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Abstract—This paper describes a synthesis method that
automatically derives controllers for timed discrete-event
systems with nonterminating behavior modeled by timed
transition graphs and specifications of control requirements
expressed by Metric Temporal Logic (MTL) formulas. Syn-
thesis is performed by using 1) a forward-chaining search
that evaluates the satisfiability of MTL formulas over se-
quences of states generated by occurrences of actions and
2) a control-directed backtracking technique that takes into
consideration the controllability of actions. This method has
several interesting features. First, the issues of controllabil-
ity, safety, liveness, and real time are integrated in a single
framework. Second, the synthesis process does not require
explicit storage of an entire transition structure over which
formulas are checked and can be stopped at any moment,
giving an approximate but useful result. Third, search and
control mechanisms allow circumvention of the state explo-
sion problem.

I. INTRODUCTION

A controller can be viewed as a program that restrains
the behavior of a process in order to satisfy given con-
straints on sequences of actions executed by the process.
Supervisory Control Theory, initiated by Ramadge and
Wonham [36], addresses the problem of synthesizing con-
trollers for discrete-event systems (DES) by focusing on
the formulation of conditions for the solvability of different
control problems and on the investigation of algorithms for
computing controllers from formal specifications. One of
the main issues of this theory concerns the controllability
of a specification, which has similarities with the issue of
realizability [1], [34]. In open systems, the process to be
controlled interferes with other processes in its environ-
ment. This interaction is essentially of a reactive nature.
A controller can be realized by taking into account changes
caused by uncontrollable events generated by the environ-
ment.

Specifying the dynamics of a process and control require-
ments represents a challenge for engineers who want to
apply formal methods such as controller synthesis. This
task can be accomplished by using specification languages
that are expressive and readable. Expressiveness deals with
complex properties, while readability facilitates the expla-
nation of specifications. One method of writing down spec-
ifications is to use state machines. In fact, most synthesis
methods for supervisory control theory have been done in
the context in which both the unrestrained and legal behav-
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iors of a process are modeled with automata [16], [24], [37],
[40]. Besides, temporal logics have long been recognized as
a useful formalism for specifying properties of reactive sys-
tems [19], [30]. One key characteristic of such logics is that
they are declarative and involve simple syntax and seman-
tics. Although mostly used in the verification of concurrent
systems, temporal logics have been applied to supervisory
control theory (e.g., [21], [27], [26], [32], [33], [41] for linear
temporal logic frameworks and [5] for a branching temporal
logic framework). Real-time interval logics have also been
used in the verification of control systems (e.g., [38]).

The synthesis method advocated in this paper uses both
specification formalisms and integrates temporal aspects by
associating durations to transitions and time constraints to
modal operators. More specifically, the dynamics of pro-
cesses and specifications of control requirements are rep-
resented by timed transition graphs and Metric Temporal
Logic (MTL) formulas [4], [23], respectively. Such an ap-
proach is very attractive. On the one hand, the dynamics
of a process is more understandable from a state machine
because it explicitly shows the atomic actions, the states
in which they are enabled, and their effects. On the other
hand, constraints on a process are often more understand-
able from declarative statements.

Our synthesis method is closely related to the recent
work by Brandin and Wonham [15]. In their model, both
the dynamics of processes and specification of control re-
quirements are described by timed transition graphs. Tran-
sitions represent instantaneous events and time progresses
in states that represent actions. In our case, transitions
represent actions with durations. As discussed in [11],
both models are dual but lead to different synthesis meth-
ods. However, our approach can also handle liveness con-
straints, that is, constraints over nonterminating behaviors
or behaviors that have a very remote or indefinite termi-
nation point. Thus, the control requirements expressed by
an MTL formula refer to infinite behaviors.

Our method is also closely related to recent works by
Thistle and Wonham [42], [43]. We adopt the same model
for the nonterminating behavior of the closed-loop system
which is essentially due to Ramadge [35]. Like Brandin
and Wonham'’s approach, they use only transition struc-
tures to realize effective controllers: processes are repre-
sented by deterministic Biichi automata and specifications
of control requirements by deterministic Rabin automata!.
This representation also allows the expression of liveness
constraints, but it does not deal with time constraints.

1Biichi and Rabin automata are finite automata equipped with an
acceptance condition that is appropriate for infinite words [44].



The most substantial difference with these two previous
works and many others that consider the problem of finding
a winning strategy for finite or infinite games (e.g., [7], [29])
lies in the synthesis algorithms. As in the original method
proposed by Wonham and Ramadge [47], they promote
synthesis methods based on a fixpoint characterization of
the supremal controllable sublanguage of a given legal lan-
guage. In addition, they include an induction on the au-
tomaton structure to compute a controller that generates
the supremal controllable sublanguage. In contrast, our
approach simply consists in seeing sequences of actions as
paths on a timed transition graph. By searching through
the space of possible paths, MTL formulas representing
constraints are verified over these paths to determine points
at which controllable actions must be disabled. This is
done incrementally in a single phase, so that a controller
can be obtained without exploring the entire state space
because unsatisfactory paths are pruned and most of the
vertices on these paths are not expanded further [22]. A
depth-first exploration obviates storing the entire graph in
memory. Furthermore, heuristics and search control mech-
anisms, reminiscent of familiar techniques in the field of ar-
tificial intelligence search, can be used to control the state
explosion problem. One can reasonably expect that our al-
gorithm is less greedy for memory and performs better on
average.

The rest of the paper is organized as follows. Section II
summarizes Thistle and Wonham'’s framework and situates
the control problem addressed in this paper with regard to
their model. Section III describes the syntax and seman-
tics of MTL, gives a characterization of safety and liveness
constraints, and introduces basic properties of temporal
operators that allow transformations of formulas into ap-
propriate forms. Section IV presents the foundation of our
synthesis method by abstracting over implementation de-
tails. Section V contains some simple examples illustrating
the method’s most important aspects. Section VI intro-
duces fundamental properties that will be used to show
the correctness of a new synthesis algorithm detailed in
Section VII. Section VIII presents a simple application to
an antenna rotor control system. Finally, Section IX dis-
cusses related works from a more technical point of view
and concludes the paper.

II. SuPERvVISORY CONTROL OF DES

The atomic actions of a DES are represented by a
nonempty set of symbols A, called an alphabet. Let A*
and A“ be the set of finite words and the set of infinite
words over A, respectively. The empty word is noted e. An
w-word over A is written as & = a[0]a[1]... and represents
an infinite execution of actions. Let A*® := A* U A*. For
any two words k € A* and u € A®, the expression k < u
means that k is a prefix of u. Given K C A*, U C A,
and W C A“, we have the following operations:

pre(U) :={ke A* : (Ju e U)(k <u)},
lim(K) :={w € A* : pre({w}) C K},
clo(W) := lim(pre(W)).

Following Ramadge [35], a DES G is modeled by a pair
of languages L C A* and L, C A¥, such that L = pre(L)
(L is x-closed) and pre(L,) C L. The languages L and
L, are used to describe transient and persistent traces of
actions that the process can execute. If pre(L,) = L, then
G is deadlock-free.

Let {A;, Ay.} be a partition of A, where A, and A,
denote the set of controllable actions and set of uncontrol-
lable actions, respectively. Let ' := {y € 24 : A,. Cv}. A
supervisor is a function S : A* — I' that maps each finite
sequence of actions to a set of enabled actions.

A controlled DES is one constrained by a supervisor.
Given a DES G = (L, L,,) and a supervisor S, the corre-
sponding controlled DES is noted G = (L°, L?), where

1) L is defined recursively as: € € L° and for all k € A*
anda € A, ka€ L iff k€ L°, ka€ L, and a € S(k);

2) LS :=lim(L°) N L.

We assume that the supervisor S is complete, that is,
L? is a subset of the domain of S. A supervisor S is said
deadlock-free for G if pre(L5) = L°. The control problem
addressed herein can now be formalized as follows.

Problem 1: Given a DESG = (L, L,,) and W C A¥ such
that W C L, construct a complete deadlock-free supervisor
S for G such that LS CW.

Thistle and Wonham [43] give necessary and sufficient
conditions for the existence of a maximal solution to this
problem. Their result is mainly based on w-controllability
and w-closed properties. If the w-closed property is not sat-
isfied for a particular instance of Problem 1, the maximal
solution does not exist because of the open-ended nature of
liveness properties [43]. Besides, our goal is not to derive
the maximally permissive controller, but a useful controller.

In this paper, we provide a solution for a particular case
of Problem 1. We assume that L, = lim(L), that is, L, is
completely determined by L. We also suppose that the con-
trol requirements are given by an MTL formula f. Thus,
the legal language W can be interpreted as transforming
f into a nondeterministic Biichi automaton by using the
tableau method [45], then taking the intersection of the lan-
guage accepted by the Biichi automaton with the language
L,. In reality, we do not construct the Biichi automa-
ton. Rather, our method works incrementally on f and
a representation of L so that only the part of the Biichi
automaton relevant to f is built. Finally, we assume that
the DES is modeled as a timed transition graph (TTG)
G = (X,P,\ A, 1,6 x0), where X is a finite set of states;
P is a finite set of propositional symbols; A : X — 27
is a labeling function that assigns to each state the set
of propositional symbols true at that state; A is a finite
set of actions partitioned into A. and A..; 7 : A — Rt
is the time duration function such that 7(a) > 0 for all
a € A; £: X xA — X is the transition function; and
xo € X is the initial state. The x-language generated by
G is L(G) = {k € A* : &(z0, k) is defined} and the w-
language accepted by G is L, (G) = lim(L(G)). Therefore,
L = L(G) and L, = lim(L(G)).

Given a sequence of states o, we note o[, the i-th state
on the sequence. A trajectory of G on an w-word a € L,



is an infinite sequence of states o such that ¢[0] = 2o and

oli + 1] = &(oli], afi]) for i > 0. Since the execution of a
process never terminates and X is finite, successive appli-
cations of £ introduce simple cycles with distinct states on
them (except one that begins and ends the cycle). Never-
theless, finite executions can be simulated by using a ter-
minal state in which the process continually execute a wazt
action that lasts, for example, one time unit. If this action
is controllable, selfloops labeled by wait can be used in
conjunction with some control requirements to introduce
specific delays at the process level.

A realization of a supervisor S for a DES G is a pair
(M, @), where M = (Q, A,d,qo) is a transition structure
and ¢ : @ — I' a feedback function such that for each
ke LS, ¢(6(q0,k)) = S(k). In this paper, a realization of
a supervisor is called a controller. The combination of a
DES and a controller constitutes a closed-loop system. As
usual, the transition structure M mimics the behavior of G
and function ¢ determines the set of permissible actions for
G in each step of the execution of the closed-loop system.

III. CONTROL REQUIREMENTS

The temporal logic that we have adopted to spec-
ify the control requirements is MTL (Metric Temporal
Logic) [4], [23]. In this logic, time constraints are associated
with modal operators. It allows expression of various prop-
erties such as “eventually, within ¢ time units, property p
will be satisfied” or “property p must always be satisfied
after ¢ time units.”

A. Syntax

MTL formulas are constructed from a finite set of propo-
sitional symbols P; the Boolean connectives A (and) and —
(not); and the temporal connectives O.; (next), O; (al-
ways), and U~ (until), where ~ denotes <, <, >, or >
and t € Rt. The formula formation rules are:

1) every propositional symbol p € P is a formula and

2) if f, f1, and fy are formulas, then so are =f, f1 A fa,
Ont f, One f, and f1 Une fo.

In addition to these basic rules, we use the abbreviations
iV fa=a(=finafe) (fior fo), i—fo=-f1V o (fi
implies f5), and C.; f = trueU~: f (eventually f). The
language also includes the constant propositional symbols
true and false, which denote valid (—pVp) and inconsistent
(—p A p) formulas, respectively.

The intuitive meaning of MTL formulas is captured by
using the natural language interpretation for connectives
and by noting that, when a time constraint “~ t” is as-
sociated with a temporal connective, the modal formula
must hold within a time period that satisfies the relation
~ t. For example, O f is read as “the next state is in
the semi-open time interval [t,00) and satisfies f;” O<; f

“always f on the closed time interval [0,¢];” and ¢y f
as “eventually f on the semi-open time interval [0,t).”

Although positive real numbers are used for specifying
time constraints, the control requirements will be sampled
only at time points that interact with discrete transitions.

B. Semantics

MTL formulas are interpreted over models of the form
M = (o, w,T), where

1) o is a trajectory;

2) m: N x P — {true, false} is a binary function that
evaluates a propositional symbol p at o[i], that is, 7(i,p)
returns true if p holds at o[i], false otherwise; and

3) T : N — R* is a function that assigns the time stamp
T'(i) to position 1.

We write (M,i) = f if formula f holds at position ¢ in
the trajectory o of M. When the model is understood, we
simply write o] = f. In addition to the standard rules
for Boolean connectives, we use the following rules for tem-
poral connectives. For a position ¢, ¢ > 0, a propositional
symbol p, formulas f, f1, and f:

1) o[i] = p iff 7(i,p) returns true;

2) ofi] | Ows f iff T(i+1) ~T(i) + t and oi +1] |= f;

3) oli] = DNtf iff for all 5, j > i, o[j] E f whenever

T(5) ~T(i) +

4) oli] E f1 UNt fo iff there exists j, 7 > i, such that

T(j) ~ T(i) +t and o[j] E fa, and for all &, z<k<],

olk] E f1 whenever T'(k) ~ T(i) + t.

Finally, we say that model M (or trajectory o) satisfies
a formula f if o[0] = f.

C. Safety and Liveness Properties

In general, the control requirements include intercon-
nected safety and liveness properties [25]. A safety prop-
erty is expressed by formulas of the form O.; f, O.; f,
f1 U<t f2, or fi U<¢ fo. It is characterized by the fact that,
when it is violated, the violation occurs on a finite prefix
of a trajectory. For example, the violation of a deadline,
conveyed by the until connective with a constraint “< t,”
occurs when a finite number of transitions, for which the
sum of durations is greater than ¢, has been traversed with-
out satisfying fo while f; was satisfied. A liveness property
is expressed by formulas of the form f; Us¢ fo or fi U>¢ fo.
It is characterized by the fact that it can only be violated
on an infinite trajectory [2]. For such a formula with a
constraint “> t,” there are no bounds on the time when
f2 should occur after ¢ time units. In other words, it must
be checked over the infinite open time interval (¢,00). Of
course, such formulas also involve the safety property of
maintaining f; true as long as f> is not made true.

This characterization of safety and liveness properties
is important in the description of the synthesis algorithm.
In fact, the difficult part of the algorithm deals with the
management of formulas that express liveness properties.

D. Positive Normal Form

Safety and liveness properties can be syntactically deter-
mined by checking their main temporal connectives. One
must, however, take into account the fact that the not con-
nective changes the temporal modalities as indicated by
the following equivalences:

_'(DNt f) < 0Nt _'f7
~(f1Uxt f2) & (Ot =f2) V

(E1)

(=f2Uni(=f1 A= f2)). (E2)



To avoid checking these equivalences, we assume that
the initial formula representing the control requirements
is written in positive normal form.2 This can be done by
using the usual De Morgan laws, equivalences (E1) and
(E2), and the following equivalence:

- Ot f = (ONt —'f) V O true, (E3)

where ~ denotes the converse of the ordering relation ~.

E. Decomposition of Formulas

The assessment, of an MTL formula over a trajectory is
based on the observation that a formula specifies a present
requirement that must be satisfied in the current state and
a future requirement that must be satisfied in the next state
in the trajectory. In order to formalize this observation,
the Og4-formula is introduced, where d is a strictly posi-
tive real number representing the duration of a transition
between two consecutive states in a trajectory. A subfor-
mula having O, as main operator represents a future re-
quirement that must hold in the next state. This operator
is not included in the requirements specification language,
but it helps to explain how a formula is decomposed. The
semantic rule for this formula is:

oli] = O4 f iff T(i+1) —T(i) = d and ofi + 1] = f.

The decomposition of an MTL formula is based on the
following equivalences:®

Oyf ifd~t
O f & { false otherwise (E4)
fAOCqO<i_afifd<t
D f & { f otherwise (E5)
Oy05,qf ifd<t
fAOsOx0 f ift=0
faV(fi ANOq fiU<t—q fo) if d <t
hUsifz & { f2 otherwise (E7)
Og f1 U>t—d fo ifd<t
f U>t fo & Oy f1 U>o fo ifd>tandt#0 (E8)

faV (fi ANOq fiUso f2) if t = 0.

It should be noted that, when equivalences (E4) to (E8)
are applied recursively? to a formula in positive normal
form, the result is an equivalent formula in the same form
because no negation is introduced by these rules.

F. Disjunctive Normal Form

The goal of the decomposition is to obtain formulas of
the form \/,(present; A O4 future;), where present; is a
conjunction of literals® and future; a conjunction of liter-
als and formulas for which the main connective is O, O, or

2In this form, only propositional symbols are negated.

3We only give the equivalences for temporal connectives with time
constraints < and >. The equivalences for < and > are similar.

4The recursion is applied to subformulas not in the scope of the
connective Og4.

5A literal is a propositional symbol or the negation of a proposi-
tional symbol.

U. This is done by 1) recursively using equivalences (E4)
to (E8) and 2) transforming formulas in positive normal
form into equivalent formulas in disjunctive normal form.5
This transformation, which also preserves the positive nor-
mal form, requires the usual distributive laws between the
connectives A and V, and the following equivalence:

OCa(fi A f2) & (O4 f1 AOq fo).

In the sequel, the decomposition of a formula f with
respect to a transition of duration d will be noted as follows:

(E9)

n

\/(prejr A Oy fut{).
=1

IV. SYNTHESIS METHOD

Let G = (X,P,\ A, 7,& 20) be a timed transition graph
describing the behavior of a process and f an MTL formula
in disjunctive normal form representing the control require-
ments. The process of synthesizing a controller (M, ¢)
for DES G and formula f involves simultaneous opera-
tions that are performed incrementally based on a forward-
chaining search and a control-directed backtracking mech-
anism.

The basic operation is the expansion of a finite labeled
directed graph that represents a combination of f and tra-
jectories of G. This expansion involves a verification of f
over trajectories of G. During this operation, dead ends
or bad cycles may be detected according to the nature of
the formula to be checked. Violations of safety properties
lead to dead ends, while violations of liveness properties
lead to bad cycles. When a dead end or a bad cycle is de-
tected, a backtracking mechanism goes further back on an
uncontrollable path of arbitrary but finite length to select
an alternate path. Finally, a controller is obtained by ex-
tracting a subgraph, representing the transition structure
M, from satisfactory trajectories of G and by updating, for
some vertices, the value of the feedback function ¢ during
the backtracking operation.

A. Ezpansion of a Graph

Let D = (V, E, A) be a labeled directed graph, where V
is a finite set of vertices, FE is a finite set of directed edges,
and A is the set of actions labeling the edges. Every vertex
v € V is labeled with a state of G, a formula, and a set
of unbounded-time eventualities. These labels are denoted
v.X, v.F, and v.E, respectively. The first label is used to
record trajectories of G. The second label is a subformula
of f that must be satisfied over trajectories of G starting
from v.X. The last label allows the verification of liveness
properties. A formula in the set of unbounded-time even-
tualities is the second operand of a formula of the form
gUso h" that must be eventually satisfied from v.X. Ini-
tially, a vertex vg labeled with zg, fo a disjunct of f, and

S A formula in disjunctive normal form is a disjunction g; V+--V gp,
such that each disjunct g; is a conjunction h1 A - - A hm;, where each
conjunct h; is a literal or a formula whose main connective is O, o,
or U.

"We discuss only the case for the until connective with time con-
straints >. The case for > is similar.



an empty set of eventualities (vo.X = zg, vo.F = fo, and
v9.£ = () is created and inserted into V. There are as
many initial vertices as there are disjuncts in f. Only one
is selected at a time. Let v; be a vertex of the graph such
that v;.F # false. For an action a such that £(v;.X,a) is
defined, a successor v;4; is generated and an edge from v;
to v;41 labeled a is added in E. The state labeling v;41 is
£(v;. X, a). The two other labels are obtained by progress-
ing v;.F and v;.£ with respect to information contained in
the edge from v; to v;41 (this is further discussed in the
next section). The vertex v;1; is inserted into V if it is not
already there.

B. Progression of Formulas and Sets of FEventualities

Let a be the action labeling an edge from v; to v;41. Let
us suppose that v;. X = z;, v;.F = f;, where f; is a disjunct
of the form f{ A--- A fi , vi.€ = E;, viy1.X = ziy1, and
7(a) = d;. The truth value of f; on trajectory z;x;y1 ... is
established by evaluating a present requirement at z; and
postponing a future requirement to be checked at z;y1.
This is accomplished by:

1) applying recursively equivalences (E4) to (E8) on

fis
2) transforming the obtained formula to get a for-
mula of the form (see Section III-F)

i

\/(prelfi A Oy, fut!?); and
=1

(A1)

3) selecting the disjunct prefi A Oy, futfi in the pre-
vious formula, for some r (1 < r < n;).

To check f; at state z;, the present requirement prefi is
assessed at x;. If the present requirement is violated, then
vi+1-F = false (since false A f & false, for any f), oth-
erwise v;11.F = futl. If there is no future requirement,
then v;41.F = true. A vertex labeled with false is defined
as a dead end during the expansion of D.

The set of unbounded-time eventualities E;y; labeling
Vi41 is defined as follows:

Eip1 = { EWAfL - i)

E;, — E(E;)

where E({f{,---, fi.}) returns the set of formulas h such
that there exists f; (1 < p < m;) of the form g U>q h with h
not locally entailed by the edge from v; to v;41; and E(E;)
returns the set of formulas h included in E; and locally
entailed by the edge from v; to v;41. A formula h is locally
entailed by an edge from v; to v, 41 if there exists 1 < ¢ <n
such that preZ is true at v;.X and futf; is locally entailed
by the vertex v;41 whenever h = \/__ (pre} A Oq fut}').

Establishing the fact that a formula f in disjunctive nor-
mal form is locally entailed by a vertex v is based on an
inference procedure applied to a set of premises formed
from all the conjuncts of v.F. The modus ponens, “and
introduction,” and following axiom schemata are used by
the inference procedure:

if B, =0
otherwise.

(A2)

S5

fi > iV (S1)

Ouf = O f if t ~ ' (S2)
Ot f — O f ift' ~t (S3)
fiU<ifo = fiU<p fo ift <¢ (S4)
(S5)

fiUst fo = f1U>t fo.

Intuitively, the inference procedure replaces each con-
junct of f, whose main connective is O, O, or U, by true
or false according to the fact that one of the schemata
(S2) to (S5) can be applied to a conjunct of v.F (left pat-
tern) and the temporal subformula of f (right pattern). A
conjunct of f that is a propositional symbol is replaced by
true if it is a conjunct of v.F. Otherwise, it is replaced by
false. Then, the obtained propositional formula is eval-
uated. If it is true, then f is locally entailed by v. This
inference procedure is sound but incomplete because tem-
poral subformulas are not decomposed further and a lim-
ited number of axiom schemata are used. However, as it
is proven later, this completeness property is not required
for the completeness of the synthesis algorithm.

A cycle is satisfactory if it contains at least one vertex la-
beled with an empty set of eventualities. A cycle that does
not meet this criterion is defined as a bad cycle. In other
words, a cycle is satisfactory when its infinite execution
does not lead to pending unsatisfied eventualities.

V. EXAMPLES

Let us consider a process modeled as the timed transition
graph of Fig. 1. Every action lasts one time unit, that is,
7(a;) =1 (1 < i < 4). There are three states, namely, 1,
x2, and x3 with A(z;) = {p;} (1 < ¢ < 3); z1 is the initial

state.
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L = (a1a2 + azas)™ (e + a1 + az)
L, = (a1a2 + azaq)”

Fig. 1. The process

A. Stability Property

In this example, the control requirements are formally
specified by the following bounded-time MTL formula in
disjunctive normal form:

f=050(p1 = O<3p2) AOso(p1 —= C<zps3).

By recursively applying Egs. (E6) and (E7) on f, we
obtain successively the following formulas:

(p1 = O<3p2) A (p1 = O<3p3) AOy f,

(7p1 VP2 VO1Ocapa) A(=p1 V3 VO Ocaps) A f.



During the application of equivalences (E4) to (E8), lit-
erals can be evaluated at the current state to make trivial
simplifications possible earlier without decomposing fur-
ther temporal subformulas. Since p; € A(z1), p2 ¢ M21),
and p3 ¢ A(z1), we obtain only one valid disjunct with
the present requirement true and a future requirement
fi = f A O<apa A O<ops. This means that, over the next
states, formula f must be satisfied; p» and p3 must be sat-
isfied before two units of time have elapsed. Note that f
must always be satisfied from one state to another because
its main operator is O>q. Furthermore, the sets of eventu-
alities are empty because f involves only safety properties.

The progression of f; from z2 to x; gives the future
requirement fo = f A O<ips. In fact, since po € A(z2),
the eventual satisfaction of p, is met and erased from the
future requirement; time has progressed one unit and ps
is not satisfied. Finally, the progression with four units of
time of f in the sequence of states x1x221 22271 yields false,
because the time limit allowed for satisfying ps has expired.

Fig. 2 gives a part of the graph developed from f. Dotted
arrows and circles correspond to edges and vertices created
during the verification process but rejected because they
lead to dead ends. If we assume that actions a; and a3 are
controllable, then the controller must prohibit these actions
at states 3 and 7, respectively.

ay
fFAOC<2p2 AO<caps

fAO<op2 /\<><2 p3 | @2 f/\<><z P2 AN O<ops

= 5 false
/ ‘.”‘”,1,."
a3 f/\<><1 3
FAC<1p2 a4 f ANC<ap2 AC<ops

8
z3 fFAOC<op2 AO<aps

a4

e

97
=y false

Fig. 2. A part of a graph developed from safety properties
B. Unbounded-time Eventualities

Let us consider the formula in the example in Section V-
A, making the time constraint for the eventually connec-
tives “> 0.” In this example, the formula labeling a given
vertex can be identical to that labeling an ancestor vertex
while not achieving an unbounded-time eventuality. The
graph in Fig. 3 illustrates an infinite trajectory that is not
satisfactory. The formula > p3, which is a subformula for
every vertex in the cycle, is never satisfied. This example
shows that equivalences (E4) to (E8) are not sufficient to
assess the satisfiability of an unbounded-time formula.

fFAO>0p3

az ai

f/\ozopz/\ozom

Fig. 3. A bad cycle

C. Reachability Property

For a more comprehensive example, Fig. 4 shows a de-
scription of the graph obtained by progressing the sets of
eventualities and the formula

f=050(p1 = >0p2) AO>0(p1 = $>0p3)

through the timed transition graph in Fig. 1. It can be
checked that any cycle containing a vertex labeled with an
empty set of eventualities is satisfactory.

fi=FfAC50p2 A C>0p3
fo=fAN<O>0p3
fa=fAC>0p2

W = ((a1a2)+a3a4 + (a3a4)+a1a2)w
Wo = a1azaz(asaiazaz)” + azasai(azazasar)®

Fig. 4. A graph developed from liveness properties

If the graph of Fig. 4 is interpreted as a transition graph
of an automaton, then a vertex labeled with an empty
set of eventualities represents an accepting state in the
sense of Biichi automata. Let us assume again that a;
and ag are controllable. In that case, the legal language
W, defined by the formula f, is *-controllable w.r.t. L and
w-controllable w.r.t. (L,L,) (see Fig. 1 for the definition
of L and L,) [24], [43]. However, a maximally permissive
controller cannot be extracted from this graph because the
supremal w-controllable sublanguage of W (which is itself



W in this example) is not w-closed with respect to L.5.
A family of useful controllers can, however, be extracted
by unwinding cycles 3-4-3 and 8-10-8 a finite number of
times. In particular, a controller that corresponds to Wy
(see Fig. 4 for the definition of Wy) can be obtained by re-
moving dotted arrows and circles because they correspond
to edges and vertices created during the verification process
but rejected as constituting bad cycles.

V1. PROPERTIES

In this section, correspondences between good paths of D
and trajectories of G that satisfy formula f are established.
It is shown how the progression of a formula through good
paths is related to its semantic interpretation with respect
to the corresponding trajectories. A path of D is good if
it contains neither a dead end nor a bad cycle. For any
infinite path vov; ..., this is formalized by the following
two properties:

(Vi > 0)(v;.F # false),
(Vi > 0)(3) > i)(vy.€ = 0).

(P1)
(P2)

Since graph D has a finite number of vertices, infinite
paths are represented by paths terminated by a cycle. Let
us start with a restricted version of the main result.

Theorem 1: For any path vpvy ...v;...v; terminated by
a cycle and produced by (A1) and (A2), if for all ¢ > 0,
v;.F # false and there exists k > j such that v,.£ = 0,
then for any vertex v on the trajectory obtained from the
path by unwinding the cycle, v.X = v.F.

In order to simplify the proof, we introduce some nota-
tions based on the following observations. First, a vertex
is always labeled with a conjunction. Second, the satisfac-
tion of a conjunction depends on the satisfaction of all its
conjuncts. Third, the decomposition of a conjunct gives a
disjunction. Finally, the satisfaction of a disjunction de-
pends on the satisfaction of one of its disjuncts. Therefore,
the satisfaction of a conjunction is equivalent to the sat-
isfaction of the conjunction of disjuncts (at least one per
conjunct) obtained from the decomposition of every con-
junct. Nevertheless, one must take into account the time
intervals associated with temporal connectives.

For any vertex v;, we note d; the duration associated with
the edge from v; to viy1 and vi.F = fi = fiA--- A fi . In
order to focus on a particular conjunct, f; is broken into two
parts: f; = Flf A f;, where F}f = /\l;ép fiand 1 <p < m;.
The decomposition of v;.F at v; gives

(\/ prelF" A Oy, futlF") A (v prelf” A Oy, fut{"). (F1)
=1 =1

If (P1) holds, then only the disjuncts for which the
present requirement is true are relevant and formula (F1)
simplifies to

V/\/ Ou(futf? A fut?).

L

(F2)

8 A language L is w-closed with respect to a language Ly if L1 =
ClO(Ll) N Lo.

The proof of Theorem 1 is based on the following six lem-
mas. The first five lemmas consider the different cases for
f;. The last lemma expresses essentially the same property
as Theorem 1, but for every conjunct f;

Lemma 1: If vy ... satisfies properties (P1) and (P2),
and f; = O.; g for some p (1 < p < my), then (a) d; ~ t
and (b) v;41.F has a conjunct that is a disjunct of the
disjunctive normal form of g.

Proof: From Eq. (E4), O.: g is equivalent to Oy, g
(and d; ~ t) or false. From (P1), v;41.F # false. Thus,
the only possible case is the first one. By using (A1) and
(F2),

F’i i
Vit1.F = futy® A futfp

for some ¢ (1 < ¢ <m;) and r (1 < r < n}), where fut{”
is a disjunct of the disjunctive normal form of g. Then the
conclusion follows. |

Lemma 2: If vy ... satisfies properties (P1) and (P2),
and fi = g Us h, for some p (1 < p < m;), then (a) there
exists a vertex v; such that j =i and ¢ =0 or j > ¢ and
d; +---+dj_1 >t and v;41.F has conjuncts that imply a
disjunct of the future part obtained from the decomposition
of h at v;; and (b) for all k¥ (i < k < j) such that k = ¢
andt=0ork>¢tandd; + - -+dr_1 > 1, vp41.F has a
conjunct that is a disjunct of the future part obtained from
the decomposition of g at vy.

Proof: For a formula of the form g U h, the satisfac-
tion of g must be established for every state after a delay
of ¢ time units and until A holds (after the same delay). If
t = 0, this means from state v;.X’; otherwise, from a state
v;.X such that d;+---+d;_; > t,but d;+---+d;_2 < t. The
progression of the formula is accomplished step-by-step by
repeatedly considering the current duration until the delay
is expired. There are three possibilities: (I) d; < ¢, (II)
d; >tand t #0, and (III) ¢t = 0.

Case 1. If d; < t, then the delay is not expired. From
Eq. (E8), gU>¢ h is equivalent to Og; g U>¢—a, h. Without
loss of generality, let us assume that p = 1. By using (A1)
and (F2),

vir1.F = (gUss—a, h) A futy’

for some ¢ (1 < g < n;). We can repeat this reasoning
with vertices v;41, vit2, and so on. Since all the action
durations are strictly positive, it follows that there exists
a vertex v; (j > ¢) such that ¢’ =¢t—d;, —---—d;_1 >0,
dj > t', and

-1
v;.F =(gUs¢ h) A futf;,‘1

for some ¢’ (1 < ¢’ <mnj_1). Then, either t' # 0 or ¢’ = 0.
If t' # 0, then v; is in the same situation as v; in Case II;
otherwise, v; is in the same situation as v; in Case III.
Either way, we continue with the argumentation of Case II
or Case III by replacing v; with v;.

Case II. If d; > t and t # 0, then the delay is residual.
From Eq. (E8), gUs:h is equivalent to Og4, gU>oh. By
using (A1) and (F2),

Vig1.F = (gUso h) A futff



for some g (1 < ¢ < n;). Thus, v,y is in the same situation
as v; in Case III. Hence, we continue with the argumenta-
tion of Case III by replacing v; with v;41.

Case III. If ¢ = 0, then the delay is expired and the
progression of g must be considered until the progression
of h or the progression of a formula that implies h. From
Eq. (E8), g U>¢ h is equivalent to AV (g AOgq, gUso h). By
using (Al) and (P1), formula (F2) becomes

(\/\/ Ou (Fut™ A futl'))
v

V(VVOdi (futlFli A futf,i A gUso h)).

[

There are two possibilities:

A) vip . F = futh’ A futflz, for some ¢ and r; or

B) vit1.F = (gUso h) A futd A futfll, for some ¢ and r.

Case III.A Since fut" is a disjunct of the future part
obtained from the decomposition of & at v;, part (a) is sat-
isfied. Moreover, since j = ¢, part (b) is trivially satisfied.

Case II1.B Since v;41.F contains g Uso h as a conjunct,
we can resume the reasoning from the beginning of Case
ITI, but applied to v;4;. Similarly, we can repeat this for
vit2, and so on. It follows that, for any vertex vy (k > i)
before a vertex v; (assuming that it exists) satisfying part
(a), vg41.F must be of the form

k
(gUso h) A futf,,c A futf;l

for some ¢’ and r’. This means that all the vertices before
any such a vertex v; satisfy part (b). Thus, to complete
the proof, it remains to show that a vertex v; satisfying
part (a) effectively exists.

From (P2), there exists v; after v; such that v;.€ = 0. Fi-
ther there exists a vertex v; between v; and v; (inclusively)
such that v; satisfies part (a) or no such vertex exists. If
such a vertex v; exists, then this trivially ends the proof.
Now, if no such vertex v; exists, this means that all the
vertices between v; and v; fall in Case III.B. Hence, v;.F is
of the form

-1

gl—l F
(9Usoh) A fut, A fut

for some ¢"” and r". From (A2), v;41.£ must contain h (un-
less h is locally entailed by the edge from v; to v;11). But
then, from (P2), there must exist a vertex vy after v;4; such
that vy.£ = 0. From (A2), this means that there exists a
vertex v; between v; and vp such that v;41.£ is obtained
by removing h from v;.£ because h is locally entailed by
the edge from vj to v;r41. Then, propositional symbols in
A(vjr.X) and conjuncts of v;41.F logically imply h. More
precisely, ,

1) prefy, (a disjunct of the present part obtained from
the decomposition of h at v;/) is true in v;.X and

2) futff,];, (the corresponding disjunct of the future part
obtained from the decomposition of h at v;/) is implied by
vjr41.F for some 7", Hence, v, satisfies part (a). [ ]

The proofs of the next three lemmas are based on ar-
guments developed in Lemma 2. In fact, the first line of
Eq. (E7) is like the last line of Eq. (E8), and Eq. (E6) is
like Eq. (E8) if f2 in Eq. (E8) is replaced by false, that is,
O>; g is almost equivalent to g U>; false.

Lemma 8: If vov; ... satisfies properties (P1) and (P2),
and fi = g U<t h, for some p (1 < p < m;), then (a) there
exists a vertex v; such that j =diorj >diand d; + --- +
dj—1 <t and v;41.F has a conjunct that is a disjunct of the
future part obtained from the decomposition of h at v;; and
(b) for all k£ (i < k < j), vky1.F has a conjunct that is a
disjunct of the future part obtained from the decomposition
of g at vg.

Proof: 'The proof is similar to that for Lemma 2 in
Case III since, for t greater than or equal to the duration
of the current action, the progression of g U<; h is similar
to the progression of g Usq h. From (E7) and (A1), sooner
or later, a vertex, for which the time constraint for the
until connective is less than the duration of the current
action, will be ultimately reached. From (P1), h must be
progressed from v; or v; (j >dand d;+---+d;—1 <t). W

Lemma 4: If vouvy ... satisfies properties (P1) and (P2),
and f} = O g, for some p (1 < p < my), then for j =i
whenever ¢ = 0 and all j > ¢ whenever d;, + --- +d;_; > t,
v;j+1.F has a conjunct that is a disjunct of the future part
obtained from the decomposition of g at v;.

Lemma 5: If vou; ... satisfies properties (P1) and (P2),
and f;, = O« g, for some p (1 < p < m;), then for j =4
and all j > ¢ such that d; + ---+d;j—1 < t, vj41.F has a
conjunct that is a disjunct of the future part obtained from
the decomposition of g at v;.

Proof:  The proofs of Lemma 4 and Lemma 5 are
similar to those for Lemma 2 and Lemma 3. In fact, O.; g
is almost equivalent to g U~ false and is progressed like
an until formula, except that we do not have to check that
false is eventually satisfied. |

Lemma 6: If vgvy ... satisfies properties (P1) and (P2),
then for all 4 > 0 and for all p (1 < p <m;), v,.X = f.

Proof:  The proof is by induction on the structure
of formulas. We first prove the case for f; = DO<;g. The
basis is when g is a propositional symbol. Given (P1) and
(E5), then v;.X | g for j = ¢ and all § > ¢ whenever
d; +---+d;_1 <t. From the semantic definition of MTL,
v;. X = O<¢g. The inductive hypothesis is: if vov; ...
satisfies properties (P1) and (P2), then for all £ > 0 and
all (f')} that are conjuncts of v;.F with simpler structure
that fZ, then v X |= (f')F. From Lemma 5, v;41.F has a
conjunct that is a disjunct of the future part obtained from
the decomposition of g at v; for j = ¢ and all j > ¢ such
that d; +---4+d;_1 < t. This means that the corresponding
disjunct of the present part holds at v;.X. By using the
inductive hypothesis, the conjunct of v;y;.F correspond-
ing to the disjunct of the future part obtained from the
decomposition of g at v; is satisfied at v;41.X. Therefore,
v;.X |= gfor j = iand all j > i whenever d;+---+d,;_; <t.
From the semantic definition of MTL, v;.X |= O<¢g. The
proof for the other cases are similar. The case f; =gU>th
requires, however, more explanation.



The progression of a formula of the form gUs:h de-
creases t by the action duration d only as long as d < t.
Then, the progression keeps the formula invariant as long
as only g is satisfied, but not h. From (P1) the safety
property is satisfied. The only problem is that cycles vio-
lating the liveness property may be formed. We show that
this is impossible. From Lemma 2, v;;,.F has conjuncts
that imply a disjunct of the future part obtained from the
decomposition of h at v; for some j. From inductive hy-
pothesis, these conjuncts hold at vj41.X. Thus, v;.X |= h.
From the semantic definition of MTL, v;.X = gU>:h. W

Now, we can prove Theorem 1.

Proof: Let vgvy ...v;...v; be a path terminated by
a cycle and produced by (Al) and (A2). If for all ¢ > 0,
v;.F # false, and there exists k > j such that vy.& = 0,
then the trajectory obtained by unwinding the cycle satis-
fies (P1) and (P2). From Lemma 6, for any vertex v; on
that trajectory and for any f;; that is a conjunct of v;.F
(1 <p<m),ve.X = fi. But, v;. F = fiA--- A fE
Hence, v;.X |E v;.F. [ ]

The next theorem generalizes Theorem 1. It is based on
the procedure Expand (see Fig. 5) that generates succes-
sors of a vertex v. For every action a such that £(v.X,a)
is defined, it decomposes formula v.F at v (items 1 and 2
of (A1)). Then for every disjunct of the decomposition of
v.F at v, it creates a new vertex v’, assigns values to its
labels v".X, v'.F, and v'.£, and creates the corresponding
edge. The notation A2(v,a,v') means that (A2) is applied
by replacing v; by v and v;41 by v'. It should be noted
that if there is no future requirement, then v'.F = true. In
addition, if the present requirement is violated at v, then
v".F = false.

procedure Ezpand(v € V)
1. for each a € A such that £{(v.X,a) is defined do

fr= iz (orep” A Oy gy futi”);

N

for each disjunct pre}* A O,y fut} of f’ do
create a new vertex v’;
VX = E(v.X,a);
v F = fut?”;
V'€ = A2(v,a,v");
create a new edge (v, a,v’).

X NS ot

Fig. 5. The expansion of a vertex

Theorem 2: For any trajectory of G terminated by a cy-
cle zozy ... 2 ... 27, the trajectory obtained by unwinding
the cycle satisfies an MTL formula f if and only if there
exists a graph produced by EFzpand that contains a path
terminated by a cycle vovr ... v; ... v; such that (a) for all
i >0, v;.F # false; (b) there exists k > j such that
vg.£ = 0; and (¢) vo.X = zp and, for any vy and z;, if
'Uil./Y = Ty, then Uil+1.X = Tj41-

Proof: (<) This follows trivially from Theorem 1.
(=) The idea of the proof is to build paths from trajectory
ToZ1 ... .. .2 by progressively adding labels to vertices,
starting with states, then disjunctions, then disjuncts (or

conjunctions), and finally sets of eventualities. Thereafter,
two vertices are equal if their labels match.

Let us build a first path wouy ... u;...u;, where u;. X =
x; (0 <4 <1). This path satisfies trivially part (c). Let us
build another path vgvy ...v;...vp ... vp from the previous
one? by unwinding its cycle a finite number of times as
follows: vg.F = fo = f and v;. F = f; =/, fut]""' (only
the future parts of disjuncts for which the corresponding
present parts are true at v;_1.X appear in this disjunction)
(1 <i<1"). The cycle of the first path is unwinded a finite
number of times because items 1 and 2 of (A1) generate
only finitely many different formulas. From (E4) to (E8),
v1.X | fi1, since vg.X E fo (by hypothesis). Similarly,
since v;.X | fi, then v3.X | fa and so on. In particular,
fi # false for all i. Hence, this path satisfies part (a).

For any f;, let usnote f{v---vf. (if i #0, fi = futhi—h)
its disjunctive normal form. For every vertex v;, there ex-
ists at least one f; (1 < ¢ < n;) such that v;.X = f;. Then,
for every fg such that v;.X = f;, there exists a disjunct
fiH* (1 < r < nigq) such that z,41.X | £ and fit!
is a disjunct of the future part obtained from the decom-
position f; at v;, since the decomposition of a formula is
join-preserving.

Again, let us build another path v{v] ... v} ...V ... 0},
from the previous one by unwinding its cycle a finite num-
ber of times and replacing the formulas of vertices by cor-
responding disjuncts as follows: vj.F = }90, v, F = f;i if
f;i is a disjunct of the future part obtained from the de-
composition of fi~! at v]_; (1 <i<1"), and v].X |= f;,
(0 < i <I"). The cycle of the second path is unwinded a
finite number of times because there is a finite number of
disjuncts. It should be noted that the third path satisfies
parts (a) and (c).

Let us build a last path WoW1 ... Wy ... Wpre oL Wi from
the previous one by unwinding its cycle a finite number of
times and extending each vertex with a set of eventualities
as follows: wp.£ = @ and w;.£ = E;, accordingly to (A2)
(1 <4 < I"). The cycle of the third path is unwinded
a finite number of times because there is a finite number
of different possible sets of unbounded-time eventualities
obtained from subformulas of f having the form g U>¢ h.

Let us now consider all such paths (still satisfying parts
(a) and (c)) that can be derived from the initial trajectory.
At least one of them satisfies part (b), which is proven by
contradiction. Let us suppose that there exists no paths
satisfying part (b). This means that, on the cycle of every
path, all the sets of eventualities contain at least one for-
mula h. Then, every path has a vertex w, before the entry
in the cycle, such that w.£ = 0 and w.F has a conjunct
of the form g Usoh (and h is not locally entailed by the
edge having w as head). Since all the paths satisfy (a),
there exists a vertex w’ after w such that w'.X = h and
w'.F has a conjunct of the form g Uso h. In that case, the
decomposition of w'.F can be done in two ways according
to (E8) (see also Case III of Lemma 2). We consider only

9This means that vg = ug and v; = succ(uyj), if v;—1 = u;. Hence,
part (c) is still satisfied.
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the first way, which corresponds to a particular path still
satisfying parts (a) and (c). Let us focus on a particular set
of eventualities. In the worst situation, h is not locally en-
tailed by an edge before the edge having w’ as head, which
means that it cannot be detected earlier that the formula h
will be effectively satisfied and therefore be removed from
the set of eventualities. The successor vertex w’” of w' has
the following characteristics: w”.F has a disjunct of the
future part obtained from the decomposition h at w’ and
the corresponding present part is true at w’. Then, h is lo-
cally entailed by the edge from w' to w”. From (A2), w".€
does not contain h. The same reasoning can be done with
the other formulas in the set of eventualities appearing on
the cycle to conclude that this set will become empty. This
contradicts the hypothesis.

Finally, let us construct a family of graphs by group-
ing and interleaving all the paths having the same initial
vertex. Each graph is a subgraph of a graph that can be
generated by Exzpand. In at least one graph, there is a path
that satisfies parts (a), (b), and (c). Then, the conclusion
follows. |

VII. THE SYNTHESIS ALGORITHM

The algorithm described in this section provides more
details on (A1) and (A2) in Section IV-B. It includes el-
ements concerning the use of a search technique for the
expansion of the graph D, selection of the disjunct label-
ing a vertex, and backtracking operation whenever a dead
end or a bad cycle is encountered. It can, however, be im-
proved to prevent some bad vertices from being processed
more than once.

A. Description of the Algorithm

The algorithm performs a depth-first search (DFS). The
set Q and transition function ¢ correspond to the set of ver-
tices V and set of edges E of D, respectively. In addition
to the labels v.X, v.F, and v.£, a vertex v has a linked list
of outgoing edges. The reference to the first edge of this
list is denoted v. first. Each item in the list contains three
elements: an action (e.action), a reference to the next edge
(e.next), and a reference to the first element of a linked list
of its possible tails (e.first). For a given action, there are
as many tails as there are disjuncts in the decomposition of
v.F. Thus, each vertex also has a reference to the next ver-
tex (v.next). The vertices in this linked list differ in their
formula and set of unbounded-time eventualities. Finally,
a Boolean (v.unc) indicates that vertex v has an outgoing
edge that leads to an illegal situation on an uncontrollable
action. The procedure Expand of Fig. 5 is augmented in or-
der to create the two previous lists and set v.unc to false.
A stack is maintained throughout the DFS. It contains all
the vertices on the current path, except the last vertex that
represents the current vertex which is denoted head. The
detection of a cycle in the graph is done by examining the
contents of the stack. Between every two vertices v and v’,
the stack also contains a reference to the edge from v to v’
that the DFS examines when it backtracks from v'.

The algorithm (see Fig. 6) begins with some initial op-
erations (lines 1-4). The main loop (starting at line 5)
represents the recursive character of the DFS. The first em-
bedded loop (starting at line 6) scans edges outgoing from
the head. The second embedded loop (starting at line 8)
scans tails of the current edge e. Three Boolean variables
control these loops. The variable success controls the sec-
ond embedded loop. Tails are examined until one of them
verifies its disjunct (success is then set to true) or the
list is exhausted (tail = nil). Then, some postprocessing
is performed on e. If the examination of tails terminates
with success equals to false and the action associated
with the current edge is uncontrollable, then safe is set
to false. This causes termination of the first embedded
loop, which is continued by backtracking actions (line 13).
The variable DF'S becomes false if a solution is obtained
causing the termination of the main loop.

procedure Synthetize()

1. create a linked list of initial vertices;

2.  head := first element of this list;

3. Expand(head); ¢(head) := 0; e := head. first;
4. DFS := true; safe := true;

5. while DF'S do

6. while safe and e # nil do

7. tail := e.first; success := false;

8. while not success and tatl # nil do

9. Ezamine();

10. if not success then

11. if e.action € A, then safe := false;
12. head.unc := true
13. else e := e.next;

14. Backtrack();
15. return ((Q, 4,0, head), ¢).

Fig. 6. The synthesis algorithm

Tails are processed by the procedure Ezamine in Fig. 7
according to three cases. First, the tail causes a dead end or
closes a bad cycle. In this case, the DFS resumes with the
next tail (line 2). Second, the tail represents a good state
or closes a good cycle. In this case, the action associated
with edge is enabled from the head, the transition function
6 is updated, and the DFS resumes with the next edge
(lines 5-6). Otherwise, the DFS proceeds with the current
tail by redefining head as tail (lines 8-10).

The procedure Backtrack (see Fig. 8) is invoked when
all edges of the head have been examined or one of them,
having an uncontrollable action, leads to a dead end or
a bad cycle regardless of its tail. If the head represents
a deadlock (because ¢(head) = @) or cannot prevent an
illegal situation (because head.unc = true), then the DFS
resumes with the next tail of the current edge if it exists
(lines 3-5). If the list of tails has been exhausted, then
the algorithm backtracks to the ancestor unless the stack
is empty, which means that there are no solutions (lines 6—
11). Otherwise, the head is a good vertex and the algorithm
backtracks to the ancestor unless the stack is empty (lines



procedure Ezamine();

1. if dead end or bad cycle then

2. tail := tarl.next

3. else success := true;

4. if tail € Q or good cycle then

5. ¢(head) := ¢(head) U {e.action};

6. d(head, e.action) := tail; e ;= e.next
7. else

8. push head and e on the stack;

9. head := tail; Expand(head);

10. o¢(head) := 0; e := head. first.

Fig. 7. The examination of a vertex

13-18). If the stack is empty, then the main loop terminates
because there is a solution (line 19).

B. Proof of Correctness

Theorem 3: Let G = (X, P, A, A, 1,&,x0), its associated
pair of languages (L, L,,), control requirements represented
by an MTL formula f, and a controller S = (M, @) cal-
culated by the procedure Synthetize. The corresponding
controlled DES G° = (L®,L?) is such that, if an w-word
a € L? and o is the trajectory of G° on a, then o = f.

Proof: If @ € LZ, then a € lim(L°) and a € L.
By construction, lim(L®) C lim(L) = L,. Therefore, it
remains to be proved that if a € lim(L%) and o is the
trajectory of G on a, then o = f. If a € lim(L"), then
pre({a}) C L3. In other words, the trajectory of G° on a
is o/ = qod(qo, @[0])d(go, @[0][1]) ... Since @Q is finite, the
trajectory must be of the form ¢’'[0]o’[1]...0'[f]...0"[f].
Note that the procedure Synthetize insures that (a) for

procedure Backtrack();

1. safe:= true;

2. if ¢(head) = 0 or head.unc then

3 if head.next # nil then

4. head := head.next; Expand(head);
5. ¢(head) := 0; e := head.first

6 else if the stack is empty then

7 “there are no solutions”; stop
8

else
9. remove e and head from the stack;
10. if e.action € Ay. then safe := false;
11. head.unc := true
12. else e ;= e.next
13. else

14. Q + QU {head};
15. if the stack is not empty then

16. tail := head;

17. remove e and head from the stack;

18. ¢(head) := ¢(head) U {e}; d(head, e) := tail,
19. e = e.next

20. else DF'S := false.

Fig. 8. The backtracking operation

11

all ¢ > 0, o'[i]. F # false and (b) there exists k& > j
such that o'[k].€ = @. The trajectory of G on « is
0 =0'[0].X¢'[1].X ... From Theorem 2, o |= f. |

C. Maximality of Solutions

In general, there may be many trajectories ¢ of G such
that o = f that are disabled by the controller S calculated
by the procedure Synthetize. The procedure keeps only
enough of them to obtain a controller. There are three
explanations for this. First, the procedure eliminates bad
cycles without unwinding them. This is related to the w-
closed property. Second, a trajectory o of G such that
o E f and a trajectory o' of G such that ¢’ & f inter-
sect and the trajectory o’ can only be prevented before
the intersection point. This is normal and is related to
the controllability property. Third, the formula f explic-
itly or implicitly includes some forms of nondeterminism.
This results in several tails for a given edge. They may be
all good, but the procedure Synthetize retains just one of
them. It is interesting to look closer at what are the causes
of nondeterminism. In fact there are two.

First, there may be Boolean connectives V in the dis-
junctive normal form of f (e.g., f = f1 V f2). Since the
procedure Synthetize establishes satisfiability by proving
only one of the disjuncts, trajectories satisfying the other
disjuncts may be overlooked.

The second source of nondeterminism results from the
decomposition of formulas having the until connective be-
cause they generate disjunctions (see (E7) and (E8)). How-
ever, in this particular case, it seems that if one of the dis-
juncts is satisfiable, it does not disable trajectories enabled
by the other disjunct, and vice versa.

One may therefore conjecture that, if the supremal
w-controllable sublanguage of the language defined by f
is w-closed and nondeterminism is caused solely by the de-
composition of formulas and not because there are Boolean
connectives V in f, the procedure Synthetize computes a
maximal solution (because of Theorem 2).

In fact, even when disjunctions are involved in f, a maxi-
mal solution is computed for some formulas. This depends
on the interconnection of temporal connectives. In par-
ticular, a maximal solution is computed for any conjunc-
tion of formulas in the following form: literals, O f1, and
Ot(fi = Ot f2), where fi and f5 do not involve temporal
connectives.

D. Computational Complexity

A vertex of the directed graph D consists of a state, a
formula, and a set of eventualities. Hence, the maximum
number of vertices in D is given by n x |F| x |E|, where
n is the number of states in G (i.e., n := |X]|), |F| is the
number of different possible subformulas of f, and |E| is
the number of different possible sets of unbounded-time
eventualities obtained from subformulas of f having the
form g U h. By abstracting over the action durations, the
number of different subformulas that can be produced for
a formula f using equivalences (E4) to (E8) is 2lcteswre()|]
where |closure(f)| is the set of subformulas of f. It can
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be easily checked that |closure(f)| < 2N, where N is the
number of Boolean and temporal connectives in f. Since
|E| < |F|, the state space is O(n2*").

In order to take action durations into account, let T' be
the maximum of the different constants that occur in a
time constraint associated with temporal connectives, d the
minimum of the different action durations, and C' the max-
imum of 1 and [T'/d]. It can be shown that there can be at
most C' different time arguments. Hence, the state space is
O(n22N(C+D) since |closure(f)| < 2NC. The worst-case
computational complexity is doubly exponential in the size
of the formula (but exponential in the size of D) since the
algorithm searches for simple cycles in a state space that
grows exponentially with the size of the formula (but lin-
early with the size of D).

This complexity analysis concerns, however, the worst
case. In fact, it has been proven that the time complexity
for verifying many interesting temporal formulas over con-
current systems is polynomial and sometimes linear [20].
This suggests that the average complexity of our algorithm
is much better than the worst case. Actually, many for-
mula combinations are mutually inconsistent, so that they
are never generated, or are inconsistent with some states,
so that their decomposition yields false, which causes a
pruning of the state space.

E. Comparison with Other Related Algorithms

Several algorithms for synthesizing controllers have been
proposed in the literature to achieve or approximate the
supremal w-controllable sublanguage of W (supC«(W)).
Three of them are briefly introduced hereinafter and com-
pared with our synthesis algorithm.

The algorithm proposed by Thistle and Wonham synthe-
sizes the maximally permissive controller when supC® (W)
is w-closed. Synthesis of controllers is performed for the
case where L, L,, and W are represented by a determin-
istic x-automaton, a deterministic Biichi automaton, and
a deterministic Rabin automaton, respectively [43]. Their
algorithm includes three steps: i) computation of control-
lability prefixes of W ii) computation of supC®(W); and
iii) computation of the supervisor S. Let us focus on the
first step, which is the most significant in terms of com-
putational complexity. If we assume that L, = lim(L)
(as is the case in this paper), the first step reduces to the
computation of the controllability subset of a deterministic
Rabin automaton, which is the set of states from which the
automaton can be controlled to the satisfaction of its own
acceptance condition. In this particular case, the computa-
tional complexity of the first step is O(kl(mn)3™), where
k is the number of control patterns (the subsets of A to
which one can restrict, at any point in the operation of the
automaton, the set of actions that it may execute), [ is the
size of alphabet A, m is the number of state subset pairs
in the Rabin acceptance condition, and n is the number of
states [42].

In comparing with our approach, let us assume that W
is represented by an MTL formula f instead of a Rabin
automaton. When the time domain is dense, the problem

has no solution in Thistle and Wonham’s framework, since
there is no decision procedure for MTL with dense-time
domains (i.e., one cannot obtain a Rabin automaton from
an MTL formula). In contrast, when the time domain is
discrete, one can construct a nondeterministic Biichi au-
tomaton for f, whose number of states is exponential in
the size of f [46]. By using a determinization procedure
defined in [39], one can obtain a deterministic Rabin au-
tomaton for f, which has an exponential number of states
but a linear number of state subset pairs in the size of
the nondeterministic Biichi automaton. Based on Thistle
and Wonham’s approach, the computational complexity is
therefore triply exponential in the size of f.

The advantage of our approach is that it circumvents
the problem with dense-time domains by using a model-
checking approach as opposed to the Rabin automaton syn-
thesis approach. We check the formula directly on all paths
that can be generated by the timed transition graph. Since
a T'TG contains finitely many states and finitely many tran-
sition durations, it turns out that there are finitely many
states that can be distinguished by an MTL formula, even
with dense-time domains. That follows from the above
complexity analysis (see Section VII-D). From another per-
spective, the problem of deciding whether a TTG satisfies
a given MTL formula is decidable, while that of deciding
if an MTL formula has a model is undecidable for dense-
time domains. Another advantage is that it uses forward-
chaining state exploration. On average, this yields better
computational complexity because it implements a control-
directed backtracking technique that can be combined with
the use of heuristics to better control the state explosion
problem. Finally, one may use it by sacrificing maximally
permissiveness, when supC® (W) is not w-closed.

Kumar and Garg [24] proposed an algorithm for com-
puting supC¥ (W) when W = lim(K) and K is a regular
language recognized by a deterministic automaton. The re-
sult is a deterministic automaton from which it is possible
to extract controllers that approximate supC® (W) if this
language is not w-closed with respect to L, ; no specific
algorithm for this extraction is given. In particular, the
bad cycles are not detected. Their algorithm for computing
supC¥ (W) is polynomial in the cardinalities of state spaces
of deterministic automata modeling the unrestrained and
legal behaviors of the process, but it is limited since they
implicitly assume that W is recognized by a deterministic
Biichi automaton, yet deterministic Biichi automata are
strictly weaker than nondeterministic Biichi automata, as
explained in [44].

Antoniotti [5] also proposed a controller synthesis ap-
proach based on a model-checking paradigm with CTL
(Computational Tree Logic) formulas [18]. This model-
checking paradigm is, however, significantly different from
ours. The idea is still to label states with formulas that they
satisfy based on the input formula and CTL semantics.
What differs truly from our approach is that the model-
checking procedure traverses the state transition structure
over which the CTL formula is verified backwards, consid-
ering innermost subformulas, then iteratively, outermost



ones. This requires the whole state transition structure to
reside in memory. In contrast, our approach, which goes
forward, does not require explicit storage of the entire tran-
sition structure. This means that one can exploit standard
heuristics to cope with the state explosion problem. An-
toniotti also implemented a restricted version of CTL in
order to obtain an efficient version of his method. In our
case, there is no need to restrict the specification language
to enhance efficiency. The actual efficiency depends on the
complexity of formulas (e.g., nesting of temporal connec-
tives). In fact, it can be verified that, for simple formulas,
our algorithm is polynomial in the size of the formula.

VIII. ApPLICATION: ANTENNA ROTOR CONTROL
SYSTEM

The application presented in this section is a simplified
version of an antenna rotor control system (ARCS) used in
a laboratory for experimenting with satellite telecommu-
nications [31]. It is responsible for tracking antennas on
a moving telecommunications satellite. As illustrated in
Fig. 9, it includes two main components:

1) an azimuth-elevation rotor controller (AERC), which
is a piece of equipment that monitors two rotors that move
the antennas; and

2) an antenna direction controller (ADC), which deter-
mines when to start/stop moving the antennas and the
direction of their movement.

In this system, the antennas point in a direction defined
by an azimuth and an elevation, both in degrees. There
are separate sensing and control processes for azimuth and
elevation. Therefore, the ADC comprises three modules:
an azimuth controller (AC), an elevation controller (EC),
and an interface that maps the physical part of the system
onto its logical part.

Rotors
Physical
AERC
_ Interface T ARcs
Logical ADC
AC EC i J

Fig. 9. System architecture

As explained in [10], in most cases, a system is not read-
ily available as a logical model. It needs to be brought
from the physical level to a logical level that is suitable for
behavioral language specification. With this application,
we deal with voltages and polarities at the physical level
and with events or actions at the logical level. On the one
hand, the interface extracts information about the posi-
tion of the antennas by using AERC sensing operations,
converts this information into events with respect to an az-
imuth target and an elevation target, and sends events to
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the AC or EC. On the other hand, the interface receives
actions from the AC or EC, interprets them, and performs
the corresponding control operations on the AERC. This
architecture allows responsibilities to be separated between
several specialized controllers and specific methods to be
used depending on the nature of the control. The AERC
perceives the rotors as a physical continuous system, while
the EC and AC view the antennas as a logical discrete-
event system. Finally, it should be noted that the ADC is
also responsible for synchronizing the controller operations
with the operations of a larger satellite tracking system
(the antennas are pictured in Fig. 10).

Fig. 10. Antennas for a satellite tracking system

In the sequel, we detail only elevation behavior and con-
trol; azimuth behavior and control are analogous. The
interface maintains two control variables: current and
target. The former represents the current position of an-
tennas, whereas the latter represents their target position.
The antennas are considered on target when the distance
between current and target is less than or equal to a con-
stant d. The domain of current and target is continuous,
from zero to 180 degrees. The EC reasons about an ab-
stract model of the continuous behavior in which only the
relations between the variables current and target are rel-
evant. Propositions Low, High, and Good refer to the
current position of the antennas with respect to the target
and they hold when the conditions (target — current > d),
(current — target > d), and [target — current| < d are re-
spectively true. Initially, the relation between target and
current is unknown, which is conveyed by the proposi-
tion Unknown. The propositions Idle, Moving Up, and
Moving_-Down refer to the state of the antennas with re-
spect to their movement. Therefore, the set of proposi-
tional symbols P contains Low, High, Good, Unknown,
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Idle, Moving Up, and Moving_-Down. The timed tran-
sition graph that represents the logical system is given in
Fig. 11. Every action has a duration of one time unit and
the actions Set_Low, Set_High, Set_Good, Delpos, and
Wait are uncontrollable. In order to illustrate the appli-
cation of the method described in Section IV with short
examples, we have omitted some details in this model.

Start_Up

Start_Down

Raise _to_Good N “ Lower_to_Good

Lower_below_Good .
Raise_above Good

L: Low I:1dle

H: High MU: Moving_Up
G: Good MD: Moving_Down
U: Unknown

Fig. 11. The timed transition graph

Consider the following formula that specifies the prop-
erty that when a target is entered in the system (i.e., the
relation between the target and current antenna positions
is unknown), the antenna must eventually reach the good
position:

f = Os¢[~Unknown — <> Good).

Instead of constructing the graph D step-by-step, let us
consider all formulas and sets of unbounded-time eventu-
alities that can be generated from f. Let us suppose that
there exists a vertex v such that v.F = f. According to
(A1) and equivalences (E6) and (ES8),!° the decomposition
of fis

[Unknown V Good V O (<O Good)] A Oy f.

This formula is equivalent to the following formula in dis-
junctive normal form

[Unknown AO; f]V[Good AOq f1V[O1 (>0 Good) ANO;y f].

The first disjunct is relevant only if Unknown € A(v.X);
otherwise successors of v are labeled with false. Similarly,

10Equivalence (E8) is reduced to the following equivalence for the

eventually connective:
OyOsiaf ifd<t

<>th<:> od<>>0f 1fd>tandt;é0
FvGO3050f)ift=0.

the second disjunct is relevant only if Good € A(v.X). In
both cases, successors of v are labeled with the future part
of the disjunct, that is, f. Since the present part of the
last disjunct is true, successors of v are labeled with g =
(©>0Good) A f if this disjunct is selected.

Formula g is new. By using similar arguments, its de-
composition is

[Unknown A (O1 f) A Good]
V [Unknown A (O1 f) A O1(Os0 Good)]
V [Good A (O1 f) A Good]
V [Good A (O1 f) A O1(Csg Good)]
V [O1(Csg Good) A (O f) A Good)

) A
\Y [01(020 GOOd) AN (Ol f) A 01(020 GOOd)]

After trivial simplifications and the elimination of the
first disjunct, which is inapplicable (there exists no vertex
v such that {Good, Unknown} C A(v.X)), we obtain the
following disjuncts:

[Unknown A O1(®>o Good) A (O1 f)],
[Good A (1 £)];

[Good A O1(O>0 Good) A (O f)],
[C1(©>0 Good) A (O )]

This completes the calculation of the closure of the pro-
gression of f. Therefore, successors of v are labeled with
the future part of the selected disjunct, that is, either f or
g.
In this example, there is only one set of unbounded-time
eventualities, that is, {Good}. In fact, there is no conjunct
in f of the form ®>gh or hi Uso he, but g includes the
conjunct &> Good. So, according to (A2), a successor v’
of a vertex v is labeled with {Good} whenever v.£ = {),
v.F = g, and Good ¢ A(v.X) (i.e., Good is not locally
entailed by the edge from v to v'). Furthermore, a successor
v’ of a vertex v is labeled with the empty set of eventualities
whenever v.£€ = {Good} and Good € A(v.X) (i.e., Good is
locally entailed by the edge from v to v'). In the other
cases, v'.€ = v.£.

According to the observations above, the graph D can
be easily expanded (see Fig. 12 for a part of it). Since f
includes only a liveness property, the synthesis algorithm
searches only for bad cycles (e.g., 6-8-6) and tries to exclude
them from system behavior by prohibiting controllable ac-
tions (e.g., Stop from state 8). In addition, it removes
paths that do not close cycles because they cause a dead-
lock (e.g., Start_Down from state 6). The final solution is a
controller with 18 states after minimalization (e.g., states
9 and 11 are equivalent apart from formulas and sets of
unbounded-time eventualities).

This first example shows that the solution is not optimal
in the sense of maximal permissiveness (the legal language
is not w-closed). In addition, the solution is not efficient.
Let us illustrate this point with the sequence of actions

Set_Low Start_Down Stop Start_Up Raise_to_Good. ..



Start_Up Start_Down

Raise_to_Good

Start_ Up  Start_Down

{Good} Raise_above Good

Fig. 12. A part of the graph

This sequence is legal, but it is less efficient than the se-
quence

Set_Low Start_Up Raise_to_Good. ..

The solution can be refined by the introduction of more
constraints. Let us consider the case where the formal spec-
ification of control requirements is the conjunction of f and
the following seven formulas:

fi = Oso[Unknown
— = O5o(Moving -Up Vv Moving_Down)],
fa = Oxo[(Idle A Good) — Oxq Idle],
fs = Oxol[(Idle A High) = Os¢ Moving_Down),
fa = Oso[(Idle A Low) = O Moving Up],
fs = O>o[(Moving-Down A High)
— O Moving_Down],
fo = O>o[(Moving -Up A Low) = Ox¢ Moving_Up],
fz = O>o[((Moving_-Down V Moving -Up) A Good)
— Oxo(Idle A Good)).

Formulas f; to f; represent safety properties. Formula
f1 states that whenever the relation between the target
position and the current position is unknown, the antennas
must not be moved. Formula f, specifies that whenever the
antennas are idle and their position is good, the antennas
must remain idle. Formula f3 (respectively fy) specifies
that if the antennas are idle and too high (low), then they
must be moved in the down (up) direction. Formula f5
(respectively fg) specifies that if the antennas are moving
in the down (up) direction and are too high (low), then
they must keep moving in the down (up) direction. Finally,
formula f; states that whenever the antennas are moving
and they are at the good position, they must be stopped.
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Fig. 13 shows the progression of g = fA fy A---A f7 from
the initial vertex. Since the decomposition of f; is

[~Unknown A Oq fi]
V [O1(~Moving-Down A ~Moving Up) A Oy f1],

then the progression of g from vertex 0 is
g1 = " Moving_Down AN ~Moving Up A g.
Similarly, since the decomposition of f, is
[~Idle AOy f4]V [~Low A Oy f4]V[O1 Moving Up AOx f4],
then the progression of g; from vertex 1 is
g2 = (O3>0 Good) N Moving-Up A g.

The progression of g, from vertex 2 gives false whatever
the successors are, since the present part of go contains
Moving Up, yet Moving.Up ¢ A(2.X). The controller
must disable action Start_Down at vertex number 1 since
this vertex causes a deadlock.

[¢]
o

Set_Low
91
{}
Start_Down
9
{}
£ ’ A N
fase! S fdse
{Good} . /{Good}

Fig. 13. Progression of g

Using similar developments for the other formulas, the
result is a controller shown in Fig. 14 (the sets of disabled
actions are indicated to the right of states).

{Start_Up,
Start_Down}

{Start_Up}

{Start_Up,
Start_Down}

Stop Start_Down
{Lower_below_Good}

{Stop}
Lower_to_Good
{Raise_above_Good}

Fig. 14. A controller
It should be noted that this controller is much more ef-

ficient in terms of number of actions performed to achieve
the goal.
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IX. CONCLUSION

In this paper, we have considered a synthesis method
based mainly on a temporal logic framework. This work
draws from a number of different but related sources on
control theory, concurrency theory, and artificial intelli-
gence planning. In these fields, the terms controller, re-
active module, and plan are analogous.

In the artificial intelligence community, the idea of pro-
gressing temporal formulas through a trajectory was orig-
inally introduced by Bacchus and Kabanza [8]. They first
applied this idea to progress search control formulas. Re-
cently, they extended their approach to the problem of syn-
thesizing classical plans when the goals include only safety
constraints [9]. The problem of synthesizing reactive plans
for safety and liveness constraints has also been addressed
by generalizing this technique [22]. The idea of using a sim-
ilar technique in the context of supervisory control theory
has also been investigated earlier by the authors [12]. The
present control-theoretic synthesis approach produces con-
trollers that differ from plans: maximal sublanguages, con-
trollable events, and the controllability property are con-
sidered. In our planning approach, maximal permissiveness
is not a criterion of optimality; uncontrollable events are
represented by nondeterminism; and control problems such
as controllability, observability, and stability do not arise
naturally and, hence, cannot be easily investigated as in
the framework of Supervisory Control Theory.

Our approach is reminiscent of the decision procedure for
linear temporal logic using the tableau method [46]. This
decision procedure proceeds by constructing a Biichi au-
tomaton accepting trajectories satisfying a temporal for-
mula. It involves three steps: 1) construction of a local
automaton accepting trajectories that satisfy safety proper-
ties; 2) construction of an eventuality automaton accepting
trajectories satisfying liveness properties; and 3) combina-
tion of the two automata. Originally developed solely for
formulas without time constraints, the technique was later
generalized to formulas with time constraints [4]. In techni-
cal terms, our method is related to this decision procedure
as follows. On the one hand, the progression of formulas,
which is based on the property that a temporal formula
is decomposable into a present part and a future part, is
like the construction of a local automaton. On the other
hand, the progression of eventualities, which keeps track of
unbounded time eventualities that must be satisfied, is sim-
ilar to the construction of an eventuality automaton. Our
progression techniques are, however, done with respect to
transitions of the process. Intuitively, this amounts to a
composition on the fly of the local automaton, eventuality
automaton, and transition structure of the process.

Another difference between our approach and the con-
struction of Biichi automata from temporal logic specifica-
tions is that such automata do not embody the notion of
uncontrollable events. Hence, they are not appropriate to
the synthesis of controllers for reactive systems. To take
into account uncontrollable events, one needs a generaliza-
tion of Biichi automata to Biichi tree automata. From a
tree automaton point of view, our approach is related to

approaches for synthesizing reactive modules that satisfy
given temporal properties [1], [34]. A reactive module is
essentially the same as a controller, except that it is com-
puted by constructively proving that there exists a tree
automaton accepting infinite trees that satisfy the desired
temporal property. Reactive modules are then simply ob-
tained as representations of satisfactory infinite trees. In
fact, a graph generated by Ezpand can also be viewed as
an acceptor of infinite trees corresponding to controllers.
Rather than trying to obtain a controller from a trace of
a proof that shows the validity of a specification, our al-
gorithm searches for a useful controller in the graph. In
this way, the state explosion problem can be more easily
circumvented by using heuristic techniques.

The work reported in this paper could be extended in
several ways to adapt or combine existing synthesis algo-
rithms based on a forward-chaining search (contrary to a
fixpoint calculation). For example, adjustments to VLP-S
(Variable Lookahead Policy with State information) [13]
and VLP-PO (Variable Lookahead Policies under Partial
Observation) [14] algorithms could be realized to express
the specification as a temporal formula instead of a state
machine as is now the case in supervisory control of DES
using limited lookahead [17]. Our algorithm could also be
improved to better handle the state explosion problem for
instances of control problems consisting of large processes
with many similar components. An algorithm that avoids
an exhaustive search of the state space by using a symme-
try specification already exists [28]. In this approach, pro-
cesses are described by using colored Petri nets with sym-
metry specifications; control requirements are expressed as
sets of forbidden markings. These two algorithms could be
combined to strengthen the development process of con-
trollers based on a synthesis approach. The former could
benefit from the symmetry specification, while the latter
could benefit from the expressiveness of temporal logic.

As a matter of fact, the application presented in Sec-
tion VIII is a typical example of a hybrid system in which
the controller is a discrete-event system and the process is
a continuous system [6]. The discrete-event system model,
represented by the timed transition graph in Fig. 11, is
an abstraction of the continuous system. In this model, a
state of the graph corresponds to more than one state of
the continuous system. The control problem addressed in
this paper has been solved in the context of Supervisory
Control Theory for which the theoretical results cannot
be applied directly to hybrid systems. Generally, hybrid
systems are described by transition structure diagrams in
which states represent continuous activities and transitions
discrete state changes. They include variables and their
behavior is governed in each state by a set of differential
equations. Our synthesis approach could be extended to
hybrid system specifications by adapting model-checking
techniques that are more suitable for such systems [3].
These issues remain to be addressed in future work.
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