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Abstract

Graphical analysis of network traffic flows helps security
analysts detect patterns or behaviors that would not be ob-
vious in a text-based environment. The growing volume of
network data generated and captured makes it increasingly
difficult to detect increasingly sophisticated reconnaissance
and stealthy network attacks. We propose a network flow
filtering mechanism that leverages the exposure maps tech-
nique of Whyte et al. (2007), reducing the traffic for the vi-
sualization process according to the network services being
offered. This allows focus to be limited to selected subsets
of the network traffic, for example what might be catego-
rized (correctly or otherwise) as the unexpected or poten-
tially malicious portion. In particular, we use this technique
to filter out traffic from sources that have not gained knowl-
edge from the network in question. We evaluate the benefits
of our technique on different visualizations of network flows.
Our analysis shows a significant decrease in the volume of
network traffic that is to be visualized, resulting in visible
patterns and insights not previously apparent.

1 Introduction

Network security event monitoring is a time consum-
ing and complicated process. Network security analysts
are overwhelmed by massive amounts of audit log data that
ideally would be analyzed for possible threats or malicious
behavior. Different network-based and host-based security
applications generate different types of textual logs. A log
entry may indicate a prevention action taken by the monitor-
ing application (e.g. blocking an attempt to access a closed
port by a firewall) or an alert of possible malicious behavior
(e.g. a worm signature detected by an intrusion detection
system). Although some advanced network security tools
can provide high-level overviews and reports, network se-
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curity analysts often need to check the detailed logs in or-
der to investigate a specific intrusion event. This time con-
suming process may fail to notice potential security threats.
Difficulty in correlating different events within one or more
log files and intentionally omitting from analysis log files
thought to be less likely to carry important information add
to the problem.

The use of visualization with network security data has
continued to gain interest. Visual representation of network
data, as opposed to textual representation, can help in an-
alyzing a vast amount of data more quickly [4]. It takes
humans much less time to recognize specific information or
patterns in a picture than to detect the same in text. Humans
are faster than computers in identifying some complex pat-
terns and objects [17], and are able to identify new patterns
never seen before. Most existing visualization tools pro-
vide a variety of representations of raw network data. In
visual representations for mid- and large-size networks, the
massive volume of network data makes it difficult to under-
stand (to mine for useful information) and usually further
processing of the textual data itself is still required.

Network scanning or reconnaissance is a common ini-
tial step in network intrusion attempts for identifying active
hosts/ports on a network. The network exposure maps tech-
nique of Whyte et al. [22] records scan events that can be
analyzed further to detect sophisticated scanning activities.
A table is built of the services offered by a local network
based on how internal hosts respond to incoming connec-
tion attempts, and inferences about probing remote hosts
can be made based on whether probed services are actually
offered. For example, external hosts that probe both any
closed port on a local network machine and any open port
are given special attention. The visualization technique pre-
sented in the present paper uses network exposure maps to
help filter raw network data, in order to focus visualization
efforts on data whose preliminary classification is as un-
known or malicious traffic. This reduces the volume of traf-
fic to be investigated for possible malicious behavior. Con-
sequently, applying simple visualization techniques on the
network traffic remaining after filtering yields much cleaner
views, simplified by the removal of hopefully irrelevant data
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and noise. It may also help analysts better correlate mali-
cious events and discover coordinated external hosts.

We improve existing visualization methods in the filter-
ing phase by speeding up the process of visually detect-
ing patterns suggesting malicious traffic, obtaining valuable
information from even simple visualizations and requiring
less computing power and storage requirements to process
or plot netflow data.

Organization. The sequel is structured as follows. Sec-
tion 2 reviews exposure maps, and describes our dataset and
network environment settings. Section 3 presents our fil-
tering and visualization methodology. Section 4 illustrates
our technique through case scenarios. Section 5 provides
further discussion including limitations. We cover related
work in Section 6. Section 7 concludes.

2 Background and Dataset

2.1 Review of Exposure Maps

Exposure maps [22] were proposed in part to reduce the
computing resources necessary to detect sophisticated scan-
ning. Instead of trying to detect scans through signatures,
exposure maps track which ports are actively responding
to outside connections. For a given internal host, all {IP
address, port} pairs which respond to outside connection
attempts are recorded. Collecting this information over all
hosts in a local network makes up the Network Exposure
Map (NEM). The NEM is built over a training period: out-
going TCP flows containing SYN-ACK flags are observed
and recorded,1 with every host that was seen responding
with SYN-ACK flags added to the NEM. Finally, the NEM
is vetted (the offered services, as indicated by the NEM,
are confirmed to be allowed by the network security pol-
icy). Ideally in the exposure maps technique the training
period should be long enough to include legitimate traffic
going to all open ports on the network in order to populate
the NEM. Probes to closed ports during this training period
will not establish sessions and therefore will not add entries
to the NEM. Thus the training period does not need to be
free from probes. In the production phase, each new incom-
ing connection attempt is checked to see if it matches an
entry in the NEM. If it does, it is labeled as legitimate traf-
fic, otherwise as an atomic scan event. Memory (primary)
for the exposure map itself is minimal, increasing linearly
with the number of services offered on the network; mem-
ory (typically secondary) for the recorded scan events in-
creases linearly with scanning.

1UDP ports in the NEM are added when 2 hosts communicating with
the same source and destination port pairs (Host1 using a as a source port
and b as a destination port, and Host2 using b as source and a as destina-
tion) are tracked within a small time period.

A malware infection can cause ports to transition from
a closed (non-service) state to open. Such trans-darkports
raise an alert and are added to the NEM as they transition,
since these ports are responding to outside probes. An ad-
ministrator tracks each trans-darkport to either shut down
the port or verify that it conforms with the network security
policy (e.g. a new authorized service was rolled out).

Whyte et al. [22] propose exposure maps for both sophis-
ticated scan detection and automated response. We build
on the exposure map idea of only caring about adversaries
who have gained information from the local network (by
discovering active services) and apply this concept to visu-
alization. This allows us to significantly reduce the amount
of information displayed in the visualization tool. Having a
less cluttered visual display of netflow data helps the admin-
istrator detect low and slow scans as well as other patterns
and stealthy attacks which might go unnoticed under tradi-
tional visualization techniques.

2.2 Exposure Map Generation

The dataset we use in this paper for our visualization ex-
periments consists of a 28-day2 PCAP [16] traffic capture
on a university class C network with 62 Internet-addressable
hosts. Only the first quarter of the class C has been assigned,
leaving a darknet of 192 addresses. The network sniffer
used to capture the dataset was placed on the external inter-
face of the border firewall so traffic between internal hosts
was not captured.

Netflow data was generated from the packet capture us-
ing the Argus suite [1]. Each flow was then entered in a
MySQL database. Each database entry contains standard
netflow fields (start and end time, source and destination
ports, protocol, source and destination IPs, session flags,
byte size and packet count) along with unique identifiers for
each flow. Also, each of the netflow fields was stored in a
column and indexes were generated for the columns storing
frequently used values (source IP, source port, destination
IP, destination port) to minimize query response time as in
Stockinger et al. [20].

Host Port Protocol
11 25 (SMTP), 631 (IPP), 993 (IMAPS) TCP
11 53 (DNS) UDP
13 22 (SSH), 80 (HTTP), 443 (HTTPS) TCP
13 53 (DNS) UDP
58 22 (SSH) TCP

Table 1. Network Exposure Map (NEM)

2The capture began on Nov. 12, 2007 and ended on Dec. 9, 2007, with
an 8 hour gap starting at 3 p.m. on Nov. 25, 2007 due to a power outage.



Figure 1. Graphical representation of filtered flow subsets

Table Name no. of no. of distinct no. of total size
flows source IPs packets of all flows

Flows (all externally initiated traffic) 863,430 13,442 15,941,933 10,051 MB
T1.b (In-NEM abnormal) 690,660 3,816 1,361,669 89 MB
T2 (Not-in-NEM) 23,683 78 565,148 109 MB
T3 (Suspicious) 714,343 3,816 1,926,817 198 MB
T4 (Dangerous) 39,950 78 597,648 111 MB

Table 2. Table Statistics. MB denotes megabytes.

To generate the exposure map for this dataset, we query the
database for any flows (with a source IP within the local network)
that responded with a SYN-ACK packet to incoming connection
attempts. These flows include local IP addresses and ports that are
actively responding to incoming TCP requests. For UDP, we query
the database for hosts communicating with the same source and
destination port pairs. We build the NEM accordingly and verify
that it conforms with the network security policy. The resulting
NEM is shown in Table 1.

3 Methodology of Exposure Map Filtering
This section explains our process of filtering and visualizing

the netflow data. Externally initiated flows from the dataset are
categorized into a number of disjoint sets (see Fig. 1), in logical
tables with semantics as follows.
Table T1: In-NEM. This table contains flows destined to a
host/port combination offering an authorized service (i.e., to an
authorized open port in the local network). This table is also logi-
cally partitioned into two sub-tables.

T1.a: In-NEM normal. This table contains flows that are
considered ordinary, since their source IP addresses have only at-
tempted connections to authorized services offered by the network
in question (i.e., destined to an authorized open port).

T1.b: In-NEM abnormal. This table contains flows initiated
by source IP addresses that also have flows in T2. We label these
flows ‘suspicious’ because normally, a host does not attempt con-
nections to closed ports while also accessing legitimate services.
Table T2: Not-in-NEM. This table contains flows destined to a
host/port combination for which no authorized service is offered
(i.e., closed port). It is logically partitioned into two sub-tables.

T2.a: Not-in-NEM non-threatening. This table contains
flows in T2 and whose source IP addresses have no flows in T1.
Exposure map filtering assumes these connection attempts are not
a significant threat to the target network since sources, all of whose
probes have been to closed ports, have not learned what is consid-
ered significant information from the target network (i.e., have not
learned what services are offered).

T2.b: Not-in-NEM threatening. This table contains flows in
T2 and whose source IP addresses also have flows in T1. Thus,
the source IP address of these flows have queried both legitimate
offered services and closed ports.

Table T3: Suspicious. This table includes all flows in T2 (T2.a
and T2.b) plus T1.b. We call this ‘suspicious traffic’ because these
source IP addresses have probed at least one closed port in the
network.

Table T4: Dangerous. This table includes all flows in T1.b plus
T2.b. This represents traffic from IP sources that probed at least
one closed port and also attempted to connect to an open port.
According to the philosophy motivating the exposure maps tech-
nique, these are more likely to represent malicious flows since
these IP sources, if adversaries, might attempt to send exploits to
the open ports that they have discovered.

The full dataset of externally initiated traffic described in Sec-
tion 2.2 is stored in a data structure called the flows table. In ad-
dition to this, the following subsets of the previously described
logical tables are actually built: tables T1.b, T2, T3, and T4 (and
rather than duplicating data, only links to the flows table entries
are stored in these tables). Statistics for each of these tables, for
the dataset described in Section 2.2, are presented in Table 2.



(a) 3D Original (b) 3D Filtered

(c) 2D Original (d) 2D Filtered

Figure 2. Destination IP and port from full source IP address (best viewed in color)

4 Illustrative Visualizations

Using the filtering as indicated by the logical tables in Sec-
tion 3, we proceed to plot netflow data on either a 2D or 3D space.
Although there are a large number of different types of graphs (i.e.
choices of data features to plot on the x, y and z axes), in this
section we have selected 9 sets of graphs to illustrate the advan-
tages of the filtering technique. The majority of these are simple
or known graph types. Each set of graphs is intended to contrast
the information conveyed by the visualization before and after fil-
tering. In all cases, the patterns in malicious activity were discov-
ered through this filtered visualization process itself, with valu-
able insight gained from the filtered visualizations over the origi-
nal unfiltered graphs. For each of the examples in this section, in
the unfiltered visualization we have plotted all externally initiated
flows as item (a). In the filtered visualization (item (b) in each
graph pair) we have only plotted flow data from the dangerous ta-
ble (T4) of Section 3. We emphasize that in practice, we expect
that the analyst will only need to study each item (b), with little or
no information gained from comparing (a) with (b).

Figure 2 graphs the full source IP address (plotted as an integer
from 0 to approximately 4.2 billion), the target destination host and

the destination port. Figure 2(a) shows a high number of source
IPs probing a single port on the entire class C destination network
and dense areas around low-order ports. On Figures 2(c) and 2(d),
the original 3D visualization is projected to a 2D view showing the
exact destination ports more clearly, while hiding the destination
IP address. Figures 2(a) and 2(b) are similar to the “Spinning Cube
of Potential Doom” [9], except that we plot network flow data as
opposed to Intrusion Detection System (IDS) logs. Due to the
large number of horizontal scans (probing a single port on all des-
tination IP addresses as noted by bottom-left to top-right diagonal
lines) displayed, a security analyst might have trouble identifying
which scans warrant further analysis from Figure 2(a). However,
most (if not all) horizontal scans in Figure 2(b) likely reveal some
type of malicious activity. For example we notice some horizontal
scans that only target the first 64 addresses of our subnet, which
suggest that the scanner is aware of our network topology. The
data that was automatically removed in moving from Figure 2(a)
to 2(b) was, as previously noted, classified as non-threatening by
the exposure map filtering. For example, the left-most horizon-
tal scan on Figure 2(a) belongs a single source probing all hosts
on the destination network for port 32000 TCP which is not of-
fered. On Figure 2(b) we randomly selected a scan in the middle
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Figure 3. Number of distinct source IP addresses per destination port

(a) Original (b) Filtered

Figure 4. Source port over time (best viewed in color)

of the graph (selection not shown). After zooming in, we found the
port targeted was 9999 so we searched the database for the IP ad-
dresses that probed this port, and found a single source that tried to
connect to ports 143 TCP (Internet Message Access Protocol) and
9999 TCP on all hosts in this destination class C. That same source
also attempted to connect to port 25 on all hosts in the destination
subnet, finding the SMTP server along the way. This source may
be categorized as an adversary, having learned something from the
target network and might be more closely monitored for future
intrusion attempts. On Figure 2(c), we notice a single source IP
address attempting connections to a large number of TCP destina-
tion ports below 40000 (vertical line on the right). Querying the
database suggests this traffic is unimportant because the source is
trying a large number of destination ports on a non-existing host;
note this traffic is absent from Figure 2(d).

Figure 3 presents a count of the number of unique sources that
were seen targeting each destination port on a particular day and il-
lustrates a high number of sources attempting connections to ports
1-1000. This type of graph can help detect either groups of collab-

orating hosts or those infected by the same worm. In Figure 3(a),
we notice an increase in inbound flows to port 53 beginning on
December 1. Further investigation by means of database queries
showed that the vast majority of sources going to port 53 on the
target network’s DNS server are not attempting connections to any
other ports/hosts, indicating that the DNS queries are probably le-
gitimate. Upon viewing the filtered graph in Figure 3(b) (which
has been autoscaled due to less volume), we see a consistently
high number of sources targeting port 53 across the entire capture
period. Motivated by this visual cue, we discovered (by reviewing
text flow records) that these are 11 unique sources probing port 53
both TCP and UDP every day.

Figure 4 plots the source port used for incoming flows over
the entire capture period. Source ports might give insight as to
what operating system is being used, or what type of scan is be-
ing performed. Source port distribution is also useful for detecting
the spread of worms [21]. Source ports are usually allocated ran-
domly which explains the high degree of clutter in Figure 4(a).
Figure 4(b) on the other hand shows a cleaner view of the source
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Figure 5. Frequent originators among source IP addresses

(a) Original (b) Filtered and zoomed-in

Figure 6. Destination port over time (best viewed in color)

ports being used by what we call dangerous sources. Though there
are quite a few patterns, we focus our attention to the 4 evenly
spaced vertical lines in the center of the plot. Triggered by this vi-
sual cue, we queried the database for the sources that match those
source ports, and we found that 4 distinct IP addresses in sepa-
rate class A networks were attempting to bruteforce secure shell
(SSH) accounts. Each one of the 4 sources was found to be scan-
ning the full destination class C for any hosts which offer the SSH
service (TCP port 22), and upon finding exactly the 3 hosts which
responded (note the 3 hosts serving the SSH service in Table 1),
changed their bruteforce attack to focus only on those hosts.

Figure 5 gives the number of days a specific source IP ad-
dress probed the network. IP addresses that probe the network
repeatedly might be considered for additional analysis. Note that
in Figure 5(a), a large number of source IP addresses attempt con-
nections over 15 times in the 4 week capture. The filtered view
leaves only only 4 peaks, representing 4 groups of sources each

probing during more than 25 days. This view is useful, as it leaves
the analyst with far less information to analyze; what the filter-
ing technique automatically removed was legitimate traffic as well
as probes from source IPs going to only closed ports. By query-
ing the database for the source IPs corresponding to each one of
these 4 peaks, we were able to find two small networks, with ad-
dresses allocated to Chinese ISPs, in which hosts exhibited the
exact same behavior. One network of 6 computers probed ports
53 TCP and UDP (Domain Name Service) on 2 of the destina-
tion network servers roughly 10 times per hour during the entire
capture period. The other network of 4 computers probed port 53
TCP and UDP as well on an hourly basis but only on one of the
target servers. These 10 IP addresses should be monitored closely,
as they have all found services the network is offering and are
exhibiting reconnaissance behavior. As another interesting obser-
vation in Figure 5(b) we see a noteworthy division between line
heights. We see either sources that return almost every day, or
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Figure 7. Distinct destination ports targeted

(a) Original (b) Filtered

Figure 8. Destination port from class B source networks (best viewed in color)

sources that come back less than five days. This suggests potential
coordinated activity among sources with the same behavior.

Figure 6 shows the local destination port targeted over the en-
tire capture period. Some ports are frequently targeted, particu-
larly low-order ports. On November 28, we see a scan taking place
(noted by the vertical line on Figure 6(a)). Although full vertical
scans are less common today, this choice of visualization (inde-
pendent of exposure map filtering) prominently highlights remote
hosts performing such scans. A zoom-in version of the filtered
graph is displayed in Figure 6(b) and shows that a small number
of low-order ports are probed throughout the capture period. An
interesting observation is that the vertical scan from November 28
is removed by the filtering. Upon further investigation through
database queries, we found that the source of the scan in question
probed 1036 ports on a non-existing host on the destination net-
work. All of these probes went unanswered, and the source did not
try to connect to any other hosts. Had it tried to connect to other
target network hosts and found an open port, the flows from that
source IP address would have been categorized differently through
the exposure map-based methodology of Section 3, and not re-
moved by the automatic filtering. These conditions result in the
filtering system (apparently safely) ignoring traffic generated by

this host, and omitting it in Figure 6(b).
Figure 7 shows the number of distinct destination ports tar-

geted for each source IP on a specific day. A high number of
distinct destination ports coming from a single source is what we
expect to attract an analyst’s attention since this would potentially
imply malicious activity. Notice that in Figure 7(a), a single source
attempting connections to nearly 1200 ports ruins the visualization
in its original form, likely encouraging an analyst to switch to a
logarithmic scale. However, in Figure 7(b), the large spike was
part of the data automatically filtered out, and the remaining lines
reveal interesting information. In this particular example, every
source classified by exposure maps as dangerous visited at most 4
distinct destination ports. Cued by this new view we queried the
database for any hosts that attempted connections to any 4 distinct
destination ports, and found 2 sources probing for ports 80, 443,
8000, and 8080 (commonly used web server ports) on the first 64
addresses of the target network.

Figure 8 shows in a 3D plot the targeted ports on the destina-
tion network probed from class B external networks. The x and y
axes represent the first and second octet of the source IP address
respectively. Each point represents a single inbound flow. For ex-
ample note that for a source IP of 200.200.x.x, there are several



(a) Original (b) Filtered

Figure 9. Number of flows per source IP address and target port

destination ports targeted (vertically). This type of plot is use-
ful for pinpointing the class B subnet sources of incoming traffic
and the most targeted destination ports for each one. We notice 2
sparse vertical lines in Figure 8(a) which suggest that several hosts
in the same class B network are attempting connections to a large
number of destination ports on the target network. The lines disap-
pear after filtering. The filtering approach takes the position that
those sources did not learn anything useful from (i.e., got no re-
sponses from) the target network, and therefore (apparently being)
not a threat, can be safely filtered out. Figure 8(b) shows a smaller
number of plotted flows, allowing the analyst to notice that the dis-
tribution of dangerous class B’s appears mostly random, and that
nearly all hosts in each network were targeting low-order ports.

Figure 9 displays the traffic volume (in number of flows) at
each destination port along with the source of this traffic (plotted
on the x axis). The noticeable vertical line in the front of Fig-
ure 9(a) represents a high volume of traffic coming from a small
number of source addresses to a few destination ports. This type
of plot is helpful in highlighting source IPs sending high traffic to
specific network ports. Similar numbers of flows going to differ-
ent destination ports might indicate some correlations between the
sources. Although this type of activity wasn’t captured in Figure 9,
it was present in Figures 5(b) and 7(b) and helped detect hosts that
appear to be working together. The spike in Figure 9(a) turns out
to come from the same parent Class B network as the dataset’s
local network. When we queried the database for the flows that
make up that spike, we discovered a single source IP attempting
connections to port 445 (Microsoft Windows Shares) on all 254
destination IPs on the target network. This spike is absent in the
filtered graph (Figure 9(b)) because this service is not offered on
any of the target network’s hosts or servers. Since the target net-
work won’t reply to this type of activity, and the probing source IP
address did not probe any open ports, exposure map filtering rea-
sons that these connection attempts are not an actual threat to the
target network. Thus omitting this activity from the displayed data
(as in Figure 9(b)) simplifies the interpretation of the remaining
network activity, with no loss – the omitted activity is not among
the data in need of review by the analyst. One could argue, how-
ever, that the local network analyst does have a vested interest in
knowing that probing machine’s address and behavior, since in this

case it is a local machine which the analyst might be able to shut
down. Our filtering tools could be easily modified to special-case
machines from the local network (or other specified classes of ma-
chines) and not filter out suspicious traffic originating from them.
The visual patterns in the sparser activity that remains cued us to
explore the database records related to the peaks in Figure 9(b).
We found that these correspond to SSH bruteforce attacks.

5 Further Discussion

We emphasize the noticeable reduction in traffic plotted from
the original to the filtered view in all of the visualizations presented
in Section 4. Exposure map-filtered views in all cases provided a
fast way to focus on what we have called dangerous traffic. While
we do not claim that this dangerous traffic is impossible to discover
in the original (unfiltered) views, the filtered views did help us, and
we believe will help the general analyst speed up network flow
analysis in many cases. Section 4 presented a limited number of
examples of how our filtering technique may help security analysts
better understand malicious activity in their network.

While our filtering technique proved to be useful in many sce-
narios, there are of course cases where attackers might go unno-
ticed. Our proposal is based on exposure maps, and therefore
suffers from inherent limitations of exposure maps such as the
assumption that attackers, while trying to gain knowledge about
the target network, will likely attempt connections to closed ports
only, or both listening (open) and closed ports. Therefore, flows
originating from an attacker’s IP address lucky (or clever) enough
to probe only services the target network is offering will tend to
look like legitimate connections and not get visualized. An ad-
versary with access to a large botnet could perform a scan with
a subset of those machines, and subsequently launch an attack
on only identified open ports with hosts that were not used dur-
ing the scan. The exposure maps technique would classify all the
scanning IP addresses as suspicious or malicious (except addresses
which only scanned open ports), but the new activity of the new
machines would be classified normal. In a more advanced sce-
nario, each zombie machine could be used to probe only a single
port on a single host, and then attacks on the open ports could be
launched with new zombies. Such an attack would appear to be



difficult to detect, although a visual pattern of a coordinated scan
might be detected. As another limitation, large volumes of possi-
bly malicious traffic targeting the network in question might lead
to cluttered filtered visualizations. This could be mitigated by us-
ing further basic filtering such as limiting the filtered visualization
to specific destination hosts, ports, or protocols.

Many of the potential problems noted above are not specific to
our particular visualization proposal. Conti et al. [5] discussed a
variety of possible information visualization attacks targeting ei-
ther the users of visualization tools or the software and hardware
of these tools. We believe that essentially any network analysis
visualization tool or approach will have its own drawbacks, and in
many cases a combination of approaches may be required. We be-
lieve that our filtering approach remains useful even though the ex-
posure maps philosophy may result in mis-classifying some traffic
(e.g. shifting focus away from specific IP addresses, when in fact
those might actually be dangerous or malicious).

Given a massive amount of raw network traffic and logs, it is
not easy for security analysts to monitor network activities in real-
time using most existing visualization techniques. We believe our
technique could be easily adapted to the process of filtering net-
work flows on-the-fly with immediate visualization, allowing an-
alysts to focus exclusively on visualizations of suspicious or dan-
gerous network flows in a real-time fashion. For each new exter-
nally initiated flow, there are at most two comparisons necessary
to decide whether the new flow should be added to the dangerous
table (T4 in Section 3). First, we use the NEM to check if the flow
is destined to a host/port combination for which no authorized ser-
vice is offered. If so (i.e., it is not-in-NEM) then the flow is added
to the dangerous table (the table that is visualized in part (b) of
all of our Section 4 examples) only if the flow source IP address
has also previously attempted to connect to an open port in the
network (for example, within a predefined time window). Other-
wise, if the flow is attempting to connect to an open port, the flow
will be added to the dangerous table only if the flow source IP ad-
dress has probed at least one closed port in the network. Note this
can be naively facilitated by using the equivalent of two bit array
data structures, for each source IP address seen to date (or all 232

IPv4 addresses in the extreme case), tracking if that source has yet
probed (a) an open port, and (b) a closed port. The processing time
for each network flow thus has a small constant upper bound.

6 Related Work

Interest in information security visualization has grown rapidly
in recent years, providing network security analysts with new tools
and methods for visually identifying and classifying network at-
tacks. Most of these visualization systems to date are based upon
the information visualization mantra: overview first, zoom and fil-
ter, details on demand [19]. In practice, these systems first display
large amounts of data, and then allow the analyst to zoom and filter
into areas of the visualized data that might be of interest. Looking
for patterns and clusters in graphs is an obvious approach to detect
attacks; however, modern attacks are getting more sophisticated
and stealthier, making it difficult for the analyst to select the appro-
priate areas to zoom into. Often, this situation forces the analyst
into an inefficient repetitive process of zooming in and viewing

details, only to realize that the area zoomed into is not of inter-
est. One of the advantages of visualization should be to speed up
data interpretation by leveraging human visual processing power.
However, today’s highly distributed attacks and excessive Internet
background radiation [15] make it difficult to use standard visual-
ization tools to their full potential. Conti et al. [4, 6] discuss visu-
alization systems which filter data but leave it up to the analyst to
select which records to display. The prefiltering phase involves re-
moving unwanted fields from flows or formatting the data; it does
not automatically remove any full flows.

The Portvis tool [11, 2] allows the analyst to see port activity on
a range of hosts over a defined period of time, offering a very high-
level method of detecting malicious activity. Attackers may be
able to bypass detection by using frequently used ports, or a small
number of packets. The NvisionIP tool [23] uses a grid-based vi-
sualization to plot the source IP address, and colors to identify
ports accessed by this address. This type of visualization can of-
fer interesting insight, but may be prone to clutter when a large
number of sources target a large number of ports. Honeynets are
commonly used to analyze malicious network behavior. Grizzard
et al. [8] compared the Georgia Tech honeynet data to real-world
data submitted by volunteers. Using histograms over large time
scales, they were able to visualize large amounts of data. While
able to detect large spikes in activity related to large-traffic worms
such as Blaster, stealth scans are largely undetectable by these his-
tograms.

An alternate approach is to characterize or model malicious
behavior through visualization. Muelder et al. [13] suggested a
tighter interaction between the typical overview and detail phases.
Conti et al. [3] explored approaches to create a set of images that
visually describe scanning tool behavior (such as NMAP [14]) un-
der different operating systems. While this is useful for under-
standing adversaries who use popular tools, minor modifications to
these tools can generate a different (and thus evasive) visual foot-
print. Muelder et al. [12] also pursue classification of suspicious
network traffic, using associative memory with neural networks to
reduce noise and identify scans. A tool for visualizing horizon-
tal and vertical scans is the Spinning Cube of Potential Doom [9]
which highlights different types of scans. Advanced techniques
such as slow scans or highly distributed scans may be hidden by
the noise of normal traffic and Internet background radiation. A
similar concept for finding horizontal or vertical scans was also
reviewed by Gates et al. [7] in a 2D space. In our research to date,
we have found few scanners that scan enough ports/hosts to create
horizontal or vertical lines in appropriate graphs. This might be at-
tributed to attackers trying to avoid triggering alarms. Gates et al.
used the concept of unique source IP addresses per hour to detect
malicious activity. Finally, the Isis tool [18] allows visualization
of an intrusion through variable time-scales.

7 Concluding Remarks

Our visualization proposal relies heavily on the exposure maps
technique [22] for network traffic filtering. This significantly re-
duces the amount of network traffic displayed for security mon-
itoring and analysis, with plots of the ‘dangerous’ flows focus-
ing attention on traffic from sources that have probed at least one



closed and one open port. Although not a foolproof way of detect-
ing all malicious traffic, we believe this approach proves useful to
highlight both common and some advanced adversaries, and com-
promised hosts. In contrast, the majority of available tools and
methodologies for visualization we are familiar with offer filter-
ing features but require the analyst to correctly input appropriate
filtering parameters. Incorrect parameters may result in process-
ing overhead to display unnecessary network traffic or events, and
analysts may then have trouble finding the needle of malicious ac-
tivity in the haystack of network activity.

We believe the simple visualizations for security-related anal-
ysis of network traffic presented herein demonstrate the effective-
ness of filtering out the “known good” (or assumed good) traffic,
and the “harmless bad” traffic, allowing focus on a specific type of
suspicious traffic. Although the dataset that we used was from a
relatively small university network, even on this network the visu-
alizations of the unfiltered flows cause difficulties in finding mali-
cious activities due to the volume and richness of the traffic. While
this dataset has proven effective for illustrating our approach, fu-
ture work includes experimenting further with larger datsets from
larger networks (e.g. perhaps [10]), and testing the effectiveness
of combining our proposal with other existing visualization ap-
proaches [11, 18, 9, 12].
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