ThinAV: Truly Lightweight Mobile Cloud-based
Anti-malware

Chris Jarabek
Department of Computer Science
University of Calgary
2500 University Drive NW
Calgary, AB, Canada T2N 1N4

cjjarabe@ucalgary.ca

ABSTRACT

This paper introduces ThinAV, an anti-malware system for
Android that uses pre-existing web-based file scanning ser-
vices for malware detection. The goal in developing Thi-
nAV was to assess the feasibility of providing real-time anti-
malware scanning over a wide area network where resource
limitation is a factor. As a result, our research provides a
necessary counterpoint to many of the big-budget, resource-
intensive idealized solutions that have been suggested in the
area of cloud-based security. The evaluation of ThinAV
shows that it functions well over a wide area network, re-
sulting in a system which is highly practical for providing
anti-malware security on smartphones.

Keywords

Android, Malware, Cloud computing, Anti-virus

1. INTRODUCTION

The exponential rise in malware has caused countless re-
search papers to begin with vacuous statements about the
exponential rise in malware. Typically these are backed up
by token citations to Gartner and Symantec reports, and
occasionally a Department of Justice publication for good
measure. We will omit this particular ritual.

Massive numbers of malware signatures and related up-
dating issues have caused many anti-malware vendors to
move parts of their product into the cloud over the last few
years (e.g., [4, 18]). The answer to the question of how big
anti-malware can get is therefore limitless. Few people seem
to be asking the opposite question, however: how small can
anti-malware be? This is an especially relevant question for
mobile devices. We should note that by “small” we are nat-
urally referring to a small amount of anti-malware software
running on end hosts, but also a small amount of supporting
infrastructure (ideally none). In other words, a tiny piece of
software on the end host plus a massive local cloud infras-
tructure to maintain does not equal small.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACSAC ’12 Dec. 3-7, 2012, Orlando, Florida USA

Copyright 2012 ACM 978-1-4503-1312-4/12/12 ...$15.00.

David Barrera
School of Computer Science
Carleton University
1125 Colonel By Drive
Ottawa, ON, Canada K1S 5B6
dbarrera@ccsl.carleton.ca

John Aycock
Department of Computer Science
University of Calgary
2500 University Drive NW
Calgary, AB, Canada T2N 1N4

aycock@ucalgary.ca

We began answering this question for desktop comput-
ers.) We wrote a small Python program to intercept file
accesses under Linux; we thus had our small desktop foot-
print, but somehow we had to check the files being accessed
for malicious content, without creating or maintaining our
own cloud infrastructure.

We observed that cloud-based anti-malware exists already,
and it is freely-available in the sense that anyone can query it
on the Internet. Specifically, we used Kaspersky, VirusChief,
and VirusTotal.> All of these are similar insofar as a user of
the service can upload any type of file, and receive a report
about the malware (if any) that might be contained in the
file. These WAN-based services acted as our anti-malware
scanners; any access to a file that had not already been
scanned by our system would be sent for scanning.

Our system was designed in a modular fashion, so it was
able to leverage all these existing anti-malware services eas-
ily. Scanning requests were sent via the site’s API if one
existed (VirusTotal), otherwise they were made via HTTP
requests and the results scraped from the HT'TP responses.
(We note that only VirusTotal had terms of service listed,
which we abided by in addition to making attempts to mini-
mize our traffic to all these services during testing and eval-
uation.)

On the desktop, we found that two factors conspired to
create an underwhelming user experience. First, the multi-
tude of different files being accessed resulted in poor local
cache performance and many files being uploaded. Second,
these files would often be accessed several at a time, and in
rapid succession, aggravating latency issues. Furthermore,
an orthogonal problem is that the files being uploaded could
potentially contain sensitive data.

While things look grim on the desktop, the situation for
mobile devices — notably Android — is such that our idea fits
into the ecosystem better and works well. That is the topic
of this paper.

A survey of malware encountered in the wild on Android,
iOS and Symbian devices [9] found that all instances of mal-
ware for Android devices used application packages as their
vector, meaning that users were unknowingly installing the
malware on their device. This is not surprising, as Android
applications can be installed from an arbitrarily large num-
ber of places, unlike the one-stop (and one-stop only!) shop-
ping for iOS applications. There are multiple major An-

1We only summarize our desktop implementation and exper-
iments here due to space constraints; full details are in [14].
2kaspersky .com; viruschief.com; virustotal.com.

droid app markets, even more minor markets, and apps can
be downloaded and installed from the Internet or via USB.
Furthermore, it is relatively trivial to construct and release
a Trojanized version of a legitimate application.

Clearly there is a need for anti-malware protection on An-
droid. In fact, Google has announced that due to the spate of
malware on their market, they have developed their own in-
ternal anti-malware scanning system called Bouncer, which
performs automated scanning of apps submitted to the mar-
ket [16]. But this is just one application source of many, and
this is where our system, ThinAV, fits in.

ThinAV provides lightweight cloud-based anti-malware pro-
tection for Android devices, combining a small Android client
with the ability to leverage multiple anti-malware services
on the Internet. Android effectively forces each application
to run as a different user, thus limiting what we need to
scan, as one app cannot modify another. We can reason-
ably constrain ThinAV to look at apps as they are installed,
combined with a “killswitch” to manage cases of post hoc de-
tection. This addresses file access latency, but also privacy:
only apps, not data, need to be scanned, and ThinAV’s de-
sign proxies scan requests so that individual users cannot be
easily profiled by their IP addresses.

Section 3 presents ThinAV’s architecture, after the related
work in Section 2. Section 4 extensively evaluates ThinAV,
and is followed by a discussion of ThinAV’s limitations and
our conclusions in Sections 5 and 6, respectively.

2. RELATED WORK

Cloud-based malware scanning as posited in [19, 20] was
a significant source of inspiration for ThinAV. Their sys-
tem, CloudAV, has end hosts run a lightweight client (300
LOC in Linux, and 1200 LOC in Windows) which tracks and
suspends file access requests until a file has been scanned.
This is the only lightweight part; CloudAV relies on a local
cloud service consisting of twelve parallel VMs, ten of which
run different anti-virus engines, and two run behavioral de-
tection engines. These dedicated scanning servers run in a
LAN environment, where the performance hit from network
latency and system load is minimal. Even an extension of
the CloudAV work to a mobile setting [21] failed to provide
any information on how fast their solution operated in the
lower-bandwidth / higher-latency mobile realm. ThinAV,
by contrast, is truly lightweight. It has a small client that
runs on the end host and it relies on already-existing anti-
malware services on the Internet.

Many cloud-based anti-malware systems (e.g., [17, 5, 6,
4]) are an exercise in load balancing. Well-provisioned cloud
servers perform intensive processing, in concert with clients
that handle less demanding processing or operations that re-
quire client-side context. (In some cases, just extra process-
ing power and not a cloud is needed: one system validates
the contents of a mobile device when it is connected to a
desktop or laptop computer via USB [7].) Some systems [13,
22, 2] tilt the balance and make the client a straightforward
source of security data for the cloud to process, but again
this needs resources on the server side if not the client side.
ThinAV sidesteps this by combining a lightweight client with
the ability to leverage existing services.

At the other extreme is anti-malware that is based on
the end host, per the traditional anti-malware model. This
presents a problem on resource-constrained mobile devices,
and consequently these mobile systems tend to employ var-

ious generic detection heuristics, such as battery consump-
tion [15], memory consumption [12], and heuristic (mostly
permission-based) rules [8]. Running solely on a mobile de-
vice is neither lightweight nor does it allow use of existing
services, though.

Finally, Meteor [1] draws on existing information sources
such as developer registries, application databases and re-
mote application killswitches to provide single-market secu-
rity guarantees in a multi-market environment. While Me-
teor could potentially provide a framework in which ThinAV
could operate, the server-side component is as yet unimple-
mented.

3. SYSTEM ARCHITECTURE

In this section we present the ThinAV anti-malware sys-
tem. We begin with an overview, followed by a threat model,
and then describe each ThinAV component.

3.1 Overview

ThinAV is an anti-malware system for Android which of-
floads the chore of scanning to existing third-party malware
scanning services. ThinAV was designed to be lightweight,
modular, extensible and has been tested with freely available
online services such as Kaspersky, VirusChief, VirusTotal
and ComDroid [3]. These scanning services all behave simi-
larly in receiving cryptographic hashes of files or the binaries
themselves as queries, and returning a scan result.

As shown in Figure 1, ThinAV consists of two main com-
ponents: (1) an Android client, which submits applications
for scanning and (2) a server which submits received files to
third-party scanning services and notifies the client in the
event of malware detection. The client software consists of
modifications to the Android OS package manager as well as
a client app for user notification of the scan result. A Kill-
switch module acts as a periodic post-installation scanner
for installed apps. For performance reasons (described in
Section 4), the server caches scan results in order to return
them faster to clients.

Aside from performance and power consumption reduc-
tion, a clear benefit of splitting the client and server is the
ability to update scanning modules without having to up-
date the client code. This enables on-demand addition or
removal of scanning services.

3.2 Threat Model

Android provides strong application isolation by assign-
ing each application an unprivileged unique UNIX user id
(UID). Once apps are installed, the underlying Linux ker-
nel ensures isolation between apps and grants privileges ac-
cording to the pre-approved permission request (displayed
to the user at install-time). Under this security model, the
key threat to the user and OS originates primarily from ma-
licious apps that are installed voluntarily by a user, rather
than from traditional vectors for malware such as drive-by-
downloads and malicious executables [9]. Our threat model
assumes:

1. Side-loaded® apps cannot be executed without being
installed through the OS-provided PackageInstaller,

3Side-loaded apps are installed through mechanisms other
than the official Google Play Store (e.g., third-party mar-
kets, file downloads).

Third-party Scanning Services

VirusTotal | VirusChief | Kaspersky | ComDroid
Service Service Service Service

3

~

VirusTotal | VirusChief | Kaspersky | ComDroid
Module Module Module Module

Application Sources Thin AV

@% Web Site

Thin AV Web Interface

DA E-mail
Thin AV Safe Thin AV
&9 uss Installer Killswitch
Third-Party Packagelnstaller
Market
Official Google
Market Application Android
Repository Device

Figure 1: System architecture diagram for ThinAV.

a low-level framework responsible for completing the
installation process.

2. Once installed, applications cannot modify their code
dynamically. The only way to modify code or func-
tionality is through an application update, which in
itself is a new installation (that preserves user data)
bound to Assumption 1.

3. The OS and pre-installed system applications are trusted.

3.3 Server

The ThinAV server component is responsible for receiving
scan requests and submitting them to the scanning mod-
ules on behalf of the client. The ThinAV server is currently
implemented in Python using the Flask® 0.8 web applica-
tion micro-framework and runs on Linux. The server is de-
signed in a modular object-oriented fashion, where a par-
ent class provides scanning modules (i.e., subclasses) with
all the functionality needed for searching and updating the
local cache, as well as uploading binaries via HTTP POST
requests.

To improve performance, the ThinAV server uses a local
cache, which is implemented as a flat file containing previous
scan results. While most online malware scanning services
cache scan results, the latency in returning results (even
those which are cached) was found to be unacceptable in our
test conditions (see Section 4). Thus, whenever a scanning
module is instantiated, the local cache is first checked.

“http://flask.pocoo.org/

The cache holds an MD5 hash of each scanned file, the
full path to the file, the number of times ThinAV has been
asked to analyze the file, the last time such an access has
occurred, the infection status of the file, a note for additional
scan details, and the module that was used when the file was
analyzed.

3.4 Safe Installer

Safe Installer is the ThinAV component on the client re-
sponsible for preventing malicious applications from being
installed. To build Safe Installer, we modified the Android
Package Installer framework,’ the system code in charge of
parsing Android packages to verify integrity, and later com-
pleting the installation or update process by creating a new
UID (if necessary) and placing files in the appropriate direc-
tories. All side-loaded applications must go through the An-
droid Package Installer for installation, making this a ideal
choke-point for placing our ThinAV client.

Specifically, we modified the PackageInstallerActivity
class to make use of ThinAvService, a new service class
which communicates with the Thin AV server described in
the previous section. The service provides a single public
function checkAPK, accessed via an interface defined using
the Android Interface Definition Language. The checkAPK
function takes the file system path of the Android app pack-
age (APK) being installed, reads the file and creates a cryp-
tographic hash of the APK. This hash is then sent to the
ThinAV web application, which returns a scan report, if such
a report exists. If no scan report exists, the APK is uploaded
to ThinAV where it is passed off to one of the third-party
scanning services. When a scan result is returned, that re-
sult is passed back to ThinAvService and checkAPK then
returns a Boolean value indicating whether or not the in-
stallation should be allowed to proceed. The PackageIn-
stallerActivity then allows or prevents the installation of
the application, displaying the appropriate information di-
alogs to the user, where necessary.

3.5 Killswitch

Safe Installer can prevent the installation of applications
known to be malicious. However, Safe Installer will be un-
able to prevent the installation of malicious apps in two
cases. First, when a malicious application was installed on a
device prior to the installation of ThinAV; and second, when
an application was installed on a device but was not flagged
as malicious at the time of installation. A Killswitch was de-
veloped to address these two scenarios. The Killswitch op-
erates independently of any specific application installation
mechanism, making it ideal for the multi-market ecosystem
available on Android devices.

The Killswitch was developed as a standalone Android ap-
plication capable of communicating with the ThinAV server,
similar to the Safe Installer, but invoked on-demand rather
than automatically at install-time.

The Killswitch has three different functions available to
the user. (1) It can upload all applications to ThinAV for
analysis (if those applications are not in the ThinAV local
cache); (2) it can manually check if any non-system applica-
tions on the device have been flagged as malicious; and (3)
it can regularly check the device for malicious applications

5Specifically, we modified the Android 2.3.7 source code
which was in use by most deployed Android devices [23].

using a scheduled event. In the current implementation the
killswitch is scheduled to run every 15 minutes.

When the Killswitch is checking for malicious apps, it uses
the PackageManager class to locate all Android packages in-
stalled on the device. For each package, the Killswitch reads
the meta-data, creates a hash of each app’s byte contents,
and a collection of all package hashes is sent to the Thi-
nAV server. If a package has already been hashed by the
Killswitch, then the hash is stored in a file which is only ac-
cessible to the Killswitch. This hash can then be retrieved
much more quickly than recomputing the hash every time
the device is fingerprinted. If any of the hashes sent to the
ThinAV server are found to be from a malicious app, the
user is notified of the infection, and presented a list of appli-
cations suspected to be malicious. The user can then choose
to initiate the removal of those applications.

3.6 Scanning Modules

ThinAV can be configured to offload scanning to any third-
party malware scanning service with a public API or web
interface. The system currently has modules for four scan-
ning services that are freely available online: Kaspersky, Vir-
usChief, VirusTotal, and ComDroid. These services all be-
have similarly insofar as a user can upload any type of file
(executable, data, etc.) through the website of the service
and receive a report as to any malware that might be con-
tained in that file. Unfortunately, these scanning services
are based on proprietary anti-malware engines, and as such,
the exact details of the engines underpinning these services
are very closely held trade secrets. Therefore, the exact ca-
pabilities and limitations of these services with respect to
threat detection are not publicly known.

The currently implemented modules and their descrip-
tions:

e Kaspersky — Offers a free service that uses a propri-
etary anti-malware engine for scanning files that are
1MB or smaller in size.

e VirusChief — A multi-engine anti-malware scanning ser-
vice with a 10MB file size limit.

e VirusTotal — Scans uploaded files up to 20MB in size
with 42 different scanning engines. VirusTotal has a
public API to interact with its services.

e ComDroid - While not an anti-malware engine, Com-
Droid can identify potential vulnerabilities in Android
apps by performing static code analysis. The Com-
Droid module identifies scanned applications as being
“at risk” as opposed to being “infected”.

The ThinAV server is currently configured to select scan-
ning services based on the average amount of time each mod-
ule takes to scan a file. We found the fastest service to be
Kaspersky, followed by VirusChief, ComDroid, and Virus-
Total. If any scanning module returns an error from an
attempted online scan, then the next module in the prior-
ity sequence is selected. If all four scanning modules fail, a
general error code is returned to the device that originated
the request. Performance measurements for the scanning
modules are discussed in the following section.

4. THINAV EVALUATION

This section presents the results of our evaluation of Thi-
nAV. All development and testing was done on the Android

Number of Apps 1022

Mean App Size 2.65 MB
Median App Size 1.78 MB
Minimum App Size 0.02 MB
Maximum App Size 37.06 MB
Proportion of Apps <1 MB 34.64 %
Proportion of Apps <10 MB | 97.16 %
Proportion of Apps <20 MB | 99.51 %

Table 1: General file size characteristics of the An-
droid test data set.

emulator provided in the SDK. The emulator enabled rapid
development on different versions of the Android operating
system, and allowed for changes to be made to the Android
source code.

Working on the emulator presents evaluation issues with
respect to network performance. Because ThinAV is heavily
reliant on the network, link speed has a direct impact on
performance. On a mobile device like a cell phone, the speed
of the cellular connection can vary based on the location of
the user, radio interference, the load on the cellular network,
as well as other factors. Due to the challenges involved in
cellular network measurements, we use the results of Gass
et al. [10].

4.1 Data Set

The evaluation process was performed with a collection of
apps downloaded from the official Google Play Store (known
as the Android Market at the time of data collection) using
a custom crawler. We downloaded the top 50 free apps (as
ranked by user ratings) in each application category on Jan-
uary 3, 2012. The majority of package downloads were suc-
cessful, with 28 downloads causing repeated failures. This
resulted in 1,022 apps spread across 21 application cate-
gories, with each category having between 46 and 50 pack-
ages. Table 1 summarizes the key file size statistics of the
data set.

4.2 Malware Detection

We first uploaded the entire data set to the VirusTotal
scanning service to to confirm that VirusTotal, and therefore
other scanning services are capable of correctly receiving and
scanning Android applications. This initial scan also allowed
us to obtain a baseline of detection. That is, to see how many
apps in our initial data set contain malware.

VirusTotal flagged several possible instances of malware
in the data set downloaded from the Google Play Store. Of
the 1,022 apps uploaded, 1,019 were scanned (three apps
were skipped due to size restrictions) and 27 were flagged
as malware by at least one scanning engine. One package
was flagged as malware by four different engines, nine pack-
ages were flagged by two engines, and the remaining seven-
teen packages were flagged as malware by a single engine.
Table 2 provides details on some of the commonly flagged
samples. The most commonly identified sample was from
the Adware.Airpush family. However, the majority of these
samples were identified by a single scanning engine (DrWeb),
which raises the possibility of this being a false positive.
The next most common sample was Plankton, which was
identified by a variety of scanning engines. The remaining

Sample Name Malware Type | Count | Detection
Engine(s)
Adware.Airpush(2, 3) Adware 15 DrWeb,
Kaspersky
Plankton (A, D, G) Trojan 6 Kaspersky,
Comodo,
NOD32,
Trend
Micro
SmsSend (151, 261) Dialer 2 DrWeb
Rootcager Trojan 2 Symantec

Table 2: Most frequent samples of malware detected
in Google Market data set. Detection engine refers
to which VirusTotal scanning engines detected the
sample.

malware samples had far fewer occurrences in the data set.

While the test data set only suggested that 6 of the AV
engines used by VirusTotal are capable of detecting Android
malware, we later confirmed that as many as 26 (more than
half of the VirusTotal scanning engines) are capable of de-
tecting some form of Android specific malware.

4.3 AV Scanning Module Performance

We developed a testing program which uploaded files of
different sizes to each of the scanning services at specific time
intervals. This program was designed to measure the re-
sponse time of each service. The program submitted 12 files
(of sizes 0 KB, 1 KB, 2 KB, 4 KB, 8 KB, 16 KB, 32 KB, 64
KB, 128 KB, 256 KB, 512 KB and 1023 KB) for scanning in
random order over an 8 day window. The files were created
by a script which produces files of a specified size filled with
pseudo-random bits with the expectation that files gener-
ated in such a way would have an extremely low probability
of being flagged as malware by one of the scanning services,
or exist in the service cache. Test files were uploaded in a
pseudo-random order every time the test program was run
to overcome any penalty that might be incurred against the
first file being uploaded due to DNS lookups.

Results.

For each of the three scanning services, several hundred
response time measurements were recorded. A cursory re-
view of the data showed a handful of extreme outliers for
each service. Any measurement beyond two standard devia-
tions of the mean was classified as an outlier. This threshold
was chosen because it eliminated the most extreme results,
while retaining the vast majority of the data.

A comparison of the measurements from the three services
shows a clear difference of nearly an order of magnitude be-
tween the performance of VirusTotal and the other two scan-
ning services. The average response times from Kaspersky
and VirusChief range from 1.54 — 14.49 seconds and 6.82
— 28.70 seconds respectively, while the response times from
VirusTotal range from 1.21 — 229.28 seconds (though the
latter range becomes 148.92 — 229.28 seconds, when only
non-zero file sizes are considered). The upload portion of
VirusTotal shows response times similar to Kaspersky with
response times ranging from 1.94 — 11.74 seconds.

With the outliers removed, the response time data was
plotted (see Figures 2, 3, and 4) in an attempt to determine
the correlation between file size and service response time

for the three scanning services. Each of the figures shows
the upload file size plotted versus the response time for each
of the three scanning services, and Figure 5 graphs the up-
load and response speed of VirusTotal. Kaspersky and Vir-
usChief both show a similar positive correlation between file
size and response time, with the VirusChief data being posi-
tively shifted on the y-axis (and therefore slower) by roughly
fifteen seconds. VirusTotal, on the other hand, shows little
if any relationship between file size and response time. The
trend of the VirusTotal response time data is slightly neg-
ative and has a much larger y-intercept than either of the
other two scanning services. Conversely, the upload portion
of the VirusTotal scan shows a trend very similar to Kasper-
sky. With this data, we produced a set of linear equations
which approximate the performance of the scanning services
as a function of the number of bytes in the file (see Table
3).

30

25

o
20 Q
o

15

Am:o O |0000

o 8 /
A

0 200000 400000 600000 800000 1000000 1200000
File size (bytes)

Response time (seconds)

Figure 2: Scan response time versus file upload size
for the Kaspersky virus scanner service.

N

00 00 #m o

b

oo crnomJnxm @o

Response Time (seconds)

o

0 200000 400000 600000 800000 1000000 1200000
File size (bytes)

Figure 3: Scan response time versus file upload size
for the VirusChief virus scanner service.

Discussion.

It is not surprising that Kaspersky, which only scans with
a single anti-virus engine, returns the fastest results, and
VirusChief, which scans with six anti-virus engines is roughly
fifteen seconds slower than Kaspersky when scanning a sim-
ilarly sized file. We attribute the erratic VirusTotal perfor-
mance to the company’s prioritization of scanning requests.
VirusTotal assigns the lowest priority to requests that are
sent via their formal API, and the response appears to not
be dependent on the size of the uploaded file, but rather on
how busy the VirusTotal scanning service is at any given

(o]
-
g
S 8
]
g 6
g o 8 o
o 8 8
s o Q o
g 8 8
Q
: §——¢ §
2 8
200000 400000 600000 800000 1000000 1200000

File size (bytes)

Figure 4: Scan response time versus file upload size
for the VirusTotal virus scanner service.

N
[
o

N
o
o

\

Response time (seconds)
N
&

| _— 8
s o=
0 -+
0 200000 400000 600000 800000 1000000 1200000

File size (bytes)

Figure 5: Upload response time versus file upload
size for the VirusTotal virus scanner service when
uploading a file and not polling for a scan result.

moment. This distinction is made much clearer when com-
paring the time required to scan a file with VirusTotal with
the time required to merely upload a file to VirusTotal.

4.4 ComDroid Performance

To evaluate ComDroid, we uploaded each of the 1,022
apps in our data set to the ComDroid scanning service over
a two day period. For each upload, we recorded the time
required for a scan report to be returned.

Results.

Of the 1,022 packages uploaded to ComDroid, 993 were
scanned, with the remainder being rejected by the server due
to a 10 MB size limitation. Of the 993 packages scanned by
ComDroid, 8 returned a scan error, resulting in 985 valid
scan results. The mean response time was 40.67 seconds (o

Kaspersky f(z) =107° x z + 1.891
VirusChief f(z)=10"" x x 4 17.133
VirusTotal flz) = -9 x107% x x4 182.98
VirusTotal (Uploads) | f(z) =97° x = + 1.947

Table 3: Linear equations for each of the three scan-
ning services derived from Figures 2, 3, 4, and 5.
Equations calculate the response time for each scan-
ning service for a file z bytes in size.

1000

900 o

800 o
[e]
700 o o
600 0
o o

500

Time (s)

400

0 2000 4000 6000 8000 10000 12000
App Size (in KB)

Figure 6: Response time of the ComDroid service
as a function of package size.

| ComDroid | f(z) =0.0132 x & + 9.6893 |

Table 4: Linear equation for the ComDroid scanning
service.

= 77.60 seconds), and the median response time was 18.63
seconds. Figure 6 shows the response time plotted as a func-
tion of the package size, and the exact function is specified in
Table 4. There is a clear positive linear relationship between
package size and scan time, although numerous outliers are
present.

Discussion.

The performance of the ComDroid service is somewhat
similar to both the Kaspersky and VirusChief services (Sec-
tion 4.3). However, the linear trend is much less prominent.
The most likely explanation for this lies in the nature of
the analysis performed by ComDroid. ComDroid is a static
code analysis tool, and as such, it is safe to assume that the
time required to analyze an Android app is more directly
influenced by the amount of code in the package, than the
total size of the package. Given that many apps contain
numerous resource files (images, sounds, video, etc.) which
are not scanned by ComDroid, it is easy to imagine how
a package might have a large size, but a relatively small
amount of code. It is quite likely that the observed linear
trend is much more a result of the upload time and not the
code-to-resource-file ratio of the package.

ComDroid detects a wide variety of “programming errors”.
In our experiment, 971 of 985 apps (98.6%) were flagged by
ComDroid as containing some type of code that is vulnera-
ble to exposed communication. This suggests that, at least
in its current form, simply flagging an application as being
“at risk” if there is any instance of exposed communication
would effectively cripple the ability of users to install apps
on their device. Chin et al. [3] (the ComDroid authors) sug-
gest that in their data, after manual inspection of warnings,
only about 10-15% were genuine vulnerabilities.

We believe that there is a place for ComDroid (and other
tools like it) in the ThinAV architecture. However, the be-
havior of this ThinAV module would likely have to be ad-
justed over time to prevent excessive false positives. This
could be done by creating thresholds which would flag a
package as vulnerable if it had significantly more exposed
surfaces than average for a given type of warning.

Network Con- | Upload Speed | Download
figuration (KBps) Speed (KBps)
Typical 3G 16.25 84.13

Ideal 3G 1792.00 1792.00
Typical WiFi 190.38 155.38

Ideal WiFi 76800.00 76800.00

Table 5: Network speeds used for evaluating the
mobile implementation of ThinAV.

Network Configuration | Small File | Medium File | Large File
Ideal 3G 0.034 s 0.232 s 0.293 s
Typical 3G 0.041 s 0.239 s 0.300 s
Ideal WiFi 0.034 s 0.231 s 0.293 s
Typical WiFi 0.035 s 0.233 s 0.294 s

Table 6: Time required to check an package in Thi-
nAV, for three different file sizes, and four different
network configurations, assuming the scan result is
already cached by the ThinAV server

4.5 Safe Installer Performance

The performance of the Safe Installer is based on three
factors: the size of the package being scanned, the speed of
the network to which the device is connected, and whether
or not the package being installed has already been scanned
by ThinAV. To evaluate the Safe Installer, we use three dif-
ferent file sizes: 0.76 MB (small), 1.78 MB (medium), and
3.56 MB (large), corresponding to the median size of apps in
the category with the smallest median size (medical apps),
the median size for the entire data set, and the median size
of apps in the category with the largest median size (educa-
tional apps). We also use the “ideal” and “typical” 3G and
WiF1i speeds from prior work [10, 11] (see Table 5).

Results.

The best case scenario for the performance of the safe
installer is when the package being installed has already been
scanned by ThinAV. In this case, the cost for performing an
install time check is equal to the time required to hash the
installing application, send the hash to ThinAV, look up the
scan result, and return the scan result.

We measured the time required to hash a small, medium,
and large application on the Android emulator, and took
the average of five runs for each size. The emulator was able
to calculate hashes of small files in 0.033 seconds, medium
files in 0.231 seconds, and large files in 0.293 seconds. We
recorded the amount of data uploaded and downloaded dur-
ing transmission of the hash to the ThinAV server, as well
as the reception of the result. This was approximately 200
bytes (100 up, 100 down), although this amount varied slightly
with the file being scanned. Finally, the cost of the ThinAV
server performing a cache lookup was 0.0002 seconds. Ta-
ble 6 summarizes the results for this best case scenario. In
general, even the largest file over the slowest network only
takes 0.3 seconds to check with ThinAV.

The worst case scenario is when the application being in-
stalled has not been scanned by ThinAV, and therefore the
whole package must be uploaded to ThinAV, which must
then upload the package to one or more of the third-party
scanning services. Using the formulse in Tables 3 and 4,

Network Configuration | Small File | Medium File | Large File
Ideal 3G 36.56 s 98.13 s 170.29 s
Typical 3G 84.66 s 210.00 s 394.14 s
Ideal WiFi 36.13 s 97.14 s 168.31 s
Typical WiFi 40.23 s 106.68 s 187.39 s

Table 7: Time required to check an package in Thi-
nAV, for three different file sizes, and four different
network configurations, assuming the scan result is
not cached by ThinAV.

and the file sizes and network speeds above, it is possible
to compute the time required to upload and scan these files
at install time. We note that when calculating the time re-
quired to scan a package, we add both the time to scan the
package with an anti-virus module as well as the time for
scanning with ComDroid.

Table 7 summarizes the results for this worst case sce-
nario. In general, the time required to upload and scan an
Android package ranges between 36 seconds and 394 sec-
onds, depending on the size of the file and the speed of the
network.

Discussion.

The best case scenario, where ThinAV already has a cached
scan result, is extremely fast. At 0.3 seconds, this check
would be unnoticeable to a user. On the other hand, if the
file must be uploaded and scanned, this process could take
as long as seven minutes. This could be seen as a serious
inconvenience to the user, but considering that this check
would only take place when a user is installing an app that
has never been seen by the ThinAV server, large-scale de-
ployment should make this an infrequent occurrence. Addi-
tionally, given that ThinAV could be primed with packages
from a variety of sources, including regular downloads of
applications from various application markets, upload of ap-
plications by developers, and the upload of applications by
other users running ThinAV, the chance that a user would
have to upload a package for scanning at install time could
be made very rare. Of course, only the evaluation of a wide-
scale deployment can provide confirmation of our intuition.

4.6 Killswitch Performance

During normal operation, we expect the most frequently
used functionality of ThinAV to be the killswitch service
which is periodically activated and checks for revoked apps.
To evaluate the performance of the killswitch, we examine
several factors: (1) the cost of hashing apps to generate a
system fingerprint; (2) the network cost associated with up-
loading the fingerprint; (3) the cost of looking up the hashes
on the ThinAV server; and (4) the network cost associated
with returning those hashes to the client. We also consider
a manual upload feature, in which all packages currently in-
stalled are submitted for scanning. This is required to scan
applications that were installed prior to enabling ThinAV.

In general, the time required for the killswitch to perform
a check for revoked apps without uploading any full packages
to the ThinAV server will be:

h1 = time to hash all packages
su = hash upload size
sp. = link upload speed
c1 = cache lookup time (1)
sq = response download size
spa = link download speed
s S
t=hi+ —= 4+ =
SPu SPd
Because the cost of performing a manual upload of missing
packages is dominated by upload and scanning costs (similar
to the safe installer above), we include only these costs in the
calculation. The time required for the killswitch to manually
upload missing packages is:

s = package upload size

spu, = link upload speed

ts = time to scan all applications (2)
ty= % 4t
SPu,

To test the performance of the hashing function, we in-
stalled the top five apps from each of the 21 Google Play app
categories (on top of the 5 default non-system apps) on the
Android emulator. After installation, we generated a com-
plete system fingerprint (i.e., a hash for each app installed
on the user partition) ten times and recorded the average
time. This represents the worst case scenario in which none
of the apps on the device have been hashed before, and all
hashes must be computed. Next, we generate another ten
fingerprints and record the average time. The cache created
in the previous test was left intact, however. This represents
the best case scenario in which all of the apps on the phone
have already been hashed and the phone fingerprint is stored
locally.

Under normal use it is likely to expect that the typical
scenario would in fact be the best case scenario, or very
close to it. After the first fingerprint has been generated,
the only time an app will have to be hashed is when it has
not been seen by the killswitch, meaning it has just been
installed. Unless a user installs numerous apps between the
scheduled runs of the killswitch, it is likely the number of
apps that need to be hashed would be near zero.

Combining the hashing performance with the file size data
for the data set, the scanner performance functions in Ta-
bles 3 and 4, and the experimental network performance
measurements from [10], we calculate the cost of performing
manual uploads, as well as the cost of fingerprinting based
on Equations 1 and 2.

Results.

Figure 7 shows the best (cached) and worst (uncached)
case scenarios for the fingerprint generation time as a func-
tion of both the number of packages on the device and the
total size of those packages.

It is clear that time to generate a system fingerprint grows
linearly with both the number and size of packages on the
device. In the worst case, with 110 apps on the device, it
only takes 29.95 seconds to generate a system fingerprint.
The best case scenario is better, with a fingerprint being

w
«

4000

z -2 | 3500
£ 30 (»7""' / o
5 25 e - 3000 o
@ - 2500 £
o 20 & i
S s e - 2000 &
2 g - 1500 £
£ 10 -
@ e - 1000 £
S 5 et L 500 O
o - _e—
2 o &= —= 0
g o0 20 40 60 80 100 120
= Number of Packages

—6—Uncached —8—Cached ---¢--- Data Transmitted

(a)

NN W ow
[]
®

-

S

//

=
o

/

[}

0 50 100 150 200 250 300 350
Total Size of All Packages (MB)

Time to Generate Fingerprint (s)
.
&

o

—6—Uncached —8—Cached

(b)

Figure 7: Time required to generate a complete sys-
tem fingerprint as a function of the number of pack-
ages installed on the device (a) and the total size of
those packages (b). Both figures show the average
time when all of the package hashes have been stored
(cached) and when none of the package hashes are
stored (uncached). Figure (a) also includes the num-
ber of bytes sent and received when communicating
the fingerprint to the ThinAV server.

generated in 1.09 seconds for the same 110 apps when the
fingerprint has been cached.

Data usage grows linearly with the number of packages on
the device. The data consumption ranges from 3.64 KB for
110 apps, down to 261 bytes for 5 apps. The majority of this
transmission is in the form of the uploaded fingerprint, as
the response from ThinAV only downloads 70 bytes from the
server when the fingerprint contains no hashes corresponding
to malicious apps.

The current implementation of the ThinAV client is sched-
uled to run the killswitch service every 15 minutes. Table 8
shows how much data would be consumed by ThinAV (un-
der the current configuration) over different lengths of time

Interval | Data Consump- | Data Consump-

tion (5 Apps) tion (110 Apps)

1 Day 24.47 KB 349.41 KB
1 Week 171.28 KB 2.39 MB
1 Month | 5.19 MB 74.04 MB

Table 8: Data consumption of ThinAV Kkillswitch
over different time periods, for 5 and 110 apps in-
stalled on the device, assuming the killswitch is
scheduled to run every 15 minutes.

Scenario Time (seconds) Upload Time (Seconds)
110 apps / ideal 3G / no hashes cached 26.206 Scenario 10 Apps | 25 Apps 50 Apps
110 apps / typical 3G / no hashes cached 26.430 Small Apps 4.367 10.919 21.837
110 apps / ideal WiFi / no hashes cached 26.204 Ideal 3G Medium Apps 10.157 25.393 50.786
110 apps / typical WiFi / no hashes cached 26.223 Large Apps 20.326 50.814 101.629
Small Apps 485.360 1213.400 | 2426.801
110 apps / ideal 3G / all hashes cached 3.424 Typical 3G Medium Apps | 1128.781 | 2821.953 | 5643.907
110 apps / typical 3G / all hashes cached 3.478 Large Apps 2258.833 | 5647.082 | 11294.164
110 apps / ideal WiFi / all hashes cached 3.423 Small Apps 0.102 0.255 0.510
110 apps / typical WiFi / all hashes cached 3.428 Ideal WiFi Medium Apps 0.237 0.593 1.185
Large Apps 0.474 1.186 2.371
26 apps / ideal 3G / no hashes cached 1.034 . | Small Apps 41.111 102.777 205.553
26 apps / typical 3G / no hashes cached 1.258 Typical WiFi | Medium Apps 95.609 239.023 478.046
26 apps / ideal WiFi / no hashes cached 1.032 Large Apps 191.326 | 478.315 956.630
26 apps / typical WiFi / no hashes cached 1.051
Table 11: Upload times for the values in Table 10,
26 apps / ideal 3G / all hashes cached 0.285 for four different network configurations.
26 apps / typical 3G / all hashes cached 0.339
26 apps / ideal WiFi / all hashes cached 0.285
26 apps / typical WiFi / all hashes cached 0.290 Scanning Time (Seconds)
Scenario 10 Apps | 25 Apps | 50 Apps
Table 9: Time required to complete the fingerprint- Small Apps / Kaspersky 161.021 402.552 805.104
ing operation for different numbers of applications, Medium Apps / VirusChief | 634.032 | 1585.080 | 3170.159
network performance, and caching scenarios. Large Apps / VirusChief 1104.893 | 2762.232 | 5524.465
Small Apps / ComDroid 107.224 252.563 494.796
Medium Apps / ComDroid 120.919 266.259 508.491
Large Apps / ComDroid 144.972 290.312 532.544

and with two sets of installed apps (5 and 110).

Using the same network measurements from Section 4.5,
the measured fingerprint generation times, and data trans-
mission totals, it is possible to compute a variety of poten-
tial running times for the entire fingerprinting operation of
ThinAV killswitch using Equation 1. These values are sum-
marized in Table 9.

Total Data Uploaded (MB)
Scenario 10 Apps | 25 Apps | 50 Apps
Small Apps 7.643 19.108 38.216
Medium Apps 17.775 44.438 88.875
Large Apps 35.570 88.925 177.850

Table 10: Total upload sizes used for calculations of
manual scanning performance.

For calculating the cost of manually uploading missing
packages, we use the package size averages from Section 4.5
and use three sets of apps (10, 25, and 50 apps). Table
10 summarizes the total amount of data that would be up-
loaded for different numbers of apps of different sizes. The
upload times for the different numbers and sizes of apps are
summarized in Table 11. Using the size and quantity of each
app, the scanning time could then be computed using the
equations in Tables 3 and 4. These results are summarized
in Table 12. Finally, referring to Equation 2, it is possible to
compute the time required to upload and scan missing apps
under different scenarios.

The best case scenario is when ten small apps are uploaded
and scanned over an ideal WiFi connection. This takes 289.2
seconds, or just under five minutes. The worst case scenario
is where 50 large apps are uploaded and scanned over a typ-
ical 3G connection. This operation takes 17351.2 seconds,
or nearly five hours. However, if the same operation is per-
formed over a typical WiFi connection, the time required to
complete this one-time operation drops by more than half,
to 1.95 hours.

Table 12: Scan times for different numbers of apps
with small, medium and large sizes, using conven-
tional scanning engines (Kaspersky and VirusChief)
as well as the Android-specific scanner, ComDroid.

Discussion.

During long-term use of ThinAV, fingerprinting installed
apps is the only operation that would likely take place fre-
quently. In the best case, the killswitch requires about 1
second of computation followed by less than 4 KB of data
transmission for a set of 110 installed apps. This operation
would be unnoticeable to a user, especially on a physical
Android device, which is typically more powerful than the
Android emulator.

In terms of data consumption, the 74 MB per month for
uploading the fingerprint of 110 apps is non-trivial, particu-
larly for users with pay-as-you-go type data plans. We note,
however, that data consumption can be lowered by reducing
the frequency with which the killswitch is run. Compressing
the data for fingerprint submission and response retrieval is
possible and would likely also reduce data consumption.

S. LIMITATIONS

We have shown that despite being in an early prototype
form, ThinAV could be realistically deployed on actual de-
vices as a free and lightweight anti-malware system. We
now discuss some of the limitations of the prototype and
the system overall.

OS modification. Because the Package Installer is part of
the core Android OS, ThinAV cannot be installed on any
Android device as an application. Instead, the underlying
OS must be replaced with a ThinAV-enabled version. Al-
ternatively, Google and other phone manufacturers could
incorporate ThinAV directly into their own builds.

Test environment. All tests in our experiment were per-
formed on the Android emulator. While we believe the em-

ulator provides accurate technical feasibility metrics, it also
provides a lower bound on speed measurements. Physical
devices are generally more powerful, but also have battery
consumption concerns. Future work will evaluate battery
consumption by ThinAV.

Third-party scanning services. ThinAV relies on the con-
tinual existence of third-party scanning services in a pro-
duction capacity. The terms of service of these services may
change, and services may also cease to exist. The decision on
whether or not to support HT'TPS connections is also out of
ThinAV’s control, as are denial-of-service attacks (which are
possible for any cloud-based anti-malware). Fortunately, the
modular design of ThinAV should help transparently replace
scanning modules without updating clients.

6. CONCLUSIONS

Keeping malware in check for Android is a difficult prob-
lem; Android has a chaotic multi-market app environment
and the ability for users to side-load apps of unknown prove-
nance. We address this problem not by imposing a massive
anti-malware regime, but by just the opposite. Our Thi-
nAV system combines a lightweight footprint on an Android
device, consisting of a safe installer and killswitch, with
the ability to leverage multiple free, already-existing anti-
malware services on the Internet. As only apps are scanned
and requests are proxied through a ThinAV server, no per-
sonal or IP address data is leaked to outside services. Our
experiments with performance and data consumption have
shown that small is practical, especially if ThinAV is fully
integrated into the Android app ecosystem and is already
primed with scan results for popular apps.

Acknowledgment. This work has been supported in part
by the Natural Sciences and Engineering Council of Canada
via ISSNet, the Internetworked Systems Security Network.

7. REFERENCES

[1] D. Barrera, W. Enck, and P. C. van Oorschot. Meteor:
Seeding a Security-Enhancing Infrastructure for
Multi-market Application Ecosystems. In I[EEE
Mobile Security Technologies, 2012.

[2] J. Cheng, S. H. Wong, H. Yang, and S. Lu.
Smartsiren: virus detection and alert for smartphones.
In 5th International Conference on Mobile Systems,
Applications and Services, pages 258271, 2007.

[3] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in
Android. In 9th International Conference on Mobile
Systems, Applications, and Services, pages 239-252,
2011.

[4] M. Chiriac. Tales from cloud nine. In 19th Virus
Bulletin International Conference, pages 83-88, 2009.

[5] B.-G. Chun and P. Maniatis. Augmented smartphone
applications through clone cloud execution. In 12th
Workshop on Hot Topics in Operating Systems, 2009.

[6] E. Cuervo, A. Balasubramanian, D.-k. Cho,

A. Wolman, S. Saroiu, R. Chandra, and P. Bahl.
MAUI: making smartphones last longer with code
offload. In 8th International Conference on Mobile
Systems, Applications, and Services, pages 4962,
2010.

[7] B. Dixon and S. Mishra. On rootkit and malware
detection in smartphones. In 2010 International

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

Conference on Dependable Systems and Networks
Workshops (DSN-W), pages 162-163, 2010.

W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
16th ACM Conference on Computer and
Communications Security, pages 235-245, 2009.

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and

D. Wagner. A survey of mobile malware in the wild.
In 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, pages 3—14, 2011.
R. Gass and C. Diot. An experimental performance
comparison of 3G and Wi-Fi. In Passive and Active
Measurement, volume 6032 of LNCS, pages 71-80,
2010.

IEEE Computer Society. Wireless LAN medium
access control (MAC) and physical layer specifications
enhancements for higher throughput, Oct. 2009. IEEE
Std 802.11n-2009.

M. Jakobsson and K.-A. Johansson. Retroactive
detection of malware with applications to mobile
platforms. In USENIX HotSec, 2010.

M. Jakobsson and A. Juels. Server-side detection of
malware infection. In 2009 New Security Paradigms
Workshop, pages 11-22, 2009.

C. Jarabek. Towards cloud-based anti-malware
protection for desktop and mobile platforms. Master’s
thesis, University of Calgary, 2012.

L. Liu, G. Yan, X. Zhang, and S. Chen. VirusMeter:
Preventing your cellphone from spies. In Recent
Advances in Intrusion Detection, volume 5758 of
LNCS, pages 244-264, 2009.

H. Lockheimer. Android and security.
http://googlemobile.blogspot.com/2012/02/
android-and-security.html, Feb. 2012.

L. Martignoni, R. Paleari, and D. Bruschi. A
framework for behavior-based malware analysis in the
cloud. In Information Systems Security, volume 5905
of LNCS, pages 178-192, 2009.

C. Nachenberg, Z. Ramzan, and V. Seshadri.
Reputation: A new chapter in malware protection. In
19th Virus Bulletin International Conference, pages
185-191, 2009.

J. Oberheide, E. Cooke, and F. Jahanian. Rethinking
antivirus: executable analysis in the network cloud. In
USENIX HotSec, 2007.

J. Oberheide, E. Cooke, and F. Jahanian. CloudAV:
N-version antivirus in the network cloud. In 17th
USENIX Security Symposium, pages 91-106, 2008.

J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn,
and F. Jahanian. Virtualized in-cloud security services
for mobile devices. In 1st Workshop on Virtualization
in Mobile Computing, pages 31-35, 2008.

G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: versatile protection for
smartphones. In 26th Annual Computer Security
Applications Conference, pages 347-356, 2010.

D. Rowinski. More than 50% of Android devices still
running Froyo. ReadWrite Mobile, 6 September 2011.
http://wuw.readwriteweb.com/mobile/2011/09/
more-than-50-of-android-device.php.

