
Evolving an Edge Selection Formula for Ant Colony
Optimization

Andrew Runka
Dept. of Computer Science

Brock University
St. Catharines, Ontario, Canada

ar03gg@brocku.ca

ABSTRACT
This project utilizes the evolutionary process found in Ge-
netic Programming to evolve an improved decision formula
for the Ant System algorithm. Two such improved formulae
are discovered, one which uses the typical roulette wheel se-
lection found in all well-known Ant Colony Optimization al-
gorithms, and one which uses a greedy-style selection mecha-
nism. The evolution of each formula is trained using the Ant
System algorithm to solve a small Travelling Salesman Prob-
lem (TSP) and tested using larger unseen TSP instances.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program modification, program synthesis

General Terms
Algorithms Experimentation

Keywords
Genetic Programming, Ant Colony Optimization, Edge Se-
lection

1. INTRODUCTION
The aim of this project is to utilize the natural evolution-

ary mechanism of Genetic Programming (GP) to create an
improved formula for Ant Colony Optimization (ACO) al-
gorithms to use in their construction of solutions. ACO is a
population based meta-heuristic, first developed by Marco
Dorigo in 19921. It has been successfully applied to many
combinatorial optimization problems[2] including the Trav-
elling Salesman Problem[3] examined here. By using a com-
bination of a priori and a posteriori knowledge, each ant
in the population constructs a solution step by step with
the use of a decision formula. The traditional decision for-
mula used in ACO was designed on preconceived notions

1Later published as [1]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

which may or may not be ideal. The use of GP as an in-
vention/innovation machine offers the potential to discover
novel and perhaps unexpected improvements or replacements
to the preexisting formula. It is hoped that a new formula
created through GP evolution will lead to an improvement
in the overall performance of ant algorithms.

From the symbolic regression toy problem to complex im-
age recognition, the concept of evolving formulae is central
to the GP paradigm. However, the domain of this project
appears to be somewhat unique as compared to the existing
GP literature. Similar work has been done on the evolution
of parameter sets[4][5], neural networks[6][7], and crossover
operators[8], but none have specifically considered evolving
or improving the essential formulae of an ACO algorithm.

The remainder of this paper is structured as follows, Sec-
tion 2 provides the background on the problems and algo-
rithms examined. Section 3 describes the procedures used in
this study and section 4 describes and discusses the results
of this study.

2. BACKGROUND

2.1 Travelling Salesman Problem
The Ant Colony Optimization formula evolved will be

tested using the Travelling Salesman Problem (TSP). The
TSP is a combinatorial optimization problem which typical
ACO algorithms perform well on. The simple problem for-
mulation used here is as follows. Given a graph G=(V,E),
where V is the set of n vertices and E is the set of fully-
connected bi-directional weighted edges between vi, vj∈V,
find a hamiltonian cycle which minimizes

∑n
i=0 wi,j , where

wi,j is the weight on the edge between vi and vj .

2.2 Ant Colony Optimization
Ant Colony Optimization (ACO) is a meta-heuristic mod-

elled on the natural optimization behaviour of real ants. In
reality, a population of ants cooperate by use of pheromone
trails to find optimal paths between a nest and a food source.
The concept of pheromone was borrowed for ACO to act as
a means of balancing between exploration and exploitation
in a combinatorial optimization search space. The ACO
meta-heuristic can be broken down into three main phases:
generate solutions, update pheromone, and daemon actions.

Several instantiations of the ACO meta-heuristic exist,
this project is concerned with only the simplest such instan-
tiation, known as Ant System (AS). Other instantiations,
such as Max-Min Ant System[9] and Ant Colony System[3]
share many similarities with AS. The following explanation

is given in terms of AS, however much of what is described
is true of many ACO algorithms.

The first phase of the ACO meta-heuristic encompasses
the construction of solutions to the given problem. Solutions
are in the form of paths through the problem graph. At
each step during construction each ant adds one vertex to
its path. In typical ACO algorithms, the ant will move from
vertex i to vertex j with a probability calculated as follows:

pi,j =
(ταi,j)(η

β
i,j)

Σ(ταi,j)(η
β
i,j)

(1)

where τi,j is the amount of pheromone on edgei,j and ηi,j is
the desirability of edgei,j which is the a priori information
known about the problem (e.g. 1

disti,j
for the TSP). The

exponents α and β are parameters which affect the amount
of influence of τ and η on the final probability respectively.
The methods used to evolve a replacement for this formula
are described in section 3.

As formula (1) gives a probability of selecting a given edge,
a method of utilizing this information is required to actually
determine the next step in an ant’s solution. Typically this
takes the form of roulette selection. In roulette selection,
all options are given a probability of being selected, then a
random number in the range (0,1) is drawn. The probabil-
ities of selecting each option are added to a sum one after
another. If adding a given probability to the sum increases
it beyond the random number then the corresponding op-
tion is selected. In ACO this means that the selected edge is
added to the ant’s solution. Additional methods for utilizing
the probability information are examined in section 4.

It should be noted that the original decision formula re-
mains the same in all well-known instantiations of the ACO
meta-heuristic. Extensions beyond the simple AS algorithm
are primarily concerned with variations to uses of the pheromone
matrix (described below). The Ant Colony System intro-
duced a so called ”pseudo-random proportional rule”, but
this altered the way the probability information from (1)
was used, not how it was generated.

Once each ant in the population has constructed a solu-
tion, the second phase, known as the pheromone update,
takes place. The pheromone update can be separated into
two steps: evaporation and deposit. In the evaporation step,
the amount of pheromone removed is calculated as follows:

τi,j = (1− ρ)τi,j (2)

where τi,j is the amount of pheromone on edgei,j , and ρ
is a parameter that controls the rate of evaporation. This
formula is applied globally to all edges in the graph. The
second step, deposit, is calculated for each ant over the path
it took through the graph, and typically takes the form:

∆τki,j =

{
1
Ck
, if ant travels edgei,j

0, otherwise
(3)

where Ck is the cost of the kth ant’s solution.
By iteratively applying formulae 1, 2, and 3, the amount

of pheromone will accumulate on edges which appear to be
parts of good solutions to the problem thus attracting future
ants towards those edges.

The third phase of the ACO metaheuristic, daemon ac-
tions, is an optional phase. This is used to perform any
post-processing steps such as local search to the solutions
generated in the previous phase.

2.3 Genetic Programming
Genetic Programming (GP) was first popularized in 1992[10]

and has since been successful in achieving human-competitive
results in many fields including electronic design, game play-
ing, searching, sorting and more[11][12]. ”GP is a system-
atic, domain-independent method for getting computers to
solve problems automatically”[12]. In GP, solutions are tra-
ditionally represented as program trees (or s-expressions),
where each internal node in the tree is an operator and its
subtrees are its operands. The leaf nodes of the tree are ter-
minals in the expression. Together the set of all terminals
and operators in the GP language are known as the prim-
itive set of the given GP system. Figure 1 illustrates the
chromosome representation of a simple formula.

Figure 1: GP chromosome representation (genotype
and phenotype)

The task of genetic programming is to evolve a population
of programs to solve a given problem. This is done using the
concepts of natural evolution found in the Evolutionary Al-
gorithm (EA) framework. In EAs and in GP an initially
random population of solutions to a problem is evolved by
iteratively applying crossover, mutation, and selection oper-
ators.

The original GP crossover operator (also the one used in
this project) is known as the subtree crossover. As depicted
in figure 2, offspring are created by exchanging the subtree
of one parent for the subtree of another. The original GP
mutation, known as subtree mutation, works in the same
fashion, one parent is selected for mutation, and subtree
crossover is performed with a randomly generated second
parent. A third operator, known as reproduction, is some-
times used in place of crossover or mutation. In reproduction
an individual is simply copied over from one generation to
the next.

With a new population of programs instantiated by the
crossover, mutation, and reproduction operators, the indi-
vidual programs are evaluated on their performance at solv-
ing some problem based on a problem-dependant fitness
function. The resulting fitness scores are the basis for the
subsequent selection operation.

A common selection operator is tournament selection. In
tournament selection, a number of individuals are picked
at random from the population. From these individuals the
best is then selected. Two such selected individuals are used
for crossover, and one such selected individual is used for

Figure 2: Example subtree crossover. Subtrees of
the parents (top) are swapped to create offspring
(bottom)

mutation or reproduction. The iterative application of this
process is intended to refine the quality of solutions in the
population from a random collection to a converged popu-
lation of near-optimal solutions.

Variations to each of these operators exist in the litera-
ture, but are not used in the project. For information and
references on extensions to the simple GP system refer to
[12].

3. EXPERIMENTAL SETUP

3.1 Problem Formulation
The objective of this project can be described as apply-

ing one problem-solving method to the improvement of an-
other problem-solving method. That is, GP is applied to
the improvement of ACO. To accomplish this, each individ-
ual in the GP population represents a potential replacement
for the ACO decision formula (formula (1) in section 2.2).
Then, during the evaluation of each individual, an entire run
of the AS algorithm on a simple TSP instance is performed
using the individual’s version of the decision formula. The
performance of the AS algorithm with the given decision for-
mula is used as the individual’s fitness score. Evolution of
the GP system proceeds from there as usual with selection,
crossover, and mutation.

The TSP was selected as the problem for the AS algorithm
not only because it is a very quick problem to solve, but
also because many more complicated problems solved by
the ACO algorithm are first translated into a TSP problem
(e.g. Vehicle Routing Problem).

Due in part to the removal of the array operations from
the primitive set (see section 3.4), the information contained
in each GP individual is not the complete decision formula
equivalent to formula (1). Instead each GP individual con-
tains the equivalent to the numerator of formula (1). The
values calculated by the GP individual’s expression tree are
summed over all J and each is subsequently converted to a

value between 0 and 1. This effectively applies a denomi-
nator equivalent to that of (1). Also, the original decision
formula uses ηi,j = 1/disti,j whereas in the GP execution
here ηi,j = disti,j is used. Thus, given these two facts a GP
individual whose formula equals

(τ2
i,j)÷ (η3

i,j) (4)

would be equivalent to formula (1) with α = 2 and β = 3.
One final concession was made to ease the GP system’s abil-
ity to find solutions, the absolute value of the result returned
by each GP individual’s formula is used.

3.2 Fitness Function
The fitness function used in the GP system, as mentioned

before, is based on the results of a full Ant System execution
on a simple TSP instance. The TSP instance used through-
out training was the berlin52.tsp2. This instance (as well
as all other symmetric TSP instances found in the TSPLIB)
have been provably solved to optimality by a branch-and-cut
method, with the optimal distance scores reported. Using
this information, the fitness function for the GP run can be
set such that an optimal result from the AS run will result
in a 0 fitness score. Thus the raw fitness score of a GP
individual is calculated as follows:

RawFitness = ASResult−Optimal (5)

Where ASResult is the total distance of the best solution
found during the AS execution. A hit occurs when ASResult
is equal to Optimal.

Due to time and computing resource constraints each in-
dividual in the population is evaluated on only a single AS
execution. At first glance this may seem to be too limited
of a sample from which to draw a fitness value. However,
there are three concepts to bear in mind here. First, during
a single AS execution, the evolved formula is applied several
thousand times as needed during the repeated construction
of solutions to the TSP. Thus the formula contained in each
individual is utilized many times in conjunction to produce a
single fitness score. Secondly, it has been shown that noise in
the fitness function leads to a lowered selection pressure[13].
This is accounted for by a (slight) increase in tournament
size (see next section). Third, in order to counteract the
possibility of a good individual resulting from a fluke, the
best results from the GP system are tested on two unseen
TSP instances (rat195.tsp and bier127.tsp), as well as more
extensive testing on the seen TSP instance (berlin52.tsp).
The final quality of an evolved formula is thus judged based
on the testing phase as opposed to the training phase.

3.3 Parameters
A number of parameters are involved in this total system,

including those for the GP system and those for the Ant
System. These are listed in tables 1 and 2 below.

3.4 GP Language
The primitive set used in the final executions of this project

is essentially the arithmetic operators, with ephemeral ran-
dom constants and problem specific data as the terminals.
The original conception of the problem used a somewhat
broader primitive set, however this was reduced to save on

2Retrievable from TSPLIB: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/

Table 1: GP parameters settings
Parameter Value
Max Tree Depth 15
Generations 50
Population Size 200
Elitism 1 individual
Initialization Ramped Half-and-half [2,6]
Selection Tournament (size 4)
Crossover Type Subtree Crossover
Crossover Percent 80%
Mutation Type Subtree Mutation
Mutation Percent 20%
Reproduction 0%
Terminal Node Selection 10%

Table 2: AS parameters settings
Parameter Value
Duration 100
Evaporation Rate (ρ) 0.1
Number of ants n (problem size)
α (for default formula) 2
β (for default formula) 1
Tournament Size (when needed) 7

execution time. The primitive set used in the experimental
results and discussion section is shown in table 3.

Table 3: GP Primitive Set
Primitive Returns Children Description
+ Double 2 double Addition
- Double 2 double Subtraction
∗ Double 2 double Multiplication
% Double 2 double Division
ˆ Double 2 double Exponentiation
ElementOf Double 1 array,

2 int
Dereference 2D array

Tau Array n/a 2D pheromone array
Eta Array n/a 2D distance array
I Int n/a Position of ant
J Int n/a Destination of ant
smallERC Int n/a Ephemeral random

constant [-10,10)

All of the operators applied in this project use a sort of
safety net to detect illegal values. If a given primitive results
in an infinite value (occurs in java beyond the ”MAX VALUE”
of a given type), or a NaN result (occurs in java upon an
invalid calculation such as (-1.4)3.2), then that primitive re-
turns a 0.

Strong typing was applied to limit the usage of certain pa-
rameters to only those places where their use makes sense.
The use of strong typing is not a necessity in the final prim-
itive set. The ’ElementOf’ operator and the ’I’ and ’J’ ter-
minals could all be removed having Tau and Eta represent
Tau[I][J] and Eta[I][J] instead. In this way the entire prim-
itive set would use a single type. The reason this was not
done was partly historic and partly with consideration for fu-
ture utilization. As previously mentioned, the original prim-
itive set had a greater number of primitives. These removed
primitives are listed in table 4. It can be seen here that

the use of arrays made strong typing a necessity originally.
The future consideration is that given a greater time-span
and/or more computing resources, the study of these and
other additional primitives could offer further insight to this
problem and potentially better results.

Table 4: Removed primitives
Primitive Returns Children Description
SumArray Double 1 Array Sums the elements of

the given 1D array
AddArrays Array 2 Arrays Adds the elements of

each array
MulArrays Array 2 Arrays Multiplies the ele-

ments of each array
ExpArray Array 1 Array,

1 Double
Raise the element of
each array to the
double

SizeOf Int 1 Array Returns the size of
the array (first di-
mension if 2D)

IndexERC Int n/a Ephemeral random
constant [0,n)

3.5 Variations of Experiments
Initial test executions of this problem revealed that usage

of the array operations in the original primitive set were
far too costly to complete the execution of an entire ant
system for each individual. Even upon removing these costly
primitives, the executions of each GP system remains a time-
consuming affair, requiring up to 50 hours of execution time
on a 2.4GHz Intel Core2 Quad CPU with 2GB of RAM. As
such, each GP system was run only once for the final results
(after debugging and tuning). A single execution is practical
in this case, as it is not an averaged result that is required,
but a single specific output.

Three versions of the final GP system were executed, the
difference between each was within the Ant System itself.
Section 2.2 mentions ACO performs a roulette selection to
utilize the probability information gained from the decision
formula. This project experiments with variations to this
rule. The three types of selection methods for decision in-
formation usage are:

a) Roulette Selection - as described in 2.2,

b) Greedy Selection - the largest probability is always
selected,

c) Tournament Selection - 7 probabilities are chosen
at random and the best is selected.

The motivation for using alternative selection mechanisms
was that initially it was feared that the use of roulette selec-
tion within the AS (which acts as the fitness function for the
GP) would be too random of a factor for the GP to evolve
properly. Thus the greedy rule was first implemented as a
potential replacement because it has the property of zero-
variance. That is, given the same inputs, the greedy rule will
always produce the same results. Following this the notion
of using a tournament selection seemed like a natural third
choice as it is a popular selection mechanism. A tourna-
ment size of 7 was chosen in order to maintain high selection
pressure, thus making the tournament selection similar to a

relaxed-greedy selection. Since the use of alternative selec-
tion schemes within an ACO algorithm is a unique idea in
and of itself, the default AS decision formula will be tested
on these alternative selection schemes as well.

Following the execution of each of these experiments, the
best formula discovered is outputted in text format. This
text-formatted formula is then manually converted into a
java-executable formula and entered into a stand-alone ver-
sion of the AS code. This is done for rapid testing of the
formula over 100 executions on each of the testing data sets.
The results of this testing are compared to those of the orig-
inal decision rule using the same stand-alone AS code. One
potential issue with this method of testing is rounding er-
rors. The text-formatted formula uses a 4-decimal place
precision, which is significantly less than the full capability
of the Double type and thus some information and possibly
quality, is lost. However, this is a necessary loss as otherwise
testing of individuals would take nearly as long as training,
making this system infeasible in the given timeline.

4. RESULTS AND DISCUSSION
The training results for the roulette, greedy, and tourna-

ment are presented in table 5. Recall that the fitness is the
difference between the actual result and the optimal result
(in this case 7542). For example a fitness of 100 would mean
a tour on the berlin52.tsp instance of size 7642. The evolved
formulas for each are simplified and presented as formulas
(6), (7), and (8) respectively.

Table 5: Training Results
Selection Best Training Fitness
Roulette 2.365902
Greedy 6.99271
Tournament 2329.0845

Roulette Selection:

(
(((η−11.5299

j,i)÷14.2606)÷−0.4783)

(ηj,i−(1.5321÷(τj,i÷((η−7.6439
j,i)+0.5959))))

)

−0.4783
(6)

Greedy Selection:

−2.2824 + 7.3090−24.3948τi,j

(−7.3090− ηj,i∗−0.3779

−0.7022
+ 3.3090) +−0.3779ηj,i

(7)

Tournament Selection:

3.0640− τi,j
ηi,j

(8)

A comparison of the above formulas to formula (1) (or
perhaps more correctly formula (4)) illustrates that the one
which appears the most similar to the original formula (the
tournament selection result), actually achieves the worst fit-
ness in training (approximately 1.3x greater than the op-
timal). The remaining two evolved formulas, however, ap-
pear quite distinct from the default formula and yet achieve
nearly optimal results in training. The convergence graphs
for each training session are presented in figures 3, 4, and 5.

Figure 3: GP system convergence with AS using
typical roulette selection

Figure 4: GP system convergence with AS using
greedy selection

Figure 5: GP system convergence with AS using
tournament selection

The testing results for the berlin52.tsp, beir127.tsp, and
rat195.tsp instances are presented in tables 6, 7, and 8 re-
spectively. Average fitness is the average result of 100 testing
executions and best fitness is the best result of those 100 ex-
ecutions. Selection refers to the type of selection mechanism
used by the AS algorithm. The results preceded by the term
’Evolved’ refer to those executions that utilize the formulae
evolved by the GP system, while the results preceded by
the term ’Default’ refer to testing executions which use the
original AS decision formula. Finally, the smallest fitness
per table (best and average), are highlighted in bold.

Table 6: Testing results for the berlin52.tsp instance
(Optimal: 7542)

Selection Best Fitness Avg. Fitness

Evolved
Roulette 7663.59 7880.08
Greedy 8093.35 8093.35
Tournament 10575.28 11004.64

Default
Roulette 7549.29 7884.52
Greedy 8182.19 8182.19
Tournament 10472.68 11216.07

Table 7: Testing results for the bier127.tsp instance
(Optimal: 118282)

Selection Best Fitness Avg. Fitness

Evolved
Roulette 124266.47 127710.96
Greedy 128035.00 128035.00
Tournament 239203.57 255756.58

Default
Roulette 125840.87 130336.13
Greedy 127849.42 127849.42
Tournament 238776.42 257512.69

Table 8: Testing results for the rat195.tsp instance
(Optimal: 2323)

Selection Best Fitness Avg. Fitness

Evolved
Roulette 2464.47 2495.69
Greedy 2489.81 2489.81
Tournament 7110.37 7450.82

Default
Roulette 2436.33 2532.93
Greedy 2550.94 2550.94
Tournament 7091.15 7595.48

It can be readily seen from these tables that the evolved
formula for the roulette selection mechanism is at least com-
parable to the original (default) decision formula. In all
three instances, the evolved roulette formula achieves a bet-
ter average fitness than the original formula, and on one in-
stance (bier127) actually improves on the best fitness found.
The evolved greedy formula does not always outperform
the original AS system on either its typical setup (using
roulette), or on the newly attempted greedy setup, but it
does remain on a comparable footing. The tournament se-
lection mechanism appears to require more work for both
the evolved and default formulas.

A more formal comparison of the above algorithms utiliz-
ing a two tailed t-test produces the results found in table 9.
Here both the greedy and roulette evolved formulas are com-
pared to the default formula using roulette selection to see if
any improvements are gained over the original AS. Given the
standard 95% confidence interval the p-values which signify
a positive change that is not likely to be due to randomness
are highlighted in bold in this table. This occurs for both
the evolved roulette and greedy formulas on the bier127 and
rat195 instances. However, the difference on the berlin52
instance using the evolved roulette formula is too similar to
the original to dismiss the possibility of randomness. The
change using the evolved greedy formula is a decrease in
fitness on this instance.

Table 9: P-values from 2-tailed t-test between the
Evolved and Default results

Roulette Greedy

Default
Berlin52 0.834606 3.7373E-19
Bier127 3.5871E-22 8.13137E-20
Rat195 2.01331E-14 4.90738E-18

5. CONCLUSION
Overall the notion of evolving an improvement to a rela-

tively well established and successful algorithm is an exciting
one. The formulae evolved here have exhibited significant
promise in this endeavour. The best two evolved formulas
(roulette and greedy) outperformed the original Ant System
decision formula on average over two unseen instances that
were both larger than double the size of the original instance.

The formulas evolved here, although not aesthetically pleas-
ing, do potentially offer an improvement to the original Ant
System. Further testing on a wider variety of problems must
be done before these formulas can be sincerely declared an
effective replacement to the original formula. However, the
results presented here do suggest that this area of research
can lead to beneficial improvements.

There are many directions for potential future work from
here. Firstly, the reintroduction of array operations may of-
fer the GP system more freedom of expression to improve on
the decision formula. In that same direction it is hoped that
by removing the explicit conversion to numbers between 0
and 1 which occurs here, that the GP system can fully uti-
lize the array operations. Additional language primitives
such as the logic set may provide further expressive power.
The pitfall with the above directions, however, is that the
increase in freedom may make the search space far too broad
to find any good areas to exploit. Alternatively, the appli-
cation of this process to more complex problems, such as
the Vehicle Routing Problem could create more effective or
perhaps problem specific improvements to the Ant System
algorithm.

6. REFERENCES
[1] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant

system: Optimization by a colony of cooperating
agents,” IEEE Transactions on Systems, Man, and
Cybernetics-Part B, vol. 26, pp. 29–41, 1996.

[2] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony
optimization - artificial ants as a computational

intelligence technique,” IEEE Comput. Intell. Mag,
vol. 1, pp. 28–39, 2006.

[3] M. Dorigo and L. M. Gambardella, “Ant colony
system: a cooperative learning approach to the
traveling salesman problem,” Evolutionary
Computation, IEEE Transactions on, vol. 1, no. 1, pp.
53–66, 1997. [Online]. Available:
http://dx.doi.org/10.1109/4235.585892

[4] J. C. F. Pujol and R. Poli, “Optimization via
parameter mapping with genetic programming,” in
Parallel Problem Solving from Nature - PPSN VIII,
ser. LNCS, vol. 3242. Birmingham, UK:
Springer-Verlag, 18-22 Sep. 2004, pp. 382–390.

[5] A. H. Wright, “Genetic algorithms for real parameter
optimization,” in Foundations of Genetic Algorithms.
Morgan Kaufmann, 1991, pp. 205–218.

[6] A. I. Esparcia-Alcazar and K. C. Sharman, “Evolving
recurrent neural network architectures by genetic
programming,” Faculty of Engineering, Glasgow G12
8QQ, Scotland, Technical Report CSC-96009, 1996.

[7] J. C. F. Pujol and R. Poli, “Evolving the architecture
and weights of neural networks using a weight
mapping approach,” University of Birmingham, School
of Computer Science, UK, Technical Report
CSRP-99-05, 10 Feb. 1999. [Online]. Available:
ftp://ftp.cs.bham.ac.uk/pub/tech-
reports/1999/CSRP-99-05.ps.gz

[8] L. Dioşan and M. Oltean, “Evolving crossover
operators for function optimization,” in Proceedings of
the 9th European Conference on Genetic
Programming, ser. Lecture Notes in Computer Science,
vol. 3905. Budapest, Hungary: Springer, 10 - 12 Apr.
2006, pp. 97–108.

[9] T. Stutzle and H. Hoos, “Improvements on the
ant-system: Introducing the max-min ant system,”
Journal of Future Generation Computer Systems,
vol. 16, pp. 889–914, 2000.

[10] J. R. Koza, Genetic Programming: On the
Programming of Computers by Means of Natural
Selection (Complex Adaptive Systems). The MIT
Press, December 1992.

[11] “Genetic programming homepage,” July 2008. [Online].
Available: http://www.genetic-programming.com

[12] M. O’Neill, R. Poli, W. B. Langdon, and N. F.
McPhee, “A field guide to genetic programming,”
Genetic Programming and Evolvable Machines, march
2008. [Online]. Available:
http://dx.doi.org/10.1007/s10710-008-9073-y

[13] B. L. Miller and D. E. Goldberg, “Genetic algorithms,
tournament selection, and the effects of noise,”
Complex Systems, vol. 9, pp. 193–212, 1995.

APPENDIX
A. JAVA-EXECUTABLE FORMULAS

The following formulas are the java-executable versions of
formulas (6), (7), and (8). Here, pheromone replaces τ and
dist replaces η.

Roulette:
((Math.pow(dist[j][i], -11.5299) / 14.2606) / -0.4783) /
(dist[j][i] - (1.5321 / (pheromone[j][i] / (Math.pow(dist[j][i],
-7.6439) + 0.5959)))) / -0.4783

Greedy:
(-2.2824 + Math.pow(7.3090, (-14.1231 * (1.7273 *
pheromone[i][j])))) / (((-7.3090 - ((dist[j][i] * -0.3779)
/ -0.7022)) + 3.3090) + (dist[j][i] * -0.3779))

Tournament:
(3.0640 - pheromone[i][j]) / (dist[i][j])

