion, taking Unicode
characters and mapping them to bytes in the local encoding format.

e-Macao-16-3-119

Summary: Filter Streams

Character Streams Byt Streams

Bufferedieader BuffersdInpurStrest
Bufferedliriter BuffereditputStres

FilterBeader FilterInputStresan
FilterWriter Filtertutput3tresan

InputStreanfeader
Quptut3treanir iter

Convertng between bytes and character

Chject Input3trestn

Object serfahzation ChjectOutputStream

Datalnput3tresm
DatatucpucStrest

Peeking ahead PushhackReader PushhackInputStrest

Diata cotersion

e-Macao-16-3-120

Reading Text from Standard Input

Ery

BufferedReader in = new BufferedReader (new
InputStreamReader (System.1in)) ;

String str = "";

while (str != null) {
System.out.print ("> prompt ");
str = in.readLine();

process (str);

}

} catch (IOException e) {

}

e-Macao-16-3-121

Reading Text from a File

try |
BufferedReader in = new BufferedReader (new
FileReader ("infilename")) ;

String str;

while ((str = 1n.readLine()) !'= null) {
process (str);

}

in.close () ;

} catch (IOException e) {
}

e-Macao-16-3-122

Writing to a File

try {
BufferedWriter out = new BufferedWriter (new
FileWriter ("outfilename"));

out.write ("aString");
out.close () ;

} catch (IOException e) {

e-Macao-16-3-123

Appending to a File

try {
BufferedWriter out = new BufferedWriter (new
FileWriter ("filename", true)),;

out.write ("aString");
out.close () ;

} catch (IOException e) {
}

e-Macao-16-3-124

Serializing an Object

Object object = new javax.swing.JButton ("push");
try A

// Serialize to a file

ObjectOutputStream out = new

ObjectOutputStream (new
FileOutputStream("filename.ser"));

out .writeObject (object) ;
out.close () ;

// Serialize to a byte array
ByteArrayOutputStream bos = new

ByteArrayOutputStream() ;
out = new ObjectOutputStream(bos) ;
out .writeObject (object) ;
out.close () ;
// Get the bytes of the serialized object
byte[] buf = bos.toByteArray();
} catch (IOException e) |

e-Macao-16-3-125

Deserializing an Object

try {
// Deserialize from a file
File file = new File("filename.ser");
ObjectInputStream 1n = new

ObjectInputStream (new
FileInputStream(file));

// Deserialize the object

Jjavax.swing.JButton button =
(jJavax.swing.JButton) in.readObject ();

in.close () ;
} catch (ClassNotFoundException e) {

} catch (IOException e) {

e-Macao-16-3-126

Lab Work: Reading and Writing

Based on the code snippets, write a program that

y

2

) reads text from standard input
)

3) appends “This is emacao training”tothe end a text file
)

copies the content of one file and writes to another file

4) a program that joins series of files together

e-Macao-16-3-127

Stream Chaining

Stream chaining is a way of connecting several stream classes together to
get the data in the form required.

Each class performs a specific task on the data and forwards it to the next
class in the chain.

The output produced by one component becomes the input to the next
component in the chain.

Consider this.

e-Macao-16-3-128

Example: Stream Chaining 1

When an application invokes a method like readInt on a DataInputStream object,
what happens beneath the surface?

e-Macao-16-3-129

Example: Stream Chaining 2

The DataInputStream object requests four bytes (the representation for an int type)
from the Buf feredInputStream object (a reference to which is contained within the
DataInputStream object).

e-Macao-16-3-130

Example: Stream Chaining 3

The Buf feredInputStream object inspects its internal cache. If the cache does not
contain four bytes of leftover data from a previous read, the Buf feredInputStream object
will request additional bytes from the FileInputStream object (a reference to which is
contained within the Buf feredInputStream object). '

e-Macao-16-3-131

Example: Stream Chaining 4

The Buf feredInputStream object inspects its internal cache. If the cache does not
contain four bytes of leftover data from a previous read, the Buf feredInputStream object
will request additional bytes from the FileInputStream object (a reference to which is
contained within the Buf feredInputStream object).

e-Macao-16-3-132

Example: Stream Chaining 5

The FileInputStream object reads the requested numbers of bytes from the file
and returns them to the Buf feredInputStream object, which then caches the
data in its internal storage buffer.

e-Macao-16-3-133

Example: Stream Chaining 6

The FileInputStream object reads the requested numbers of bytes from the file
and returns them to the BufferedInputStream object, which then caches the
data in its internal storage buffer.

e-Macao-16-3-134

Example: Stream Chaining 7

The Buf feredInputStream object extracts the four bytes requested by the
DataInputStream object from the cache and returns them to the calling method.

e-Macao-16-3-135

Example: Stream Chaining 8

The DataInputStream object returns the four bytes to the application in the form of
an int type.

IntputStream Chain

e-Macao-16-3-136

FileInputstream theFile =
EufferedInputitream thebuffer = new BufferedInputitresam | theFile | ;

Datalnputitream thelata =

Data Source

new FileInputStream({ "input.dat™ | ;

new Datalnputdtream| theBuffer)

—r

_h. -

FileInputstream

BufferedInputStream

Datalnputstream

ﬂliﬁﬁﬁii’

e-Macao-16-3-137

OutputStream Chain

FileQutput3tream theFile = new FileOutput3itresam| "output.dat") ;
EufferedOutput3trean thebuffer = new BufferedOutputitream | theFile) ;
Datatutputitream thelata = new DataOutputitream| thebuffer) ;

— — — = Data Sink

FileQutputStream

BufferedCutputstrean

DatalutputStream

e-Macao-16-3-138

File Operations

There are three non stream classes in java.io package.

1) File Class - represents a file on the local system

2) FilenameFilter class - is an interface used to filter a list of filenames

Each will be considered in details.

e-Macao-16-3-139

File Class

Represents a file on the local filesystem.

Usage:

1) to identify a file

2) obtain information about the file

3) and even change information about the file

Constructors:
1) File (File parent, String child)
2) File (String pathname)
3) File (String parent, String child)
4) File (URI uri)

e-Macao-16-3-140

Example: File 1

import java.io.File;

class FileDemo {
static void p(String s) {
System.out.println(s);

public static void main (String args[]) {
File fl1 = new File(“filename here");
p("File Name: " + fl.getName()),;
p("Path: " + fl.getPath());
p("Abs Path: " + fl.getAbsolutePath{());
p("Parent: " + fl.getParent());
p(fl.exists () ? "exists" : "does not exist");
p(fl.canWrite () ? "writeable" : "not writeable");
p(fl.canRead () ? "is readable" : "is not readable");

e-Macao-16-3-141

Example: File 2

(" " + (fl.isDirectory()?"" :"not a directory"));
(fl 1sFlle() ?"normal file":" a named pipe");
(fl.isAbsolute () ? "absolute" : "not absolute");
("File last modified: " + fl.lastModified());
("File size: " 4+ fl.length() + " Bytes");

'O 'O 'O 'O O

e-Macao-16-3-142

Directories

A directory is a F'i 1e that contains a list of other files and directories.

When you create a File object and it is a directory, the isDirectory ()
method will return true.

In this case you can call 1ist () on that object to extract the list of other
files and directories inside.

The formof 1ist () is
String[] 1list();

The list of file is returned in an array of st ring objects.

e-Macao-16-3-143

Example: Directories 1

import java.io.File;

class DirList {
public static void main (String args[]) {
String dirname = "/java";
File f1 = new File(dirname);

1f (fl.isDirectory()) {
System.out.println("Directory of " + dirname);

String s[] = f£l.1list();

for (int 1=0; 1 < s.length; 1i++) {

File £ = new File(dirname + "/" + s[i]);
1if (f.isDirectory()) {

System.out.println(s[i] + " is a directory");
} else {

System.out.println(s[1] + " 1s a file");

e-Macao-16-3-144

Example: Directories 2

}

} else {
System.out.print (dirname + " 1s not a”);

System.out.println (“directory");
}

}
}

e-Macao-16-3-145

Creating Directories

Another two useful Fi1e utility methods are:

1) mkdir () — creates a directory , returning t rue on success and false
on failure.

Failure indicates that the path specified in the Fi1e object already exists,
or that the directory cannot be created because the entire path does not
exist yet.

2) mkdirs () —to create directories for which no path exists, it creates both
a directory and all the parents of the directory

e-Macao-16-3-146

FilenamekFilter

To limit the number of files returned by the 1ist () method to include only

those files that match a certain type of filename pattern, or filter, use the
second form of 1ist ().

The second form of 1ist () is:
String[] list (FilenameFilter ffobj);

FilenameFilter defines only a single method, accept (), which is
called once for each file in a list.

The accept () method returns t rue for files in the directory specified by
directory that should be included in the list and returns false if otherwise.

e-Macao-16-3-147

Example: Filenamekrilter 1

import java.io.*;

public class OnlyExt implements FilenameFilter ({

String ext;
public OnlyExt (String ext) {

this.ext = "." + ext;

public boolean accept (File dir, String name) {

return name.endsWith (ext) ;

e-Macao-16-3-148

Example: Filenamerilter 2

Here is a modified version of directory listing program. Now it display only
classes that use .html extension.

import java.lio.*;

class DirListOnly {
public static void main(String args|[]) {
String dirname = "/java";
File fl1 = new File(dirname);
FilenameFilter only = new OnlyExt ("html");
String s[] = fl.list(only);

for (int 1=0; 1 < s.length; i++) {
System.out.println(s[1]);

e-Macao-16-3-149

Stream Benefits

The Streaming interface to I/O in Java provides:

1) A clean abstraction for complex and often cumbersome
task.

2) The composition of filtered stream classes allows you to dynamically
build the custom streaming interface to suit your data transfer
requirements.

3) Java programs written to adhere to the abstract, high level-level
InputStream,OutputStream, Reader and Writer classes will
function properly in the future even when new and improved concrete

stream classes are invented.

4) Serialization of object is expected to play an increasingly important role
In Java Programming in the future.

e-Macao-16-3-150

Lab Work: Input and output

Write a program that reads the content of “C: \Documents and
Settings\All Users” on your local system.

Write a program that counts the total number of directories and files you
have in the path.

Archive at least one of the subdirectories of 211 Users folder and save
it in zip format in your folder on the network.

Study and use java.util.zip package by referring to the API
documentation for the appropriate classes to use in this exercise.

e-Macao-16-3-151

Project Exercise 2

1)

Implement the client component of your software architecture which
satisfies your use case model. Provide a web interface for users and
desktop interface for back office processing. Implementation should be
carried out using Java swing library.

Check for the consistency between your implementation and your design
class diagrams (in your design model). For instance, are all your design
classes implemented?

Check for the consistency between the dynamic aspect of your
architecture (instance level collaboration diagrams) and your
implementation

Update your implementation model indicating the implementing artifacts
for your client component.

Note: Provide appropriate version control for all artifacts (models and codes)

Networking

Course QOutline

e-Macao-16-3-153

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

e-Macao-16-3-154

Outline: Networking

Presents the network programming in Java language.
Main points:

’
2

) Review the basic network concepts and Java Implementation.
)
3) Introduce the Secure Socket.
)

)

Discuss the usage of java.net package.

4) Introduce the New 1I/O API.
9) Introduce the Java implementation for UDP protocol.

e-Macao-16-3-155

Overview

1) introduction
2) basic network concepts and Java Implementation
2) Implementation
3)
4)

)

5

JMS programming model and implementation
advance configuration

summary

e-Macao-16-3-156

Why Java

Why use Java for Networking?

a) Java was the first programming language designed from the ground
up with networking in mind.

b) Java provides easy solutions to two crucial problem for Internet
networking — platform independence and security.

c) Itis far easier to write network programs in Java than in almost any
other language.

« In the fully functional applications, very little code is devoted to
networking.

e-Macao-16-3-157

Network programs with Java 1

Examples that a Network Program can do:
a) Server-Client
Examples: RssOwl (http://rssowl.sourceforge.net/)
b) Peer-to-Peer
Examples: LimeWire (http:/limewire.org/)
Azureus (http://azureus.sourceforge.net/)

e-Macao-16-3-158

Network programs with Java 2

® RSSOwl - RSE 7 RDF { Atom Newsreal der

File Edit ¥iew Goto HNewsfeed Fawvorites Tools Help

Cnickviewr *
s | v [om
Favorites ¥ || [RESCw! ... | 3 Bicinfor... | @ G3C-0.. |E= Categor... 52 ="
| | Category: AmphetaRate, Samples |
o (& AmphetaRate =
(@, Latest best news Mewstife i
= {2 Samples 4 Don'tdo it =
4 The most important linguistic issue of onr age
(@ Philly Jinx" for Bagles- Surgery Set for Owens
As Dodgers Ponder Johnson Trade, Yankees Pursue Beltran
@ AP: Tanker Blast Would Impact Mile Radius (AF)
@ ARTHUR CHRENEOFF has more underreporied news from Irag. “The lates
@ Mew Chick tract!
@ Drive-Thru Supergrocery
Bush: Irag Bombers ‘Are Having an Effect’ (AP)
% Bush Defends Rumsfeld As ‘A Caring Fellow' (AP)
% Hifty online PDF conversion tools <
<_.._ ATl el - - ol _minaoFaraTa .1:._
< i | b3
[1 W [Ready | | Tuesday, December 21 2004

http://rssowl.sourceforge.net/

RssOwl combines news from
different sources and allows
the user to browse using a
modern graphical user
interface.

Unlike a web browser, this
program can continuously
update the data in real time.

e-Macao-16-3-159

Network programs with Java 3

@ LimeWire: Enabling Open Information Sharing

File' Wiew Mavigstion Resources

Select Type:
Any Type | [] Audio
Images ﬁ Video

Video

Title

Type
[&
Vear

[]

Director

L
[] More Search Options

Q Search |@ Monitor i! @ L1bmry|

9=
Tools Help
OLimeWire
Uvality | # Name | Type | Bz Hpeed Babale |

o |
Diocuments [EP'mgmms |

FE)

‘ Keyword WhatsNew ‘

| Yiect Connect |

The Most Advanced File Sharing Program on the Planet!

LimeWire PRO

Eetter search results

Turbo charged download speeds
Connec tions to maore sour '"CES
Personalized tech support

”‘ - Sixmonths of free updates

- Quality: Excellent
] | R

Purchase Lime Wire Pro to help us make downloads faster, M4 F u E P

http://www.limewire.org/

LimeWire enables the clients
to query each other and
transfer files among
themselves.

LimeWire is an open source
pure Java application that
uses a Swing GUIl and
standard Java networking
classes.

e-Macao-16-3-160

Network programs with Java 4

E
File Transfers Wiew Tooks Plugins Help

BEaE)

My Torrents &5 39.1% i FC3-test3-binary-i3gs My Tracker My Shares

IEIES

| Health | Name | Size| Done | Status [seie [Pees | o oeci Un Soee]

EE -1 @ £ FCa-test3-binary-i3s6 2.26GB 39.1% Ij‘nwnlnading 54 (60) 25 (39) 2111 kBfs 224 kBfs |

Seeding Rank | Heslth | Mame Status | Peers | UpSpeed| Uploaded | Share Ratio
25186 @ Azureusz 20,0, jar Forced Seeding 3 {5005) 3.2 kBls 30.0 MB 7.843
1sk Pricrity 2867 6 a blender-2. 34-inux-glbe 2 5-i386.tar.gz Seeding 0492 0 Bf= OE 0,000
15k Priority 777 @ @ Croquet_0.1_Lineetge Seeding 0i{a4) 0Bjs 0B 0.000
0 Peers @ ‘- blender-2. 34-inux-glbcz. 2.5-i386.tar. ... Queued o0y 0Bfs 0B @
0 Peers @ (£3 Azureus 2.2.0.0_Win3z2 setup.exe Queued o 0Bjs 0B @

\Azureus 2,2.0.0 f Latest 2,2.0.0 {Mov 01, 13:27} TPs: 0= 011 D: 211.1 kBjs U: [40K] 25.6 keifs

http://azureus.sourceforge.net

Azureus is one of the BitTorrent
clients written in pure Java.

BitTorrent is designed to serve
files that can be referenced from
known keys

Downloaders can sharing a file
while they're still downloading it.

e-Macao-16-3-161

Concepts for network program

Important concepts needed for writing network program in Java
1) Communication protocols: TCP and UDP

Ports and Internet Addresses

Sockets

Uniform Resource Locator (URL)

Uniform Resource Identifier (URI)

Streams and Threads (Covered in previous sessions)

Classes in java.net and java.io packages

e-Macao-16-3-162

Network Layers

Decides what to do with
the data

Ensure that packets are
received in the order and
no data is lost or e

corrupted.

Defines arrangement of
data and addressing
scheme.

Java never sees this layer

e-Macao-16-3-163

TCP and UDP

Java only supports TCP (Transmission Control Protocol), UDP (User
Datagram Protocol) and application layer protocols built on top of these.

Characteristics of TCP and UDP :

TCP UDP
e Provides the ability to acknowledge | ¢ Is an unreliable protocol that does
receipt of IP packets and request not guarantee that packets will
retransmission of lost or corrupted arrive at their destination.
packets. * Allow the receiver to detect
* Allows the received packets to be corrupted packets but does not
put back together in the order they guarantee that packets are
were sent. delivered in the correct order.
* Requires a lot of overhead. * Requires less overhead and faster.
e Supported classes in java.net : e Supported classes in java.net :
URL, URLConnection, Socket, and DatagramPacket, DatagramSocket,

ServerSocket and MulticastSocket

e-Macao-16-3-164

Ports

Each port from the server can be treated by the clients as a separate
machine offering different services.

app Spp app app
f | 1 | f I

l port port port l po

sener TCP |

o/

- -

Packet

Data port & | Data

Port numbers are represented by 16-bit numbers. (0 to 65,535)

The port numbers ranging from 0 - 1023 reserved for use by well-
known services such as HTTP and FTP and other system services.

e-Macao-16-3-165

Sockets

You can reach required service via its network and port IDs. what
then?

a) If you are a client

« you need an API that will allow you to send messages to
that service and read replies from it

b) If you are a server
e you need to be able to create a port and listen at it.

e you need to be able to read the message comes in and
reply to it.

The Socket and ServerSocket are the Java client and server classes
to do this.

e-Macao-16-3-166

Example : Sending Email 1

E-mail is sent by socket communication with port 25 on a computer
system.

open a socket connected to port 25 on some system, and speak “mail
protocol” to the daemon at the other end.

e-Macao-16-3-167

Example : Sending Email 2

import java.io.*;
import java.net.*;
public class SendEmail {

public static void main (String args|[]) throws
IOException {

Socket sock;

DatalnputStream dis;

BufferedReader br;

PrintStream ps;

System.out.println (">>> Connect
mailhost.iist.unu.edu");

sock = new Socket (“mailhost.iist.unu.edu", 25);

dis = new DatalnputStream(sock.getInputStream());

e-Macao-16-3-168

Example : Sending Email 3

br = new BufferedReader (new
InputStreamReader (dis)) ;

ps = new PrintStream(sock.getOutputStream());
System.out.println(br.readLine());
System.out.println (">>> Hello UNU/IISTT");
ps.println("Hello UNU/IIST");
System.out.println(br.readLine());

System.out.println (">>> Mail From:
oluotes@yahoo.com") ;

ps.println ("MAIL FROM:milton_hm@hotmail.com");
System.out.println(br.readLine());

String Addressee= "milton@iist.unu.edu";

e-Macao-16-3-169

Example : Sending Email 4

System.out.println (">>> Rcpt to: " + Addressee);
ps.println ("RCPT TO: " + Addressee);
System.out.println(br.readLine());

System.out.println (">>> Send \"data\"");
ps.println ("DATA") ;
System.out.println(br.readLine());
System.out.println (">>>>>>>>>>");
(

System.out.println(">>> This is the message\n that
Java sent");

System.out.println (">>> We are testing Socket
Programming") ;

System.out.println(">>> in eMacao Training
program.") ;

System.out.println (">>>>>>>>>>");

e-Macao-16-3-170

Example : Sending Email 5

ps.println("This is the message\n that Java
sent") ;

ps.println ("We are testing Socket Programming");

ps.println("in eMacao Training program.");
System.out.println(">>> .");
ps.println(".");

System.out.println(br.readLine());

System.out .println (">>> QUIT");
ps.println ("QUIT");
System.out.println(br.readLine());
ps.flush () ;

sock.close() ;

}

e-Macao-16-3-171

Internet Addressing

Internet address (IP address) is a unique number for identifying a device
connected to the Internet.

The current standard is IPv4 which are four bytes long.
137.92.11.13

IVERINER

/TN

network subnet host
The hostname and IP address is, in Java, represented by

java.net.InetAddress.

InetAddress is used by many other networking classes, including Socket,
ServerSocket, URL, DatagramSocket, DatagramPacket, and more.

e-Macao-16-3-172

Example

The following program will print out the IP address of the www.iist.unu.edu
import java.net.*;
public class IISTByName ({
public static void main (String[] args) {
try { InetAddress address =
ITnetAddress.getByName ("www.1list.unu.edu") ;
System.out.println (address) ;
} catch (UnknownHostException ex) {
System.out.println ("Could not find

wWww.list.unu.edu ");

e-Macao-16-3-173

InetAddress methods

Useful methods:
a) static InetAddress getByName(String host)
b)
c) String getHostAddress(); // in dotted form
d)

static InetAddress getLocalHost()

String getHostName();

e-Macao-16-3-174

The URL Class 1

The java.net .URL is an abstraction of a Uniform Resource Locator (URL).

URLs are composed of five pieces:
1. The scheme, also known as the protocol
The authority
The path
The query string

ok~ WD

The fragment identifier, also known as the section or ref

<scheme>://<authority><path>?<query>#<fragment>

e-Macao-16-3-175

The URL Class 2

For example, given the URL :
http://www.ibiblio.org/javafag/javabooks/index.html?isbn=123456789#toc

scheme : htip

authority : www.ibiblio.org

path : /javafag/books/javabooks/index.html
query string : isbn=123456789

fragment identifier : toc

ok =

e-Macao-16-3-176

The URL Class 3

The authority may further be divided into the user info, the host, and the
port.

For example, in the URL http://admin@www.blackstar.com:8080/
1. user info : admin
2. host : www.blackstar.com
3. port : 8080

The URL Class 4

e-Macao-16-3-177

The java.net.URL class provides static methods for getting the above

mentioned information:

getFile()
getHost()
getPort()
getProtocol()
getRef()
getQuery()
getPath()
getUserInfo()
getAuthority()

e-Macao-16-3-178

The URL Class 5

Unlike the InetAddress objects, you can construct instances of java.net.URL
using one of its six constructors.

1) public URL(String url) throws
MalformedURLException

2)

public
String

public
String

public

URL (String protocol, String hostname,
file) throws MalformedURLException

URL (String protocol, String host, int port,
file) throws MalformedURLException

URL (URL base, String relative) throws

MalformedURLException

e-Macao-16-3-179

The URL Class 6

5)public URL (URL base, String relative,
URLStreamHandler handler) // 1.2 throws
MalformedURLException

6)public URL(String protocol, String host, int port,
String file, // 1.2 URLStreamHandler handler)
throws MalformedURLException

e-Macao-16-3-180

Example 1

The following program will test the protocol supported by the browser:

import java.net.¥*;
public class ProtocolTester {
public static void testProtocol (String url) {

try {
URL u = new URL(url);
System.out.println (u.getProtocol() + " 1is

supported") ;

}

catch (MalformedURLException ex) {
String protocol =
url.substring (0, url.indexOf(':"));
System.out.println (protocol + " 1is not
supported") ;

e-Macao-16-3-181

Example 2

You can test it with the following Tester:

public class Tester {
public static void main (String[] args) {
ProtocolTester.testProtocol ("http://www.adc.org") ;

ProtocolTester.testProtocol ("https://www.amazon.co
m/exec/obidos/order2/") ;

ProtocolTester.testProtocol ("ftp://metalab.unc.edu
/pub/languages/java/javafaq/") ;

e-Macao-16-3-182

Lab Work: URL 1

1) Write a program that will split the input URL into corresponding parts.

Given: java URLSplitter
http://www.unu.iist.edu/demoweb/html-

primer.html#A1.3.3.3

Output:
The
The

output will be:
URL is http://www.unu.iist.edu/demoweb/html-

primer.html#A1.3.3.3

The
The
The
The

The
The
The

scheme 1s http

user info is null

host is www.unu.iist.edu
port is -1

path is /demoweb/html-primer.html
ref 1s A1.3.3.3
query string is null

e-Macao-16-3-183

Lab Work: URL 2

Try to test your program using the following URL:

ftp://mp3:mp3@138.247.121.61:21000/c%3a/

http://www.oreilly.com
http://www.ibiblio.org/nywc/compositions.phtml?catego

ry=Piano
http://admin@www.blackstar.com:8080/

2) What is the difference between file and path?

e-Macao-16-3-184

Retrieving Data from a URL

The URL class provides methods for retrieving data from a URL.:

public InputStream openStream() throws IOException
public URLConnection openConnection() throws
TOException

public URLConnection openConnection (Proxy proxy)
throws IOException // 1.5

public Object getContent() throws IOException

public Object getContent (Class[] classes) throws
IOException // 1.3

e-Macao-16-3-185

Retrieving Data from a URL 1

Procedure to use the methods:
1) Create an URL object
€.0. URL u = new URL("http://www.iist.unu.edu");
2) Open an InputStream object directly from the URL object

e.d. InputStream in = u.openStream();

3) Or open an URLConnection object from the URL object and then get
an InputStream object from the URLConnection object .

e.g. URLConnection uc = u.openConnection();
InputStream in = uc.getlInputStream();

4) In either case, you will have an InputStream. What’s followed is the
normal I/O procedure for getting data.

5) Don’t forget to put the try catch block for catching the
MalformedURLException and IOException.

e-Macao-16-3-186

Retrieving Data from a URL 2

What is the difference between using the openStream and openConnection
method?

1) openStream method only give you the access to the raw data and
cannot detect the encoding information.

2) openConnection method opens a socket to the specified URL and
returns a URLConnection object.

3) The URLConnection object gives you access to everything sent by
the server. You can access all the metadata specified by the
protocol such as the scheme. The URLConnection class also lets
you write data to as well as read from a URL.

e-Macao-16-3-187

Retrieving Data from a URL 3

The following methods are used to access the header fields and the contents
after the connection is made to the remote object:

1)getContent
2)getHeaderField
3)getinputStream
4)getOutputStream

e-Macao-16-3-188

Retrieving Data from a URL 4

Certain header fields are accessed frequently. The methods:
’
2
3
4
5
6

getContentEncoding
getContentLength
getContentType
getDate
getExpiration

)
)
)
)
)
) getLastModifed

e-Macao-16-3-189

Example : Reading from URL 1

import java.net.*;
import jJava.io.*;
public class URLConnectionReader {

ublic static void main (String[] args) throws
Exception {

URL yvahoo = new URL ("http://www.yahoo.com/");

URLConnection yc = yahoo.openConnection();
BufferedReader in = new BufferedReader (
new InputStreamReader (yc.getlInputStream()));

String 1nputlLine;

e-Macao-16-3-190

Example : Reading from URL 2

while ((inputlLine = in.readLine()) != null)
System.out.println (inputlLine);

in.close () ;

e-Macao-16-3-191

Uniform Resource |ldentifier (URI)

A Uniform Resource Identifier (URI) is an abstraction of a URL.

Most URIs used in practice are URLs, but most specifications and standards
such as XML are defined in terms of URIs

In Java 1.4 and later, URIs are represented by the java.net .URI class.

you should use the URL class when you want to download the content of a
URL and the URI class when you want to use the URI for identification
rather than retrieval.

When you need to do both, you may convert from a URI to a URL with the
toURL() method, and in Java 1.5 you can also convert from a URL to a URI
using the toURI() method of the URL class.

e-Macao-16-3-192

Uniform Resource |ldentifier (URI)

A URI reference has up to three parts: a scheme, a scheme-specific part,
and a fragment identifier. The general format is:
scheme:scheme-specific-part.fragment .

Getter methods:

1) public String getScheme()
2) public String getSchemeSpecificPart()
3
4
5) public String getRawFragment()

public String getRawSchemeSpecificPart()

)
)
) public String getFragment()
)

e-Macao-16-3-193

Lab Work: URI

1) Write a program that will split the input URI into corresponding parts.
2) List the methods you can get form the URI class using the javadoc.

e-Macao-16-3-194

Networking Examples

Now you have the basic concepts for different components for Java
networking. Let’s try to start some simple experiments.

e-Macao-16-3-195

A Simple Example

: R
Helle” out[@ @ Socket connection @j_;\ @ | in"Hello®

e In (@ established ,por @[out "R~
S 800 S

Create a Server

e-Macao-16-3-196

How to create a server?

Server ServerSocket Socket
nevw

-

accept

-

getlnpiutStream

getOutputStream

read

InputStream

write

OutputStream

read

write

close

e-Macao-16-3-197

Echo Server 1

import java.lo.*;
import java.net.*;
public class EchoServer {

public static int MYECHOPORT = 8189;

public static void main(String argv([]) {
ServerSocket s = null;
try |

s = new ServerSocket (MYECHOPORT) ;
} catch (IOException e) {
System.out.println(e);

System.exit (1);

e-Macao-16-3-198

Echo Server 2

while (true) {

Socket incoming = null;
try {
incoming = s.accept();

} catch (IOException e) {
System.out.println(e);
continue;
}
try {
incoming.setSoTimeout (10000); //10 seconds
} catch (SocketException e) {

e.printStackTrace () ;

e-Macao-16-3-199

Echo Server 3

try { handleSocket (1incoming) ;

} catch(InterruptedIOException e) {
System.out.println ("Time expired " + e);

} catch (IOException e) {
System.out.println(e);

}

try {
incoming.close () ;

} catch (IOException e) {

// ignore

e-Macao-16-3-200

Echo Server 4

public static void handleSocket (Socket incoming)
throws IOException {

BufferedReader reader =
new BufferedReader (new InputStreamReader (
incoming.getInputStream()));
PrintStream out =
new PrintStream(incoming.getOutputStream());

out.println ("Hello. Enter BYE to exit");

boolean done = false;
while (! done) {

String str = reader.readLine();

e-Macao-16-3-201

Echo Server 5

1f (str == null) {
done = true;
System.out.println ("Null received");
}
else {
out.println("Echo: " + str);
1if (str.trim() .equals ("BYE"))

done = true;

}

incoming.close () ;

e-Macao-16-3-202

Create a Client

How to create a client connected to a sever?

Client Socket InputStream OutputStream
' new

-
getDutputStrie_l_ﬂh

getinputStream

' ; write !

Echo Client 1

e-Macao-16-3-203

import java.io.*;

import java.net.¥*;

public class EchoClient {

public static void main(Stringl]
TOException {

Socket echoSocket = null;
PrintWriter out = null;

BufferedReader in = null;

BufferedReader stdIn =

args)

null;

throws

e-Macao-16-3-204

Echo Client 2

try {

echoSocket = new Socket ("localhost", 8189);

out = new
PrintWriter (echoSocket.getOutputStream(), true);

in = new BufferedReader (new
InputStreamReader (echoSocket.getInputStream()));
System.out.println (in.readLine());

} catch (UnknownHostException e) {
System.err.println ("Don't know about host.");
System.exit (1) ;

} catch (IOException e) {

System.err.println("Couldn't get I/0 for "

+ "the connection to server.");

Echo Client 3

System.exit (1);

}
try {

stdIn = new BufferedReader (new InputStreamReader
(System.1in)) ;

String userlnput;
while ((userInput = stdIn.readLine()) != null) {
out .println (userInput);
System.out.println("echo: " + in.readLine());
}
} catch (SocketException e) {

System.err.println("Socket closed");

Echo Client 4

e-Macao-16-3-206

finally {

1f

1if

1f

1f

(out !'= null)
out.close();

(in != null)
in.close () ;

(stdIn != null)
stdIn.close () ;

(echoSocket != null)

echoSocket.close () ;

e-Macao-16-3-207

Lab Work: Chatting Program

1) Modify the previous Echo Sever and Echo Client examples to create a
server-client chatting program.

Hints:

a) You need to create a server which will wait for the client to establish
the connection. Then it will print a statement to the client’s console
notifying that a connection is made.

b) Once the connection is made, both the server and client will be able
read message from the counterpart and write message to it.

e-Macao-16-3-208

Exercise . Multiple Clients 1

1) Please modify the previous lab work. you need to make your server to be
able to talk to multiple clients connected the server.

e-Macao-16-3-209

Exercise : Multiple Clients 2

thready 800(L
public void run() S @
{ & [Connection
@ S read
/I get input streams @
/I read/write client @
S

PR\

wlBE
|6

@ localhost
connectionport J ‘mam

thread
connection

m
©

client | ()

while (true)

{

Socket s = ss.accept();

read

N

(7, E]

CThread ct = new CThread(s

ct.start();

client

O

Notes:

main thread just
accepts

create and start 1
new thread per
client

);

e-Macao-16-3-210

Secure Sockets

Starting from JDK 1.4, Java Secure Sockets Extension (JSSE) is part of the
standard distribution.

JSSE uses the Secure Sockets Layer (SSL) Version 3 and Transport Layer
Security (TLS) protocols and their associated algorithms to secure network
communications.

JSSE abstracts all the low-level details such as keys exchange,
authentication, and data encryption. All you have to do is to send your data
over the streams from the secured sockets obtained.

e-Macao-16-3-211

Java Secure Socket Extension

The Java Secure Socket Extension is divided into four packages:

1) javax.net.ssl :The abstract classes that define Java's API for secure
network communication.

2) javax.net :The abstract socket factory classes used instead of
constructors to create secure sockets.

3) javax.security.cert : A minimal set of classes for handling public key
certificates that's needed for SSL in Java 1.1. (In Java 1.2 and later,
the java.security.cert package should be used instead.)

4) com.sun.net.ssl : The concrete classes that implement the encryption
algorithms and protocols in Sun's reference implementation of the
JSSE.

SSL Handshake

e-Macao-16-3-212

.

——

| can use the following cipher suit

A

or ...

RSA_EXPROT_WITH_RC4_40_MD5 @

OK, let’s use the cipher suit
RSA EXPROT_WITH _RC4 40 MDS5.

—

Random key materials encrypted with

Receive my certificate

server public key

nnnnn 1=
enerate

— ey —

Confirmation to exchange data

A

()
-
M
=
Q
ot
My

A

Exchange data

v

v

e-Macao-16-3-213

Secure Client Sockets 1

Procedures to create a secure client socket:

1) get an instance of SocketFactory by invoking the static
SSLSocketFactory.getDefault () method. e.g.

SocketFactory sf = SSLSocketFactory.getDefault();

2) use one of these five overloaded createSocket () methods to
build an SSLSocket:

1l.public abstract Socket createSocket (String host,
int port) throws IOException,
UnknownHostException

2.public abstract Socket createSocket (InetAddress
host, int port) throws IOException

e-Macao-16-3-214

Secure Client Sockets 2

3.public abstract Socket createSocket (String host,
int port, InetAddress interface, int localPort)
throws IOException, UnknownHostException

4 .public abstract Socket createSocket (InetAddress
host, int port, InetAddress interface, 1int
localPort) throws IOException,
UnknownHostException

S5.public abstract Socket createSocket (Socket
proxy, String host, int port, boolean autoClose)

throws IOException

e-Macao-16-3-215

Secure Client Sockets 3

3) Once the socket has been created, you use it just like any other
socket, through its getlnputStream(), getOutputStream(), and other
methods.

For example, if the following purchasing information is required to
be sent over the network:

a) Name: John Smith
b) Product-ID: 67X-89
c) Address: 1280 Deniston Blvd, NY NY 10003
d) Card number: 4000-1234-5678-9017
e) Expires: 08/05
Using JSSE, the following code will do the work for you:

e-Macao-16-3-216

Secure Client Sockets 4

try {
SSLSocketFactory factory
= (SSLSocketFactory) SSLSocketFactory.getDefault ();

Socket socket = factory.createSocket (“localhost",
7000) ;

Writer out = new
OutputStreamWriter (socket.getOutputStream(),

"ASCII");

out.write ("Name: John Smith\r\n");

e-Macao-16-3-217

Secure Client Sockets 5

out . .write ("Product—-ID: 67X-89\r\n");

out .write ("Address: 1280 Deniston Blvd, NY NY
10003\r\n");

out.write ("Card number: 4000-1234-5678-9017\r\n");

out .write ("Expires: 08/05\r\n");

out.flush();

out.close();

socket.close();

} catch (IOException ex) {

ex.printStackTrace();

e-Macao-16-3-218

Configuring Secure Sockets

Methods are available for configuring how much and what kind of
authentication and encryption is performed.

getSupportedCipherSuites() method tells you which combination of
algorithms is available on a given socket

getEnabledCipherSuites() method tells you which suites this socket
Is willing to use

You can change the suites the client attempts to use via the
setEnabledCipherSuites(String[] suites) method

« Sun's JDK 1.4 supports 23 cipher suites. For the list of the
supported cipher suites, please check with JavaDoc.

There are still methods for handling handshaking and sessions, and
| will open these for your further study.

e-Macao-16-3-219

Secure Server Sockets 1

Procedures to create a secure server socket:

1) get an instance of ServerSocketFactory by invoking the static
SSLSocketFactory.getDefault () method. e.g.

ServerSocketFactory sf =
SSLServerSocketFactory.getDefault () ;

2) use one of these three overloaded createServerSocket ()
methods to build an SSLServerSocket:

1l.public abstract ServerSocket
createServerSocket (int port) throws IOException

2.public abstract ServerSocket
createServerSocket (1nt port, int gqueuelength)
throws IOException

3.public abstract ServerSocket
createServerSocket (1nt port, int queuelength,
InetAddress interface) throws IOException

e-Macao-16-3-220

Secure Server Sockets 2

3) Unlike creating the client socket, you need to do more to set up the
encryption for the server socket.

This setup varies between different JSSE implementations. In Sun’s
implementation, you may need to do the followings:

1.Generate public keys and certificates using keytool.

2.Pay money to have your certificates authenticated by a trusted
third party such as Verisign.

3.Create an SSLContext for the algorithm you'll use.

4.Create a TrustManagerFactory for the source of certificate material
you'll be using.

e-Macao-16-3-221

Secure Server Sockets 3

5.Create a KeyManagerFactory for the type of key material you'll be
using.

6.Create a KeyStore object for the key and certificate database.
(Sun's default is JKS.)

7.Fill the KeyStore object with keys and certificates; for instance, by
loading them from the filesystem using the pass phrase they're
encrypted with.

8.Initialize the KeyManagerFactory with the KeyStore and its pass
phrase.

9.Initialize the context with the necessary key managers from the
KeyManagerFactory, trust managers from the
TrustManagerFactory, and a source of randomness. (The last two
can be null if you're willing to accept the defaults.)

e-Macao-16-3-222

Lab Work: Secure Sockets 1

1) Please try to run through the process for setting up a secure socket
server as following and implement it in java code.

a) Generate public keys and certificates using keytool

« D:\JAVA>keytool -genkey -alias ourstore -keystore
jnp3e.keys

« Answer some gquestions and please remember the password you
entered. You will need it later.

« Afile jnp3e.keys will be generated and protected by the
password you entered.

b) If you don’t want to pay for the digital ID for experiment, you can use
the verified keystore file called testkeys, protected with the password
"passphrase®, included in SUN’s JSSE implementation package.

c) Create a class named SecureServer.

e-Macao-16-3-223

Lab Work: Secure Sockets 2

d) Import the necessary packages.
e) Define variables:
 int PORT — default port number
« String ALGORITHM — algorithm for setting the SSLContext (“SSL”)
« String KEYFILE — in our case, “keyfiles”
« String PASSWORD - in our case, “passphrase”

f) Create the context using SSLContext.getinstance(arg) method. You
need to pass the variable ALGORITHM as argument.

g) As accepted the default, we don’t need to create
theTrustManagerFactory

e-Macao-16-3-224

Lab Work: Secure Sockets 3

h) Create the KeyManagerFactory using the static method
KeyManagerFactory.getlnstance (arg). The Sun implementation will
need "SunX509* as argument.

1) Create the KeyStore using the static method
KeyStore.getlnstance(arg) Use “JKS” as argument.

j) For security, every key store is encrypted with a pass phrase that
must be provided before we can load it from disk. The pass phrase is
stored as a char] array so it can be wiped from memory quickly rather
than waiting for a garbage collector. Of course using a string literal
here completely defeats that purpose.

K) Use the load method from the KeyStore to load the key file. Check the
javadoc for method usage.

e-Macao-16-3-225

Lab Work: Secure Sockets 4

l) Use the init method from the KeyManagerFactory to initialize the
KeyManagerFactory. Check the javadoc for method usage.

m)Use the init method from theSSLContext to initialize the context.
Check the javadoc for method usage.

2) You have completed the setup process at this point. Create a secure
server socket for this server at port 7000.

3) Test your server with the secure client.

e-Macao-16-3-226

New I/O (NIO) API

Java introduce the new I/O (NIO) APl in v1.4.
New features:
a) Buffers for data of primitive types
b) Character-set encoders and decoders
c) A pattern-matching facility based on Perl-style regular expressions
d) Channels, a new primitive /O abstraction
e) A file interface that supports locks and memory mapping
f) A multiplexed, non-blocking I/O facility for writing scalable servers

e-Macao-16-3-227

Why NIO?

Allow Java programmers to implement high-speed I/O.

NIO deals with data in blocks which can be much faster than processing
data by the (streamed) byte.

e-Macao-16-3-228

NIO Components

’
2

) Buffers

)
3) Selectors

)

)

Channels

4
)

Regular Expressions
Character Set Coding

e-Macao-16-3-229

Buffers

In the NIO library, all data is handled with buffers.

A buffer is essentially an array. Generally, it is an array of bytes, but other
Kinds of arrays can be used.

A buffer also provides structured access to data and also keeps track of the
system's read/write processes.

Types:

£

ByteBuffer
CharBuffer
ShortBuffer
IntBuffer
LongBuffer-
FloatBuffer
DoubleBuffer

O O

o
N SN = N

D

«Q =
N

e-Macao-16-3-230

Channels

Channel is like a stream in original 1/O.

You can read a buffer from and write a buffer to a channel.

Unlike streams, channels are bi-directional.

e-Macao-16-3-231

Read from a file

Codes for reading from a file:

FileInputStream fin = new
FileInputStream("readandshow.txt");

FileChannel fc = fin.getChannel () ;
ByteBuffer buffer = ByteBuffer.allocate(1024);
fc.read(buffer);

e-Macao-16-3-232

Write to a file

Codes for writing to a file:

FileOutputStream fout = new
FileOutputStream("writesomebytes.txt");

FileChannel fc = fout.getChannel ();

ByteBuffer buffer = ByteBuffer.allocate(1024);
for (i1nt 1=0; 1<message.length; ++1) {
buffer.put (message[i]);

}

buffer.flip();//prepares the buffer to have the newly-
//read data written to another channel

fc.write(buffer);

e-Macao-16-3-233

Lab Work: NIO

1) Refer to the example, please use the NIO to create a program to write a
String to a text file and store in your computer.

2) Read the text file back and print the content on the screen.
3) You may need to use the WritableByteChannel as following:

WritableByteChannel wbc =
Channels.newChannel (System.out) ;

e-Macao-16-3-234

Server with NIO

Channels and buffers are really intended for server systems that need to
process many simultaneous connections efficiently.

Handling servers requires the new selectors that allow the server to find all
the connections that are ready to receive output or send input.

e-Macao-16-3-235

Asynchronous |/O

Asynchronous |/O is made possible in NIO with scalable sockets, which consist of
the following components:

a) Selectable Channel - A channel that can be multiplexed
b) Selector - A multiplexor of selectable channel

c) Selection key - A token representing the registration of a selectable channel
with a selector

e-Macao-16-3-236

Selectors, Keys and Channels

i :
= :

b

SelectableChannel ¥

i ¥ Y

SelectionKey Lelectionkey SelectionKey
imrerest. Winte irsterest. Read imterest, Read & Wrire
Selector
A ————————————

e-Macao-16-3-237

The Selection Process 1

1) Create a Selector and register channels with it
Use Open () method to create a Selector.

The register () method is on SelectableChannel, not Selector
2) Invoke select () method on the selector object
3) Retrieve the Selected Set of keys from the Selector

Selected set: Registered keys with non-empty Ready Sets

keys = selector.selectedKeys ()

e-Macao-16-3-238

The Selection Process 2

4) lterate over the Selected Set
1) Check each key's Ready Set

2) Remove the key from the Selected Set (iterator.remove ())

1) Bits in the Ready Sets are never reset while
the key is in the Selected Set

2) The Selector never removes keys from
the Selected Set — you must do so

3) Service the channel (key.channel ()) as appropriate (read, write, etc)

e-Macao-16-3-239

Example : NIO Server 1

Skeleton dodes for a simple server with NIO:

//Open a ServerSocketChannel

ServerSocketChannel serverChannel =
ServerSocketChannel.open();

//make the ServerSocketChannel non-blocking.

//necessary for asynchronous i/o
serverChannel.configureBlocking (false);
ServerSocket ss = serverChannel.socket ();
// bind the socket to a specific port
ss.bind(new InetSocketAddress (PORT_NO)) ;

e-Macao-16-3-240

Example : Create NIO Server 2

//Open the selector
Selector selector = Selector.open();

//use the channel's register () method to register the
//ServerSocketchannel with the selector.

serverChannel.register (selector,
SelectionKey.OP_ACCEPT);

e-Macao-16-3-241

Example : Create NIO Server 3

//check whether anything is ready to be acted on, call
//the selector's select() method. For a long—-running
//server, this normally goes in an infinite loop:

while (true) {
try {
selector.select ();
}
catch (IOException ex) {
ex.printStackTrace();

break;

e-Macao-16-3-242

Example : Create NIO Server 4

// process selected keys...

//selectedKeys() method returns a java.util.Set
//containing one SelectionKey object for each ready
//channel

Set readyKeys = selector.selectedKeys();
Iterator iterator = readyKeys.iterator();
while (iterator.hasNext()) {

SelectionKey key = (SelectionKey)
(iterator.next ());
// Remove key from set

iterator.remove ();

e-Macao-16-3-243

Example : Create NIO Server 5

// You can obtain the channel using the channel ()
//methods of the SelectionKey. Catch the IOExcepton.
try{
1f (key.isAcceptable())
{ ServerSocketChannel
server = (ServerSocketChannel) key.channel();
SocketChannel client = server.accept();
// Data manipulation

System.err.println ("Got connection from
"+client.socket () .getInetAddress () .getHostName ()) ;

e-Macao-16-3-244

Example : Create NIO Server 6

//Send some message to client

ByteBuffer bb =
ByteBuffer.allocateDirect (1024);

byte[] message = "Hello... You are
reaching NIO Server".getBytes|();

bb.put (message) ;
bb.flip();

client.write(bb);

}
} catch (IOException e) { }

e-Macao-16-3-245

User Datagram Protocol

The User Datagram Protocol (UDP) is an alternative protocol for sending
data over IP

UDP is very quick, but not reliable.

Java's implementation of UDP is split into two classes: DatagramPacket and
DatagramSocket.

The DatagramPacket class stuffs bytes of data into UDP packets called
datagrams and lets you unstuff datagrams that you receive.

A DatagramSocket sends as well as receives UDP datagrams.

e-Macao-16-3-246

Constructors for DatagramPacket

For receiving datagrams:
a) public DatagramPacket (byte[] buffer, 1nt length)

b) public DatagramPacket (byte[] buffer, int offset,
int length)

For sending datagrams:

a) public DatagramPacket (byte[] data, int length,
InetAddress destination, 1nt port)

b) public DatagramPacket (byte[] data, int offset, int
length, InetAddress destination, int port)
// Java 1.2

c) public DatagramPacket (byte[] data, int length,
SocketAddress destination, int port) // Java 1.4

d) public DatagramPacket (byte[] data, int offset, 1nt
length, SocketAddress destination, 1int port)
//Java 1.4

e-Macao-16-3-247

Constructors for DatagramSocket

For socket bound to an anonymous port:
a) public DatagramSocket () throws SocketException

For socket listen for incoming datagrams on a particular port :

a) public DatagramSocket (1nt port) throws
SocketException

Others constructors:

a) public DatagramSocket (int port, InetAddress
interface) throws SocketException

b) public DatagramSocket (SocketAddress interface)
throws SocketException // Java 1.4

c) protected DatagramSocket (DatagramSocketImpl 1impl)
throws SocketException // Java 1.4

e-Macao-16-3-248

Sending and Receiving

After constructed the DatagramPacket, you can send and receive datagram
from it :

a)public void send (DatagramPacket dp) throws
TOException

b)public void receive (DatagramPacket dp) throws
TOException

e-Macao-16-3-249

Lab Work: UDP

1) Write a EchoUDP server which will send back any message received
from client.

2) Write a UDPclient which sends some message to the EchoUDP server
for testing it.

e-Macao-16-3-250

Summary

In this session, we cover the followings:
1) Review the basic concepts for networking.
2) Discuss how to create simple server-client program.
3) Discuss the secure socket implementation in Java.
4) Introduce the NIO API.

)

5) Introduce the Java implementation for User Datagram Protocol.

Database Connectivity

Course QOutline

e-Macao-16-3-252

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

e-Macao-16-3-253

Overview

We are going to consider the following under this section:

1) Introduction
2) JDBC Overview
3) Information Processing

e-Macao-16-3-254

Introduction

Buried within the term "enterprise" is the idea of a business taken
wholistically.

An enterprise solution identifies common problem domains within a
business and provides a shared infrastructure for solving those problems.

Example:

If your business is running a bank, your individual branches may have
different business cultures, but those cultures do not alter the fact that they
all deal with customers and accounts. Looking at this business from an
enterprise perspective means abstracting away from irrelevant differences
in the way the individual branches do things, and instead approaching the

business from their common ground. It does not mean dismissing
meaningful distinctions, such as the need for bilingual support in Macao
SAR.

e-Macao-16-3-255

Enterprise Systems: What?

Enterprise Systems are Information systems that support many or all of the
various parts of a firm.

They can also refer to many mission-critical applications which are
mainframe-based (also referred to as legacy systems).

Also known as enterprise-wide information systems.

Information systems that allow companies to integrate information across
operations on a company-wide basis.

e-Macao-16-3-256

Enterprise Systems: Types

Enterprise systems are broadly categorized into two:

1) Relational - Relational Database Management Systems (RDBMS)

2) Non-Relational
a) Non Relational Databases (Legacy Database Systems)
b) Legacy Systems (Older systems like old Cobol Applications)
c) Enterprise Resource Planning
d) Customer Relationship Management (CRM)
e) Supply Chain Management

e-Macao-16-3-257

Enterprise Systems Integration

Enterprise Systems Integration is normally defined as the bringing together
of:

1) People,
2) Processes and
3) Information

to work together in an harmonized way, and supported by appropriate
information systems.

It is also the bringing together of both old and new applications to achieve
the overall goal of an organization.

e-Macao-16-3-258

Reasons for Integration

There are many reasons why Enterprise information systems need to be
integrated. Some are stated below:

1) need to persist and retrieve information from data repositories.

2) need to leverage existing systems and resources while adopting and
developing new technologies and architectures

3) concern over the past years, that the mainframe was going away and
that all legacy applications would be scrapped and completely rewritten.

e-Macao-16-3-259

Java Integration Mechanisms

Java provides some technologies to integrate Enterprise systems:

1) Java Database connectivity (JDBC) for connecting applications to
relational Database systems

2) JavalDL and Java Connector Architecture (JCA) for connecting to Non-
Relational systems

The focus of this section is JDBC.

JavalDL will be addressed later in the course while JCA will be addressed
sometimes in the training.

e-Macao-16-3-260

Relational Database 1

Programming is all about data processing; data is central to everything you
do with a computer.

Databases, like filesystems are nothing more than specialized tools for
data storage.

Filesystems are good for storing and retrieving a single volume of
information associated with a single virtual location.

In other words, when you want to save a WordPerfect document, a
filesystem allows you to associate it with a location in a directory tree for
easy retrieval later.

e-Macao-16-3-261

Relational Database 2

Databases provide applications with a more powerful data storage and
retrieval system based on mathematical theories about data devised by Dr.
E. F. Codd.

Conceptually, a relational database can be pictured as a set of
spreadsheets in which rows from one spreadsheet can be related to rows
from another.

Each spreadsheet in a database is called a table. As with a spreadsheet, a
table is made up of rows and columns.

A database engine is a process instance of the software accessing your
database. For example Oracle, mySQL, Sybase etc

Database engines use a standard query language to retrieve information
from databases and is called Structured Query Language (SQL).

e-Macao-16-3-262

SQL

SQL is not much like any programming language you might be familiar
with.

Instead, it is more of a structured English for talking to a database.

Characteristics:
1) SQL keywords are case-insensitive

2) table and column names may or may not be case-insensitive depending
on your database engine

3) the space between words in a SQL statement is unimportant

4) have a newline after each word, several spaces, or just a single space

e-Macao-16-3-263

SQL Usage

With SQL you can ask the following question:
1) How do you get the data into the database?

2) And how do you get it out once it is in there?

Much of the simplest database access comes in the form of equally simple
SQL statements.

Some of these commands are:
Create

Insert

1)
2)
3) Select
4)
5)

e-Macao-16-3-264

Create Statement

SQL CREATE statement handles the creation of database entities.

The major database engines provide GUI utilities that allow you to create
tables without issuing any SQL.

Uses:
1) To create database
Syntax:
CREATE DATABASE database name

2) To create tables
Syntax:
CREATE TABLE table name (
column_name column_type column_modifiers,

b 4

column_name column_type column_modifiers)

e-Macao-16-3-265

Lab Work: Create Statement

2) Open another console and type
C:\mysgl\bin>mysgl —-u root

2) Test your connection by typing
mysqgl>show databases;

5) Create emacao database
mysgl>create database emacao;

6) Change to the database
mysgl>Use emacao;

6) Create license table

mysgl>create table license (1d int, name
varchar (40), sex varchar (10), date wvarchar (12),
licenseType varchar (10));

e-Macao-16-3-266

Lab Work: Console 1

c| Command Prompt (2) - mysqld --console

e:\Java>mysqgld --console
041227 14:50:50 1InnoDB: Started; log sequence number 0 43654
ready for connections.
'4.1.8" socket: "' port: 3306 Source distribution

e-Macao-16-3-267

Lab Work: Console 2

=] Command Prompt (2] - mysqgl

e:\Jjava>mysql _ _
welcome to the MysSQL monitor. <Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 4.1.8

Type "help;’ or '\h' for help. Type '\¢' to clear the buffer.

mysql> show databases;

2 rows in set (0.00 sec)

mysql> create database emacao;
Query OK, 1 row affected (0.01 sec)

mysql> use emacao;

Database changed

mysql> create table Ticense(id int, name varchar(40), sex varchar{10),
icenseType varchar(10));

Query OK, 0 rows affected (0.34 sec)

mysql> describe Tlicense;_

e-Macao-16-3-268

Lab Work: Console 3

c+| Command Prompt [2) - mysgl

I mysql

2 rows in set (0.00 sec)

mysql> create database emacao;
Query OK, 1 row affected (0.01 sec)

mysql> use emacao;

Database changed

mysql> create table license(id int, name varchar(40), sex varchar(10),
icenseType varchar(10));

Query OK, O rows affected (0.34 sec)

mysql> describe license;

hame varchar (40)
sex varchar (10)
date varchar(12)
TicenseType varchar (10)

+
|
|
|
|
|
|
|
|
|
|
|
|
|

+
|
|
|
|
|
|
|
|
|
|
|
|
|

rows in set (0.00 sec)

sql>

e-Macao-16-3-269

Insert Statement

With the tables in place, you use the INSERT statement to add data to
them.

lts form is:
INSERT INTO table name (column_name, ..., column_name)
VALUES (value, ..., value)

The first column name matches to the first value you specify, the second

column name to the second value you specify, and so on for as many
columns as you are inserting.

If you fail to specify a value for a column that is marked as NOT NULL, you
will get an error on insert.

e-Macao-16-3-270

Lab Work: Insert Statement

1) Insert the following records into the license table.
a) Id = 123
Name = Chong Gabriel
Sex = male
Date = 27/12/2004

LicenceType = Export

b) Id = 124
Name = martins Gabriel
Sex = Female
Date = 23/12/2004

LicenceType = Import

Update Statement o

The UPDATE statement enables you to modify data that you previously
inserted into the database.

Its form is:

UPDATE table name

SET column_name = value,
-

column_name = value

WHERE column_name = value

This statement introduces the WHERE clause. It is used to help identify one
or more rows in the database.

e-Macao-16-3-272

Lab Work: Update Statement

1) Change the 1D and Name of the record with ID 124 to 126 and
Martins Leo Gabriel respectively.

e-Macao-16-3-273

Select Statement

The most common SQL command you will use is the SELECT statement.

It allows you to select specific rows from the database based on search
criteria.

It takes the following form:

SELECT column_name,
FROM table name
WHERE column_name = wvalue

., column_ name

e-Macao-16-3-274

Lab Work: Select Statement

1) Retrieve all records from the table.
2) Retrieve all records from the table where 1D is 126.

e-Macao-16-3-275

Delete Statement

The DELETE command looks a lot like the UPDATE statement.

lts syntax is:

DELETE FROM table name WHERE column_name = wvalue

Instead of changing particular values in the row, DELETE removes the
entire row from the table.

e-Macao-16-3-276

Lab Work: Delete Statement

1) Remove all records from the table where ID is 125.

2) Retrieve all records from the table
3) Remove all records from the table.

e-Macao-16-3-277

Database Programming

Database programming has traditionally been a technological Tower of
Babel.

You are faced with dozens of available database products, and each one
talks to your applications in its own private language.

If your application needs to talk to a new database engine, you have to
teach it (and yourself) a new language.

As Java programmers, however, you should not worry about such
translation issues.

Java is supposed to bring you the ability to "write once, compile once, and
run anywhere," so it should bring it to you with database programming, as
well.

e-Macao-16-3-278

JDBC Overview

JDBC APl is a set of interfaces designed to insulate a database application
developer from a specific database vendor.

It enables the developer to concentrate on writing the application - making
sure that queries to the database are correct and that the data is
manipulated as designed.

Sun developed a single API for database access—JDBC.
Three main design goals:

1) JDBC should be a SQL-level API.

2) JDBC should capitalize on the experience of existing database APIs.
3) JDBC should be simple.

e-Macao-16-3-279

JDBC and Developer

What does JDBC provide the developer?

1) the developer can write an application using the interface names and
methods described in the API, regardless of how they were
implemented in the driver

2) the developer writes an application using the interfaces described in the
API as though they are actual class implementations

3) the driver vendor provides a class implementation of every interface in
the APl so that when an interface method is used, it is actually referring
to an object instance of a class that implemented the interface.

e-Macao-16-3-280

JDBC and Driver Vendors

What do the driver vendors provide?
Driver vendors provide implementations of JDBC interfaces.

The JDBC API also enables developers to pass any string directly to the
driver.

This makes it possible for developers to make use of custom features of
their database without requiring that the application use ANSI SQL

With JBDC you can :

1) establish a connection with a database or access any tabular data
source

2) send SQL statement
3) process the results

e-Macao-16-3-281

JDBC Structure

JDBC accomplishes its goals through a set of Java interfaces, each
implemented differently by individual vendors.

The set of classes that implement the JDBC interfaces for a particular
database engine is called a JDBC driver.

In building a database application, you do not have to think about the
Implementation of these underlying classes at all.

The whole point of JDBC is to hide the specifics of each database and let
you worry about just your application.

e-Macao-16-3-282

JDBC Architecture
ophiten Aohgeton
JDBC

e-Macao-16-3-283

JDBC Driver Type 1

JDBC Diriver fit into one of the following:

1) Type 1:JDBC-ODBC Bridge plus ODBC Driver

2) Type 2:A native API partly Java technology-enabled
3) Type 3:Pure Java Driver for Database Middleware

4) Type 4:Direct-to-Database Pure Java Driver

e-Macao-16-3-284

Type 1: JDBC-ODBC Bridge

Type 1: JDBC-ODBC Bridge provides JDBC access via one or more Open
Database Connectivity (ODBC) drivers.

Advantage:
1) a good approach for learning JDBC

2) may be useful for companies that already have ODBC drivers installed
on each client machine

3) may be the only way to gain access to some low-end desktop
databases

e-Macao-16-3-285

Type 1: JDBC-ODBC Bridge 2

Disadvantage:

1) Not for large-scale applications. Performance suffers because there's
some overhead associated with the translation work to go from JDBC

to ODBC.

2) doesn't support all the features of Java

3) user is limited by the functionality of the underlying ODBC driver

Type 2: Partial Java driver 1

Converts calls to the JDBC API into calls that connect to the client
machine's application programming interface for a specific database, such
as IBM, Informix, Oracle or Sybase.

Advantage:

1) Performance is better than that of Type 1, in part because the Type 2
driver contains compiled code that is optimized for the back-end
database server's operating system.

e-Macao-16-3-287

Type 2: Partial Java driver 2

Disadvantage:

1) user needs to make sure the JDBC driver of the database vendor is
loaded onto each client machine

2) must have compiled code for every operating system that the
application will run on

3) best use is for controlled environments, such as an intranet

e-Macao-16-3-288

Type 3: Pure Java Middleware 1

Type 3: Pure Java driver for database middleware translates JDBC calls
into the middleware vendor's protocol, which is then converted to a
database-specific protocol by the middleware server software.

Advantage:

1) used when a company has multiple databases and wants to use a single
JDBC driver to connect to all of them

2) Server-based, so no need for JDBC driver code on client machine

3) the back-end server component is optimized for the operating system
that the database is running on

e-Macao-16-3-289

Type 3: Pure Java Middleware 2

Type 3: Pure Java driver for database middleware translates JDBC calls
into the middleware vendor's protocol, which is then converted to a
database-specific protocol by the middleware server software.

Advantage:

1) used when a company has multiple databases and wants to use a single
JDBC driver to connect to all of them

2) Server-based, so no need for JDBC driver code on client machine

3) the back-end server component is optimized for the operating system
that the database is running on

Disadvantage:
1) Needs some database-specific code on the middleware server.

e-Macao-16-3-290

Type 4: Direct-to-database Pure

Type 4: Direct-to-database pure Java driver converts JDBC calls into
packets that are sent over the network in the proprietary format used by the
specific database. Allows a direct call from the client machine to the
database.

Advantage:

1) No need to install special software on client or server. Can be
downloaded dynamically.

Disadvantage:

1) not optimized for server operating system, so the driver can't
take advantage of operating system features

e-Macao-16-3-291

JDBC Driver Type 2

lava

,l'l.r:pllir_.:.r_iuj-".

|C B AR

IDBL Driver
Manager or
DataSource Object

|DBEC-2DBC Fartial Java
Bridge Dirivear |DEC Diriver

IDRC DB Client Lik

S &

Type 1 Type 2

e-Macao-16-3-292

JDBC Driver Type 3

i‘l-l Wil PR et

Application

|DBC AR

JDBC Driver

Manager or
DataSource Ohject

»7 Y

Pure |ava
/ JDBC Driver

Pura |awa
JOBC Driver

Type 4 Type 3

e-Macao-16-3-293

JDBC Drivers

/g Type 1 JOBC Driver I :' ..‘E Third-Party API |>
;

Type 2 JDBC Driver IPE Native C/C+-+ APY }“ Database

Type 4 JDBC Driver

e-Macao-16-3-294

JDBC Class Diagram

Driverlionager <<interfoce>>
= Drives
registers 0.
<<imerfoce>> 0.* provides <<interfoce>> <<inlerfoce>
Conmection | Slatement ResultSet
I | retrieves 0.7

I (regles 0.* T

provides <<interfoce=> provides
PreparedStotement
1 1
<<interfoce>> <<interfoce>>
DatebaseMetaData RezuliSetMetaDota
<<imerfoce>>

CollobleStatement

e-Macao-16-3-295

Connecting to Database

JDBC shields an application from the specifics of individual database
implementation.

e
T T T

e-Macao-16-3-296

Connection Troubles

The JDBC Connection process is the most difficult part of JDBC to get
right.

There are generally two basic connection problems:

1) Connection fails with the message "Class not found®
Solution: Set your JDBC driver in your CLASSPATH

2) Connection fails with the message "Driver not found"
Solution: register the JDBC driver with the DriverManager class

e-Macao-16-3-297

Connection Process 1

When you write a Java database applet or application, the only driver-
specific information JDBC requires from you is the database URL.

You can even have your application derive the URL at runtime—based on
user input or applet parameters.

What happens when the URL and whatever properties the JDBC driver
requires (generally a user ID and password) is passed?

1) the application will first request a java.sgl.Connection
iImplementation from the DriverManager

2) the DriverManager in turn will search through all of the known

java.sqgl.Driver implementations for the one that connects with the
URL you provided

e-Macao-16-3-298

Connection Process 2

3) if it exhausts all the implementations without finding a match, it throws
an exception back to the application

4) once a Driver recognizes the URL, it creates a database connection
using the properties specified

5) it then provides the DriverManager witha java.sgl.Connection
implementation representing that database connection

6) the DriverManager then passes that Connect ion object back to the
application

7) the entire database connection process is handled by these two lines

Connection con = null;

con = DriverManager.getConnection (url, uid, password);

e-Macao-16-3-299

Connection Process 3

How does the JDBC DriverManager learn about a new driver
implementation?

1) the DriverManager actually keeps a list of classes that implement the
java.sql.Driver interface

2) Driver implementations has to be registered for any potential database
drivers it might require with the DriverManager

3) The act of instantiating a Driver class thus enters it in the
DriverManager's list

4) The process is called Driver Loading

e-Macao-16-3-300

Connection Process 4

(UREL. string) r

getConnection

e-Macao-16-3-301

Loading JDBC Drivers

There are three basic ways of loading the drivers:
1) explicitly call new to load your driver's implementation of Driver
2) use the jdbc.drivers property

>java —-Djdbc.drivers=jdbc.odbc.JdbcOdbcDriver queryDB

3) load the class using Class.forName

Class.forName ("com.mysgl. jdbc.Driver") .newlInstance () ;

e-Macao-16-3-302

Class for Creating a Connection 1

A class and two Interfaces are used for creating a connection to a
database:

1) java.sqgl.Driver

a) unless you are writing your own JDBC implementation, you should
never have to deal with this class from your application

b) a launching point for database connectivity by responding to
DriverManager connection requests and providing

information about the implementation in question

e-Macao-16-3-303

Class for Creating a Connection 2

2) java.sqgl.DriverManager

a) Its main responsibility is to maintain a list of Driver
iImplementations and present an application with one that matches a
requested URL.

b) has two methods registerDriver () and
deregilisterDriver ()

c) the methods allow Driver implementation to register and
unregister itself with the DriverManager

d) You can get an enumeration of registered drivers through the
getDrivers () method

3) java.sgl.Connection

a) The Connection class represents a single logical database
connection.

e-Macao-16-3-304

Example: Simple Connection 1

import java.sqgl.Connection;
import java.sgl.DriverManager;
import Java.sql.SQLException;

public class SimpleConnection {

static public void main (String args[]) {
Connection connection = null;
// Process the command line
if(args.length !'= 4) {

System.out.print ("Syntax: java SimpleConnection “);
System.out.println ("DRIVER URL UID PASSWORD") ;

return;

}

e-Macao-16-3-305

Example: Simple Connection 2

try { // load the driver
Class.forName (args[0]) .newInstance();
}catch (Exception e) {
e.printStackTrace();

return;

}

try {

connection = DriverManager.getConnection(argsl[1l],
args[2], args[3]);

System.out.println ("Connection successfull!");

// Do whatever queries or updates you want here!!!
}catch (SQLException e) {

e.printStackTrace();

}

e-Macao-16-3-306

Example: Simple Connection 3

"finally {
1f(connection != null) {
try { connection.close();

}catch (SQLException e) {
e.printStackTrace();

e-Macao-16-3-307

Lab Work: Creating Connection

1)
2)

Open LicenseApp. java file stored on the server

The program creates an interface for you to enter your license
information into the database you created. Study the code and
understand what it does.

Import appropriate packages into the program. Locate
connectToDB ()

Write a code to connect to the database you have created in mySQL
using the following parameters

url = "Jdbc:mysgl://localhost/emacao™
username = root, Password = %

Driver = “com.mysqgl.jdbc.Driver”

Note: set your classpath to the jar files provided along with the
code. Print out the Connection object.

e-Macao-16-3-308

Database Access

The most basic kind of database access involves writing

1) updates- INSERT, UPDATE, Of DELETE
2) queries — SELECT

With these you know ahead of time the type of statements you are sending
to the database.

e-Macao-16-3-309

Database Access Steps

Accessing database involves:
1) creating a Connection object

2) generating implementation of java.sgl.Statement tied to the
database

3) use the statement to rollback or commit the statement object associated
with that Connection

4) with the statement object you can execute updates and queries
5) The result of executing queries and update is java.sgl.ResultSet

6) ResultSet provides you with access to the data retrieved by a
query.

e-Macao-16-3-310

Basic JDBC Classes

JDBC's most fundamental classes are :
1) java.sqgl.Connection

2) java.sgl.Statement
3) java.sgl.ResultSet

We have discussed (1), we now consider (2) and (3)

e-Macao-16-3-311

Statement

Statement class represents SQL statements.

It has three generic forms of statement execution methods:

1) executeQuery (String query)
Usage: for any SQL calls that expect to return data from database

2) executeUpdate (String query)

Usage: when SQL calls are not expected to return data from database
It returns the number of row affected by query

3) execute ()

Usage: when you cannot determine whether SQL is an update or query

return t rue if row is returned, use getResultset () to get the row
otherwise returns false

e-Macao-16-3-312

Submitting a Query 1

Submitting a query involves
1) create a Statement object

try {
Statement stmt = con.createStatement ()
} catch (SQLException e) {
System.out.println (e.getMessage());

SQL exceptions occur when there is a database access error.

Errors are detected when a connection is broken or the database server
goes down.

e-Macao-16-3-313

Submitting a Query 2

2) use the one the statement query method to submit the SQL statement
to the database depending on the type of the SQL.

JDBC does not attempt to interpret queries.

Example:

ResultSet rs = null;

rs = stmt.execteQuery ("select * from license");

e-Macao-16-3-314

Example: Statement 1

import java.sgl.*;

public class Update {

public static voild main(String args|[]) {

Connection connection = null;

1f(args.length !'= 2) {
System.out.print ("Syntax: <java Update [number]”);
System.out.println(“[string]>");
return;

}

try {
String driver = "com.mysqgl.jdbc.Driver";
Class.forName (driver) .newlInstance();

String url =%“jdbc:mysqgl://localhost/emacao";

"");

con = DriverManager.getConnection (url, “root",

e-Macao-16-3-315

Example: Statement 2

Statement s = con.createStatement ();

String test_id = args[0];

String test_val = args[1l];

int update_count =

s.executeUpdate ("INSERT INTO test (test_id, test_val)

" + "VALUES (" + test_id + ", '" + test_val + "")");
System.out.println (update_count + " rows inserted.");
s.close();

}catch (Exception e) {

e.printStackTrace();

}

e-Macao-16-3-316

Example: Statement 3

finally {
1f(con !'= null) {
try {
con.close();

}catch (SQLException e) {

e.printStackTrace ();

e-Macao-16-3-317

Lab Work: Statement

1) Using the LicenseApp. java program stored on the server insert
records into 1icense table in emacao database

e-Macao-16-3-318

PreparedStatement

Prepared Statement is a precompiled SQL statement.

It is more efficient than calling the same SQL statement over and over.

The PreparedStatement class extends the statement class by adding
the capability of setting parameters inside of a statement.

e-Macao-16-3-319

PreparedStatement Inheritance

DriverMonages

registers

<<interfoce>> 0.*
Comneclion |

<<inlerfoces >

Driver

<<inlerfoce>>
DatebaseMetaData

e-Macao-16-3-320

setXXX Methods 1

The PreparedStatement class extends the statement class by adding
the capability of setting parameters inside of a statement.

The set xxxX methods are used to set SQL IN parameters values.

Must specify the types that are compatible with the defined SQL input type
parameters.

For example, if the IN parameter has SQL type Integer, then you should
use the setInt method

e-Macao-16-3-321

setXXX Methods 2

Method SOL Types
sethrrayLocator Locator{<array>)
set& SCI S tream Uses an Amencan Standards Code for Information Exchange (ASCID stream to produce a LONGYVARCHAR
setBigDecimal NUMEEIC
setBimarystream Uses a bmary stream to produce a LOWNGVARBINARY
setBlobLocator LOCATORBLOE)
setBooleat EIT
setByte TINTINT
setBytes VAEBINAEY or LONGVARBINARY (dependmng upon the size relative to the bmits on WARBINAERT)
setCharacterstreamn | Uses Javaio Eeader to produce a LONGVARCHAR.
setClobLocater LOCATOR{CLOE)
setDate DATE
setDouble DOUELE
setFloat FLOAT
setlnt NTEGEE.
setLong BIGINT
sethull NULL
setUbiect The given Java technology object ("Javaohiect") 15 converted to the target SQL Type before sent
setohort SWATLINT
set String VARCHAR OF LONGVARCHAR (dependmg upon the size relative to the dnwver's lrnits on VARCHAR)
setstructlocator LOCATOR{=structure_type>)
setTime TINE
setTimestamp TIMESTAME
setUnicodeStream Uses a Unicode stream to produce a LONGVARCHAR

e-Macao-16-3-322

Example: PreparedStatement

public boolean prepStatement (String name, String sex) {
String query = null;
PreparedStatement prepStmnt = null;

query = "update license set name = ?, sex = ? where
id= 126";
prepStmnt = con.preparedStatement (query);

prepStmnt.setFloat (1, name);
prepStmnt.setString (2, sex);
Int rowsUpdate = prepStmnt.executeUpdate();

return (rowUpdate > 0);

e-Macao-16-3-323

CallableStatement

Callablestatement allows non-SQL statements (such as stored
procedures) to be executed against the database.

Callablestatement class extends the PreparedStatement class,

which provides the methods for setting IN parameters.

Methods for retrieving multiple results with a stored Procedure are
supported with the Sstatement .getMoreResults () method.

e-Macao-16-3-324

Example: CallableStatement

int id= 126;
CallableStatement callStm = null;
String storProcName="{?=call return_license(?)}"
querySales = con.prepareCall (storProcName) ;
try {
callStm.registerOutParameter (1, Type.VARCHAR);
callStm.setInt (2, id);
callStm.execute () ;
String license = callStm.getString(l);
} catch (SQLException e) {

e.printStackTrace () ;

e-Macao-16-3-325

CallableStatement Inheritance

Driverthomager <<interfoes>
= Driver

registers 0.
<<inlerfoce>> [q « ; <<interfoce>> <<interfoce>>
- provides / ® ResuliSet

I | .
provides

1
<<interfoce>>

DatobaseMetaData

e-Macao-16-3-326

Transaction Management

A transaction is a set of one or more statements that are executed together
as a unit.

Either all of the statements are executed, or none of the statements is
executed.

There are times when you do not want one statement to take effect unless
another one also succeeds.

This is achieved through the setAutoCommit () method of Connection
object.

e-Macao-16-3-327

Transaction Management

A transaction is a set of one or more statements that are executed together
as a unit.

Either all of the statements are executed, or none of the statements is
executed.

There are times when you do not want one statement to take effect unless
another one also succeeds.

This is achieved through the setAutoCommit () method of Connection
object.

The method takes a boolean value as a parameter.

e-Macao-16-3-328

Disabling Auto-commit Mode

When a connection is created, it is in auto-commit mode.

Each individual SQL statement is treated as a transaction and will be
automatically committed right after it is executed.

The way to allow two or more statements to be grouped into a transaction
IS to disable auto-commit mode.

Example:

con.setAutoCommit (false) ;

e-Macao-16-3-329

Committing a Transaction

Once auto-commit mode is disabled, no SQL statements will be committed
until you call the method commit explicitly.

This is achieved through the commit () method of connection objects.

All statements executed after the previous call to the commit () method
will be included in the current transaction and will be committed together as
a unit.

If you are trying to execute one or more statements in a transaction and get
an SQLException, you should call the rollback () method to abort the

transaction and start the transaction all over again.

e-Macao-16-3-330

Example: Transaction Commit

con.setAutoCommit (false);

PreparedStatement updateName =null;

String query = null;

Query="UPDATE license SET name = ? WHERE id = 126"
updateName= con.prepareStatement (query) ;
updateName.setString(l, name);

updateName.executeUpdate () ;

PreparedStatement updateSex = null;
query = "UPDATE test SET test_value =7"
updateSex = con.prepareStatement (query) ;

updateSex.setString(l, "Male");
updateSex.executeUpdate () ;
con.commit () ;

con.setAutoCommit (true) ;

e-Macao-16-3-331

ResultSet

A ResultSet is one or more rows of data returned by a database query.

The class simply provides a series of methods for retrieving columns from
the results of a database query

General form:
type gettype(int | String)

in which the argument represents either the column number or column
name desired

can store values in the database as one type and retrieve them as a
completely different type

Method
getArrayLocator
getASCITStream
getBigDecimal
getBinaryStreamn
getBlobLocator
getBoolean
getByte
getBytes
getCharacterftrean
getClobLocator
getDate
getDouble
getFloat
getInt
getLong
getObject
getfhort
getString
getitructlLocator
getTime
getTimestamp
getUnicodeStrean

LOCATOR (<array>)
java.lo.InputStream
java.math. BigDecimal
java.lo.InputStream
LOCATOR{BLOB)
boolean

byte

byte (]
java.lilo.Reader
LOCATOR{CLOB)
java.zql.Date
double

float

int

long

Object

short

java.lang. String
LOCATOR(<structure-type:)
java.sgl. Time
Java.zsqgl. Timestamp

Java Type Returned

java.lo.InputStream or Unicode characters

e-Macao-16-3-332

ResultSet getXXX() Methods

e-Macao-16-3-333

SQL and Java Type Mapping

SQL TYPE Java Type

DATE Java.sql.Date
TIMESTAMP java.sql. Timestanp

e-Macao-16-3-334

Getting the Next Record

ResultSet class handles only a single row from the database at any
given time.

The class provides the next () method for making it reference the next
row of a result set.

If next () returns true, you have another row to process and any
subsequent calls you make to the ResultSet object will be in reference to

that next row.

If there are no rows left, it returns false.

e-Macao-16-3-335

Example: ResultSet

String query = “select * from license”;
Statement stm = null;
stm = con.getStatement () ;
ResultSet rs = stm.executeQuery (query);
while (rs.next ()) {

int a;

String str;

a = rs.getInt ("14");

if(rs.wasNull()) {
a = —1;
}
str = rs.getString (Yname");
if(rs.wasNull()) {

str = null;

}

e-Macao-16-3-336

SQL Null Versus Java null

SQL and Java have a serious mismatch in handling null values.

Java ResultsSet has no way of representing a SQL NULL value for any
numeric SQL column.

After retrieving a value from a ResultSet, it is therefore necessary to ask
the Resultset if the retrieved value represents a SQL NULL.

To avoid running into database oddities, however, it is recommended that
you always check for SQL NULL.

Checking for SQL NULL involves a single call to the wasNull () method
In your ResultSet after you retrieve a value.

e-Macao-16-3-337

Example: wasNull()

rs.afterLast ();
while (rs.previous()) {
int aj;

String str;
a = rs.getlInt ("test_1id");
if(rs.wasNull()) {
a = —1;
}
str = rs.getString("test_val");
if(rs.wasNull()) {
str = null;

}

e-Macao-16-3-338

Scrollable ResultSet 1

The single most visible addition to the JDBC APl in its 2.0 specification is
support for scrollable result sets.

Using scrollable result sets starts with the way in which you create
statements.

The Connection class actually has two versions of createStatement ()

1) the zero parameter version
Example:

Statement stm = con.createStatement () ;

e-Macao-16-3-339

Scrollable ResultSet 2

2) atwo parameter version that supports the creation of Statement
instances that generate scrollable ResultSet objects.

createStatement (int rsType, int rSConcurrency)
Parameters:

rsType - a result set type; one of ResultSet.TYPE_FORWARD_ONLY,
ResultSet .TYPE_SCROLL_INSENSITIVE, Or
ResultSet.TYPE_SCROLL_SENSITIVE

rsConcurrency - a concurrency type; one of
ResultSet .CONCUR_READ_ONLY Or
ResultSet .CONCUR_UPDATABLE

e-Macao-16-3-340

ResultSet Constants

JDBC defines three types of result sets:
1) TYPE_FORWARD_ONLY

2) TYPE_SCROLL_SENSITIVE

3) TYPE _SCROLL_INSENSITIVE

Out of these three TYPE_FORWARD_ONLY is the only type that is not
scrollable.

The other two types are distinguished by how they reflect changes made to
them.

TYPE_SCROLL_INSENSITIVE ResultSet IS unaware of in-place edits
made to modifiable instances.

TYPE_SCROLIL_SENSITIVE, on the other hand, means that you can see

changes made to the results if you scroll back to the modified row at a later
time.

Result Set Navigation 1 o

When ResultSet is first created, it is considered to be positioned before the
first row.

Positioning methods such as next () point a ResultSet to actual rows.
Your first call to next (), for example, positions the cursor on the first row.
Subsequent calls to next () move the ResultSet ahead one row at a time.

With a scrollable ResultSet, however, a call to next () is not the only way to
position a result set.

e-Macao-16-3-342

Result Set Navigation 2

The method previous () works in an almost identical fashion to next().

While next () moves one row forward, previous () Moves one row
backward.

If it moves back beyond the first row, it returns £alse. Otherwise, it returns
true.

Because a ResultsSet is initially positioned before the first row, you need to
move the ResultSet using some other method before you can call
previous ().

e-Macao-16-3-343

Example: Result Set Navigation 1

import Java.sqgl.*;

import Java.util.*;
public class ReverseSelect {
public static void main (String argv[]) {
Connection con = null;
try {
String url = "Jjdbc:mysqgl://localhost/emacao";
String driver = "com.mysqgl.jdbc.Driver";
Statement stmt;
ResultSet rs;
Class.forName (driver) .newInstance () ;
con = DriverManager.getConnection (url, "root", "");
stmt =con.createStatement (ResultSet.TYPE SCROLL_INSENSITIVE,
ResultSet .CONCUR_READ_ONLY) ;
rs = stmt.executeQuery ("SELECT * from license ORDER BY id");

System.out.println ("Got results:");

e-Macao-16-3-344

Example: Result Set Navigation 2

rs.afterLast ();
while(rs.previous()) {
int a;

String str;
a = rs.getInt ("id");

a = rs.wasNull() ? -1 : a;
str = rs.getString ("name");
str = rs.wasNull() ? null : str;
System.out.print ("\tid= " + a);
System.out.println("/str= '" + str + "'");
}
System.out.println ("Done.");
}catch (Exception e) {

e.printStackTrace ();

}

e-Macao-16-3-345

Example: Result Set Navigation 3

finally {
if(con !'= null) {
try {
con.close();

}catch(SQLException e) {
e.printStackTrace();

e-Macao-16-3-346

Other Navigation Methods

JDBC 2.0 provides new methods to navigate around rows in result sets:

'
2
3

beforeFirst ()
first ()

)

)

)
)1SBeforeF1rst()
) isFirst ()

6) isLast ()

/) isAfterLast ()

8) getRow ()

9) relative ()

10) absolute()

Except for absolute () and relative (), the names of the methods say
exactly what they do. Each take integer arguments.

e-Macao-16-3-347

absolute() 1

For absolute (), the argument specifies a row to navigate to.

Example:
A call to absolute (5) moves the ResultSet to row 5 unless there are four
or fewer rows in the ResultSet.

A call to absolute () with a row number beyond the last row is therefore
identical to a callto afterLast ()

e-Macao-16-3-348

absolute() 2

You can also pass negative numbers to absolute ().

A negative number specifies absolute navigation backwards from the last row

Example:

absolute (1) isidenticalto first (), absolute (-1) is identical to
last ()

Similarly, absolute (-3) is the third to last row in the ResultSet. If
there are fewer than three rows in the ResultSet.

e-Macao-16-3-349

relative()

The relative () method handles relative navigation through a ResultsSet.

In other words, it tells the Resultset how many rows to move forward or
backward.

Example:

A value of 1 behaves just like next () and a value of -1 just like
previous ().

e-Macao-16-3-350

Clean Up

The Connection, Statement, and ResultSet classes all have

close ().

It is always a good idea to close any instance of these objects when you
are done with them.

It is useful to remember that closing a Connection implicitly closes all
Statement instances associated with the Connection.

Similarly, closing a statement implicitly closes ResultSet instances
associated with it.

e-Macao-16-3-351

Example: Clean Up

try(
// Connection, Statements here
}catch (SQLException ex) {

ex.printStarkTrace () ;

}finally |
1if(con !'= null) {
try |
con.close();

}catch (SQLException e) {

e.printStackTrace();

}
}
}

e-Macao-16-3-352

Lab Work: ResultSet

1) Using the LicenseApp. java, before you save, check if the data you
are saving exists, if it is update with the new values else insert a new
record.

e-Macao-16-3-353

Exercise: JDBC

Message-Orientation

Course QOutline

e-Macao-16-3-355

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

JavaMail

Course QOutline

e-Macao-16-3-357

y

A W N

)
)
)
)
)

9

introduction
streams

networking
database connectivity
message-orientation
a) javamail

b) jms

distributed objects
a) rmi

b) corba

c) Javaidl
summary

e-Macao-16-3-358

Overview

Email was the Internet's first killer application and still generates more
Internet traffic than any protocol except HTTP.

One of the most frequently asked questions about Java is how to send
email from a Java applet or application or how to send asynchronous
messages between a Java application and homo-sapiens?

We shall be considering:

1) Introduction to JavaMail API

) Protocols — SMTP, POP, IMAP MIME
) Installation and configuration
)

Core Classes — Session, Message, Address, Authenticator,
Transport, Store and Folder

5) Usage — sending and receiving email, processing HTML messages etc

~ W N

e-Macao-16-3-359

What Is the JavaMail API?

The JavaMail APl is a standard extension to Java that provides a class
library for email clients.

Is an optional package (standard extension) for reading, composing, and
sending electronic messages.

You use the package to create Mail User Agent (MUA) type
programs, similar to Eudora, Pine, and Microsoft Outlook.

Purpose:

1) transporting

2) delivering and

3) Forwarding messages like sendmail or other Mail Transfer Agents

e-Macao-16-3-360

Mail Client and Server

] 1 -
D =i

NETWCV T

Mail Server

JavaMail Client

e-Macao-16-3-361

Why Mail?

There are situation in which an application may need to send an email
1) an error situation occurs
2) when the next step in some workflow must be started

3) or in response to some events that has occurred

e-Macao-16-3-362

JavaMail Applications

There are several areas in which JavaMail is useful.
Some are discussed below:

1) A server-monitoring application such as Whistle Blower can periodically
load pages from a web server running on a different host and email the
webmaster if the web server has crashed.

2) An applet can use email to send data to any process or person on the
Internet that has an email address, in essence using the web server's
SMTP server as a simple proxy to bypass the usual security restrictions
about whom an applet is allowed to talk to. In reverse, an applet can talk
to an IMAP server on the applet host to receive data from many hosts
around the Net.

3) A newsreader could be implemented as a custom service provider that
treats NNTP as just one more means of exchanging messages.

Related Protocols 1

e-Macao-16-3-363

There are four protocols are commonly used with the API:

1) Simple Mail Transfer Protocol (SMTP)

2) Post Office Protocol (POP)

3) Internet Message Access Protocol (IMAP)

4) Multipurpose Internet Mail Extensions (MIME)

Each will be considered.

e-Macao-16-3-364

Related Protocols 2

JavaMail Client

Calls for Calls for
sending mail reading mail
| | H @
V Abstract Classesv J iy
Transl.pt:rt, Store, l|-'::1|der.._ | | L

Implementation: | Implementation:

SMTPTransport... | IMAPStore,

IMAPFolder... v =3
\ - " Destination

e-Macao-16-3-365

SMTP

The Simple Mail Transfer Protocol (SMTP) is the mechanism for delivery of
email.

In the context of JavaMalll,

« JavaMail-based program will communicate with company or
Internet Service Provider's (ISP's) SMTP server.

2) The SMTP server will relay the message on to the SMTP server of the
recipient to be acquired eventually by the user through POP or IMAP

e-Macao-16-3-366

POP

Post Office Protocol (POP) is the mechanism most people on the Internet
use to get their mail.

It defines support for a single mailbox for each user.

Currently in version 3, also known as POP3

The ability to see how many new mail messages you have, are not
supported by POP at all.

These capabilities are built into programs like Eudora or Microsoft Outlook,
which remember things like the last mail received and calculate how many
are new for you. So, when using the JavaMail API, if you want this type of
information, you have to calculate it yourself.

e-Macao-16-3-367

IMAP

Internet Message Access Protocol (IMAP) more advanced protocol for
receiving messages.

Currently in version 4, also known as IMAP4
Your mail server must support the protocol before you can use it.

You can't just change your program to use IMAP instead of POP and
expect everything in IMAP to be supported.

Assuming your mail server supports IMAP, your JavaMail-based program
can take advantage of users having multiple folders on the server and
these folders can be shared by multiple users.

e-Macao-16-3-368

IMAP Drawbacks

It places a much heavier burden on the mail server requiring the server
to receive the new messages, deliver them to users when requested, and
maintain them in multiple folders for each user.

While this does centralize backups, as users' long-term mail folders get
larger and larger, everyone suffers when disk space is exhausted.

But with POP, saved messages get offloaded from the mail.

e-Macao-16-3-369

MIME

MIME stands for Multipurpose Internet Mail Extensions

It is not a mail transfer protocol.
Instead, it defines the content of what is transferred.

For example:

1) format of the messages
2) attachments, and

3) etc

e-Macao-16-3-370

Installation

There are three versions of the JavaMail APl commonly used today:

1) version 1.1.3
2) version 1.2

3) version 1.3.2

Version 1.3.2 is the latest.

The version of the JavaMail API you want to use affects what you
download and install.

e-Macao-16-3-371

Installing JavaMail 1.3.2

1) Download javamail—-1_3_2.zip from
http://java.sun.com/products/javamail

2) Extract the zip file into a folder
3) set it in the CLASSPATH environment variable
4) Include the following archive files in the CLASSPATH
a) imap. jar
b) mailapi. jar
C) pop3. jar
d) smtp. jar

JavaMail needs a framework in order to complete its functions.

This framework is known as JavaBeans Activation Framework (JAF).

e-Macao-16-3-372

JAF

JavaBeans Activation Framework (JAF) is a standard extension that
enables developers who use Java technology to take advantage of
standard services:

1) to determine the type of an arbitrary piece of data,

2) encapsulate access to it,

3) discover the operations available on it,

4) and to instantiate the appropriate bean to perform the said operation(s).

It is the basic MIME-type support found in many browsers and mail tools.

e-Macao-16-3-373

Example: JAF

If a browser obtained a JPEG image JAF:

1) enables the browser to identify that stream of data as a JPEG image

2) and from that type, the browser could locate and instantiate an object
that could manipulate, or view that image

3) discover the operations available on it,

4) and to instantiate the appropriate bean to perform the said operation(s).

e-Macao-16-3-374

Installing JAF

1) Download jaf-1_0_2-upd.zip from
http://Jjava.sun.com/products/javabeans/glasgow/jaf.html

2) extract the zip file into a folder

3) set it in the CLASSPATH environment variable

4) include activation. jar inthe CLASSPATH

e-Macao-16-3-375

Installing JavaMail Using J2EE

JavaMail is bundled with J2EE

There is nothing special you have to do to use the basic JavaMail API.

Just make sure the j2ee. jar file isin your CLASSPATH and you are set.

Note: This will be deferred to J2EE courses!

e-Macao-16-3-376

Other Referencing Options

If you don't want to change the CLASSPATH environment variable:

1) copy the JAR files to your lib/ext directory under the Java Runtime
environment (JRE) directory

2) forinstance, $JAVA_HOMES%\1ib\ext on a Windows platform

e-Macao-16-3-377

Exercise

1

) Download the latest version of the JavaMail AP| implementation.

2) Download the latest version of the JavaBeans Activation Framework.
)
)

3
4

Extract the zip files to a folder
Install the archive files.

Core Classes

e-Macao-16-3-378

There are seven core classes that make JavaMail API:

y

Session
2) Message
3) Address

5) Transport

6
/) Folder

)
)
)
4) Authenticator
)
) Store
)

Each will be considered.

e-Macao-16-3-379

Session

It defines a basic mail session.

It is through this session that everything else works.

The session object takes advantage of a java.util.Properties
object to get information like mail server, username, password, and other
information that can be shared across your entire application.

Session class is singleton

e-Macao-16-3-380

Session: Singleton 1

The constructors for the class are private.

An instance of the class can be created in four ways by calling the
following methods of the class:

1) getDefaultInstance (Properties props)

2) getDefaultInstance (Properties props,
Authenticator authenticator)

3) getInstance (Properties props)

4) getInstance (Properties props,
Authenticator authenticator)

e-Macao-16-3-381

Session: Singleton 2

Each method returns either a default or new Session object.

The (1) and (2) methods get the default instance if one exists and if not a
new session object is created.

The (3) and (4) create a new instance.

props IS the Properties object that holds relevant properties

authenticator is Authenticator object used to call back to the
application when a user name and password is needed.

e-Macao-16-3-382

Session: Usage

1) Get a default instance

Properties props = new Properties();

// fill props with any information

Session session = Session.getDefaultlInstance (props,
null);

2) Create a unigue session

Properties props = new Properties();

// fill props with any information

Session session = Session.getlInstance (props, null);

In both cases here the null argument is an Authenticator object.

e-Macao-16-3-383

Message 1

This class models an email message. It is an abstract class.
Subclasses provide actual implementations.

Characteristics:
 Message implements the part interface.

e Direct subclass is MimeMessage
2) Message contains a set of attributes and a "content".

3) Messages within a folder also have a set of flags that describe its state
within the folder.

e-Macao-16-3-384

Message 2

Message defines some new attributes in addition to those defined in the
Part interface.

These attributes specify meta-data for the message - i.e., addressing and
descriptive information about the message.

Message objects are obtained either from a Folder or by constructing a
new Message object of the appropriate subclass.

Messages that have been received are normally retrieved from a folder
named "INBOX".

Message is an abstract class, you cannot work with it. Use the subclasses.

e-Macao-16-3-385

MimeMessage

MimeMessage IS the direct subclass of Message

It is an emalil message that understands MIME types and headers.

Message headers are restricted to US-ASCII characters only, though non-
ASCII characters can be encoded in certain header fields.

Once you have your session object, then you can create the
message to send.

e-Macao-16-3-386

Creating a Message

1) pass along the session object to the MimeMessage constructor.

MimeMessage message = new MimeMessage (session) ;

2) set its parts, as Message implements the pPart interface (with
MimeMessage iImplementing MimePart).

message.setContent ("Hello", "text/plain");

3) If, however, you know you are working with a MimeMessage and your
message is plain text, then use set Text () method

message.setText ("Hello");

4) set the subject using the set Subject () method

message.setSubject ("First");

e-Macao-16-3-387

Simple Message

Message Class
Header Attributes

Attributes, such as
Content-Type.

Content Body

DataHandler Object

Contains data that conforms
to the Content-Type attribute

Multipart Message

e-Macao-16-3-388

[Message

Message
attributes, with a
content type of
Multipart.

DataHandler Object

Contains a
Multipart obje
instead of data

BodyPart Object

Attributes from the
Part interface,
such as this part's content

type

DataHandler Object

Contains either data, or
another Multipart
object.

BodyPart Object

e-Macao-16-3-389

Address

Once you've created the session and the Message, as well as filled the
message with content, it is time to address your letter with an Address.

This is done using Address Class.
Characteristics:
1) like Message, Address is an abstract class, hence use the subclass

2) you use the javax.mail.internet.InternetAddress class

e-Macao-16-3-390

Creating an Address 1

1) To create an address with just the email address, pass the email
address to the constructor

Address address = new InternetAddress (“xx@server.com");

2) If you want a name to appear next to the email address

Address address = new InternetAddress (xx@server.com,
“Mr. Gabriel”);

e-Macao-16-3-391

Creating an Address 2

Once you have created the Addresses you connect them to a message in
one of two ways:

1) For identifying the sender, you use the setFrom () and setReplyTo ()

methods.
message.setFrom(address) ;

or If your message needs to show multiple from addresses, use the
addFrom () method

Address address|[] = ...;

message.addFrom (address) ;

e-Macao-16-3-392

Creating an Address 3

2) For identifying the message recipients, you use the addRecipient ()
method.

This requires a Message .Recipient Type besides the address.

The three predefined types of address are:

a) Message.RecipientType.TO
b) Message.RecipientType.CC
C) Message.RecipientType.BCC

e-Macao-16-3-393

Creating an Address 4

Address

Address

message.

message.

toAddress = new
InternetAddress ("presidentdserver.com") ;

ccAddress = new
InternetAddress ("first.ladyl@server.com") ;

addRecipient (Message.RecipientType.TO,
toAddress) ;

addRecipient (Message.RecipientType.CC,
ccAddress) ;

e-Macao-16-3-394

Authenticator

Authenticator Class provide access to protected resources (mail
server) via a username and password

To use the Authenticator, you subclass the abstract class and return a
PasswordAuthentication instance from the
getPasswordAuthentication () method.

Example:

Properties props = new Propertiles();
// fill props with any information
Authenticator auth = new MyAuthenticator();

Session session = Session.getDefaultlInstance (props,
auth) ;

e-Macao-16-3-395

Transport 1

The final part of sending a message is to use the Transport class.

This class speaks the protocol-specific language for sending the
message (usually SMTP).

lt's an abstract class and works something like Session.

There are two ways of sending a message:

1) You can use the default version of the class by just calling the
static send () method:

Transport.send (message) ;

e-Macao-16-3-396

Transport 2

2) You can get a specific instance from the session for your protocol, pass
along the username and password (blank if unnecessary), send the
message, and close the connection:

message.saveChanges (); // implicit with send()
Transport transport = session.getTransport ("smtp");
transport.connect (host, username, password);

transport.sendMessage (message,message.getAllRecipients (

)),

transport.close() ;

e-Macao-16-3-397

Transport 3

This latter way is better when you need to send multiple messages.

It will keep the connection with the mail server active between messages.

The basic send () mechanism makes a separate connection to the
server for each method call.

e-Macao-16-3-398

Store and Folder 1

Getting messages starts similarly to sending messages:
1) Get a Session Object

2) You connect to a Store, quite possibly with a username and password
or Authenticator.

3) Like Transport, you tell the store what protocol to use

//Store store = session.getStore ("imap");
Store store = session.getStore ("pop3");

store.connect (host, username, password);

e-Macao-16-3-399

Store and Folder 2

4) Get a Folder, which must be opened before you can read messages
from it:

Folder folder = store.getFolder ("INBOX");
folder.open (Folder .READ_ONLY) ;

Message message[] = folder.getMessages|();

5) Get its content with getContent () or write its content to a stream with
writeTo (). The getContent () method only gets the message content,
while writeTo () output includes headers.

System.out.println (((MimeMessage)message) .getContent ());

e-Macao-16-3-400

Store and Folder 3

6) Once you're done reading mail, close the connection to the folder and
store.

folder.close (aBoolean) ;

store.close () ;

The boolean passed to the c1ose () method of folder states whether or
not to update the folder by removing deleted messages.

e-Macao-16-3-401

Using JavaMail API

We are going to demonstrate the usage of the API with the following:

1) sending messages

fetching messages

deleting Messages and Flags

authenticating Yourself

replying to Messages

forwarding Messages

working with attachments — sending and getting

processing HTML Messages — sending and including images

N OO O B W DN

)
)
)
)
)
)
)
)

00)

e-Macao-16-3-402

Sending Messages

This involves three steps:

1) getting a session
2) creating and filling a message
3) Send the message using the static Transport.send () method

You can specify your SMTP server by setting the mail.smtp.host
property for the Properties object passed when getting the Session

e-Macao-16-3-403

Example: Sending Messages 1

import jJava.util.Properties;
import Javax.mail.*;

import javax.mall.internet.*;

String host = pop3.iist.unu.edu;
String from = gab@iist.unu.edu;

String to = milton@iist.unu.edu;

// Get system properties

Properties props = System.getProperties();

// Setup mail server

props.put ("mail.smtp.host", host);

e-Macao-16-3-404

Example: Sending Messages 2

// Get session

Session session = Session.getDefaultlInstance (props,
null);

// Define message
MimeMessage message = new MimeMessage (session);
message.setlFrom(new InternetAddress (from));
message.addRecipient (Message.RecipientType.TO,

new InternetAddress(to));
message.setSubject ("Hello JavaMail");

message.setText ("Welcome to JavaMail");

// Send message

Transport.send (message) ;

e-Macao-16-3-405

Lab Work: Sending Messages

1) Starting with the skeleton code, get the system Properties.

2) Add the name of your SMTP server to the properties for the
mail.smtp.host key.

3) Get a Session object based on the Properties.
4) Create a MimeMessage from the session.
5) Set the from field of the message.
6) Set the to field of the message.
7) Set the subject of the message.
8) Set the content of the message.
9) Use a Transport to send the message.
0

10) Compile and run the program, passing your SMTP server, from

address, and to address on the command line.

e-Macao-16-3-406

Lab Work : Skeleton Code 1

import jJava.util.Properties;
import Javax.mail.?*;

import Javax.mail.internet.*;

public class MaillExample {

public static void main (String args[]) throws

Exception {

String host = args([0];
String from = args|[l];
String to = args|[2];

// Get system properties
// Setup mail server

// Get session

// Define message

/ / O~ 1l ~ £ an ~mn N AT an N~~~

e-Macao-16-3-407

Lab Work : Skeleton Code 2

// Set the to address
// Set the subject
// Set the content

// Send message

e-Macao-16-3-408

Fetching Messages

Reading messages involves five steps:

1) getting a session

2) get and connect to an appropriate store for your mailbox
3) open the appropriate folder

4) get your message(s)

5) and close the connection when done.

e-Macao-16-3-409

Example: Fetching Messages 1

import jJava.util.Properties;
import Javax.mail.*;

import Javax.mall.Internet.?*;

String host = ...;
String username = ...;
String password = ...;

// Create empty properties

Properties props = new Properties();

// Get session

Session session = Session.getDefaultlInstance (props,
null);

e-Macao-16-3-410

Example: Fetching Messages 2

// Get the store

Store store = session.getStore ("pop3");
store.connect (host, username, password);
// Get folder

Folder folder = store.getFolder ("INBOX");
folder.open (Folder.READ_ONLY) ;

// Get directory

Message message[] = folder.getMessages|();

for (int 1=0, n=message.length; 1i<n; i++) {
System.out.print (i + ": " + message[i].getFrom() [0]);
System.out.println("\t" + message[i] .getSubject());

e-Macao-16-3-411

Example: Fetching Messages 3

// Close connection
folder.close(false);

store.close () ;

This code snippet displays the subjects of the messages.

To display the whole message:
1) you can prompt the user after seeing the from and subject fields,

2) and then call the message's writeTo () method if they want to see it

e-Macao-16-3-412

Example: Displaying Content 1

BufferedReader reader = new BufferedReader (

new InputStreamReader (System.in));

// Get directory

Message message[] = folder.getMessages|();

for (int 1=0, n=message.length; 1i<n; i++) {
System.out .print (i + ": " + message[i].getFrom() [0]);
System.out.println("\t" + message[i].getSubject());

System.out.print ("Do you want to read message? “);
System.out.println (" [YES to read/QUIT to end]");

String line = reader.readLine();

e-Macao-16-3-413

Example: Displaying Content 2

1f ("YES".equals(line)) {
message[1] .writeTo (System.out);
} else 1f ("QUIT".equals(line)) {

break;

e-Macao-16-3-414

Lab Work: Fetching Messages

Starting with the skeleton code, get or create a Properties object.
Get a Session object based on the Properties.
Get a Store for your email protocol, either pop3 or imap.

Connect to your mail host's store with the appropriate username and
password.

Get the folder you want to read. More than likely, this will be the
INBOX.

Open the folder read-only.

Get a directory of the messages in the folder. Save the message list
in an array variable named message.

For each message, display the from field and the subject.

Display the message content when prompted.

e-Macao-16-3-415

Lab Work: Fetching Messages 2

10) Close the connection to the folder and store.

11) Compile and run the program, passing your mail server,
username, and password on the command line. Answer YES to the
messages you want to read. Just hit ENTER if you don't. If you want
to stop reading your mail before making your way through all the
messages, enter QUIT.

e-Macao-16-3-416

Lab Work : Skeleton Code 1

import java.io0.%*;
import java.util.Properties;
import javax.maill.¥*;

import Javax.mail.internet.*;

public class GetMessageExample {

public static void main (String args[]) throws

Exception{
String host = args[0];
String username = args|[l];
String password = args|[2Z];
// Create empty properties

// Get session

e-Macao-16-3-417

Lab Work : Skeleton Code 2

// Get the store
// Connect to store
// Get folder

// Open read-only

BufferedReader reader = new BufferedReader (new

InputStreamReader (System.1in)) ;

// Get directory

for (int 1=0, n=message.length; 1i<n; 1i++) {
// Display from field and subject

System.out.print ("Do you want to read message?”);

System.out .println (“[YES to read/QUIT to
end] ") ;

String line = reader.readlLine();

e-Macao-16-3-418

Lab Work : Skeleton Code 3

1f ("YES".equals(line)) {
// Display message content
} else 1f ("QUIT".equals(line)) {
break;

}

} // Close connection

e-Macao-16-3-419

Flags

The Flags class represents the set of flags on a Message. Flags are
composed of predefined system flags, and user defined flags.

A System flag is represented by the Flags.Flag inner class.
1) Flags.Flag.ANSWERED

2) Flags.Flag.DELETED

3) Flags.Flag.DRAFT

4) Flags.Flag.FLAGGED

5) Flags.Flag.RECENT

6) Flags.Flag.SEEN

/) Flags.Flag.USER

Use the getPermanentFlags () method of Folder class to find out
what flags are supported

A User defined flag is represented as a St ring.

e-Macao-16-3-420

Deleting Messages

To delete messages, you set the message's DELETED flag:

message.setlFlag(Flags.Flag.DELETED, true);
Open up the folder in READ_WRITE mode first though:

folder.open (Folder .READ_WRITE) ;

Then, when you are done processing all messages, close the folder,
passing in a t rue value to expunge the deleted messages.

To unset a flag, just pass false to the setFlag () method.

To see if a flag is set, check with isset ().

Authentication 1

e-Macao-16-3-421

How do you achieve something like this using JavaMail?

& Inbox - Microsott Uutlook [-]L|L|

File Edit Miew Favorites Tools Actions Help

720 Ttems, 12 Unread | Send/Receive Status 0% = 52

iNew v &b 1% X | Bensply ®Replytoal ofForward [EESend/Recsive e B2 Typesconbacttafnd | (@)L
| Cutlook Shorkouts | Folder List b | Lok For ~ Search Im= Inbox Find Maw 1= Cptions = M
!i+i-% .C'.rcl?we Folders ,.| [1% g me IReediiad |5I2E |:|
=] Cklooke S e e T S A SR b
@ #e¥=0 Enter Network Password |7 Man11f.. 2 KB
[; — Mon1l.. 2 KB
Outlook Today S Con on
| Monll.. 2 KB
;A {% [D)?E ? Please type your user name and password, Mon1l.. 2 KB
L N - ; Mon1l.. 2KB
& In L I pop3.dist, uriu,edu
Inbox (12) 3 Jou Mon11l.. 2KB
{2 Not Liser Mame: l';Iab Mon1l.. 2 KB
S ou Mon1l.. ZKB
5P Sen Password: i Mon11/... SEB
Calendar T Mon 11/... SEKB
D 72 ™ Save this password i your password list Mfz “': o
% O, Cancel
Conkacks
[Melcome to Javalail
|
: Tasks j
i My Shortcuts I
I Obher Shorkcuks ! < i |

e-Macao-16-3-422

Authentication 2

Use an Authenticator to prompt for username and password when
needed.

Instead of connecting to the st ore with the host, username, and
password, you configure the Properties to have the host, and tell the
Session about your custom Authenticator instance.

Example:
Properties props = System.getProperties();

props.put ("mail.pop3.host", host);

// Setup authentication, get session
Authenticator auth = new PopupAuthenticator();

Session session = Session.getDefaultlInstance (props,
auth) ;

e-Macao-16-3-423

Authentication 3

// Get the store
Store store = session.getStore ("pop3");

store.connect () ;

e-Macao-16-3-424

PopupAuthenticator 1

import javax.mail.*;
import Javax.swing.¥*;

import Jjava.util.*;

public class PopupAuthenticator extends Authenticator {

public PasswordAuthentication
getPasswordAuthentication () {

String username, password;

String result = JOptionPane.showInputDialog ("Enter
'username, password'") ;

StringTokenizer st = new StringTokenizer (result,

",");

e-Macao-16-3-425

PopupAuthenticator 2

username = st.nextToken();
password = st.nextToken () ;

return new PasswordAuthentication (username,
password) ;

e-Macao-16-3-426

Replying to Messages

The Message class includes a reply () method to configure a new

message with the proper recipient and subject, adding "Re: " if not already
there.

This does not add any content to the message, only copying the from or
reply-to header to the new recipient.

The method takes a boolean parameter indicating whether to reply to
only the sender (false) or reply to all (true).

Example:
MimeMessage reply = (MimeMessage)message.reply (false);
reply.setFrom(new InternetAddress (“xxx@server.com"));

reply.setText ("Thanks") ;
Transport.send(reply);

e-Macao-16-3-427

Lab Work: Replying to Messages

1)

The skeleton code already includes the code to get the list of
messages from the folder and prompt you to create a reply.

When answered affirmatively, create a new MimeMessage from the
original message.

Set the from field to your email address.

Create the text for the reply. Include a canned message to start.
When the original message is plain text, add each line of the original
message, prefix each line with the "> " characters.

Set the message's content, once the message content is fully
determined. Send the message.

Compile and run the program, passing your mail server, SMTP
server, username, password, and from address on the command line.
Answer YES to the messages you want to send replies. Just hit
ENTER if you don't. If you want to stop going through your mail
before making your way through all the messages, enter QUIT.

e-Macao-16-3-428

Lab Work: Skeleton Code 1

import java.io.*;

import jJava.util.Properties;
import Javax.mail.?*;

import Javax.mall.internet.*;
public class ReplyExample {

public static voilid main (String args|[]) throws

Exception {
String host = args[0];
String sendHost = args|[l];
String username = args|[2];
String password = args|[3];

String from = args([4];

e-Macao-16-3-429

Lab Work: Skeleton Code 2

// Create empty properties

Properties props = System.getProperties();
props.put ("mail.smtp.host", sendHost);

// Get session

Session session = Session.getDefaultInstance
(props, null);

// Get the store

Store store = session.getStore ("pop3d");
store.connect (host, username, password);
// Get folder

Folder folder = store.getFolder ("INBOX") ;

folder.open (Folder .READ_ONLY) ;

e-Macao-16-3-430

Lab Work: Skeleton Code 3

BufferedReader reader = new BufferedReader
(new InputStreamReader (System.in));

// Get directory

Message message[] = folder.getMessages|();

for (int 1=0, n=message.length; 1i<n; 1i++) {

System.out.println(i1 + ": %) +
message[i] .getFrom() [0] + "\t" +
message[1] .getSubject ());

System.out.println ("Do you want to reply to
the message? [YES to reply/QUIT to
end]");

String line = reader.readLine();

e-Macao-16-3-431

Lab Work: Skeleton Code 4

1f ("YES".equals(line)) {
// Create a reply message
// Set the from field

// Create the reply content, copying
//over the original if text

// Set the content
// Send the message
telse 1f ("QUIT".equals(line)) {

break;

e-Macao-16-3-432

Lab Work: Skeleton Code 5

// Close connection
folder.close (false);

store.close () ;

e-Macao-16-3-433

Message Parts

A mail message can be made up of multiple parts

Each part is a BodyPart, or more specifically, a MimeBodyPart when
working with MIME messages.

The different body parts get combined into a container called Multipart
or, again, more specifically a MimeMultipart.

e-Macao-16-3-434

Forwarding Message

To forward a message:

1) you create one part for the text of your message

)
2) and a second part with the message to forward,
3) and combine the two into a multipart.

)

4) Then you add the multipart to a properly addressed message and send
it.

To copy the content from one message to another, just copy over its
DataHandler, a class from the JavaBeans Activation Framework.

e-Macao-16-3-435

Forwarding Message 2

g FW: Exercises to put in the website. - Message - Microsoft Word

File Edit “iew Insert Format Tools Table window Help Typee & question for help - X
P HEH 2RY L =@ - @ B O & B g o -3 A =
Final Showing [arkr _§hDW' iy iy F = R = | B o
i=igend Accoumts~ | | - €. ' 3 v [gjoptions.. - | Plain Text -
8 This message wil be sent via pop3.ist.unu.edu (1),
EE To... -
[EER . .
Subject: E.F.'-.-;I:I'EI-I.E-:-:erc-ises.I:-D pu.l-:-i.r;-t.l'-le wel-:l-s;il.:e.
Dear Fran]ﬂ Z

The United Nations Universitcy

International Institute for Zoftware Technology,
P.O.Box 3055,

Casa S3ilva Mendes=

E=zt. do Engenheiro Trigo Mo. 4

Macau.

Home: 4553 531560

Mokbile: 4853 66949569

————— Original Message———-—-—

From: wosfiist.unu.edu [mailto:wesfiist.unu.edu]

Sent: Monday, Nowvewber 15, 2004 4:386 PH

To: tijliist.unu.edu; aolfiist.unu.edu; elsalliist.unu.edu; gabliistc.unu.edu;
brianffiist.unu.edu; wendylei.safplinformac.gow.mo;

ktleong.safplinformac .. gow.mo

Co: wosEdiist.unu.eda LJ
Suhiaernt: FEwermises o it in the mmerhisdite o

e-Macao-16-3-436

Example: Forwarding Message

// Create the message to forward

Message forward = new MimeMessage (session);

// Fill in header

forward.setSubject ("Fwd: " + message.getSubject ());
forward.setFrom(new InternetAddress (from)) ;
forward.addRecipient (Message.ReciplientType.TO,

new InternetAddress (to));

// Create your new message part
BodyPart messageBodyPart = new MimeBodyPart () ;

messageBodyPart.setText ("Here you go with the original
message: \n\n") ;

e-Macao-16-3-437

Example: Forwarding Message 2

// Create a multi-part to combine the parts

Multipart multipart = new MimeMultipart () ;
multipart.addBodyPart (messageBodyPart) ;

// Create and fill part for the forwarded content
messageBodyPart = new MimeBodyPart () ;
messageBodyPart.setDataHandler (message.getDataHandler ());
// Add part to multi part

multipart.addBodyPart (messageBodyPart) ;

// Associate multi-part with message
forward.setContent (multipart);
// Send message

Transport.send (forward) ;

e-Macao-16-3-438

Working with Attachments

Attachments are resources associated with a mail message, usually kept
outside of the message like a text file, spreadsheet, or image.

With JavaMail you can:
1) attach resources to your mail message with the JavaMail API

2) and get those attachments when you receive the message

e-Macao-16-3-439

Sending Attachments

To send an attachment with your mail

1) Create a new MimeBodyPart

2) Create a DataSource object. A DataSource object is part of JAF
defined in javax.activation package.

3) Wrap the DataSource object in a DataHandler. This will allow us to
pass the DataHandler to the body part object.

e-Macao-16-3-440

Example: Sending Attachments 1

// Define message
Message message = new MimeMessage (session);
message.setlFrom(new InternetAddress (from));

message.addRecipient (Message.RecipientType.TO,
new InternetAddress (to));

message.setSubject ("Hello JavaMail Attachment");

// Create the message part

BodyPart messageBodyPart = new MimeBodyPart () ;

// Fill the message

messageBodyPart.setText ("Pardon Ideas");

Multipart multipart = new MimeMultipart ();
multipart.addBodyPart (messageBodyPart) ;

e-Macao-16-3-441

Example: Sending Attachments 2

// Part two is attachment
messageBodyPart = new MimeBodyPart () ;

DataSource source = new FileDataSource (filename) ;

messageBodyPart.setDataHandler (new
DataHandler (source)) ;

messageBodyPart.setFileName (filename) ;

multipart.addBodyPart (messageBodyPart) ;

// Put parts in message

message.setContent (multipart);

// Send the message

Transport.send (message) ;

e-Macao-16-3-442

Lab Work: Sending Attachment 1

The skeleton code already includes the code to get the initial mail
session.

From the session, get a Message and set its header fields: to, from, and
subject.

Create a BodyPart for the main message cotent and fill its content with
the text of the message.

Create a Multipart to combine the main content with the attachment.
Add the main content to the multipart.

Create a second BodyPart for the attachment.
Get the attachment as a DataSource.

Set the DataHandler for the message part to the data source. Carry the
original filename along.

Add the second part of the message to the multipart.

e-Macao-16-3-443

Lab Work: Sending Attachment 2

9) Set the content of the message to the multipart.

10)Compile and run the program, passing your SMTP server, from
address, to address, and filename on the command line. This will
send the file as an attachment.

e-Macao-16-3-444

Lab Work: Skeleton Code 1

import java.util.Properties;
import javax.mall.*;

import Javax.mall.internet.*;
import javax.actilvation.?*;
public class AttachExample {

public static void main (String args([]) throws
Exception {

String host = args[0];
String from = args[1l];
String to = args[2];
String filename = args|[3];
// Get system properties

Properties props = System.getProperties();

e-Macao-16-3-445

Lab Work: Skeleton Code 2

// Setup mail server

props.put ("mail.smtp.host", host);
// Get session
Session session = Session.getlInstance (props,

//
//
//
//
//
//
//

Define message

Create the message part
Fill the message

Create a Multipart

Add part one //

Part two is attachment //

Create second body part

null);

e-Macao-16-3-446

Exercise : Skeleton Code 3

// Get the attachment
// Set the data handler to the attachment
// Set the filename
// Add part two

// Put parts in message

// Send the message

e-Macao-16-3-447

Getting Attachments

The content of your message is a Multipart object when it has
attachments.

You then need to process each part, to get the main content and
the attachment(s).

Parts marked with a disposition of Part .ATTACHMENT from
part.getDisposition () are clearly attachments.

However, attachments can also come across with no disposition
(and a non-text MIME type) or a disposition of Part . INLINE.

Just get the original flename with getFileName () and the input
stream with get InputStream().

e-Macao-16-3-448

Example: Getting Attachments

Multipart mp =

(Multipart)message.getContent () ;
for (int 1=0, n=multipart.getCount (); i<n; 1i++) {
multipart.getBodyPart (1)) ;

4

Part part =

String disposition = part.getDisposition{();

1f ((disposition != null) &&

((disposition.equals (Part .ATTACHMENT) | |

(disposition.equals (Part.INLINE))) {

saveFille (part.getFileName (),
part.getInputStream()) ;

}

e-Macao-16-3-449

Writing Attachments

The saveFile () method just creates a File from the filename, reads the
bytes from the input stream, and writes them off to the file.

In case the file already exists, a number is added to the end of the
filename until one is found that doesn't exist.

// from saveFile ()
File file = new File(filename);
for (int 1=0; file.exists(); 1++) {

file = new File(filename+1i) ;

e-Macao-16-3-450

Attachment: General Case

The code above covers the simplest case where message parts
are flagged appropriately.

To cover all cases, handle when the disposition is nul1l and get
the MIME type of the part to handle accordingly.

1f (disposition == null) {
// Check if plain
MimeBodyPart mbp = (MimeBodyPart)part;
if (mbp.isMimeType ("text/plain")) {

// Handle plain
} else {

// Special non—-attachment cases here of

// image/gif, text/html,

e-Macao-16-3-451

Sending HTML Messages

To send a HTML file as the message and let the mail reader worry about
fetching any embedded images or related pieces

1) use the setContent () method of Message

2) passing along the content as a st ring and setting the content type to
text/html.

Example:
String htmlText = "<HI1>Hello</H1>" +

"<imgsrc=\"http://www.jguru.com/images/logo.gif\">";
message.setContent (htmlText, "text/html"));

e-Macao-16-3-452

Including Images in HTML

if you want your HTML content message to be complete, with embedded
images included as part of the message:

1) you must treat the image as an attachment

2) and reference the image with a special cid URL, where the cid is a
reference to the Content-ID header of the image attachment.

3) tell the MimeMultipart that the parts are related by setting its subtype
in the constructor (or with set SubType ())

4) and set the Content-ID header for the image to a random string which is
used as the src for the image in the tag.

e-Macao-16-3-453

Example: Including Images 1

String file = ...;

// Create the message

Message message = new MimeMessage (session);

// Fill its headers

message.setSubject ("Embedded Image");

message.setFrom(new InternetAddress (from));

message.addRecipient (Message.RecipientType.TO,
new InternetAddress(to));

// Create your new message part

BodyPart messageBodyPart = new MimeBodyPart ();

String htmlText = "<HI>Hello</HI1>" + "";

e-Macao-16-3-454

Example: Including Images 2

messageBodyPart.setContent (htmlText, "text/html");

// Create a related multi-part to combine the parts
MimeMultipart multipart = new MimeMultipart ("related");
multipart.addBodyPart (messageBodyPart) ;

// Create part for the image

messageBodyPart = new MimeBodyPart () ;

// Fetch the image and associate to part
DataSource fds = new FileDataSource(file);
messageBodyPart.setDataHandler (new DataHandler (fds));

messageBodyPart.setHeader ("Content—-ID", "<memememe>") ;

Example: Including Images 3

// Add part to multi-part

multipart.addBodyPart (messageBodyPart) ;

// Associate multi-part with message

message.setContent (multipart);

e-Macao-16-3-456

Lab Work: Sending HTML

The skeleton code already includes the code to get the initial mail
session, create the main message, and fill its headers (to, from,
subject).

Create a BodyPart for the HTML message content.

Create a text string of the HTML content. Include a reference in the
HTML to an image () that is local to the mail message.

Set the content of the message part. Be sure to specify the MIME
type is text/ntml.

Create a Multipart to combine the main content with the attachment.
Be sure to specify that the parts are related. Add the main content to
the multipart.

Create a second BodyPart for the attachment.

Get the attachment as a DataSource, and set the DataHandler for the
message part to the data source.

e-Macao-16-3-457

Lab Work:

8) Set the Content-ID header for the part to match the image reference
specified in the HTML.

9) Add the second part of the message to the multipart, and set the
content of the message to the multipart.

10)Send the message.

11)Compile and run the program, passing your SMTP server, from
address, to address, and filename on the command line. This will
send the images as an inline image within the HTML text.

e-Macao-16-3-458

Lab Work: Skeleton Code 1

import Java.util.Properties;
import javax.maill.*;
import Jjavax.mall.internet.?*;

import Jjavax.actilvation.*;

public class HtmlImageExample {

public static void main (String args[]) throws

Exception {
String host = args|[0];
String from = args[l];
String to = args[2];
String file = args|[3];

e-Macao-16-3-459

Lab Work: Skeleton Code 2

// Get system properties

Properties props = System.getProperties();
// Setup mail server

props.put ("mail.smtp.host", host);

// Get session

Session session = ession.getDefaultlInstance (props,

null);

// Create the message

Message message = new MimeMessage (session) ;
// Fill its headers

message.setSubject ("Embedded Image");

message.setFrom(new InternetAddress (from));

e-Macao-16-3-460

Lab Work: Skeleton Code 3

message.addRecipient (Message.RecipientType.TO,

new InternetAddress (to));
// Create your new message part

// Set the HTML content, be sure it references
//the attachment

// Set the content of the body part

// Create a related multi-part to combine the

parts
// Add body part to multipart
// Create part for the image
// Fetch the image and associate to part
// Add a header to connect to the HTML
// Add part to multi-part
// Associate multi-part with message

// Send messaage } }

e-Macao-16-3-461

Exercise: JavaMall

Java Message Service

Course QOutline

e-Macao-16-3-463

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

e-Macao-16-3-464

Overview

1) introduction

2) JMS Messaging Model

3) JMS programming model and implementation
4) advance configuration

5) summary

e-Macao-16-3-465

Introduction 1

Information systems are increasingly based on distributed architectures

Needs for integrating existing stand-alone systems are increasing

Middleware is an attempt to ease distributed system development, and try to
embedded complexity of communication between programs such as:

a) Different data representations & encodings
b) Different transport protocols

c) Different programming languages, ...

Introduction 2

e-Macao-16-3-466

Types of middleware
1) Procedure-oriented
a) Client/Server e.g. RPC

2) Object-oriented
a) Distributed Objects e.g. CORBA, RMI

3) Message Oriented Middlewares(MOMS)
a) Asynchronous messaging e.g. JMS

e-Macao-16-3-467

What is Messaging ?

1) A method of peer-to-peer communication between software components
or applications.

2) Enables distributed communication that is loosely coupled; differs from
tightly coupled technologies, such as Remote Method Invocation (RMI),
which require an application to know a remote application's methods.

JMS L
Client Application A ‘
JMS 7'y JMS JMS grnsrasriareseasnannannd Router
Client \ ! / Client Client | i -
Local "server" : :
Message : : :
Server v v v
/ \ Local "server" Local "server" Local "server"
ok 3 JMS
Client Client JMS JMS JMS
= Client Client Client

JMS
Client Application B Application C Application D

e-Macao-16-3-468

Reliable Messaging With Queues

MOMSs provide asynchronous messaging

If one party is unavailable, messaging subsystem is still available and
functional

Queues exist independent from the applications

e-Macao-16-3-469

Queuing Basics 1

Queues are uni-directional, but multiple queues may be used to provide
bi-directional messaging

e-Macao-16-3-470

Queuing Basics 2

Queues can work in different models and make one to many and many to
one relations possible

e-Macao-16-3-471

Producer and Consumer

JMS - Message Oriented Middleware

Connection
Session - - J—

"""""""""""""""""""

e-Macao-16-3-472

The Java Messaging Service 1

A J2EE API to access MOM products from Java
Vendor-neutral API for higher-interoperability
Has two models:
1) Publish and Subscribe
a)0 or more recipients
b)Messages passed between publishers and subscribers via topics
c)Message can be subscribed to in a durable manner
d)Message are consumed at least once
2) Point-to-Point
a)One recipient only
b)Messages are consumed at most once and only once

e-Macao-16-3-473

The Java Messaging Service 2

Potential Receiver
Potential Receiver

Publisher

e-Macao-16-3-474

The Promises of JMS

1) “Messaging for the masses”
a) Could have similar impact that SQL had on databases
b) Similar to JDBC (which all vendors now support)

2) First enterprise messaging APl to achieve wide industry support
(standard)

3) Simplifies development of enterprise applications (ease of use)

4) Leverages existing enterprise-proven messaging systems
(implementation)

5) Easy to write portable messaging based business applications (write
once, run anywhere)

e-Macao-16-3-475

The Promises of JMS

1) “Messaging for the masses”
a) Could have similar impact that SQL had on databases

2) First enterprise messaging APl to achieve wide industry support
3) Simplifies development of enterprise applications
4) Leverages existing enterprise-proven messaging systems

5) Easy to write portable messaging based business applications

e-Macao-16-3-476

Limitations of the JMS

JMS does not address
a) Security
b) Load Balancing
c) Fault Tolerance
d) Error Notification (apart from Exceptions)
e) Administration API

f) Transport protocol for messaging

e-Macao-16-3-477

Overview

1) introduction

2) JMS messaging model

3) JMS programming model and implementation
4) advance configuration

5) summary

e-Macao-16-3-478

JMS API Concepts

A JMS application is composed of the following parts:
1) JMS Provider

a) messaging system that implements JMS and administrative
functionality, e.g. IBM’s MQSeries and JBossMQ message server.

2) JMS Clients

a) Java programs that send/receive messages
3) Messages

a) ltems of information sent between JMS clients.
4) Administered Objects

a) preconfigured JMS objects created by an admin for the use of clients
b) ConnectionFactory, Destination (queue or topic)

e-Macao-16-3-479

JMS API| Concepts 2

Interaction between different parts of JMS:

JNDI Namespace

Bind

Administrative
Tool

Lookup

/._./— p—
P L

4]V ER LT T PNy JMS Provider

Logical
Connection

JMS Messaging Domains

e-Macao-16-3-480

Point-to-Point (PTP)
a) built around the concept of message queues
b) each message has only one consumer

Publish-Subscribe systems
a) uses a “topic” to send and receive messages

b) each message has multiple consumers

e-Macao-16-3-481

Point-to-Point Messaging 1

Each message is addressed to a specific queue
Receiving clients extract messages from the queue(s)
Queues retain all messages sent to them until:

a) the messages are consumed

b) the messages expire

.H
| Client 1 l
Sends

Consumes | Client 2

C—

Acknowledges

e-Macao-16-3-482

Point-to-Point Messaging 2

Characteristics of Point-to-Point Messaging :
a) Each message has only one consumer.
b)
c) The receiver acknowledges the successful processing of a message.
d)

A sender and a receiver of a message have no timing dependencies.

Should be used when every message send must be processed
successfully by one consumer.

e-Macao-16-3-483

Publish/Subscribe Messaging 1

Clients address messages to a topic.
The system takes care of distributing the messages.

Topics retain messages only as long as it takes to distribute them to
current subscribers.

Subscribes | Client 2 I
Msg Delivers
Client 1 | mmsssnl)
Publishes

Subscribes Client 3
— Ll

Delivers

s

Publish/Subscribe Messaging 2

e-Macao-16-3-484

Characteristics of Pub/Sub Messaging :

a)
b)

Each message may have multiple consumers.

A client that subscribes to a topic can consume only messages
published after the client has created a subscription.

The subscriber must continue to be active in order for it to
consume messages.

Exception for time dependency is allowed for durable subscription.
(Will be discussed later)

e-Macao-16-3-485

JMS Message

A JMS message has three parts:

1) Message Header
a) used for identifying and routing messages
b) contains vendor-specified values, but could also contain
application-specific data
c) typically name/value pairs
2) Message Properties (optional)
a) act like additional headers
3) Message Body(optional)
a) contains the data
b) five different message body types in the JMS specification

e-Macao-16-3-486

JMS Header

Automatically assigned headers Developer-assigned headers

JMSDestination JMSReplyTo

JMSDeliveryMode JMSCorrelationID

JMSMessagelD JMSType

JMSTimestamp

JMSExpiration

JMSRedelivered

JMSPriority

JMS Message Types

e-Macao-16-3-487

Message Type Contains Some Methods
TextMessage String getText, setText
MapMessage set of name/value setString, setDouble, set
pairs Long, getDouble,
getString
BytesMessage stream of writeBytes, readBytes,
uninterpreted writeString,
bytes readString
StreamMessage stream of writeString,writeDouble
primitive values ,writelong,
readString
ObjectMessage serialize object setObject, getObject

Accessing JMS Message

e-Macao-16-3-488

get<type> (Name) ; Message
MapMessage | | TextMessage | | ObjectMessage | | StreamMessage || BytesMessage

getText (); getObject ();

\

/

read<type> () ;

e-Macao-16-3-489

Messages Consumption

In the JMS Specification, messages can be consumed in either of two
ways:

Synchronously

a) A subscriber or a receiver explicitly fetches the message from the
destination by calling the receive method.

b) The receive method can block until a message arrives or can time
out if a message does not arrive within a specified time limit.

Asynchronously
a) A client can register a message listener with a consumer.

b) Whenever a message arrives at the destination, the JMS provider
delivers the message by calling the listener's onMessage()
method.

e-Macao-16-3-490

Overview

1) introduction

2) JMS Messaging Model

3) JMS programming model and implementation
4)

5)

advance configuration

summary

e-Macao-16-3-491

JMS API Programming Model

The basic building blocks of a JMS application:

:
2
3
4
5

)
)
)
)
)

Administered objects
Sessions

Message producers
Message consumers
Messages

Y connection

Factory

Creates

Connection

Creates

Message

Message

Producer Session

!

Creates

Consumer

Creates

Receives From

/'"_“*-.

ends To Creates

-

Destination

Destination

e-Macao-16-3-492

JMS Client Setup Procedure

A typical pub/sub JMS client executes the following setup procedure:

y

s =

L

Use JNDI to find a ConnectionFactory object

Use JNDI to find one or more Destination objects

Use the ConnectionFactory to create a JMS Connection
Use the Connection to create one or more JMS Sessions

Use a Session and the Destinations to create the
TopicPublisher and TopicSubscriber needed

Enable the Connection to start delivering messages to
TopicSubscriber

e-Macao-16-3-493

What is JNDI

Java Naming and Directory Interface (JNDTI) is an integral component of
J2EE technology

JNDI is an application programming interface (API) that provides
directory and naming services to Java applications.

JNDT is defined to be independent of any specific naming or directory
service implementation. A variety of services can be accessed in a

common way.

Naming Manager

JNDI API

JNDI SPI

' JNDI
CORBA Implementation

............

JNDI package

e-Macao-16-3-494

Following are the JNDI packages:

1) javax.

naming

.naming
.naming
.naming

.naming.

.directory
.event
. ldap

spil

e-Macao-16-3-495

Obtain JNDI Connection 1

1) Instantiate an Properties object:

Properties env = new Properties|();
2) Specify the JINDI properties specific to the vendor:

env.put ("java.naming.factory.initial",

"org.jnp.1interfaces.NamingContextFactory") ;
env.put ("jJava.naming.provider.url",

"4np://localhost:1099");
env.put ("java.naming.factory.url.pkgs",

"org. jboss.naming:org. jnp.interfaces");

3) Obtain JNDI Connection

Context jndi=new InitialContext (env);

e-Macao-16-3-496

Obtain JNDI Connection 2

If a file named jndi.properties isin the classpath of the client program,
you can use the following setting:
Context jJndi = new

InitialContext (System.getProperties());

This can remove the vendor specific code from the client program.

e-Macao-16-3-497

Setup Using JNDI

1) Use JNDI to find a ConnectionFactory object:
TopicConnectionFactory conFactory =
(TopicConnectionFactory) jndi.lookup

("ConnectionFactory");

2) Use JNDI to find one or more Destination objects :
Topic myTopic =

(Topic) Jndi.lookup (topicName) ;

remark: In JBoss, the topic name can be found in the file :

<Jboss_Home>\server\default\deploy\jms\ jbossmg-
destinations—service.xml

e-Macao-16-3-498

Setup Connection and Session

1) Use ConnectionFactory to create a JMS Connection
TopicConnection connection =

conFactory.createTopicConnection() ;

2) Use the Connection to create one or more JMS Sessions
ToplicSession pubSession =
connection.createTopicSession (false,
Session.AUTO_ ACKNOWLEDGE) ;
ToplicSession subSession =
connection.createTopicSession (false,
Session.AUTO_ACKNOWLEDGE) ;

e-Macao-16-3-499

Message Publisher

1) Creating producer
MessageProducer producer=

pubSession.createProducer (myTopilc) ;
2) Send a message
TextMessage m=pubSession.createTextMessage () ;
m.setText (Y"just another message”);
publisher.publish (m) ;
3) Closing the connection

connection.close () ;

e-Macao-16-3-500

Message Subscriber

1) Creating subscriber
ToplicSubscriber subscriber =

subSession.createSubscriber (myTopic) ;

2) Set a JMS message listener
subscriber.setMessagelistener (<Message Listener>);

e-Macao-16-3-501

Message Listener 1

A Message Listener is a class implements interface
javax.jms.MessageListener and has to implement the

onMessage (Jjavax. jms.Message message) method
Example of onMessage method:
public void onMessage (Message message) {
TextMessage msg = null;
try |
1f (message 1instanceof TextMessage) {
msg = (TextMessage) message;
System.out.println ("Reading message: " +

msg.getText ());

e-Macao-16-3-502

Message Listener 2

else {
System.out.println ("Message of wrong type: “
+ message.getClass () .getName()) ;
}
} catch (JMSException e) {
System.out.println ("JMSException 1n
onMessage () : " + e.toString());
} catch (Throwable t) {

System.out.println ("Exception in onMessage() :

+ t.getMessage());

e-Macao-16-3-503

Start and Close the Connection

Enable the Connection to start delivering messages to TopicSubscriber

connection.start () ;

Stop the Connection before ending the client program.

connection.close();

Both methods throws javax. jms.JMSException

e-Macao-16-3-504

Lab Work: A JMS Chat Client 1

1) According to the procedure we discussed, write a pub/sub chatting
program using JMS.

a) Use JBoss as the JMS server.

b) Create a topic “emacao” in JBoss. You can modify the file
<JBoss Home>\server\default\deploy\jms\

jbossmg-destinations—-service.xml for creating a topic.
c) Execute the program from the command line:

1. Java Chat topic/emacao username

2. Note: for JBoss, the default JNDI name for a topic is
topic/<topic name>

3. andis queue/<queue name> for a queue.

e-Macao-16-3-505

Lab Work: A JMS Chat Client 2

Point-to-Point Messaging 1

e-Macao-16-3-506

Point-to-Point (PTP) application is built around the concept of message
queues, sender and receivers.

Each message is addressed to a specific queue and the receiving
clients extract messages from the queues established to hold their
messages.

Each message has only one consumer.
A sender and receiver have no time dependencies.

The receiver acknowledges the successful processing of a
message.

Use PTP when every message you send must be processed
successfully by one consumer

e-Macao-16-3-507

Point-to-Point Messaging 2

Connection Connection

Session Session

Producer | Consumer

Message Message

e-Macao-16-3-508

Message Queue Sender

1) Performs a Java Naming and Directory Interface (JNDI) APl lookup of
the QueueConnectionFactory and Queue.

2) Creates a QueueConnection and a QueueSession.
3) Creating Queue Sender
Jjavax.jms.QueueSender
sender=session.createSender (<queue name>) ;
4) Send a message
Message m=session.createTextMessage () ;
m.setText (Y"Jjust another message”);
sender.send (m) ;

5) Closing the connection
connection.close () ;

e-Macao-16-3-509

Message Queue Receliver

1) Performs a Java Naming and Directory Interface (JNDI) APl lookup of
the QueueConnectionFactory and Queue.

2) Creates a QueueConnection and a QueueSession.
3) Creating Queue Receiver
Jjavax.jms.QueueReceiver

queueRecelver=session.createRecelver (<queue name>);

4) Starts the connection, causing message delivery to begin

5) Receives the messages sent to the queue until the end-of-message-
stream
— Message m = queueReceiver.receive (

) ;
= Message m = queueReceiver.receive (0);

6) Closing the connection
connection.close () ;

e-Macao-16-3-510

Timed Synchronous Receive

If you do not want your program to consume system resources
unnecessarily, do one of the following:

1) Call the receive method with a timeout argument greater than O:
Message m = queueReceiver.receive(l); // 1 ms

2) Call the receiveNoWait method, which receives a message only if one is

available:
Message m = queueRecelver.receiveNoWalt () ;

3) The receive () method is also available for the TopicSubscriber
and will negate the use of the onMessage () callback.

e-Macao-16-3-511

Basic Reliability Mechanisms

1) Specifying message persistence.
a) You can specify that messages are persistent, meaning that they
must not be lost in the event of a provider failure.

2) Controlling message acknowledgment.
a) You can specify various levels of control over message
acknowledgment.

3) Setting message priority levels.

4) Allowing messages to expire.
a) You can specify an expiration time for messages

e-Macao-16-3-512

Persistent Messages

Messages can be marked as persistent.
The implementation of the storage mechanism is up to the JMS provider.

Non-persistent message
not guaranteed to
survive provider failure

Persistent message
guaranteed to survive
provider failure

e-Macao-16-3-513

Exercise: Message Queue

1) Create Point-to-Point messaging program

a)
b)

Create a queue in JBoss with a name gex.

According to our discussion, please create a JMS client for
sending message to the gex queue.

Create a Queue Receiver for the gex queue.

Try to stop the receiver and use the sender to send some
message. Restart the receiver and check if it receive the
message.

e-Macao-16-3-514

Overview

1) introduction

2) JMS Messaging Model

3) JMS programming model and implementation
4)

5)

advance configuration

summary

e-Macao-16-3-515

Temporary Topics 1

Is a topic that is dynamically created by the JMS provider, using the
createTemporaryTopic () of the TopicSession object.

Is a topic associated with the connection that belongs to the TopicSesson
that created it.

It lasts only as long as its associated client connection is active.

Topic identity is transferred using the JMSReplyTo header.

e-Macao-16-3-516

Temporary Topics 2

Procedure to create a temporary topic:

1) After a session,mySession, is created, the client can create a dynamic
topic:
javax.jmx.Topic tempTopic =
mySession.createTemporaryTopic () ;

2) Create a message for the subscriber to reply to:
javax. jmx.TextMessage message =

mySession.createTextMessage () ;
3) Set up the JMSReplyTo destination
message.setJMSReplyTo (tempTopic) ;

e-Macao-16-3-517

Temporary Topics 3

When a client needs to respond to the message, it can use the JMSReplyTo
Desination:

public void onMessage (Javax.jms.Message amessage) {

TextMessage message = (TextMessage)amessage;
Jjavax.Jjms.Toplc tempTopilic =

(Javax.jms.Toplc)message.getIJMSReplyTo () ;

e-Macao-16-3-518

Durable Subscriptions

By default a subscriber gets only messages published on a topic while a
subscriber is alive

Durable subscription retains messages until they are received by a
subscriber or expire

You can use the createDurableScubsriber method of the
java.jms.TopicSession to create a durable subscription:

Javax.jms.ToplcSubscriber subscriber =
session.createDurableSubscriber (tempTopic, "subsc

ription name”);

e-Macao-16-3-519

Unsubscribing

In order to explicitly unsubscribe a subscription, you can use the follow
methods:

For nondurable subscription:

subcriber.close () ;

For durable subscription:

session.unsubscribe

(“<subscription name>");

e-Macao-16-3-520

Lab Work: Temporary Topic 1

1) Write two JMS clients to simulate the following scenario :

a) An event organizer is constantly promoting events for its
agents. It will publish the event message to and deliver to all
the subscribed agents.

b) After received the message, the Agents’ program will evaluate
the event according to certain criteria and decide to either
joining the event or not. In the exercise, you can make up
your own criteria such as cost or date.

c) If the agent decided to join the event, it's program will
automatically send a message back to the organizer.

d) Your organizer’s program required to create a temporary topic
and attached it as the destination for the agents to reply to.

e-Macao-16-3-521

Lab Work: Temporary Topic 2

4. subscribe() to

2. create a temporary “Event” topi
vent” topic

topic joinEvent 1. Create Topic

. Event
3. publish() message

on “Event” toplc

. S. receive :
message on -
/ “Event” topic AL
Event
Organizer & rI?]ecelve i 6. publish () Join
. _esEsageto message to
{om. ven joinEvent if
opic condition fitted

e-Macao-16-3-522

Overview

1) introduction

2) JMS Messaging Model

3) JMS programming model and implementation
4)

5)

advance configuration

summary

Summary

e-Macao-16-3-523

In this session, we cover the followings:

1) Concepts of Message Oriented Middleware
Concepts of Messaging

Design model of Java Message Service

)
)
4) Programming Model of Java Message Service
) Programming publisher/subscriber JMS application
)

Programming Point-to-Point JMS application

Distributed Objects

Course QOutline

e-Macao-16-3-525

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

e-Macao-16-3-526

Overview

What options do | have for distributed application development?

Developers who program using the Java programming language can
choose several solutions for creating distributed applications programs.

1) Java RMI technology
2) Java IDL technology (for CORBA programmers)
3) Enterprise JavaBeans technology

In this section we shall be talking about Java RMI and IDL technologies.

Java RMI

Course QOutline

e-Macao-16-3-528

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

e-Macao-16-3-529

Overview

1) introduction

2

)
) RMI architecture
3) implementing and running RMI system
)
)

4
)

Implementing activatable RMI server

summary

e-Macao-16-3-530

Introduction 1

Remote Method Invocation (RMI) technology was first introduced in JDK1.1.

RMI allows programmers to develop distributed Java programs with the
same syntax and semantics used for non-distributed programs.

RMI is based on a similar, earlier technology for procedural programming
called remote procedure call (RPC)

e-Macao-16-3-531

Introduction 2

Disadvantages of RPC
a) RPC supports a limited set of data types
Therefore it is not suitable for passing and returning Java Objects

b) RPC requires the programmer to learn a special interface definition
language (IDL) to describe the functions that can be invoked remotely

e-Macao-16-3-532

Introduction 3

The RMI architecture defines

a) How objects behave.

b) How and when exceptions can occur.
c) How memory is managed.
)

d) How parameters are passed to, and returned from, remote methods.
The remote object model for Enterprise JavaBeans (EJB) is RMI-
based.

e-Macao-16-3-533

Introduction 4

RMI is designed for Java-to-Java distributed applications.

RMI is simpler and easier to maintain than using socket.

Other options for creating Java-to-non-Java distributed applications are:
a) Java Interface Definition Language (IDL)

b) Remote Method Invocation (RMI) over Internet Inter-ORB Protocol
(IOP) -- RMI-IIOP.

e-Macao-16-3-534

Overview

1) introduction

2

)
) RMI architecture
3) implementing and running RMI system
)
)

4
)

Implementing activatable RMI server

summary

e-Macao-16-3-535

Architecture 1

RMI allows the code that defines the behavior and the code that
Implements the behavior to remain separate and to run on separate
JVMs.

At client side, RMI uses interfaces to define behavior.

At server side, RMI uses classes to define implementation.

i Client Program) d Server Program
Interface Implementation
F 1 'y

. A ., A
Rl
System

Architecture 2

e-Macao-16-3-536

The service interface is implements by two classes.

a) The first one is at the server side which implements the behavior.
b) The second one is at the client side which acts as a proxy.

glnterfaces
Service

TN

i m// !

Service
Procy

4 \\Qirﬂr

ﬁ Implemartation
Rl

SEFICE

"Mﬂgicﬂ
A .

e-Macao-16-3-537

Layers

The RMI implementation is built from three abstraction layers.
a) The Stub and Skeleton layer
b) The Remote Reference Layer
c) The transport layer

Chent Program _-> (-_ Server Frogram

i I

Stubs & Skeletons Stubs & Skeletons

il -
R -< Remote Reference Layer Remote Reference Layer
System

Transport Layer

e-Macao-16-3-538

Stub and Skeleton Layer 1

The first layer lies beneath the view of the developer intercepts method
calls made by the client to the interface reference variable and redirects

these calls to a remote RMI service.

RMI uses the Proxy design pattern in this layer.

Implementation

class

glrterfaces
Subject

+requesti)

|

=

RealSubject

/—stud class

Hrequest()

realsubject

Prioocy

+request()

e-Macao-16-3-539

Stub and Skeleton Layer 2

A skeleton is a helper class that is generated for to communicate with the
stub across the RMI link

In the Java 2 SDK implementation of RMI, the new wire protocol has
made skeleton classes obsolete.

You only have to worry about skeleton classes and objects in JDK 1.1
and JDK 1.1 compatible system implementations.

e-Macao-16-3-540

Remote Reference Layer

This layer provides a RemoteRef object that represents the link to the
remote service implementation object.

In JDK 1.1, only unicast, point-to-point connection is supported. Before a
client can use a remote service, the remote service must be instantiated
on the server and ran all the time.

In Java 2 SDK, client-server connection is added and activatable remote
objects is supported . With the introduction of the RMI| daemon, rmid,
remote objects can be created and execute "on demand," rather than
running all the time.

e-Macao-16-3-541

Transport Layer 1

The Transport Layer makes the connection between JVMs. All
connections are stream-based network connections that use TCP/IP.

Communication

between the ______ | «mE JRE JRE JRE

same host using

TCP/IP Y pestos S [tostos
rh?twtr /' Metvwark Layer

Communication
between different \
host using — —

TCP/IP 0 Metwork Cable j

e-Macao-16-3-542

Transport Layer 2

On top of TCP/IP, RMI uses a wire level protocol called Java Remote
Method Protocol (JRMP).

JRMP is a proprietary, stream-based protocol.

Sun and IBM have jointly worked on another version of RMI, called RMI-
lIOP(Remote Method Invocation over Internet Inter-ORB Protocol), which
combines RMI-style ease of use with CORBA cross-language
interoperability.

The remote object model for Enterprise Java Beans(EJBs) is RMI-based.

e-Macao-16-3-543

Naming Remote Objects

In RMI, clients find remote services by using a naming or directory
service.

RMI can use many different directory services, including the Java Naming
and Directory Interface (JNDI).

RMI itself includes a simple service called the RMI Registry, rmiregistry.
The RMI Registry runs on each machine that hosts remote service
objects and accepts queries for services, by default on port 1099.

i
e S et O
(=N L I

P Server LIFL pt:u:ntn:u::n:ul
k=" I

e-Macao-16-3-544

Overview

1) introduction

2

)
) RMI architecture
3) implementing and running RMI system
)
)

4
)

Implementing activatable RMI server

summary

e-Macao-16-3-545

Example : build a RMI system

In this example, we shall build a simple remote calculator service and use
it from a client program.

A working RMI system is composed of several parts.

a)

O O T

)
)
)
)

®

—
N

Interface definitions for the remote services
Implementations of the remote services
Stub and Skeleton files

A server to host the remote services

An RMI Naming service that allows clients to find the remote
services
A class file provider (an HTTP or ETP server)

A client program that needs the remote services

e-Macao-16-3-546

Interface 1

The first step is to write and compile the Java code for the service
interface.

All the interface has to extend the java.rmi.Remote interface and all
the methods has to declare that it may throw a RemoteException

object.

Interface 2

e-Macao-16-3-547

The interface may look like the following:

public interface Calculator extends
java.rmi.Remote

{ public long add(long a, long b) throws
java.rml.RemoteException;

public long sub(long a, long b) throws
java.rml.RemoteException;

public long mul (long a, long b) throws
java.rmil.RemoteException;

public long div(long a, long b) throws
java.rmil.RemoteException;

e-Macao-16-3-548

Implement 1

The second step is to write the implementation for the remote service.

The implementation class may extend from the
java.rmi.server.UnicastRemoteObject to link into the RMI

system.

It must also provide an explicit default constructor throwing
RemoteException. When this constructor calls super(), it activates code

INn UnicastRemoteObject that performs the RMI linking and remote
object initialization.

e-Macao-16-3-549

Implement 2

public class CalculatorImpl extends
java.rmi.server.UnicastRemoteObject implements
Calculator {

// Implementations must have an
// explicit default constructor
// 1in order to declare the
// RemoteException exception
public CalculatorImpl () throws
java.rmi.RemoteException
{ super(); 1}
public long add(long a, long b) throws
java.rmi.RemoteException

{ return a + b; }

e-Macao-16-3-550

Lab Work: Implementation

1)

Please write the rest of implementation for the Calculator interface.

Note: If your must extend some other classes other than extending from
UnicastRemoteObject, the implementation may use the static
exportObject () method of the UnicastRemoteObject instead.

Be careful that you may need to synchronize some portions of your
remotely available method. But it is not necessary for this example.

e-Macao-16-3-551

Stubs and Skeletons

To generate the Stub and Skeleton files, use the RMI complier, rmic as

the following:
>rmic CalculatorImpl

The default option will create stubs/skeletons compatible with both JDK
1.1 and Java 2.

e-Macao-16-3-552

Host Server 1

Remote RMI services must be hosted in a server process. The following
code is a very simple server that provides the bare essentials for hosting.

import java.rmili.Naming;

public class CalculatorServer

public CalculatorServer () {
try {
Calculator ¢ = new CalculatorImpl () ;

Naming.rebind ("rmi://localhost:1099/Calculator
Service", c);

} catch (Exception e) {

System.out.println ("Trouble: " + e);

e-Macao-16-3-553

Host Server 2

public static void main(String argsl[]) {

new CalculatorServer () ;

e-Macao-16-3-554

Client 1

1) In the client’s code, all you need to do is to lookup the object and use
it's methods as local methods.

2) The client’s code may look like the following:
import Java.rmi.Naming;
import java.rmi.RemoteException;
import Java.net.MalformedURLException;

import java.rmi.NotBoundException;

public class CalculatorClient {

public static void main(String[] args) {
try |
Calculator ¢ = (Calculator)Naming.lookup (

"rmi://localhost/CalculatorService");

e-Macao-16-3-555

Client 2

System.out.println(c.sub (4, 3));
System.out.println(c.add (4, 5));
System.out.println(c.mul (3, 6));
System.out.println(c.div (9, 3));

catch (MalformedURLException murle) {}

(
catch (RemoteException re) {}
catch (NotBoundException nbe) {}
(

catch (java.lang.ArithmeticException ae)

{}

e-Macao-16-3-556

Running the RMI System

1) Start up three consoles, one for the server, one for the client, and one
for the RMIRegistry.

2) Type rmiregistry inthe directory that contains the classes you
have written.

3) Inthe server’s console, type java CalculatorServer to startthe
server.

4) In the client’s console, type java CalculatorClient to start the
cleint program.

5) The output should look like:

1

9
18
3

e-Macao-16-3-557

Lab Work: RMI System

1) Please follow what we have discussed to develop a RMI server which
hosts a service for calculating the square root of a number.

2) Compile your RMI server and generate the corresponding stub class.

3) Create a client to test the RMI service.

e-Macao-16-3-558

Passing Parameters

All parameters passed from an RMI client to an RMI server must either be
serializable or be a remote object.

For serializable:
a) Data is extracted from the local object and sent across the
network to the remote server.
b) Object is then reconstructed in the remote server.

C) Any changes to the object in the RMIServer will not be
reflected in the object held in the RMI client and vice versa.

For a remote object:
a) Stub information, not a copy of data, is actually sent over RMI.
b) Any call made to the parameter object become a remote calls
back to the actual object.
C) Changes made in one JVM are reflected in the original JVM.

e-Macao-16-3-559

Conditions for serializability

If an object is to be serialized:
a) The class must be declared as public
) The class must implement Serializable
) The class must have a default (no-argument) constructor
)

All fields of the class must be serializable: either primitive types
or serializable objects

o O T

e-Macao-16-3-560

Remote interfaces and class

A Remote class has two parts:
a) The interface (used by both client and server):
1. Must be public
2. Must extend the interface java.rmi.Remote

3. Every method in the interface must declare that it throws
java.rmi.RemoteException (other exceptions may

also be thrown)
b) The class itself (used only by the server):
1. Must implement a Remote interface

2. Should extend

Jjava.rmi.server.UnicastRemoteObject

3. May have locally accessible methods that are not in its
Remote Interface

e-Macao-16-3-561

Security

Your program should guarantee that the classes that get loaded do not
perform operations that they are not allowed to perform.

A more conservative security manager than the default should be
installed. The following code should be added to the main method of the
server and client program:
1f (System.getSecurityManager () == null{
System.setSecurityManager (new
RMISecurityManager ()) ;

e-Macao-16-3-562

Overview

1) introduction

2

)
) RMI architecture
3) implementing and running RMI system
)
)

4
)

Implementing activatable RMI server

summary

e-Macao-16-3-563

Activatable Server

Enable server programs to wake up and start to run when they are
needed.

Java RMI Activation System Daemon (rmid) is introduced to handle this
task.

When a client requests a reference to the server from the rmiregistry,
the rmid program, which holds the servers details, will be requested to

start up the server and return the reference to the client. After that, the
rmiregistry Will be able to provide the reference of the server directly.

e-Macao-16-3-564

Activatable Server:iImplementation

1) Subcalss the java.rmi.activation.Activatable class and
Implement the remote interface.

2) Implement the following constructor:

public Server (ActivationID id, MarshalledObject
data) throws RemoteException({

super (id, 0); //register activatable object and
// export on anonymous port
}
3) Create an activation description used by the rmid program.
4) Register the activation description with the rmid program.
5) Compile the activatable server with javac and rmic compiler.
6) The client program needs no modification.

e-Macao-16-3-565

Activatable Server:Setup 1

Before we can use the activatable server, you need to generate the
activation description used by the rmid and register the description with

the rmid program. We will group these processes into a utility program
for illustration.

The structure of the utility program may look like this:
//1. Make the appropriate imports
import jJava.rmi.¥*;
import java.rmi.activation.*;
import java.util.Properties;
public class SetupServer{
public static void main(String args|[]) {

try{

e-Macao-16-3-566

Activatable Server:Setup 2

//2. Declare for a security policy file
System.setSecurityManager (new RMISecurityManager ());

Properties props =
(Properties) System.getProperties () ;

props.put (Y"jJava.security.policy”,<location of
security policy file>);

//3.Create an activation group description even there
// 1s only one server

ActivationGroupDesc agd = new ActivationGroupDesc
(props, null);

//4. Create a new activation group

ActivationGroupID agid =
ActivationGroup.getSystem() .registerGroup (agd) ;

e-Macao-16-3-567

Activatable Server:.Setup 3

//5. Create the actual activation description
// Don’t miss the trailing slash (/)

String codebase = “file:/<location of server
implementation file>/";

ActivationDesc desc = new ActivationDesc (agid,

“<name of the server>"”, codebase, null);

//6. Register the activation description to the rmid

// program. Suppose the remote interface of the
// server 1s RemoteInterface, the code will look
like this:

RemoteInterface ref =

(RemoteInterface)Activatable.register (desc);

e-Macao-16-3-568

Activatable Server.Setup 4

//7. Bind the server in rmiregistry
Naming.rebind (“Server”, ref);

//8. Exit the setup program
System.exit (0);

}catch (Exception e) {}

e-Macao-16-3-569

Compile and Run 1

1) Compile all the classes use javac.
2) Run rmic on the implementation class
3) Start rmi registry use rmiregistry.

a)

make sure that the shell or window in which you will run the
reqgistry, either has no CLASSPATH set or has a CLASSPATH that
does not include the path to any classes that you want
downloaded to your client, including the stubs for your remote
object implementation classes.

If you start the rmiregistry, and it can find your stub classes
In its CLASSPATH, it will ignore the server's
java.rmi.server.codebase property, and as a result, your
client(s) will not be able to download the stub code for your
remote object.

e-Macao-16-3-570

Compile and Run 2

4) Start the activation daemon, rmid. Use —J option for a runtime flag.
rmid —-J-Djava.security.policy=rmid.policy
The policy file may look like this:
grant {

permission com.sun.rmi.rmid.ExecOptionPermission
"-Djava.*";

permission com.sun.rmi.rmid.ExecOptionPermission
"-Dsun.*";

permission com.sun.rml.rmid.ExecOptionPermission
"-Dfile.*";

e-Macao-16-3-571

Compile and Run (3)

permission com.sun.rmi.rmid.ExecOptionPermission "-
Dpath.separator=*";

permission com.sun.rmi.rmid.ExecOptionPermission "-
Duser.*";

permission com.sun.rmi.rmid.ExecOptionPermission "-
Dos.*";

permission com.sun.rmi.rmid.ExecOptionPermission "-
Dline.separator=*";

permission com.sun.rmi.rmid.ExecOptionPermission "-
Dawt .*";

e-Macao-16-3-572

Compile and Run (4)

5) Running the setup program.
Jjava
-Djava.security.policy
=<full path of the policy file>
—Djava.rmi.server.codebase

=file:/<location of the implementation stubs>/

<class name of the setup program>

e-Macao-16-3-573

Compile and Run (5)

6) Running the client program.
Jjava
-Djava.security.policy
=<full path of the policy file>

<client name>

For testing purpose, use the following security.policy:
grant {

permission java.security.AllPermission "", "";

s

e-Macao-16-3-574

Exercise: Activatable RMI

Write a remote interface called HelloInterface.

Define a method getMessage (String s) init. This method has
a return type as a String. Don’t forget to throw the proper exception.

Create a class named Server which has to be a subclass of the
java.rmi.activation.Activatalbe class.

Implement the getMessage method which will append “Hello” the
argument and return it as a St ring.

Create the Setup program for the server.

Create a client program which should look up the activatable server
and use the getMessage method of it.

Compile and generate the corresponding files.
Run the client and check the result.

e-Macao-16-3-575

Overview

) introduction

) RMI architecture

3) implementing and running RMI system
)

e-Macao-16-3-576

Summary

In this session, we cover the followings:

1) Architecture of RMI
2) Building RMI system including both client and server

3) Implementation for activatable RMI server

e-Macao-16-3-577

Lab Work: Activatable RMI 1

1) Build an activatable RMIServer for a chatting system.

As our focus will be on building an activatable RMIServer, all the
codes for the client program and interfaces will be provided. You only
need to implement the activatable RMIServer.

The interface for the server is provided as
chat.interface.ChatServer. java. You need to write an

implementation class for it naming
chat.server.ChatServerImpl. java.

e-Macao-16-3-578

Lab Work: Activatable RMI 2

2) Write a setup program for the server.

3) Write a class chat .Message. java to represent the message
sending between the server and client. It is required to keep the
information of the sender and the message content.

e-Macao-16-3-579

Lab Work: Activatable RMI 3

4) Test the program

a)

For testing the dynamic class downloading, please download a
basic HTTP server form the following address:

java.sun.com/products/jdk/rmi/class—
server.zip
Extract the files and compile them using the following
command:

Javac —-d . *.java
After starting the rmid, you can start the HTTP server using
the following command:

Jjava examples.classServer.ClassFileServer
<port number> <path for server’s download
directory>

e-Macao-16-3-580

Lab Work: Activatable RMI 4

d) The directory structure and .class files of the exercise should
be copied to the server’s download directory.

e) Start the setup program of your server. And for the codebase
option, you should use http protocol instead of file this time.
—Djava.rmi.server.codebase =

http://localhost:port/

f) You can use the security policy file in the example for testing
purpose.

6) Examine the files in chat.client.packages. These are the classes for
the client program. You will notice that the client needs no
modification for dealing with the activatable RMIServer.

e-Macao-16-3-581

Lab Work: Activatable RMI 5

ChatServer interface:
package interfaces;

import Java.rmi.*;

import chat.Message;

public interface ChatServer extends Remote {
// register new ChatClient with ChatServer
// In implementation, you may need to choose a
// collection type for storing the connected client

public void registerClient (ChatClient
client)throws RemoteException;

public void unregisterClient (ChatClient
client)throws RemoteException;

e-Macao-16-3-582

Lab Work: Activatable RMI 6

// post new message to ChatServer

public void postMessage (Message message) throws
RemoteException;

// sending message to the clients that the server
// 1s stopping

public void stopServer ()throws RemoteException;

e-Macao-16-3-583

Lab Work: Activatable RMI 7

ChatClient interface:

package interfaces;

import Java.rmi.*;

import chat.Message;

public i1nterface ChatClient extends Remote{
//call back method allows the server to send

//message to client

public void deliverMessage (Message message)throws
Remotekxception;

// method called when server shuting down

public void serverStopping () throws
RemotekException ;

e-Macao-16-3-584

Lab Work: Activatable RMI 8

MessageManager interface:

package interfaces;

public interface MessageManager
//connect to the server. Check the code in
//RMIMessageManager for implementation

public void connect (Messagelistener listener)
throws Exception;

//disconnect to the server. Check the code in
/ /RMIMessageManager for implementation

public void disconnect (Messagelilistener
listener)throws Exception;

e-Macao-16-3-585

Lab Work: Activatable RMI 9

//send message to the server. Check the code in
/ /RMIMessageManager for implementation

public void sendMessage (String from, String
message) throws Exception;

//Registers a DisconnectListener to be notified
//when the ChatServer disconnects the client.

//Each ClientGUI will do the registration when
//connection is made to the server.

public void setDisconnectlListener
(DisconnectlListener Listener);

e-Macao-16-3-586

Lab Work: Activatable RMI 10

Messagelistenr interface:
package interfaces;

public interface Messagelistener {
//The inner class MyMessagelListener defined inside

//the ClientGUI implements this interface for
//handling the message received.
public void messageReceived (String from, String

message) ;

e-Macao-16-3-587

Lab Work: Activatable RMI 11

DisconnectHandler interface:
package interfaces;
//An inner class DisconnectHandler actually

//implements this interface.
//The DisconnectHandler will update GUI in thread
//safe manner after received disconnect notifcation.

public interface DisconnectListener ({

public void serverDisconnected (String message) ;

e-Macao-16-3-588

Overview

) introduction

) RMI architecture

3) implementing and running RMI system
)

e-Macao-16-3-589

Summary

In this session, we cover the followings:
1) Architecture of RMI
2) Building RMI system including both client and server

3) Implementation and environment set up procedure for activatable RMI
server

CORBA

Course QOutline

e-Macao-16-3-591

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

The OMG

e-Macao-16-3-592

1) Object Management Group
a) Founded in 1989
b) Not-for-Profit organization
c) Vendor neutral
d) ~800 member companies
2) Key Specifications
a) UML
b) CORBA

e-Macao-16-3-593

What is CORBA?

Defines a framework for object-oriented distributed applications.

Defined by a consortium of vendors under the direction of OMG.

Allows distributed programs in different languages and different platforms
to interact as though they were in a single programming language on one
computer.

Brings advantages of OO to distributed systems.

Allows you design a distributed application as a set of cooperating objects
and to reuse existing objects.

e-Macao-16-3-594

Key CORBA Features

1) Application Development Transparencies
a) Hardware/Language neutral
b) Vendor neutral
c) Object oriented paradigm

2) CORBA Interface Definition Language (IDL)

3) CORBAServices
a) Naming
b) Event
c) Transaction
d) Security

4) Interoperability

e-Macao-16-3-595

Object Request Broker (ORB)

1) A software component that mediates transfer of messages from a
program to an object located on a remote host.

2) Hides underlying network communications from a programmer.

3) ORB allows you to create software objects whose member functions can
be invoked by client programs located anywhere.

4) A server program contains instances of CORBA obijects.

e-Macao-16-3-596

ORB: Conceptual View

1) When a client invokes a member function on a CORBA object, the ORB
intercepts the function call.

2) ORB directs the function call across the network to the target object.

3) The ORB then collects the results from the function call returns these to
the function call.

Implementation Details

e-Macao-16-3-597

CClient>

Client

\ Stub

Object
Stub

Offject

pd

~_ ORB

Access to the services provided by an Object

ORB : (Object-oriented middleware) Object Request Broker
ORB mediates transfer between client program and server object.

e-Macao-16-3-598

CORBA: A “Software Bus”’

All CORBA objects connect to each other via ORB.

TETT

Object Request Broker

e-Macao-16-3-599

CORBA IDL

1) Interface Definition Language
a) used to generate application code (stubs/skeletons)
b) language neutral (Ada, C++, Java, ...)

2) IDLis NOT a programming language
a) lacks control structures
b) provides no implementation details

c) a specification

e-Macao-16-3-600

CORBA Objects and IDL

1) These are standard software objects implemented in any supported
language including Java, C++ and Smalltalk.

2) Each CORBA object has a clearly defined interface specified in CORBA

interface definition language (IDL).

3) The interface definition specifies the member functions available to the
client without any assumption about the implementation of the object.

e-Macao-16-3-601

Client and IDL

1) To call a member function on a CORBA object the client needs only the
object’s IDL.

2) Client need not know the object’s implementation, location or operating
system on which the object runs.

e-Macao-16-3-602

Interface and Implementation

1) Interface and implementation can be in two different languages.

2) Interface abstracts and protects details (trade secrets) from client

3) Interface offers a means of expressing design without worrying about
implementation.

4) Interface is separated from implementation

e-Macao-16-3-603

Example: CORBA IDL

module BankExample {
interface Account {
exception BadCheck {
float fee;
b
float deposit (in float amount);
float writeCheck (in float amount)
raises (BadCheck);
b
interface AccountManager {
Account openAccount (in string name);
¥
¥

e-Macao-16-3-604

CORBA Application Diagram

Objects are identified by Interoperable Object References (IORs)

IDL
File

Object Request Broker

e-Macao-16-3-605

CORBA Development Steps

1) Design the Application
2) IDL Specification
3) IDL Compilation (Code Generation)
4) Write the Client & Server implementation specific code
5) Compile the source code
)

6) Run the application

606

JavalDL

Course QOutline

e-Macao-16-3-607

1) introduction
2) streams
3) networking
4) database connectivity
5) architectures
a) message-orientation
1) javamail
2) jms
b) distributed objects
1) rmi
2) corba
3) JavalDL
6) summary

e-Macao-16-3-608

Modules and Interfaces

 IDL modules Java packages

module MyStuff package MyStuff;
{
b — Provide Internet-wide
— Provide a namespace to namespaces. Scoped
group a set of interfaces. using the “.” operator.

Names are scoped using
the “:.” operator.

. . e Java interface
IDL interface public interface Foo

interface Foo { }; {..}7

e-Macao-16-3-609

IDL to Java: Parameters

1) Java uses pass-by-value for parameters (including parameters that are
references)

2) IDL has in, out and inout types of parameters

3) The in parameter type maps to a normal Java parameter since it does
not need to be changed

4) out and inout parameter types are passed via instances of Java
Holder classes

Holder Classes

e-Macao-16-3-610

1) Holder classes encapsulate the real value of a parameter which

can then be reassigned to

a) a member “value”

// user code

// select a target object
Example.Modes target = ..;
// prepare to receive out
IntHolder outHolder = new IntHolder();
// set up the in side of the inout

// make the invocation
int result = target.operation (

// use the values of holders
..outHolder.value..
..lnoutHoulder.value..

IntHolder inoutHolder = new IntHolder (131);

outHolder, inoutHolder);

e-Macao-16-3-611

Helper Classes

1

) all user-defined IDL types have a Helper Java class
2) insert and extract Any
)

)

3) get CORBA::TypeCode of the type

4) narrow (for interfaces only)

e-Macao-16-3-612

IDL to Java: Attributes

» |DL attributes e Java “get” and “set” methods

attribute long assignable; public 1nt assignable();

readonly attribute long public void assignable (1int
fetchable; val) ;

public int fetchable () ;

Basic Types

e-Macao-16-3-613

IDL Type Java Type |Exception

boolean boolean

char char CORBA::DATA_CONVERSION
octet byte

string java.lang.String | CORBA::MARSHAL...
short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long | long

float float

double double

e-Macao-16-3-614

IDL to Java: Basic Types

« IDL char e Java char
const char MyChar = "A’; final public class MyChar
{
final public static char
value = (char)’A’;

}

e-Macao-16-3-615

IDL to Java: Basic Types

* |IDL octet « Java byte

vold foo(in octet x); public void foo (byte x);

e-Macao-16-3-616

IDL to Java: Basic Types

« IDL boolean e Java boolean
const boolean truth = final public class truth
TRUE; {
final public static
boolean value = true;

}

« Java constants t nd fal
« |IDL constants TRUE and FALSE Java constants true and false

e-Macao-16-3-617

IDL to Java: Basic Types

» IDL string « Java java.lang.String
const string MyString = final public class MyString
“Hello World”; {

final public static String
value = “Hello World”;

e-Macao-16-3-618

IDL to Java: Basic Types

« IDL integers « Javaintegers
— (unsigned) short — short
— (unsigned) long — int
— (unsigned) long long? — long
const unsigned short final public class
MyUnsignedShort = 1580; MyUnsignedShort

{

final public static
short value =
(short)1580;
}

e-Macao-16-3-619

IDL to Java: Basic Types

« IDL floating-point float, double « Java floating-point float, double
const double MyDouble = final public class
1.23456789; MyDouble

{

final public static
double value =
(double)1.23456789;

e-Macao-16-3-620

IDL to Java: Constructed Types

« |IDL Enum e Javaclass

enum MyEnum final public class MyEnum

{none, first, second}; {
final public static int
none = 0;
final public static int
first = 1;
final public static int
second = 2;

final public static int
narrow(int i) throws
CORBA.BAD_PARAM {..};

}

 the narrow method is for checking
enum values

e-Macao-16-3-621

IDL to Java: Constructed Types

IDL struct e Java class

struct MyStruct final public class

{ MyStruct

long mylong; {

string mystring; public MyStruct (1nt
Y _mylong, String

_mystring) {..};
public MyStruct () {..};

public int mylong;
public String mystring;
}

e-Macao-16-3-622

The Big Picture

1) Compiler outputs:
a) Client stubs

IDL Interfaces

b) Server skeletons

c) Utility classes

2) IDL -> Java mapping standardized
IDL Compiler

Java Client Implementation

Classes
A 4

Java Interfaces and Classes Uses

Java Servant Implementation
Classes

e-Macao-16-3-623

Big Picture (Invocation)

““

Client Application Servant Implementation
J. Genefrated frofm IDL, T
Stub [« i i | Skeleton
ORB

Logical Client Logical Server

Network

e-Macao-16-3-624

Example: File Transfer

This presents a file download CORBA application

The client request for a file and the server in turn sends the file to the client
which then saves it on the local machine.

There are a number of steps involved:

1) Define an interface in IDL
2) Map the IDL interface to Java (done automatically)
3) Implement the interface
4) Develop the server
5) Develop a client

)

6) Run the naming service, the server, and the client.

e-Macao-16-3-625

Step 1: Define the IDL Interface 1

The first thing to do is to determine the operation that the server will support.

In this application, the client will invoke a method to download a file.
Here is the code.

interface FilelInterface {
typedef sequence<octet> Data;

Data downloadFile(in string fileName) ;

}s

Save thisfileas FileInterface.idl

Step 1: Define the IDL Interface 2

Data is a new type introduced using the typedef keyword.

A sequence in IDL is similar to an array except that a sequence does not
have a fixed size

An octet is an 8-bit quantity that is equivalent to the Java type byte

The downloadFile method takes one parameter of type st ring that is
declared in.

IDL defines three parameter-passing modes: in (for input from client to
server), out (for output from server to client), and inout (used for both input

and output).

Step 2: Map IDL to Java -

Once you finish defining the IDL interface, you are ready to map the IDL
interface to Java.

Java comes with the id1 j compiler, which is used to map IDL definitions
into Java declarations and statements.

The 1d1 7 compiler accepts options that allow you to specify if you wish to
generate client stubs, server skeletons, or both.

let's compile the FileInterface.idl and generate both client and server-
side files.

e-Macao-16-3-628

Step 3: Compile the IDL Interface

1) Compile the IDL Interface using:

prompt> 1dlj —-oldImplBase —-fall FileInterface.1dl

2) IDL compilation produces many java constructs (interfaces and classes).

3) Each one is placed with a <filename>. java

e-Macao-16-3-629

Files Generated by IDL Compiler

1) Each file generated contains a Java interface or class scoped within a
package.

2) This package is physically located in a directory of the same name
according to Java conventions.

e-Macao-16-3-630

Client Side Files

1) FileInterface. java - an interface to provide a client a view of the
methods in the IDL.

2) _FileInterfaceStub. java - a Java class that implements the

methods defined in interface Grid. Provides functionality that allows client
method invocations to be forwarded to a server.

e-Macao-16-3-631

Server Side Files

1) _FileInterfaceImplBase. java - an abstract Java class that allows
server-side developers to implement the FileInterface interface.

2) Other files: FileInterfaceHelper. java,
FileInterfaceHolder. java,
FileInterfaceOperations. java,

e-Macao-16-3-632

Step 4. Implement the Interface 1

Provide an implementation to the downloadFile () method. This
implementation is known as a servant.

import java.io.*;

public class FileServant extends _FilelInterfacelmplBase

{
public byte[] downloadFile (String fileName) {

File file = new File(fileName);
byte buffer[] = new byte[(int)file.length()];
try {

BufferedInputStream input = new

BufferedInputStream (new
FileInputStream(fileName)) ;

input.read (buffer,0,buffer.length);

input.close () ;

e-Macao-16-3-633

Step 4. Implement the Interface 2

} catch (Exception e) {

System.out.println ("FileServant Error:
"+e.getMessage ()) ;

e.printStackTrace () ;

}

return (buffer);

e-Macao-16-3-634

Step 5: Develop the Server 1

The next step is developing the CORBA server.

Write FileServer class that implements a CORBA server that does the
following:

1) Initializes the ORB

2) Creates a FileServant object

3) Registers the object in the CORBA Naming Service (COS Naming)
4) Prints a status message

5) Waits for incoming client requests

e-Macao-16-3-635

Step 5: Develop the Server 2

import java.io.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

public class FileServer {
public static void main(String args([]) {
try({
// create and initialize the ORB
ORB orb = ORB.init (args, null);
// create the servant and register it with ORB
FileServant fileRef = new FileServant () ;

orb.connect (fileRef);

e-Macao-16-3-636

Step 5: Develop the Server 3

// get the root naming context
org.omg.CORBA.Object objRef =
orb.resolve _initial references ("NameService");

NamingContext ncRef =
NamingContextHelper.narrow (objRef) ;

// Bind the object reference in naming

NameComponent nc = new
NameComponent ("FileTransfer", " ");
NameComponent path[] = {nc};

ncRef.rebind(path, fileRef);

System.out.println("Server started....");

e-Macao-16-3-637

Step 5: Develop the Server 4

// Wait for invocations from clients

java.lang.Object sync = new java.lang.Object();
synchronized (sync) {
sync.wait () ;
}
} catch (Exception e) {
System.err.println ("ERROR: " + e.getMessage());

e.printStackTrace (System.out) ;

e-Macao-16-3-638

Step 6. Develop the Client 1

The next step is developing the CORBA client.

Write FileClient class that implements a CORBA client that does the
following:

1) Initializes the ORB
2) Retrieve the FileTransfer service from the naming server
3) Call the downloadFile method.

e-Macao-16-3-639

Step 6. Develop the Client 2

import java.lo.*;
import Jjava.util.*;
import org.omg.CosNaming.*;

import org.omg.CORBA.*;

public class FileClient {
public static void main (String argv[]) {
try A
// create and initialize the ORB
ORB orb = ORB.1init (argv, null);
// get the root naming context
org.omg.CORBA.Object objRef =

orb.resolve _initial references ("NameService");

e-Macao-16-3-640

Step 6. Develop the Client 2

NamingContext ncRef =
NamingContextHelper.narrow (objRef) ;

NameComponent nc = new
NameComponent ("FileTransfer", " ");

// Resolve the object reference in naming
NameComponent path[] = {nc};
FileInterfaceOperations fileRef =

FileInterfaceHelper.narrow (ncRef.resolve (path));

if (argv.length < 1) {

System.out.println ("Usage: java FileClient
filename");

e-Macao-16-3-641

Step 6. Develop the Client 2

// save the file
File file = new File(argv|[0]);
byte data[] = fileRef.downloadFile (argv[0]);

BufferedOutputStream output = new
BufferedOutputStream(new FileOutputStream(argv[0]));

output.write (data, 0, data.length);
output.flush();
output.close () ;

}catch (Exception e) {

System.out.println("FileClient Error: " +
e.getMessage ());

e.printStackTrace () ;

I

e-Macao-16-3-642

Step 7: Run the Application

1) Running the the CORBA naming service.
prompt> tnameserv —-ORBInitialPort 2500

2) Start the server
prompt> java FileServer —-ORBInitialPort 2500

3) Run the client

prompt> java FileClient c:\hello.txt -ORBInitialHost
mycomputerName -ORBInitialPort 2500

e-Macao-16-3-643

Summary

1) We introduced general operation of CORBA.

2) Also details of specifying a client, server application, compiling them and
registering and running.

3) You will have to configure your system before you try to do these steps.

e-Macao-16-3-644

Project Exercise

1) Implement the controller of your project as a distributed object by
using either RMI or JavalDL.

2) Device an approach through which the controller would locate a
requested business object to handle a particular request and also
invoke the appropriate operation requested for.

3) Persist your data using mySQL database engine.
4) See how you can make use of Java Message Service in your project.

