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ABSTRACT
Selectively allowing network traffic has emerged as a dominant
approach for securing consumer IoT devices. However, determining
what the allowed behavior of an IoT device should be remains an
open challenge. Proposals to date have relied on manufacturers and
trusted parties to provide allow lists of network traffic, but these
proposals require manufacturer involvement or placing trust in an
additional stakeholder. Alternatively, locally monitoring devices
can allow building allow lists of observed behavior, but devices
may not exhaust their functionality set during the observation
period, and the behavior may change following a software update
which requires re-training. This paper proposes a blockchain-based
system for determining whether an IoT device is behaving like other
devices of the same type. Our system, SERENIoT, overcomes the
challenge of initially determining the correct behavior for a device.
Nodes in the SERENIoT public blockchain submit summaries of the
network behavior observed for connected IoT devices and build
allow lists of behavior observed by the majority of nodes. Changes
in behavior through software updates are automatically added to
the allow list once the update is broadly deployed. Through a proof-
of-concept implementation of SERENIoT on a small IoT network
and a large-scale Amazon EC2 simulation, we evaluate the security,
scalability, and performance of our system.
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1 INTRODUCTION
The rapid adoption of the Internet of Things (IoT) challenges well-
established computer security strategies. Due to their deployment
scale, IoT devices cannot be secured using traditional techniques
such as anti-malware or network intrusion detection systems (NIDS).
The diversity in IoT hardware and software combined with the de-
ployment volume makes it difficult to design security systems that
are effective yet not overburdened with management complexity.
This is of particular importance in smart homes, where users are
typically not security experts.

IoT devices are pervasive [21] and always connected. They are
manufactured to be low-cost, so security is often not the primary
design goal. As expected, numerous papers [4, 9, 29, 30] studying
the security of IoT devices have found a steady stream of vulnera-
bilities (e.g., the Mirai botnet [5]) that pose a threat to users, to their
environments, and to the broader global Internet infrastructure.

While IoT devices are diverse, one unifying characteristic is that
their feature-set is generally simple; a device may sense its envi-
ronment and submit readings to a cloud service (e.g., a humidity
sensor), listen for inbound requests to perform some action (e.g.,
a WiFi light switch), or some combination of both. IoT devices by
definition are not general purpose computers1, and as such they do
not require the network privileges of a general purpose system to
perform their primary task. However, IoT devices are often treated
indifferently from mobile phones, laptops, and other general pur-
pose systems on networks, allowing any network communication
that originates from the device to reach any host on the Internet.
This over privilege allows compromised devices to directly attack
remote hosts and services, or to act as steppingstones in more
sophisticated attacks.

To prevent these attacks, existing NIDS systems could be used,
but these require the user to configure operating parameters and
tune the detection logic to avoid being overwhelmed by false pos-
itives. A conceptually simpler approach is the idea of allowing
only a small set of network traffic to flow to/from an IoT device
as needed. By allowing only the types of network activity that a
device can generate or accept (which should roughly match the
functional requirements of the device’s primary task), the device
can be constrained without requiring the modification of its on-
board software. This is of particular interest in IoT, where devices
may have long lifespans sometimes outlasting the manufacturer
or software update support period. Moreover, false positives (i.e.,
blocking legitimate outbound connections) should be few and far
between if the device can be accurately profiled.

1We note, however, that some IoT devices may be built on top of general purpose
operating systems such as Linux.
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Manufacturer Usage Descriptions (MUD [22]) standardize the
policy language in which IoT network security policies can be writ-
ten, so that the device manufacturer or a trusted third party can
encode device behavior into a machine-readable policy. This policy
can be enforced at the network edge, protecting all devices in the
local network. The open question that remains is: what network
behavior should be included in the list of allowed traffic? Requiring
manufacturers to provide allow lists may not scale; there are too
many unique IoT vendors, some of which simply re-brand devices
manufactured by another vendor. A trusted third party could ana-
lyze devices and generate allow lists, but the business incentives
(including user willingness to pay for such a service) aren’t clear.
Users themselves could analyze local device behavior and generate
profiles, but this approach may not scale to households with large
number of IoT devices.

In this paper we propose a blockchain-based network security
policy management and enforcement system for home IoT environ-
ments. Our system, SERENIoT (pronounced Serenity), characterizes
IoT device behavior locally and uses a decentralized ledger to de-
termine whether the local behavior matches that observed by other
peers in the network. Policies of allowed behavior2 are the result
of a consensus algorithm identifying network behavior observed
by the majority of nodes in the network. Network connections that
are unique to a device are blocked until they are observed by most
nodes, preventing the spread of Mirai-style botnets.

SERENIoT is designed to run on network appliances such as
home routers. The system analyses IP traffic between local IoT
devices and their cloud companion services, making it compatible
with all IP-based IoT devices and hubs. Since these appliances are
usually already present in home networks (e.g., ISP-provided home
routers), our system does not require any drastic network topology
changes. SERENIoT extends the security features of home gateways
by adding network policy enforcement for IoT devices.

Our contributions are:

(1) The design and implementation of a novel approach to build
behavioral allow lists of IoT device traffic. The approach is
based on blockchain and requires no opt in by manufactur-
ers or trust in third parties. SERENIoT’s public blockchain
provides new data sources to audit IoT device behaviors at
scale and assists in the detection of new threats.

(2) The evaluation of our system through large-scale simulations
with 53 devices and 1000 nodes and on a small-scale testbed
with real world devices.

The remainder of the paper is structured as follows. Section 2
reviews IoT security background and related work and gives a
brief overview of relevant blockchain concepts. Section 3 presents
the technical details of SERENIoT. Section 4 evaluates scalability,
performance and security. Sections 5 and 6 present the limitations
of our implementation and discuss related deployment issues. We
conclude in Section 7.

2Security policies that permit only allowed behavior are more often referred to as
whitelists. Throughout the paper we deliberately avoid this term in favor of the more
descriptive allow lists.

2 RELATEDWORK AND BLOCKCHAIN
REVIEW

2.1 IoT security
One common solution to protect IoT networks is to deploy a signature-
based Network Intrusion Detection System (NIDS) [13, 20, 24] on
IoT networks. NIDS monitor network traffic and look for known
attack signatures. These solutions are therefore only efficient if the
attack is already known and require constant updates to have the
latest signature base. Although these solutions might be workable
for industrial IoT networks with dedicated security teams, complex
IDS solutions are not suited for home environment where experts
are likely unavailable to monitor, maintain, and configure them.
IDSes can be augmented by using machine learning to detect previ-
ously unseen attacks. However, this introduces uncertainty as false
positives can be exploited by attackers [33]. The accuracy issue is
also present when identifying device types [26]. The similarity in
behavior of distinct devices makes it difficult to determine which
device generated the traffic, or what policy to apply to a particular
device.

An alternative approach is to permit traffic based on policies
describing the devices’ expected behavior. This approach is some-
times referred to as specification-based intrusion detection, where
the policy is a narrowly defined list of allowed behavior. The poli-
cies can be provided by the manufacturers or trusted parties as
proposed by the IETF in RFC8520 [22] or generated by local device
observation [7]. Yet another approach is to classify devices into
controllers (e.g., smart phones and IoT hubs) and non-controllers
(e.g., light bulbs), and prevent non-controllers from connecting to
other devices. Non-controllers are given fewer network privileges,
and are only allowed to connect to their cloud endpoints [12].

Anomaly detection capabilities can also be embedded into de-
vices themselves [31]. The idea here is that the firmware on the
device is updated to include an anomaly detection agent which
monitors the system for malicious activity. Since this approach
requires changes to software running on every IoT device, it is
largely incompatible with devices that are currently deployed and
no longer maintained. Moreover, it requires strong cooperation
with manufacturers for adoption.

2.2 Blockchain review
We briefly review the key concepts of blockchain technology. A
deeper treatment can be found in [32]. Blockchain technology ad-
dresses use cases where multiple distrusting parties want to jointly
participate in a system. Blockchain provides shared governance
where participants collaboratively decide what gets added to the
chain and ensures that the protocol is being followed correctly by
all the participants. Participationmay be open (anyone can join, pos-
sibly without registration) or closed (only authorized participants
can contribute).

A major aspect of blockchains is their verifiable sate: the data
in a blockchain reflects the output of its consensus protocol which
has been verified by all the participants. That is, only data that has
been agreed upon through consensus can be added to the chain,
leading the chain to contain only verifiable data. Once data has been
verified by participants in the network, a new block containing this
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data is added to the chain. This data includes a cryptographic link
to the previous block, allowing all parties to verify the continuity
of the chain in addition to the validity of each block.

The consensus algorithm is thus a key aspect of every blockchain.
It ensures that the chain of blocks containing the data is kept syn-
chronized between participants so that they all have an identical
copy of it at any time. It also prevents the blockchain from grow-
ing too rapidly by introducing a delay between the creation of
new blocks. Multiple consensus algorithms exist [8]. The proof
of work (PoW) [6, 17] algorithm is widely used by popular permi-
sionless (open) blockchains such as Bitcoin3 and Ethereum4 and
requires block hashes to be smaller than a defined target. In PoW
blockchains, the weight of each participant’ vote in the validation
process is thus determined by its capacity to compute hashes and
this mechanism ensures that participants are randomly selected to
create new blocks. However, this approach is very costly from an
energy and computational perspective. Indeed, all the effort has no
utility beyond randomly delaying participants’ capacity to produce
valid blocks. Another approach is the proof of stake [19] which does
not rely on computing hashes and thus avoids the massive energy
requirements. With this algorithm, the creator of a new block is
chosen within a pool of participants who have staked a certain
amount of cryptocurrency. The penalty to harm the network is
then the cost of losing the staked amount of cryptocurrency. For
major blockchains this can amount to tens of thousands of dollars.
A participant trying to take over the network would also need to
own 51% of the cryptocurrency supply on that blockchain. That
amounts to billions of dollars for major cryptocurrencies at the
time of writing. It is thus less likely to happen than controlling half
of the network hash power for proof of work [23]. However, this
consensus mechanism requires a built-in cryptocurrency to work.
Both of these consensus algorithms are widely used and provide a
probabilistic way to verify the validity of blocks.

Finally, another feature of blockchains is data loss prevention.
The decentralized nature of blockchains means that data in the
chain is replicated across participants which allows recovery in
case of data loss. At any time a participant can ask for a copy of the
full chain and verify its contents.

Through these properties, Blockchain provides a tamper-proof
decentralized ledger that can be used beyond cryptocurrencies in
applications requiring accountability, transparency and trust in
data [32].

2.3 IoT security and blockchain
Most closely to our work, Golomb et al. [10] propose CIoTA as a
blockchain based anomaly detection system. CIoTA aims to build
collaborative models of IoT devices’ behavior at the device firmware
level. Models are computed locally and validated by the consensus
of the blockchain. The blockchain’s ledger is then used to inform
a client-side intrusion detection system producing alerts when
anomalous firmware events are detected. While a preliminary secu-
rity evaluation of CIoTA appears promising, it requires modification
of the devices firmware to embed a software agent. SERENIoT learns
device behavior at the network layer (see Section 3.3), and thus

3https://bitcoin.org/
4https://ethereum.org/

does not require any changes to the firmware enabling greater
compatibility with existing devices.

Mendez Mena et al. [25] built and evaluated a blockchain based
network filtering system for home networks. Their work focuses
on the implementation of middleboxes called “gatekeepers” that
enforce an allow list of actions on the network level. The allow list
is computed based on the information stored in an Ethereum smart
contract but their work does not detail how the smart contract is
populated. While their study focuses on the enforcement aspects,
SERENIoT presents a solution for both allow list enforcement and
generation.

3 SERENIOT INTRUSION DETECTION
SYSTEM

3.1 Overview
SERENIoT is a distributed specification-based intrusion detection
system for home IoT networks. It monitors the network traffic
to/from IoT devices to detect and block anomalous packets and
connections. It relies on a decentralized ledger that characterizes
devices’ behavior and hosts a list of allowed packet signatures.

SERENIoT nodes (called Sentinels) are designed to be deployed on
network appliances or middleboxes such as routers. A typical set-up
would see one Sentinel deployed per smart home (see Figure 1),
collaborating with other remote Sentinels to determine the correct
network behavior of IoT devices. Sentinels advertise aWiFi network
to which IoT devices connect, thus allowing mediation and filtering
of all network connectivity between the devices and the Internet.
Thewireless network operates as a network bridge to the home local
area network (LAN), so all traffic entering or leaving the Sentinel is
monitored. Through its use of a distributed ledger and peer-to-peer
communication, SERENIoT can operate with little-to-no user input.
Moreover, compared to other network security solutions such as
signature-based intrusion detection systems, SERENIoT’s Sentinels
are implicitly always up to date.

Figure 1: SERENIoTNetwork topology. Sentinels acts asmid-
dleboxes between IoT devices and the network gateway, en-
abling blocking of connections that are outside the device
specification.

Concretely, Sentinels only forward packets that are defined in an
allow list. Any network connection that is not specified in the list
is discarded by the Sentinel. The allow list specifies network packet
signatures characterizing the behavior of a specific IoT device as
observed by the majority of Sentinels on the network. Allow lists
for all IoT devices are stored in SERENIoT’s blockchain. Through
the use of blockchain, SERENIoT is fully decentralized and can
be bootstrapped with a small number of Sentinels. It allows the
system to be fully independent from trusted third parties, device
manufacturers, and to support a large set of diverse IoT devices.
We discuss additional motivation for building SERENIoT on top of
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a blockchain in Section 3.5. SERENIoT is fully backward compatible
with many existing IP-based IoT devices, requiring no changes to
their hardware, firmware, or apps. The system is also designed to
be forward compatible with devices that don’t yet exist, as long
as they use IP-based communication and can connect to the local
Sentinel.

Figure 2: Supported devices for SERENIoT. Devices toward
the left have simpler network behavior and tend to have a
similar network footprint shared across devices of the same
type. Devices toward the right have unique network foot-
prints determined by their users.

We built SERENIoTwith a focus on consumer IoT, noting high ac-
curacy and performancewhenworkingwith feature-limited devices
such as smart bulbs, smart switches, smart locks, smart thermostats,
etc. (see Figure 2). These devices typically only interact with a small
set of cloud services through well-defined APIs, thus their network
footprint can be accurately determined (see Section 4.3). According
to a 2019 study [21], this targets approximately 41% of devices de-
ployed in North American homes, and 28.4% of devices in Western
Europe5. SERENIoT cannot support systems with variable (typically
human-dependent) network behavior, since each systemmay create
a unique set of network connections.

3.2 Threat model
SERENIoT protects devices against attackers trying to change their
behavior, as widely used by botnets [1, 5]. SERENIoT has been
designed to defend against the two following attack scenarios:

• An IoT device has been compromised locally by a malware
trying to change its behavior to accomplishmalicious actions.
The attack vector can vary; the IoT device can be infected
by another device on the local network (for example by an
infected computer or IoT device), or the infection can be the
result of a physical action on the device (for example a mem-
ory card swap). In this situation SERENIoTwould protect the
IoT device from attacking targets on the internet by blocking
all the outgoing traffic deviating from the specification.

• An IoT device is directly exposed on the internet. SERE-
NIoT would protect the IoT device from incoming attacks by
blocking all incoming traffic differing from the specification.
Most IoT devices don’t normally receive incoming connec-
tions from the internet and SERENIoT will then behave as a
firewall blocking all incoming connections.

Once an allow list has been populated for a device, an attacker
would need to change the behavior of more than 50% of the IoT
5We include all IoT devices in the study by Kumar et al. [21] except media boxes, game
consoles, and file storage appliances which are functionally as complex as general
purpose computers

devices of the same type to change the specification and allow the
attack to go through (see Section 4.5).

3.3 Sentinel architecture

Figure 3: Main components of a Sentinel. Description inline.

Sentinels use a modular architecture with 4 main components
(see Figure 3): The network filter component (1) is in charge of
enforcing the policy by dropping network packets that are not
allowed and forwarding acceptable traffic. The network filter relies
on the packet signature module (2) to serialize the raw IP packet
into a textual signature and on the policy module (3) that lists all
the allowed packet signatures. Finally, the blockchain module (4)
keeps the policy updated by synchronizing the ledger with the other
Sentinels and by reporting the newly recorded packet signatures.

3.4 Computing packet signatures
Packet signatures allow Sentinels to characterize recorded pack-
ets. An effective signature algorithm should be precise enough to
differentiate packets from different network connections but flex-
ible enough to produce the same signature across devices of the
same model. Unlike general purpose computers whose behavior
changes depending on their usage, IoT devices of a same model
behave similarly (often identically in terms of traffic transmitted
and destination) and produce similar network traces. We have veri-
fied this hypothesis during our evaluation in Section 4. Our proof
of concept uses packet signatures at the IP level and focuses on
the fields that remain constant across devices. While other packet
signatures and connection fingerprinting techniques exist, we use
a NetFlow6 like representation to strike a balance between unique-
ness and consistency across devices. SERENIoT’s packet signature
aggregates sequences of packets sharing the following values:

• Protocol of the IP payload
• Endpoint (domain name or IP address if domain is unavail-
able)

• Service port

6https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-
netflow/prod_white_paper0900aecd80406232.html
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The endpoint identifies the remote host with which the IoT de-
vice is interacting. To resolve potential domains, we perform reverse
DNS lookups. The service port identifies the well-known port num-
ber used by the connection7. Packets of a same flow will share the
same signature that will be used by SERENIoT to identify anoma-
lous flows and packets. Signatures are computed by serializing and
hashing the following values:

Siдnature = H (protocol , endpoint , service port)

Packet signatures don’t include device-specific identifiers such
as Media Access Control Organizational Unique Identifiers (OUI).
Indeed, it is unclear whether all devices of a same model will share
a single OUI as many manufacturers are allocated more than one.
Two identical devices with different OUIs would be assigned to
different chains weakening the security of both chains. Moreover,
malicious code running on an IoT device may be capable of manip-
ulating the MAC address. Our choice of packet signatures allows
to differentiate packets going to untrusted hosts from those going
to the manufacturer’s API. It also allows to differentiate packets
initiated by the monitored device from those initiated by a remote
entity in the case of IPv6 network or networks without NAT where
devices are directly exposed on the internet.

Note that SERENIoT does not precisely identify devices. Devices
that produce the same set of packet signatures are grouped and the
system assumes they are of the same type. Devices are characterized
by their packets signatures and device types are fingerprinted by
hashing their sorted set of packet signatures.

3.5 SERENIoT’s blockchain
The blockchain is the key behind SERENIoT’s collaborative policy
generation mechanism. It ensures that all the packet signatures
written to the policy are agreed upon through a distributed consen-
sus protocol. This provides robustness and trust by making sure
malicious signatures are not added to the allow list as long as a ma-
jority of Sentinels participating in the network observe legitimate
behaviors on their local IoT devices.

Our choice of building SERENIoT on blockchain stems from 3
core design requirements: (1) To allow SERENIoT to operate in-
dependently. Blockchain distributes the data hosting across users
allowing SERENIoT to be independent from any third party. (2) To
deploy a highly available system providing security policy updates
at very low cost. (3) To make the system available without restric-
tion of use to certain brands of devices. We evaluate our blockchain-
based system in Section 4.

To implement SERENIoT, we have designed a custom public
blockchain based on Bitcoin’s blockchain principles but with no
inherent cryptocurrency. We elected to build a custom blockchain
because current blockchain frameworks are either strongly tied
to token economics (e.g., Ethereum8) or designed to build permis-
sioned blockchains (e.g., Hyperledger fabric9). Designing our own
chain gives us the flexibility to include only features specific to our
7The service port generally refers to the remote endpoint’s port. However, some IoT
devices (e.g., cameras) host certain services locally, in which case the service port
refers to the local port hosting the service. To differentiate between local and remote
services, we append a direction identifier (L for local or R for remote) to the service
port.
8https://ethereum.org/
9https://www.hyperledger.org/projects/fabric

requirements while avoiding compatibility challenges arising from
trying to retrofit another framework to our use case.

3.5.1 Ledger. SERENIoT’s ledger contains packet signatures re-
ported by the Sentinels. It is based on a distributed timestamp server
chaining data blocks together. The linked timestamping mechanism
ensures that blocks cannot be rearranged or modified without in-
validating subsequent blocks in the chain. As the blockchain grows,
Sentinels converge on the chain with the most blocks. Figure 4
illustrates a sample chain for a specific device.

Figure 4: Device chain: The Sentinels add packet signatures
into blocks. The chain grows and only signatures listed into
the longest chain are trusted.

In our implementation, blocks store a list of packet signatures
reported by the Sentinels instead of a Merkle root of transactions
as in Bitcoin (see Figure 5). The complete list of reported signatures
is indeed necessary to build the policy and there is thus no need
for selective reveal.

Figure 5: SERENIoT’s Block architecture. The Sentinel Ad-
dress is a unique identifier generated at Sentinels start up us-
ing the same algorithm used to generate Bitcoin’s addresses.

To extend the chain and report new packet signatures to the
system, Sentinels only work on top of blocks that contain signa-
tures that they have previously observed. That is, Sentinels avoid
appending to chains that include unknown signatures. These packet
signatures may be malicious or reflect previously unseen connec-
tions for a device. Thus, the fastest growing chain always contains
the most common packet signatures that have been observed by
a majority of Sentinels. This mechanism is described in detail in
Section 3.5.3.

The policy is a cumulative set of allowed packet signatures that
have been included in confirmed blocks since the chain genesis.
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Note that this policy may allow behavior that is no longer necessary
to the device to operate (e.g. a feature that was removed through
a software update). Future work will explore removing outdated
signatures.

SERENIoT extends this concept and uses a multichain architec-
ture with one device chain / allow list to track the behavior of each
protected IoT model (see 3.5.5).

3.5.2 Consensus. SERENIoT’s consensus algorithm ensures that
the allow list is kept synchronized between Sentinels so that they all
converge to an identical copy of the blockchain. It is also responsible
for making sure that the fastest growing chain gathers the most
Sentinels. To facilitate the development of our proof of concept, we
implement a proof of work consensus algorithm [28]. We discuss
alternative consensus algorithms in Section 6.1.

With proof of work, blocks are produced by nodes racing to solve
computational puzzles. The node that solves the puzzle appends
its block to the chain. Each additional block increases the effort
required to rewrite the longest chain, since changing a past block
would require every subsequent proof of work to be recomputed.
As long as the computational power distribution remains balanced
across Sentinels, the fastest growing chain will gather the most
Sentinels.

3.5.3 Sentinels workflow. Sentinels participate in maintaining and
updating the policies by serving as blockchain nodes. Sentinels only
subscribe to the policies corresponding to the devices they locally
monitor. A Sentinel’s blockchain node process can be described as
follows.

(1) The Sentinel monitors IoT devices that are connected to
it and collects new packet signatures into allow list block
candidates. One allow list block candidate is created per
subscribed allow list. If a device is inactive or no new packet
signatures have been recorded, the Sentinel builds an empty
block.

(2) The Sentinel computes the hashes of the allow list block can-
didates’ headers and adds them to a control block candidate.

(3) The Sentinel works on solving the proof of work for the
control block candidate.

(4) The first Sentinel to produce a control block is selected to
append its allow list block candidates to the corresponding
list. To do so, it broadcasts the control block along with all
the allow list blocks listed within.

(5) Sentinels always accept broadcasted control blocks. Sentinels
only accept a broadcasted allow list block if they are regis-
tered to the corresponding allow list and if they recognize
all its packet signatures. When accepting a block, Sentinels
work on extending the chain on top of that block. An allow
list block is only valid if its block header is listed in a control
block. Sentinels always converge on the longest chain and
forks are resolved when a branch becomes longer than the
others.

3.5.4 Adding incentive for open networks. We designed SERENIoT’s
blockchain to work with no inherent cryptocurrency. Thus, Sen-
tinels that contribute to the network by providing computational
power cannot be rewardedwith some cryptocurrency. To encourage
Sentinels to stay active and contribute to the blockchain, inactive

Sentinels are isolated by their neighbors and do not receive the
latest allow list updates. To signal their activity and contribution to
the network, Sentinels use a mechanism inspired by mining pools
and broadcast partial proof of work solutions to the problem they
are trying to solve. This proves to their neighbors that they are
active and contributing to the system. Isolated Sentinels gradually
become less useful since they are no longer able to verify newly
recorded packet signatures. This in turn prevents them from differ-
entiating between normal and abnormal behavior as observed by a
majority of Sentinels.

3.5.5 Multichain. The logic described thus far works well for one
specific IoT device. Indeed, every IoT device protected by SERENIoT
needs its own blockchain as Sentinels cannot adjudicate on blocks
containing packet signatures for unknown devices. SERENIoT uses
a multichain solution allowing Sentinels to subscribe to the allow
lists concerning the devices they protect. Thus, each device type
uses a separate blockchain to track its behavior. When a new device
is connected to a Sentinel, the Sentinel profiles it and assigns it to a
chain aggregating similar devices. To profile a device and subscribe
to the right chain, Sentinels observe device behavior during a short
profiling phase upon its connection. Once the profiling phase is
complete, Sentinels compute the allow list identifier corresponding
to the device. This identifier is computed by hashing the sorted list
of packet signatures collected during the profiling phase. Note that
SERENIoT does not identify devices precisely. Instead, devices that
produce the same set of packet signatures are grouped together
and the system assumes they are the same type. Thus, devices are
characterized by their packets signatures and device models are
fingerprinted by hashing their sorted set of packet signatures.

To support multiple IoT devices, SERENIoT’s Blockchain is com-
posed of one control chain and multiple device-specific chains (also
referred to as allow lists), one for each device model protected by
the Sentinels. In our implementation, the control chain stores the
block headers of valid allow list blocks and uses the proof of work
consensus mechanism. Device-specific chains do not have an inde-
pendent consensus mechanism, they instead leverage the control
chain’s proof of work.

The control chain improves robustness by requiring all Sentinels
(regardless of their locally monitored IoT devices) to ultimately
contribute to a single global chain while building on device-specific
blockchains. This increases the effort required for an attacker to
target a specific unpopular allow list to rewrite it. Indeed, all blocks
in device-specific chains are validated in the control chain that
gathers all the Sentinels of the network.

3.6 Detecting behavior changes
SERENIoT is designed to protect IoT devices with limited function-
alities such as smart bulbs, smart outlets or smart cameras. These
devices typically establish a small set of network connections so we
can characterize their expected behavior by observing the network
traffic of a large number of devices of a specific model. Sentinels
use the most common behavior observed by nodes in the system
to create a specification of what the observed device should be
allowed to do. Specification-based intrusion detection systems raise
alarms when behavior deviates (even slightly) from a narrowly
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Figure 6: Multichain support in SERENIoT. Block headers
of device specific blockchains are incorporated into a single
control chain.

defined specification. Network traffic is either permitted or blocked,
with no notion of confidence or likelihood of attack, as is the case
with anomaly-based IDS. Specification-based IDS is also different
from signature-based IDS, where experts define signatures of all
known attacks. SERENIoT seeks to define signatures of known good
behavior and block all other network traffic.

To do so, Sentinels use allow lists to record the packet signatures
characterizing devices’ intended behaviors. When a packet from
an IoT device is recorded by a Sentinel, the Sentinel computes its
signature and verifies whether the signature exists in the allow list
for the device. If the signature is trusted, the packet is forwarded to
its destination. Otherwise the packet is blocked, and the Sentinel
reports the packet signature (i.e., adds it to current block candidate
of the allow list). It will eventually be appended to the allow list
if the majority of Sentinels also report it. This mechanism allows
Sentinels to detect and block anomalous behaviors that are only
observed on a small proportion of monitored devices.

3.6.1 Updating the policy. When a device’s behavior changes, other
Sentinels on the network report whether they also observed the
change. The behavioral change can be the result of a firmware
update or of an attack. To decide if the new behavior is legitimate,
Sentinels rely on the majority’s observation: if the change has been
observed by the majority of Sentinels, it is considered as legitimate
and will be added to the allow list. Otherwise it will be considered as
anomalous and will be blocked. This logic is based on the idea that
if the majority of devices of the same type share the same behavior,
this is their “intended” behavior. Note that intended behavior may
itself be anomalous: for example, in January 2020, Google revoked
Xiaomi’s access to the Google Home Hub ecosystem after users
were able to view the video feeds of strangers’ security cameras [2].

Theses cases, however, can be better addressed by treating the de-
vice itself as untrusted and taking action against the manufacturer.

3.6.2 Transparency & auditing . In addition to Sentinels network
filtering capabilities, the open and public nature of SERENIoT’s
blockchain introduces a new data source for cyber security experts,
allowing them to follow and audit in real time the behavioral evolu-
tions of IoT devices. This can be used to monitor emerging threats,
update adoption rates, etc. For example, it is possible to measure
the spread of a growing botnet by monitoring rejected forks. Trans-
parency and privacy concerns are discussed in Section 6.2.

3.7 Device onboarding
When a new IoT device is added to a local network protected by
SERENIoT, the Sentinel first goes through a profiling phase to fin-
gerprint the device before enforcing network filtering. This process
is detailed below:

Figure 7: Device onboarding flow-chart.

(1) Onboarding: The user buys a new device and connects it
to the Sentinel. To connect the device to the Sentinel, the
user uses the dedicated WiFi network broadcasted by the
Sentinel.

(2) Profiling: During the profiling phase, the Sentinel allows all
network traffic to and from the device and computes packet
signatures for all the network connections to characterize
the device. The connection signatures are used to register the
new device to the blockchain regrouping all the devices with
a similar network footprint. This profiling phase usually re-
quires about 1 minute for most IoT devices tested during our
evaluation (see Section 4.3). If the corresponding blockchain
does not exist (i.e., it is the first device with this network
footprint to be connected to a Sentinel), a new device specific
chain is initialized.

(3) Enforcement: Once the device has been registered to a
blockchain, the Sentinel downloads the blockchain to build
the policy and begins blocking all the packets whose signa-
tures don’t match the policy. The Sentinel also starts report-
ing newly recorded packet signatures to the allow list.

(4) Behavior change / Policy update: If the behavior of the
protected devices changes, the Sentinel will vote to decide
whether these changes need to be incorporated into the pol-
icy based on the majority’s observations. As expected, if the
majority of nodes on a chain are malicious and controlled by
a single attacker, it will be possible to incorporate anomalous
packet signatures into the allow list. We discuss this issue
further in the security evaluation Section 4.5
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4 EVALUATION
To ensure correct system behavior, we conducted a small scale
experiment using real IoT devices. We then tested the compati-
bility, scalability and robustness of SERENIoT using larger scale
simulations on Amazon AWS.

4.1 Implementation
The proof of concept of the SERENIoT Sentinel is developed in
node.js10, a cross platform, open source javascript runtime envi-
ronment designed to build event-driven and asynchronous web
applications. We implemented the blockchain component from
scratch, without the use of existing blockchain frameworks. Sen-
tinels communicate with peers using WebRTC11 and websockets12.
We use netfilterqueue13 to intercept, inspect and block network
packets forwarded by the Sentinels. In addition, we developed a
Web UI using the VueJs framework14 to monitor Sentinels in real
time and to manage experimental instances. Screenshots of theWeb
UI are presented in Appendix A.1.

4.2 Functional real world experiment
The goal of our experimental set-up (see Figure 8) was to simulate
the network topology of a real IoT network. We installed the Sen-
tinel software on 3 Raspberry Pis (model 3B+) configured as WiFi
hotspots and connected one LIFX Mini Smart bulb to each Sentinel.
The router plays the role of the home gateway.

Figure 8: Physical devices used for our real experimental set-
up.

The goal of the real world experiment was to validate the opera-
tion of SERENIoT by testing it on real IoT devices. Sentinels were
initialized with no prior knowledge of the devices’ behavior and
with empty security policies. During the experiment we interacted
with devices through the manufacturers’ mobile app.

This first experiment validates the concept behind SERENIoT;
The 3 Sentinels were successfully able to record the packets from the
bulbs and to converge on the list of the resulting packet signatures
10https://nodejs.org/
11https://webrtc.org/
12https://developer.mozilla.org/docs/Web/API/WebSockets_API
13netfilterqueue is a wrapper around libnetfilter_queue that gives ac-
cess to the packets matched by specific iptables rules. More information:
https://netfilter.org/projects/libnetfilter_queue/
14https://vuejs.org/

shown in Table 1. A security policy was successfully generated. We
also noted during this experiment that there was no perceptible
delay introduced by the Sentinel and we were able to interact in real
time with the bulb through the LIFX mobile app. While we did not
conduct a thorough performance overhead analysis in this exper-
iment, SERENIoT posed no noticeable interference with between
the smart bulbs and our commands.

Recorded packet Pkt. Signature Desc.
UDP time1.google.com R123 0cca40...aed4d4 NTP
TCP 104.198.46.246 R56700 4e2b3d...2a4474 LIFX API

Table 1: Packet signatures recorded for the LIFX Smart Bulb
during our experiment. Signatures have been truncated.

4.3 Compatibility and scalability simulation
For testing compatibility and scalability, we set-up a virtualized
testbed with 1000 Sentinels on Amazon AWS. Each Sentinel was
run in a separated Docker container and we used Docker Swarm to
orchestrate our cluster and deploy the Sentinels’ containers on AWS
instances. We used 10 Amazon EC2 c5.2.xlarge instances hosting
each 100 Sentinels and connected through a Docker virtual network.

Each Sentinel was simulating a set of devices from the dataset
of Alrawi et al. [4]. This dataset provides packet captures of an IoT
network with 53 different devices for 9 continuous days. Devices
were simulated by replaying these packets in random order and
at random intervals to imitate the unpredictable aspect of user
interactions (for a example a smart light bulb might be powered
off during a period of time and the user can interact with it at any
time).

4.3.1 Dataset analysis. Based on these captures, we extracted the
devices’ behavior by isolating packets generating unique signatures.
Figure 9 shows the evolution of the number of unique packet signa-
tures for the devices in the dataset. We clearly denote two classes
of IoT devices: devices with a simple behavior characterized by a
small number of packet signatures as LIFX Smart Bulb, TPLinkWiFi
plug or Nest Guard and other more complex multipurpose devices
such as iPads, smart TVs, etc. We also observe on Figure 9 that
devices with a simple functionality are characterized by a stable
behavior over time that does not change often. This validates our
initial hypothesis that IoT devices’ typical behavior only contains a
small set of actions which remain constant over time.

4.3.2 Simulations. The goal of the simulations was to validate the
compatibility of SERENIoT with multiple simulated devices and to
validate the scalability of the system on a larger scale experiment. To
do so, we ran multiple simulations for different time periods (from 1
hour to multiple days) and with different number of Sentinels (from
20 to 1000). The Sentinels were initialized with no prior knowledge
of the devices behavior and with empty security policies before
each simulation.

Sentinels were able to converge and produced lists of trusted
packet signatures for simple devices. Sentinels were also able to
identify and block anomalous packets injected in a small number
of Sentinels’ devices’ behavior while keeping the device functional.
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Figure 9: CDF of distinct packet signatures per device recorded over a 9-day period. Labeled lines identify general purpose
devices.

A screenshot showing the identification and rejection of a fork
with anomalous packet signatures can be found in Appendix A.1.
However, they were unable to converge on a security policy for
general purpose devices as iPads, iPhones and Android tablets.

This experiment show that SERENIoT also behave as expected
with a larger set of simulated devices. Sentinels are able to generate
security policies for IoT devices with a simple network footprint and
to identify and block anomalous packets. We have observed during
the simulations that the breaking point where behavior changes
are incorporated in the trusted list of packet signatures usually
happens when 51% of the Sentinels record a same packet signature.
This means that 51% of the Sentinels need to record a same packet
signature to be authoritative on the longest chain and include the
packet signature in the allow list for a given device. Thus, popular
devices are less likely to be attacked as more Sentinels need to be
infected to incorporate malicious packet signatures in the allow list.
However, they also require more time for updates to be deployed
as updates need to reach a greater number of devices before being
trusted.

4.4 Blockchain performance evaluation
This section evaluates the capacity of our system to run over long
periods of time. During our experiments we measured the growth
of the blockchains and monitored the runtime metrics of the Docker
containers running the Sentinels.

Blockchains size. Sentinels store blocks as JSON files. To measure
the blockchain growth we connected to different Sentinels during
a 24-hour experiment and recorded the number of stored blocks as
well as the size of the blocks directory after 1 hour, 5 hours and 24
hours. For this experiment we used 20 simulated Sentinels with one
Belkin Netcam connected. The number of Sentinels in the network
does not influence the blockchain size as the block production rate
is fixed and determined by the consensus algorithm. Sentinels also
delete rejected fork blocks as soon as they converge on a longest
chain.

Table 2 shows that the control chain block size tends to be con-
stant over time. The block size for the control chain is determined
by the number of different IoT devices types protected by the Sen-
tinels. Indeed, each device type has is own device chain and each
device chain is indexed into the control chain. Control chain blocks
list the block headers of the latest produced blocks from the device
chains, containing at maximum the number of device chains, block
headers. Block headers are SHA256 hashes and have a fixed size of
32 bytes. It is thus straightforward to compute the control chain
block size for a given number of IoT devices. Based on our mea-
surements, the control chain with 1 IoT device should be around
511MB after one year running.

1.4MB ∗ 365days = 511MB/year

If we consider 10K different IoT device types protected by our
Sentinels, the control chain should be around 511GB after one year
running.

4384blocks ∗ 10000 ∗ 32B + 1.4MB = 1.4GB/day

1.4GB ∗ 365days = 511GB/year
Table 3 shows that the device chain block size also tends to be

constant. Indeed, most of the blocks in device chains are empty
as blocks list packet signatures of newly observed behaviors. In
the long run, the majority of blocks will thus be empty as new
behaviors are rarely recorded. Based on our measurements, device
chains should be around 474MB after one year running.

1.3MB ∗ 365days = 474MB/year

Sentinels are required to maintain a copy of the control chain.
However, they only need to download and maintain the device
chains corresponding to the device types they protect. Thus, a
Sentinel with 10 different IoT devices would need to maintain a
copy of the control chain and 10 device chains.

Future work will explore a block expiration feature where out-
dated blockswill be deleted. This featurewould prevent the blockchains
to grow infinitely while allowing old policies to be updated by
deleting outdated behaviors no longer in use by the majority of the
devices.
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Elaps. Time No. of blocks Size Avg. block size
1 hour 205 64KB 312B
5 hours 918 291KB 316B
24 hours 4384 1.4MB 316B

Table 2: Block size measurements for the control chain with
1 IoT device.

Elaps. Time No. of blocks Size Avg. block size
1 hour 193 59KB 304B
5 hours 906 268KB 296B
24 hours 4367 1.3MB 295B
Table 3: Block size measurements for a device chain.

Sentinels runtime metrics. To record Sentinels’ metrics, we used
the docker stats command15. We recorded the metrics for 20 simu-
lated Sentinels during a 24 hours experiment after 1 hour, 5 hours
and 24 hours. Thesemetrics show the CPU,memory and network us-
age. We observed that Sentinels use approximately 140MiB of RAM
after running for 24 hours (with an initial usage of 120MiB of RAM)
and that their network usage is correlated with the blockchains
growth. Sentinels only download blocks for the control chain and
for the device chains they are registered to. The network usage
varies between two Sentinels based on the number of different IoT
devices they are protecting. Finally, Sentinels were using a simu-
lated proof of work consensus algorithm to run the experiment.
Their CPU usage is thus not representative of the usage one would
observe if the Sentinels were using real proof of work instead. In
the case of real proof of work we expect CPU usage to be maxed
out at 100% for all Sentinels.

4.5 Security evaluation
When a new IoT device is connected to a Sentinel, the Sentinel de-
termines the corresponding allow list based on the device behavior.
Thus, devices behaving similarly will be grouped on the same allow
list and already compromised devices behaving differently will be
assigned to a separate list.

Uncompromised devices are thereby grouped, and the corre-
sponding allow list will only contain packet signatures reflecting
the behavior of these devices. In this section, we consider the differ-
ent attack vectors that may lead to successful attacks incorporating
malicious packet signatures into an allow list or exploiting devices
to change their behavior.

Attacks against IoT devices during profiling. During the pro-
filing phase (see Section 3.7), Sentinels allow all the traffic and don’t
enforce any network filtering for the newly connected IoT device.
Even if this phase only lasts a few minutes, an attacker could use
this window to perform an attack. In this case, the attack will mod-
ify the network footprint of the device which will likely cause it
to be registered to a different chain than other benign devices of
the same type. This chain will regroup all the devices of this type
that have produced the same network footprint during the profiling
15More information on the Docker runtime metrics can be found here:
https://docs.docker.com/config/containers/runmetrics/

phase (i.e., all the devices of the same type that have been targeted
by the same attack during the profiling phase) and the Sentinels
will not filter the resulting malicious network connections.

Devices may already be infected when initially connecting to
Sentinels. In this case, if the infected devices’ behavior is similar to
benign devices of the same type, they will be registered to the same
device chain. However, if the infected devices’ behavior is different,
they will be registered to a chain with similarly-infected devices.

Attacks against IoT devices during enforcement. Once the
Sentinel is in the enforcement phase (see Section 3.7), we differenti-
ate two types of attacks against the IoT devices. Attacks from the
local network and attacks from the internet.

Attacks from the local network will eventually succeed and com-
promise devices as Sentinels do not enforce any network filtering
on the local network. However, Sentinels will block any behavior
deviating from the specification trying to reach the internet. This
protects against compromised local IoT devices trying to attack
targets on the internet and restricts them to the strict behavior
listed in the specifications. Due to the open nature of its blockchain,
SERENIoT also provides new metrics allowing experts to monitor
the behavior of a large number of IoT devices in real time.

Attacks originating from a remote attacker targeting a specific
IoT model will be blocked by Sentinels as long as only a minority
of Sentinels observe the same attack pattern. Thus, these attacks
grow in difficulty with more Sentinels protecting more devices of
a specific model. For an attack to succeed, its network footprint
has to be similar on a majority of Sentinels (meaning that Sentinels
should record packets signatures with the same IP address). The
attacker also needs to target 51% of all devices in less than one
block-interval (the time interval between blocks). For popular IoT
devices, attacker unlikely have the resources to initiate an attack
targeting simultaneously a large number of devices from a single
host. Commonly, attackers rely botnets to carry massive attacks
against IoT devices. IoT botnets such as Mirai [5], Brickerbot [18]
and Hajime [14] share similar network footprints during the infec-
tion phase: they scan for listening telnet, ssh and http services and
try to bruteforce the credentials. However, the source IP addresses
of the attacker vary as botnets use infected devices to spread and
infect new hosts. The packet signatures of each botnet attack will
thus likely vary from one target to another as the IP and port used
by the attacking device will vary. By design, SERENIoT should
effectively block P2P botnets, particularly those having multiple
attackers. Because these signatures are not consistent across all
Sentinels, they are unlikely to be added to the allow list and the
attack will be blocked.

In both cases, unpopular devices are more prone to attacks be-
cause packets are filtered based on policies built from observations
from a smaller number of Sentinels. However using SERENIoT to
protect unpopular devices still provides a better protection than
using no protection as long as an attacker does not control more
than half of the Sentinels for a particular device.

Attacks on Sentinels. Sentinels act as both blockchain nodes and
network traffic enforcement points. Thus, if a Sentinel is compro-
mised, the attacker may insert or remove traffic rules arbitrarily16.
16This is not unlike the security of a firewall or router, which should typically be better
protected than internal hosts on the network.
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However, attacking a specific node does not allow the inclusion
of malicious packet signatures into the blockchain, as these must
still be validated and confirmed by the majority of the nodes. SERE-
NIoT’s blockchains are vulnerable to two types of majority attacks.

• Majority attacks against the control chain can succeed if
an attacker has the computational capacity of more than
half of all Sentinels. This adversary can win every proof-
of-work round, allowing the inclusion of arbitrary packet
signatures into any device blockchain/allow list. This type
of attack is devastating to the network since allow lists are
shared amongst all Sentinels. We discuss alternative consen-
sus protocols to lower the probability of such an attack in
Section 6.1.

• Majority attacks against device chains can succeed if an
attacker controls more Sentinels than half of all Sentinels
registered on a specific device chain. This adversary will be
able to append blocks to these chains more often than legiti-
mate Sentinels which can result in incorporating malicious
blocks into the longest device chain. This attack grows in
difficulty with more Sentinels protecting the same device of
a specific model and contributing to its chain. For popular
IoT devices, with a large number of Sentinels registered on
their chain, this attack’s difficulty is similar to a majority
attack on the control chain.

5 LIMITATIONS
Our system currently only monitors LAN-to-WAN connections so
it does not protect IoT devices from other infected devices on the
local network. While this limitation allows P2P infection methods
to succeed on the local network, infected IoT devices will be unable
to attack remote hosts; Sentinels will block the outgoing traffic that
does not comply with the policy.

Our system is tailored to support IoT devices with a small net-
work footprint. It is unclear, however, how effective the system can
be in protecting IoT devices with more diverse network behavior.
An open question is whether any collaborative intrusion detection
system (ours included) can converge on a set of connections that
should be permitted. One strategy for complex devices is to make
the packet signature algorithm less specific, but this may have the
disadvantage of missing certain attacks.

In its current design, SERENIoT will block any user-defined
connection to remote servers (e.g., a cloud-based FTP server for
video stream backups). Connecting to user-defined endpoints will
typically be blocked because connections to these arbitrary servers
will not be observed amongst the broader population of Sentinels.
One option to permit user-defined servers to be allowed is to enable
a manual override in the user interface, allowing advanced users to
allow specific connections without impacting the distributed allow
list. We will explore adding this feature in future work.

Finally, like any collaborative system, performance (both accu-
racy and resilience to attack) improves with the deployment of each
additional node. By deploying more Sentinels, manipulating the
blockchain (and therefore the allow lists) requires more effort from
an attacker. Similarly, in the case of a small number of Sentinels,
the likelihood of an attack influencing the packet signatures that
get added to the allow list is higher.

6 DISCUSSION
6.1 Consensus
In our proof of concept, we used Proof of Work for its implementa-
tion simplicity and wide availability. However, we expect that most
Sentinels will be deployed on devices with limited computational
power such as small office and home routers. Since proof of work
relies on computationally intensive problems to secure the chain, an
attacker with large computing resources can easily overpower even
a large number of routers. To mitigate this, an alternative consensus
algorithm could be used. In addition to the consensus algorithms
mentioned in Section 2.2, two promising alternatives are proof of
elapsed time (PoET) [15] and robust round robin (RRR) [3]. These
algorithms both leverage Intel’s Safe Guard Extension (SGX) [16].
PoET has the same objective as proof of work: to randomly delay
block production so that it is evenly spread across the network
over time. To do so, nodes are required to run the code generat-
ing the delay inside Intel’s SGX to certify they effectively wait a
random time at each block production round. On the other hand,
RRR selects nodes alternately to distribute block production across
all participants. In RRR, node selection is based on elapsed time
since last block mined; the node that has not mined a block for
the longest time is selected. To join the network, nodes require a
unique identity provided by SGX. This ensures that each partici-
pant is unique, as it is not possible to generate multiple identities
with a single SGX chip. Unlike PoW, PoET and RRR do not require
heavy computational effort and thus are less energy consumptive.
However, these methods also have limitations: they are tied to a
given chip vendor and rely entirely on a third party platform to
work exposing them to vulnerabilities [11, 27, 34, 35].

6.2 Transparency and privacy
Blockchain systems, in particular those which are public tend to
elicit privacy concerns since the ledger is replicated across all par-
ticipants. By using SERENIoT, IoT device behaviour is published
into an immutable public data structure that can help users under-
stand the expected functionality of a device before it is purchased.
Auditors and regulators can use this information as well to inform
regulation of future devices. The disadvantage of this transparency
is that directly connected nodes can query each other for the avail-
ability of blocks corresponding to particular chain. Because Sen-
tinels only keep blocks for devices they are protecting, this could
allow an attacker who knows the mapping between a device and a
chain to learn the presence of specific devices on specific Sentinels.
We see two possible mitigations: (1) Sentinels could store a copy of
device-specific chains for devices they don’t protect, allowing them
to respond to block requests even if they do not protect the corre-
sponding device. This privacy improvement comes at the expense
of block storage. (2) Sentinels could throttle requests per source IP
address and exponentially increase the response delay for every
subsequent request from the same source.

6.3 Usability
Despite its complexity, SERENIoT can fully operatewithout any user
interaction to protect the vast majority of simple IoT devices. We
expect that this zero-configuration will encourage adoption even
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by non-expert users. However, in the event of software updates that
change the behaviour of an IoT device, the system will prevent new
functionality from working until the majority of Sentinels observe
the same behaviour on their devices. The research community has
not yet measured the speed of deployment of software updates on
IoT. Lack of updating may leave early adopters without the ability
to use the new features. One might argue that for security reasons,
waiting for the majority of devices to upgrade is safer, but some
users may want the latest features as soon as possible.

In future, we may add a manual override to allow expert users
to clear the currently learned behaviour of their device and treat
it as new after the update has been applied which will likely force
the device onto a different chain.

The system provides usability for regular users. It does not re-
quire any user interaction to work and will protect devices once
they are onboarded. For real world deployment, SERENIoT could
be deployed by ISPs on consumer gateways.

7 CONCLUSION
IoT devices in smart homes are often unnecessarily overprivileged,
increasing the risk of compromise and impact of attacks. This paper
explored leveraging blockchain technology to assist in determining
a strict specification of essential network behavior of IoT devices.
We presented SERENIoT as a proof of concept network policy man-
agement and enforcement system that can operate with little to no
user input. Our evaluation shows that the system is able to converge
on small network security policies for many simple consumer IoT
devices without requiring changes to firmware, software, or apps,
and without requiring vendor buy-in. The consensus algorithm
forces attackers to execute majority attacks to make changes to
those policies. While implementation and deployment challenges
remain, we hope that SERENIoT can be viewed as a first step toward
blockchain-based network security policy enforcement systems.
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A APPENDICES
A.1 SERENIoT screenshots

Figure 10 shows the identification and rejection of a fork with anomalous packet signatures.

Figure 10: Rejected fork with anomalous packet signatures. The whitelist contains only packet signatures listed in the longest
chain.

Figures 11, 12 and 13 show screenshots of the Web UI during a simulation with 100 Sentinels.

Figure 11: Screenshot of the Network view of the Web UI.
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Figure 12: Screenshot of the Sentinel view of the Web UI.

Figure 13: Screenshot of the Blockchain view of the Web UI.
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