
A Methodology for Empirical Analysis of
Permission-Based Security Models

and its Application to Android

David Barrera
dbarrera@ccsl.carleton.ca

H. Güneş Kayacık
kayacik@ccsl.carleton.ca

P.C. van Oorschot
paulv@scs.carleton.ca

Anil Somayaji
soma@scs.carleton.ca

School of Computer Science, Carleton University
Ottawa, ON, Canada

ABSTRACT
Permission-based security models provide controlled ac-
cess to various system resources. The expressiveness of
the permission set plays an important role in providing the
right level of granularity in access control. In this work,
we present a methodology for the empirical analysis of
permission-based security models which makes novel use
of the Self-Organizing Map (SOM) algorithm of Kohonen
(2001). While the proposed methodology may be appli-
cable to a wide range of architectures, we analyze 1,100
Android applications as a case study. Our methodology
is of independent interest for visualization of permission-
based systems beyond our present Android-specific empiri-
cal analysis. We offer some discussion identifying potential
points of improvement for the Android permission model,
attempting to increase expressiveness where needed with-
out increasing the total number of permissions or overall
complexity.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets; D.4.6 [Operating Systems]: Security
and Protection—Access Controls

General Terms
Security, Experimentation

Keywords
Access control, self-organizing maps, permission-based se-
curity, smartphone operating systems, visualization

This is the authors’ version of the work. It is posted here by permission of
the ACM for your personal use. Not for redistribution. The definitive ver-
sion was published in ACM CCS’10, October 4–8, 2010, Chicago, Illinois,
USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

1. INTRODUCTION
Access control lists (ACLs) and permission-based secu-

rity models allow administrators and operating systems
to restrict actions on specific resources. In practice, de-
signing and configuring ACLs (particularly those with a
large number of configuration parameters) is a compli-
cated task. More specifically, reaching a balance between
the detailed expressiveness of permissions and the usabil-
ity of the system is not trivial, especially when a system
will be used by novices and experts alike.

One of the main problems with ACLs and permission
models in general is that they are typically not designed by
the users who will ultimately use the system, but rather by
developers or administrators who may not always forsee
all possible use cases. While some argue that the prob-
lem with these permission-based systems is that they are
not designed with usability in mind [11], we believe that
in addition to the usability concerns, there is not a clear
understanding of how these systems are used in practice,
leading security experts to blindly attempt to make them
better without knowing where to start.

While there are many widely deployed systems which
use permissions (some are discussed in Section 2.2), we
focus on the empirical analysis of the permission model in-
cluded in Android OS [1]. Android is a newcomer to the
smartphone industry and in just a few years of existence
has managed to obtain significant media attention, market
share, and developer base. Android uses ACLs extensively
to mediate inter-process communication (IPC) and to con-
trol access to special functionality on the device (e.g., GPS
receiver, text messages, vibrator, etc.). Android develop-
ers must request permission to use these special features
in a standard format which is parsed at install time. The
OS is then responsible for allowing or denying use of spe-
cific resources at run time. The permission model used
in Android has many advantages and can be effective in
preventing malware while also informing users what ap-
plications are capable of doing once installed.

The main objectives of our empirical analysis are: (1) to
investigate how the permission-based system in Android
is used in practice (e.g., whether the design expectations
meet the real-world usage characteristics) and (2) to iden-

tify the strengths and limitations of the current implemen-
tation. We believe such analysis can reveal interesting
usage patterns, particularly when the permission-based
system is being used by a wide spectrum of users with
varying degrees of expertise. As of July 2010, there are
over 80,000 applications available for Android [2], many
of which are free and written by both large software de-
velopment companies and hobbyists. Also, the Android
Market is not controlled as tightly as other mobile appli-
cation stores [5]. This implies the applications may exhibit
more variety in terms of requested permissions along with
other behavioral characteristics which might not occur in
a closed environment.

Contributions. Our main contribution is a novel
methodology for exploring and empirically analyzing
permission-based models. In this paper, we employ our
methodology for the analysis of 1,100 applications writ-
ten for the Android OS. Using the Self-Organizing Map
(SOM) algorithm [16], we identify trends in how devel-
opers of these applications use the Android permissions
model. We find that while Android has a large number
of permissions restricting access to advanced functionality
on devices, only a small number of these permissions are
actively used by developers. Our analysis identifies per-
missions that are overly broad (i.e., controlling access to a
large set of features). Furthermore we identify application
clusters based on requested permissions, and extract the
prominent permissions within each cluster. Our empirical
observations provide a basis for possible enhancements to
the Android permission model.

The remainder of this paper is structured as follows.
Section 2 presents background on permission-based se-
curity architectures, provides examples of some currently
deployed permission-based systems and discusses related
work. Section 3 describes the Android operating system
and its novel permission model. The dataset used in our
case study is also covered in this section. In Section 4
we discuss our methodology based on the Self-Organizing
Map algorithm. Section 5 covers the results of our analysis
and discusses the generated visualizations. Section 6 sum-
marizes key findings and suggests points for improvement
in Android. We conclude in Section 7.

2. BACKGROUND
Access control systems have existed for a long time [17].

In its basic form, a security system based on access con-
trol lists allows a subject to perform an action (e.g., read,
write, run) on an object (e.g., a file) only if the subject
has been assigned the necessary permissions. Permis-
sions are usually defined ahead of time by an administra-
tor or the object’s owner. Basic file system permissions on
POSIX-compliant systems [12] are the traditional example
of ACL-based security since objects – in this case, files –
can be read, written or executed either by the owner of
the file, users in the same group as the owner, and/or ev-
eryone else. More sophisticated ACL-based systems allow
the specification of a complex policy to control more pa-
rameters of how an object can be accessed.

We use the term permission-based security to refer to a
subset of ACL-based systems in which the action doesn’t

change (i.e., there is only one possible action to allow or
deny on an object). This would be similar to having multi-
ple ACLs per object, where each ACL only restricts access
to one action. We note that reducing the allowable ac-
tions to one does not necessarily make the system easier
to understand or configure. For example, in the Android
permission model, developers implement finer level gran-
ularity by defining separate permissions for read and write
actions. This implies that, compared to general ACLs, the
permission hierarchy is flat and has limited sense of group-
ing.

2.1 Permission-Based Security Examples
An example of a permission-based security model is

Google’s Android OS for mobile devices. Android requires
that developers declare in a manifest a list of permissions
which the user must accept prior to installing an applica-
tion. Android uses this permission model to restrict access
to advanced or dangerous functionality on the device [14].
The user decides whether or not to allow an application to
be installed based on the list of permissions included by
the developer. We describe the Android security architec-
ture in detail in Section 3.

Similar to Android OS, the Google Chrome web browser
uses a permission-based architecture in its extension sys-
tem [4]. Extension developers create a manifest where
specific functionality (e.g., reading bookmarks, opening
tabs, contacting specific domains) required by the exten-
sion can be requested. The manifest is read at extension
install time to better inform the user of what the extension
is capable of doing, and reduce the privileges that exten-
sions are given [10]. In contrast, Firefox extensions, which
do not have this permission architecture, run all extension
code with the same OS-level privileges as the browser it-
self.

A third example of a currently deployed permission-
based architecture is the Blackberry platform from Re-
search In Motion (RIM). Blackberry applications written in
Java must be cryptographically signed in order to gain ac-
cess to advanced functionality (known as Blackberry APIs
with controlled access) such as reading phone logs, mak-
ing phone calls or modifying system settings [3]. The
Blackberry OS enforces through signature validation that
an application has been granted permissions to access the
controlled APIs.

2.2 Related Work
Enck et al. [13] describe the design and implementation

of a framework to detect potentially malicious applications
based on permissions requested by Android applications.
The framework reads the declared permissions of an appli-
cation at install time and compares it against a set of rules
deemed to represent dangerous behaviour. For example,
an application that requests access to reading phone state,
record audio from the microphone, and access to the Inter-
net could send recorded phone conversations to a remote
location. The framework enables applications that don’t
declare (known) dangerous permission combinations to be
installed automatically, and defers the authorization to in-
stall applications that do to the user.

Ontang et al. [18] present a fine-grained access con-
trol policy infrastructure for protecting applications. Their
proposal extends the current Android permission model
by allowing permission statements to express more detail.
For example, rather than simply allowing an application to
send IPC messages to another based on permission labels,
context can be added to specify requirements for config-
urations or software versions. The authors highlight that
there are real-world use cases for a more complex policy
language, particularly because untrusted third-party appli-
cations frequently interact on Android.

On the topic of analysis of permission-based architec-
tures, Barth et al. [10] analyzed 25 browser extensions for
Firefox and identified that 78% are given more privileges
than necessary, increasing the attack surface on these
feature-enhancing add-ons. The analysis lead the authors
to the design of a permission-based system for browser ex-
tensions in Google Chrome. The system controls access to
bookmarks, tabs, and domains available to a particular ex-
tension. Investigating the usability of permission-based ar-
chitectures, Reeder et al. [19] developed a framework for
displaying and editing file permissions on a Windows oper-
ating system. They employed a matrix-based visualization
called expandable grid, which provides a conceptual visu-
alization of file permissions in a graphical format. Their
user studies showed this grid visualization allows users to
complete tasks quickly and more accurately.

Bearing similarities to our work, but not in methodol-
ogy or application, Smetters et al. [20] conducted a study
of permission-based architectures, particularly access con-
trol lists for document sharing within an organization. Var-
ious data mining techniques were utilized to understand
how employees used access control lists. Smetters et al.
argued that to find the appropriate balance between con-
trol and complexity in a permission-based architecture, it
is important to determine what level of control users need
by analyzing how users interact with the architecture in
practice. In this paper, we analyze the real world use of
Android permissions through an empirical analysis.

3. ANDROID PERMISSION MODEL
We review the Android operating system and its

permission-based security model. We also discuss the
dataset used for our analysis and highlight some initial ob-
servations made prior to applying our data mining method-
ology.

3.1 Android
Android is middleware for mobile devices that is built on

top of Linux. Currently mainly deployed on smartphones,
the Android platform is quickly gaining market share and
due to its open source nature, has been ported to other
devices such as laptops, tablets and ebook readers. An-
droid has a strong focus on security and attempts to ad-
dress some of the shortcomings of other mobile operating
systems. Android applications are written in Java syntax
and each run in a custom virtual machine known as Dalvik,
a light-weight replacement for the standard Java Virtual
Machine. The effect of running each application inside a
virtual machine is extensive process isolation which in at

least one instance [6] has prevented an exploit in an ap-
plication to also impact other parts of the OS. Isolation is
further enforced by each application being installed as its
own user and group ID [14].

Applications written for Android can be distributed to
end users directly through a developer’s web site, or
through the on-device application store known as the An-
droid Market. The Android Market offers a central loca-
tion where developers can submit their applications and,
with minimal interaction from Google, reach end user de-
vices. This differs from the Apple iTunes App Store where
all applications must pass through a vetting process [5]
(performed by Apple in a closed manner) before reaching
consumers. Android Market applications are not always
inspected upon submission, allowing malicious application
developers to quickly get their applications onto end user
devices. With this security concern in mind, Android has
been designed to isolate third party applications from each
other, as well as to protect the operating system and users
from malicious applications.

3.2 Android Permissions
At the core of the Android security security model is

a permission-based system that by default denies access
to features or functionality that could negatively impact
the user experience, the system, or other applications in-
stalled on the device. Examples of these features are send-
ing messages or making phone calls, which may incur mon-
etary cost to the user; keeping the device screen on or ac-
cessing the vibrator, which could result in battery drain;
and reading the user’s address book which could result in
privacy violations.

To make use of the restricted functionality (which could
potentially be dangerous if used in combination with other
features, or in a different way than intended by the An-
droid OS designers), Android requires application devel-
opers to declare which of the restricted features are in-
tended to be used by their application. Failure to declare
a particular permission will result in the related system
call or inter-process communication being denied1 by An-
droid. There are currently 110 items of functionality which
are identified as requiring an explicit permission in order
for Android to grant access [8]. These permissions control
access to network and GPS functions, personal informa-
tion, system hardware and settings, and many other de-
vice features. However, Android is designed such that any
third party application can define new functionality (e.g.,
through an API) and make that specific functionality avail-
able to other applications based on developer-defined per-
missions. In the case of developer-defined (also known as
self-defined) permissions, Android enforces that both the
caller and callee applications have matching permissions
(i.e., the callee defined the permissions using the permis-
sion tag in its manifest, and the caller requested the per-
missions using uses-permission) to allow the IPC to take
place.

Every application (including system applications such as
the phone or calendar applications) written for the Android

1The actual interaction is mediated by IBinder which is a
Linux Kernel module.

platform must include an XML-formatted file named An-
droidManifest.xml. This essential part of the Android se-
curity model contains (along with other metadata such as
minimum OS version requirements) the permission dec-
larations that the application is requesting access to [7].
Permissions are declared in the manifest using the uses-
permission tag followed by a common namespace (usually
android.permission.* for Google defined permissions,
and expressed in this paper as a.p.*). Self-declared per-
missions which other applications can request are labeled
with the permission tag. The Android manifest contains
entries which can be automatically generated by the de-
veloper environment but some fields, specifically those re-
lated to permission declarations, must be manually en-
tered. Manual permission declaration can lead to appli-
cation developers over-declaring or erroneously declaring
permissions that don’t exist, as explained in Section 3.4

Permissions are enforced by Android at runtime, but
must be accepted by the user at install time. When users
install a new application in Android (regardless of how the
application was obtained), they are prompted to accept or
deny the permissions requested by the application. Per-
missions are also described in a more user friendly lan-
guage at install time. These descriptions attempt to give
a brief, technical explanation of the permission, but do not
disclose what the developer intends to use access to those
resources for.

3.3 Dataset
The dataset used for our empirical study consists of

1,100 applications, the top2 50 free applications down-
loaded in December 2009 from each of the 22 categories
in the Android Market. In the Market, Google makes a dis-
tinction between applications and games. Both of these
main categories are further subdivided: the games cate-
gory into 4 sub-categories (Brain and Puzzle, Arcade and
Action, Cards and Casino, and Casual); the applications
into 18 sub-categories (Comics, Communication, Enter-
tainment, Finance, Health, Lifestyle, Multimedia, News
and Weather, Productivity, Reference, Shopping, Social,
Sports, Themes, Tools, Travel, Demo, and Software li-
braries).

Applications in our dataset were obtained in standard
ZIP or ZIP-compatible Android Packages (APK). For each
application, we used the Android Asset Packaging Tool to
extract the manifest and read all XML entries of type uses-
permission (i.e., permissions that are being requested, not
newly defined). Each application is then represented as
a bit vector x = [x1, x2, . . . , xj]

T ∈ {0, 1}j , in which xj de-
notes whether the permission j is requested. Representing
applications this way allows us to employ Self-Organizing
Maps (SOM) for our analysis and enables us to utilize a
suitable distance metric to express similarities between
applications.

Table 1 lists each of the 22 categories in the Android
Market and provides an aggregate count of all the unique
permission labels requested by each application in a given

2Top applications on the Android Market are believed to
be ranked by Google using a combination of number of
downloads and aggregate user rating of the application.

Type Category Permissions Avg. Perms.

App.

Comics 9 0.98
Communication 62 6.72
Demo 16 1.46
Entertainment 21 2.86
Finance 21 1.84
Health 15 1.50
Libraries 40 1.36
Lifestyle 45 3.42
Multimedia 34 3.60
News 22 3.62
Productivity 52 3.98
Reference 21 2.20
Shopping 35 4.08
Social 37 4.52
Sports 17 2.20
Themes 1 0.02
Tools 49 3.88
Travel 40 3.74

Games

Arcade 7 1.74
Casino 15 2.30
Casual 14 2.00
Puzzle 10 1.60

Table 1: Total number of permissions requested for
each of the 22 categories in the Android Market.

category (i.e., if 5 applications in a category requested ac-
cess to system configuration, it is only counted once). The
fourth column presents the average number of permissions
requested by applications in each category. The Communi-
cation category is by far the most diverse, with 62 permis-
sions requested. This category also had the highest num-
ber of permissions per application, with one application
(Handcent SMS) requesting 22 different permissions. The
Themes category was the least diverse containing 49 ap-
plications which requested no additional permissions and
one which requested access to the Internet.

Our dataset includes 119 distinct permission requests,
out of which 38 (31.93%) were to self-defined permissions,
and the remainder were to Android permissions in the
android.permission.* namespace. Figure 1 shows the
distribution of the requested permissions, in which the y-
axis denotes the number of applications that request the
permission and the x-axis denotes the permission index.
Permissions are ordered according to the their request
counts. The a.p.INTERNET permission (indexed as 1) was
requested by 686 applications (62.36% of all applications).
a.p.RECEIVE_BOOT_COMPLETED (indexed as 10), which en-
ables an application to start at system boot, was requested
by 63 applications (5.72% of the total). The distribution of
permissions in Figure 1 demonstrates that the frequency
of permission requests decays rapidly, and there is a long
tail of permissions that are only requested by one or two
applications in the dataset.

Dataset Limitations. Our dataset contains applica-
tions from a large number of developers in a broad range

of categories. While we expect this dataset to be represen-
tative and diverse, selecting the top-ranked applications
might have the effect of filtering out applications that are
either poorly written and/or malicious. Our dataset con-
tains no known malware, and could be biased towards any
trends in developer activity in December 2009. We believe,
however, that our dataset reflects real-world usage trends
since previous analysis we carried out on a smaller and
earlier dataset gave similar results.

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

N
um

be
r o

f a
pp

lic
at

io
ns

 re
qu

es
tin

g
th

e
pe

rm
is

si
on

Permission index

Figure 1: Permission labels exponential decay

3.4 Observations
During our dataset analysis, we identified several cases

where developers requested the same permission twice
in their application. This is a developer error, since
adding the permission more than once does not have
any added benefit. The duplicate permission error was
not only seen in lesser known applications such as Quick
Uninstaller (which requested the a.p.READ_PHONE_STATE
and a.p.INTERNET permissions twice), but also on pop-
ular applications such as Fring (which requested the
a.p.INTERNET permission twice). This error is likely due to
limitations of the IDE, and/or the different ways in which
Android maps system calls to permissions.

Another observation is that applications request permis-
sions that do not exist. For example, the Txeet application
requested access to the a.p.ACCESS_COURSE_LOCATION
permission. The developer was likely attempting to de-
clare the a.p.ACCESS_COARSE_LOCATION. If the Txeet ap-
plication attempts to make use of coarse location features,
Android will throw a security exception and deny access
to location data since the permission is incorrect. Ap-
plications also requested a.p.ACCESS_ASSISTED_GPS and
a.p.ACCESS_CELL_ID, which have been superseded by the
coarse and fine location permissions since even before An-
droid 1.0. These permissions appear to be requested in
parallel to their correct equivalent permissions in more re-
cent Android releases.

We also found an application that requests a.p.BRICK,
which theoretically allows an application to completely dis-
able the device. While the a.p.BRICK permission controls

access to calls that can disable the device, third party ap-
plications cannot make use of this permission because An-
droid restricts use of related function calls to applications
signed by the same private key as the running Android OS.
These permissions are known as signature permissions.

4. METHODOLOGY
In a typical permission-based architecture, numerous

permissions are at the user’s disposal. In our work, we aim
to understand how the Android permission model is used in
practice and to determine its shortcomings. While various
manual analysis and data mining techniques are no doubt
applicable, in our work, we make novel use of the Self-
Organizing Map (SOM) algorithm [16], which presents a
simplified, relational view of a highly complex dataset by
preserving proximity relationships. The characteristics
that make SOM suitable for the analysis are that (1) SOM
provides a 2-dimensional visualization of the high dimen-
sional data, and (2) the component analysis of SOM can
identify correlation between permissions.

Our methodology allows us to gain insights on how the
developers use the given permission model in practice and
highlights the strengths of the permission model as well
as it shortcomings. We note that, although the case study
focuses on Android, our empirical analysis is suitable for
various other permission-based architectures, as long as
the applications are represented as a bit string of permis-
sions, as discussed in Section 3.3.

4.1 Self-Organizing Maps
The Self-Organizing Map (SOM) is a type of neural

network algorithm, which employs unsupervised learn-
ing (i.e., without requiring any labels) to produce a typ-
ically 2-dimensional, discretized representation of a high
dimensional input space. SOM aims to summarize com-
plex datasets while preserving the topological properties
of the input space. SOM consists of neurons, which have
the same dimensionality as the input space. The neurons
are typically arranged in a rectangular or a hexagonal grid.
SOM neurons can be considered as pointers in the input
space, in which more neurons point to regions with high
concentration of inputs.

The training is competitive. Specifically, when an input
is presented, its Euclidean distance to each SOM neuron
is calculated. The neuron with the minimum distance – the
best matching neuron – is identified. The weight values
of the best matching neuron and its adjacent neurons are
adjusted towards the input vector. Updating neurons this
way associates them with groups of patterns in the input
dataset. Training is repeated for each input until the input
dataset is processed several times.

The training algorithm can be summarized in four basic
steps. Step 1 initializes the SOM before training. Step 2
determines the best matching neuron, which is the short-
est Euclidean distance to the input pattern. Step 3 involves
adjusting the best matching neuron and its neighbors so
that the region surrounding the best matching neuron be-
comes closer to the input pattern. This causes SOM to
minimize the distance between the updated region and the
input pattern. This training process continues until all in-

put vectors are processed. The convergence criterion uti-
lized in SOM is in terms of epochs, which define how many
times all input vectors should be fed to the SOM for train-
ing. Details of the SOM algorithm follow:

Step 1: Initialize neuron weights wi =
[wi1, wi2, . . . , wij]

T ∈ <j . In our work, neuron weights are
initialized with random numbers.

Step 2: Present an input pattern x = [x1, x2, . . . , xj]
T ∈

<j . In this work, each input pattern corresponds to an
application in which the permissions are expressed in the
form of a bit string. For example, an application is rep-
resented as the bit string [1, 1, 1, 0, 0]T if it requests per-
missions 1, 2, 3 but not 4 and 5. Calculate the distance
between pattern x, and each neuron weight wi, and there-
fore identify the winning neuron or best matching neuron
c as follows:

‖x− wc‖ = min
i
{‖x− wi‖} (1)

In our work, we employed Euclidian distance as the dis-
tance metric, normalized to the range [0, 1].

Step 3: Adjust the weights of winning neuron c and all
neighbor units

wi(t+ 1) = wi(t) + hci(t)[x(t)− wi(t)] (2)

where i is the index of the neighbor neuron and t is an
integer, the discrete time coordinate. The neighborhood
kernel hci(t) is a function of time and the distance between
neighbor neuron i and winning neuron c. hci(t) defines the
region of influence that the input pattern has on the SOM
and consists of two components [22]: the neighborhood
function h(‖ · ‖, t) and the learning rate function α(t), in
Equation 3:

hci(t) = h(‖rc − ri‖, t)α(t) (3)

where r is the location of the neuron on two dimensional
map grid. In our work, we used Gaussian Neighborhood
Function. The learning rate function α(t) is a decreasing
function of time. The final form of the neighborhood kernel
with Gaussian function is

hci(t) = exp (−‖rc − ri‖2

2σ2(t)
)α(t) (4)

where σ(t) defines the width of the kernel.
Step 4: Repeat steps 2 - 3 until the convergence crite-

rion is satisfied.
The training is conducted in two stages. In rough train-

ing, the learning rate (i.e., α(t)) is set to a higher value,
hence has the potential to cause greater changes in SOM.
On the other hand, in fine tuning, the learning rate is re-
duced to facilitate incremental changes in neurons. Train-
ing parameters of the SOM employed in this paper are
summarized in Table 2. In this paper, SOM is used for
data exploration. Thus, following the common practices of
exploratory data analysis, training parameters are empiri-
cally tested before producing the final visualizations.

5. RESULTS
One of the advantages of SOM over other unsupervised

learning techniques such as typical clustering algorithms

Parameter Rough
Training

Fine
Tuning

Initial α 0.5 0.05
α decay scheme inverse_t
Epoch Limit 2,000
Map Size 10 x 10
Initial Neighborhood Size 3 1
Neighborhood Function Gaussian
Neighborhood Relation Hexagonal

Table 2: SOM training parameters

[15] is its ability to create a 2-dimensional visualization of
high dimensional cluster structures. As discussed in Sec-
tion 4.1, each SOM neuron can be considered as a ‘pointer’
in permission space. Thus, applications can be assigned
to the nearest neuron, effectively clustering the applica-
tions requesting similar permissions into the same neigh-
borhood. To visualize the cluster structure of high dimen-
sional weight vectors of SOM neurons, a graphic display
called U-matrix [21] is used.

Although the training is unsupervised, after training, la-
bels from the training data (i.e., the application categories)
are used to automatically assign labels to neurons. To label
SOM neurons, a winner-take-all scheme is employed. The
labeling scheme makes use of the application categories
of the 1,100 Android applications. Post-training, the input
data is fed to SOM to determine the best matching neu-
ron for each application and a record of the best matching
neuron for each application is maintained. The most pre-
dominant category for each neuron determines the label.
In other words, a neuron is labeled as Communication if
the majority of applications, for which the neuron was the
best matching, was from the Communication category.

Assigning labels to SOM neurons helps us to build a 2-
dimensional visualization which highlights the similarities
between applications from different categories. Coupled
with the U-matrix visualization, the labeled map provides
a visual representation of applications where similar appli-
cations (in terms of requested permissions since they can
be from different categories) are placed in close vicinity.

The U-matrix representation of the SOM for Android
permissions is shown in Figure 2. This representation
employs a heat colormap to show the distances between
weight vectors of the neurons. The heat colormap ranges
from black through shades of red and yellow to white
(black to grey to white, when printed in grayscale), where
white implies ‘hot’ or high values and black implies ‘cold’
or low values. Therefore, if the distance between neighbor-
ing neurons is small, the region is drawn with dark colors.
Conversely, if the distance between neighboring neurons
is large, a light shade is used. The U-matrix represen-
tation employs extra hexagons between neurons to show
the topology of the clusters. For example, in Figure 2, the
top left hexagon represents the neuron associated with the
Travel category, in Figure 3. However, the adjacent neu-
ron associated with the Lifestyle category (see Figure 3) is
the third hexagon from the top left since the hexagon be-

tween the two neurons is introduced to express distance
between them.

,!-./)01

$

$

%2%*3*

%2456

%266+

Figure 2: U-matrix representation of the SOM for
Android permissions, with additional hexagons to ex-
press the distance between neurons. The scale shows
the normalized Euclidean Distance [0,1].

Travel

Shop
ping

Casino

Casino

Multi
media

Life
style

Comics

Life
style

Demo

Shop
ping

Travel

Commu
nication

News

Life
style

Shop
ping

News

Enterta
inment

Commu
nication

Finance

Finance

Commu
nication

Multi
media

Enterta
inment

Finance

Multi
media

Life
style

Finance

Tools

Multi
media

Demo

Produ
ctivity

Multi
media

Enterta
inment

Finance

News

Commu
nication

Enterta
inment

Multi
media

Refer
ence

Enterta
inment

Enterta
inment

News

Commu
nication

Social

Social

Commu
nication

Commu
nication

Produ
ctivity

Health

Multi
media

Enterta
inment

Commu
nication

Sports

Produ
ctivity

Tools

Life
style

Sports

Libraries

Multi
media

Tools

Sports

Enterta
inment

Shop
ping

Puzzle

Arcade

Commu
nication

Produ
ctivity

Themes

Figure 3: SOM for Android permissions with category
labels assigned in a winner-take-all approach

Figure 2 shows that, in general, applications are
sparsely populated (i.e., more light regions than dark) in
the permission space with two exceptions: the dark shaded
regions in the lower right and left corners that corre-
spond to applications from Comics and Themes respec-
tively (shaded in Figure 3). Themes is a general category
which contains user interface enhancements to both the
Android OS and its applications. Sparsely populated re-
gions (i.e., light regions in Figure 2) involve the applica-
tions which vary substantially in terms of requested per-
missions.

In Figure 3, we see that the Communication category
populates the upper middle section of the SOM, although
it is mixed with applications from categories such as News,
Tools, Social (shaded upper region, in Figure 3). We note
that in terms of requested permissions, Communication is
the most diverse category, as shown in Table 1. Therefore,
applications in this category implement a diverse set of
functionality, which consequently causes the Communica-
tion category to represented by numerous neurons of the
SOM.

Further inspection revealed that the most prevalent
types of applications in the upper middle region were ap-
plications that make use of network communications and
standard phone features (i.e., making and receiving calls,
sending and receiving text messages). Given that SOM
places similar input patterns in the same region, this in-
dicates that applications from the same category do not
necessarily ‘behave’ similarly (i.e., do not request similar
permissions). Hence, applications requesting similar sets
of permissions (from multiple categories) are clustered to-
gether which implies that applications from different cat-
egories can request similar sets of permissions. This re-
flects the fact that the categories defined by Google are
based on semantic activity classes rather than the techni-
cal features used to implement them.

In order to identify the frequency of use and the corre-
lations between the permissions, we expand our analysis
by performing component plane analysis [16] of the SOM.
Component analysis reduces the dimensionality of the in-
put space allowing us to visualize the use of permissions in
a 2-dimensional space. Compared to Figures 2 and 3, com-
ponent plane analysis in Section 5.1 summarizes the use of
Android permissions in separate visualizations exclusive to
the permission in question.

5.1 Component Plane Analysis
Understanding the relationships between variables in

complex data is a challenging task. The 1,100 Android ap-
plications in our dataset requested access to 119 distinct
permissions where each permission represents an addi-
tional dimension within which applications are expressed.
Component plane visualizations provided in this section
represent the component distribution in individual dimen-
sions. In our work, given that each dimension represents a
permission, the component plane analysis and visualiza-
tions can be considered as a sliced visualization of the
SOM. The component plane analysis reported in this pa-
per is specific to the 1,100 applications in the training set.
However, we believe that employing the most popular 50
applications from each category provides a representative
dataset upon which an empirical analysis of the Android
permission model can be performed.

Figure 4 shows the component plane analysis of all the
permissions encountered in our dataset. Each component
plane in Figure 4 has the relative distribution of a per-
mission. In this representation, light shades represent the
frequent use of the permission whereas the dark shades
represent the infrequent use. In this section, we highlight
some of the interesting results from the component plane
visualizations.

internet access_coarse_location read_phone_state set_wallpaper access_network_state call_phone wake_lock write_external_storage

vibrate write_contacts read_logs read_contacts write_settings bluetooth bluetooth_admin get_tasks

read_sms write_sms access_wifi_state change_wifi_state access_fine_location receive_boot_completed read_history_bookmarks receive_sms

send_sms process_outgoing_calls call_privileged modify_phone_state set_preferred_applications install_shortcut uninstall_shortcut restart_packages

modify_audio_settings google_auth receive_mms change_network_state disable_keyguard broadcast_sticky access_course_location add_system_service

read_owner_data master_clear persistent_activity write_accounts write_history_bookmarks expand_status_bar read_settings set_wallpaper_hints

global_search_control camera record_audio read_sync_settings read_sync_stats read_attachment flashlight read_calendar

write_calendar access_gps access_location set_orientation access_mock_location swn_wallpaper_changer google_auth.finance google_auth.other_services

access_location_extra_commands get_accounts google_auth.local google_auth.wise google_auth.writely write_owner_data write_phone_state hardware_test

status_bar control_location_updates phone system_alert_window change_configuration instantlyrics.privateservices read_external_storage device_power

write_apn_settings write_sync_settings change_wifi_multicast_state read_gmail google_auth.mail write_settings call_phone google_auth.ah

notepad.read_permission notepad.write_permission access_intents mount_unmount_filesystems shopping.read_permission shopping.write_permission manifest.permission.access_fine_location access_read_phone_state

delete_packages install_packages write_secure_settings receive_wap_push nabcontentprovider.read_permissionnabcontentprovider.write_permission read_only access_assisted_gps

access_cell_id boot_completed read_settings mode_world_writeable access_surface_flinger brick internal_system_window read_frame_buffer

read write overclock_activity control_permission action_boot_completed fullscreen bind_input_method

Figure 4: Component plane analysis of the permissions. The lighter areas indicate the regions in which the
permission was requested (see Section 5.1).

Figure 5 shows the component plane for the
a.p.INTERNET permission. Light shades indicate the
regions in which the permission is requested. The compo-
nent analysis indicates that the a.p.INTERNET permission
covers a large portion of the map which means it is
requested by the majority of applications in our dataset
(over 60%). The lower right region in Figure 5 rep-
resents the few applications which do not request the
a.p.INTERNET permission, mainly the applications in the
Theme and Productivity categories (based on labels in
Figure 3). Smartphones strive for always-on Internet
connectivity, and can attain this by providing different
connection modes; 3G, Wi-Fi and Bluetooth are ways
in which the Android OS (and most other smartphones)
can connect to online services. Our dataset also con-
tained only free applications which in many cases are
ad-supported. Advertisements are pulled from the Inter-
net causing developers to request this permission, even
if their application requires no connectivity for its core
functionality.

Furthermore, smartphones, and Android in particular
have a strong focus on ‘cloud’ services, which are hosted
on a remote server. Many of the Android applications are
tightly integrated with Google servers. This also makes
sense for devices with low computing power.

internet

Figure 5: Component plane visualization of the
a.p.INTERNET permission

The analysis of component planes can reveal correla-
tions between permissions. Specifically, two permissions
are likely to be correlated, if the component plane visual-
izations are similar. Figure 6 shows the component planes
for the location-related permissions, providing location in-
formation at varying degrees of accuracy. The compo-
nent plane visualizations of a.p.ACCESS_COARSE_LOCATION
and a.p.ACCESS_FINE_LOCATION in Figure 6 show that
both permissions are requested on the upper right re-
gion of the map (hexagons in the same region are light
shaded). This region corresponds to the Travel, Shop-
ping, Communication and Lifestyle categories, in Figure 3.
Applications requiring access to fine location are slightly
more biased towards the upper right corner, further nar-
rowing down that area to applications that need pre-
cise location information, such as navigation applications.
Furthermore, given that the component visualizations of
a.p.ACCESS_ASSISTED_GPS and a.p.ACCESS_CELL_ID are
very similar in Figure 6, they are highly correlated. This is
expected since assisted GPS relies on the cell tower ID for
location.

Our analysis determined that pairs of per-
missions are common (Figure 4), such as re-

questing both a.p.ACCESS_COARSE_LOCATION and
a.p.ACCESS_FINE_LOCATION. We believe that the loca-
tion permission was divided in this way by Google with
the hope that developers would use coarse location for
services like news or weather applications (which do not
need to know your exact GPS coordinates, but simply a
general geographic area). Fine location would be used
by navigation applications. However, we see developers
requesting both coarse and fine location frequently (some-
times even mock location, which creates a ‘simulated’
location for testing purposes).

access_coarse_location access_fine_location

access_gps access_location

access_assisted_gps access_cell_id

Figure 6: Component plane visualization of the loca-
tion related permissions

In addition to location-aware applications, various ap-
plications such as tools and messaging apps commonly
use pairs of permissions. For example, Figure 4 demon-
strates that the a.p.WRITE_SMS and a.p.READ_SMS permis-
sions occur in the same region. This implies that appli-
cations requesting SMS permissions also request similar
sets of permissions, which resulted in both permissions to
be active in the same region. Moreover, various other per-
mission pairs are observed such as writing to and reading
from the external storage and installing and uninstalling
shortcuts. Enck et al. [13] note that applications that have
both the send and write or the receive and write SMS per-
mission labels are ‘dangerous’ due to being able to inter-
cept or transmit messages without the user’s knowledge.
It is important to note that although these permissions are
correlated in our component plane analysis, this does not
mean that applications are requesting both permissions.

Rather, this means that applications have similar charac-
teristics if they are requesting send or receive SMS func-
tionality. This could lead to false positives if classifying
malware based only on component plane analysis.

The component analysis of the permissions related to
system settings are shown in Figure 7. Applications in
Tools and Communication categories (shaded upper region
in Figure 3) require access to system settings hence the
light shaded hexagons in the corresponding upper region.

write_contacts read_contacts

process_outgoing_calls disable_keyguard

add_system_service device_power

Figure 7: Component plane visualization of the per-
missions related to system settings

Figure 8 shows the commonly requested permissions
which are used by applications in different regions of the
SOM (light shaded throughout the SOM). These permis-
sions correspond to common tasks such as installing short-
cuts, using the camera and recording audio. For exam-
ple, the a.p.CAMERA permission is in the Shopping cate-
gory (applications that allow the user to take a picture of a
barcode for price comparisons) as well as Communication
(using the camera for sending pictures or videos), Travel
(taking pictures of landmarks or tourist attractions), etc.
Commonly requested permissions tend to be scattered all
over the SOM.

In addition to a small set of permissions requested by a
substantial number of applications, many permissions are
requested by only a few applications. We believe that these
infrequent permissions are mainly defined by developers
to facilitate interaction with other Android applications.
On the other hand, frequently requested permissions, par-
ticularly a.p.INTERNET do not provide the sufficient ex-

install_shortcut uninstall_shortcut

camera record_audio

Figure 8: Component plane visualization of the com-
monly requested permissions

pressiveness to enforce control over the degree of Internet
access that the application obtains. Thus, we believe that
a.p.INTERNET permission fails to provide sufficiently fine
grained control of the resources. By contrast, there exist
numerous developer-defined permissions which effectively
act as an ‘access control list exception’, allowing other ap-
plications to access functionality through a newly defined
API. In other words, they specify which other applications
can communicate with the application in question rather
than a permission, which specifies the resources that the
application in question can access. We suggest that the
current Android permission model can be improved by fur-
ther distinguishing between different classes of Internet
access, while providing a mechanism for developers to
specify an access control list without the use of self-defined
permissions.

6. FURTHER DISCUSSION
Designing a permission-based system is a challenging

task because system designers must anticipate what us-
age will be given to the permissions defined in their sys-
tem. The analysis in this paper has helped to identify de-
veloper usage patterns in a real-world dataset of top An-
droid applications. Additionally, there is a constant strug-
gle to make the system highly configurable under different
use-cases while maintaining a low level of complexity. Un-
derstanding how the permission model is used in practice
can help in making modifications to improve currently de-
ployed permission systems.

Our analysis shows that in Android a small number per-
missions are very frequently used and a large number of
permissions are only occasionally used. Furthermore, our
analysis shows correlations between several of the infre-
quently used permissions.

We note that having finer-grained permissions in a
permission-based system enables users to have detailed
control over what actions are allowed to take place.

Whether it is beneficial to provide finer granularity will
depend on many factors within a particular environment,
as it increases complexity and thus may have, for example,
usability impacts on designers and end-users.

In the case of Android, having ‘too many’ permissions
impacts both developers and end users. Developers must
understand which permissions are needed to perform cer-
tain actions; determining this is often non-trivial, even for
‘experts’. While some enthusiastic developers might take
the time to learn what each of the 110 or more permissions
do and request them appropriately when needed, other de-
velopers might choose to simply over-request functionality
to make sure their application works. Smartphone users
themselves are (currently, through no choice of their own)
heavily involved in the Android permission architecture
since it is they who either allow or deny the installation
of applications based on the presented set of requested
permissions. Whether or not this is the best approach to
handling such a complex permission system is beyond our
present scope, but does lead us to question if it is reason-
able to ask non-technical users to configure these complex
systems.

6.1 Possible Enhancements to Android
The Android permission model does not currently make

use of the implied hierarchy in its namespace. For exam-
ple, a.p.SEND_SMS and a.p.WRITE_SMS are two indepen-
dent permission labels, instead of being grouped, for in-
stance, under a.p.SMS.*. Android includes an optional
logical permission grouping [9] that is used for displaying
permissions with more understandable names (e.g., one
of the groupings reads “Services that cost you money” in-
stead of a.p.CALL_PHONE). This grouping, however, does
not allow developers to hierarchically define permissions,
which could potentially extend current Android-defined
permissions to express more detailed functionality.

In the case of Android particularly, a permission hi-
erarchy would allow for an extensible naming conven-
tion and help developers more accurately select (only
the) needed features. One example would be a free
application that displays ads from domains belonging
to Admob. Currently a developer would include the
ad code snippet, and request the a.p.INTERNET permis-
sion. This permission allows the application to com-
municate over any network and retrieve any data from
any server in the world. A more fine grained hierarchi-
cal permission scheme could enable the developer to re-
quest the a.p.INTERNET.ADVERTISING(*.admob.com) per-
mission which could limit network connectivity to only
download ads in static HTML from subdomains of Admob.
A hierarchical permission scheme could help users under-
stand why an application is requesting specific permis-
sions, but more importantly, could help developers better
use the principle of least privilege. This modification is
not backwards compatible with the currently deployed An-
droid OS, therefore it might be better suited for an entirely
new model instead.

Developers that make use of self-declared permissions to
restrict access to APIs in their third party applications add
complexity to the system with every new permission de-

fined. In the current flat permission model, new developer-
introduced permissions will likely be used infrequently and
independently of other permissions. Logically grouping all
self-defined permissions under one category could help in-
form users that these permissions are not part of the core
(Google-defined) set.

Another possible enhancement to Android is to identify
permissions that when used independently, do not pose a
serious threat to the device or the user. These permissions
could be displayed in one informative-only collection prior
to prompting the user to (as currently done) individually
accept other, perhaps more high-risk permissions. This
may significantly reduce the number of individual accep-
tance decisions presented to the user, and hopefully in-
crease user attention across the remaining items.

6.2 Applicability to Other Permission-Based
Systems

The methodology presented in this work has allowed us
to understand how developers use the permission-based
security model in Android. We believe that our method-
ology is applicable to explore usage trends in other per-
mission based-based systems. A base requirement for the
methodology to work is being able to display applications
and associated permissions as a bit string as described in
Section 3.3. For this representation to be possible, the set
of permissions requested by an application must be acces-
sible. In the case of Android, the set is statically readable
in a manifest, but other systems might have different im-
plementations.

Google’s Chrome OS extension system [4, 10] uses an
Android-like manifest and permissions to access advanced
functionality, which makes this system a prime candidate
for applying our methodology. An empirical study of a
large set of third-party extensions using our SOM-based
methodology, could help identify what correlations, if any,
are present in requesting permissions to open tabs, read
bookmarks, etc. This may also be of use in addressing
other security concerns raised in recent work [10].

7. CONCLUSION
We have introduced a methodology to the security com-

munity for the empirical analysis of permission-based se-
curity models. In particular, we analyzed the Android
permission model to investigate how it is used in prac-
tice and to determine its strengths and weaknesses. The
Self-Organizing Map (SOM) algorithm is employed, which
allows for a 2-dimensional visualization of highly dimen-
sional data. SOM also supports component planes analysis
which can reveal interesting usage patterns.

We have analyzed the use of Android permissions in a
real-world dataset of 1,100 applications, focusing on the
top 50 application from 22 categories in the Android mar-
ket.

The results show that a small subset of the permis-
sions are used very frequently where a large subset of
permissions were used by very few applications. We
suggest that the frequently used permissions, specifi-
cally a.p.INTERNET, do not provide sufficient expressive-
ness and hence may benefit from being divided into sub-

categories, perhaps in a hierarchical manner as explained
in Section 6.1. Conversely, infrequent permissions such as
the self-defined and the complementary permissions (e.g.,
install/uninstall) could be collapsed into a general cate-
gory. Providing finer granularity for frequent permissions
and combining the infrequent permissions can enhance
the expressiveness of the permission model without in-
creasing the complexity (i.e., maintaining a constant over-
all permission count) as a result of the additional permis-
sions. We hope that our SOM-based methodology, includ-
ing visualization, is of use to others exploring independent
permission-based models.

Acknowledgements
We thank William Enck and members of Penn. State’s SIIS
lab for making available the dataset used for our analysis.
We also thank our CCS shepherd, Patrick McDaniel, and
anonymous referees for their helpful comments. The third
author acknowledges NSERC funding under a Discovery
Grant and as Canada Research Chair in Authentication and
Computer Security. Partial funding from NSERC ISSNet is
also acknowledged.

8. REFERENCES
[1] Android. http://www.android.com Retrieved

February 6th, 2010.

[2] Android Market Statistics from Androlib.
http://www.androlib.com/appstats.aspx
Retrieved July 7th, 2010.

[3] BlackBerry APIs with controlled access.
http://docs.blackberry.com/en/developers/
deliverables/5580/Java_APIs_with_controlled_

access_447163_11.jsp Retrieved April 9th, 2010.

[4] Formats: Manifest Files - Google Chrome Extensions
- Google Code. http://code.google.com/chrome/
extensions/manifest.html#permissions Retrieved
April 9th, 2010.

[5] How Android Security Stacks Up.
http://www.technologyreview.com/
communications/24944/page1/ April 1st, 2010.

[6] Independent Security Evaluators - Exploiting
Android. http://securityevaluators.com/
content/case-studies/android/ Retrieved January
15th, 2010.

[7] The Android Developer’s Guide. http:
//developer.android.com/guide/index.html
Retrieved January 29th, 2010.

[8] The Android Developer’s Guide - Android Manifest
Permissions. http://developer.android.com/
reference/android/Manifest.permission.html
Retrieved April 5th, 2010.

[9] The Android Developer’s Guide - Permission Groups.
http://developer.android.com/guide/topics/
manifest/permission-group-element.html
Retrieved April 7th, 2010.

[10] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting Browsers from Extension Vulnerabilities.
In Proceedings of the 17th Network and Distributed
System Security Symposium (NDSS 2010).

[11] K. Beznosov, P. Inglesant, J. Lobo, R. Reeder, and
M. E. Zurko. Usability meets access control:
challenges and research opportunities. In SACMAT
’09: Proceedings of the 14th ACM symposium on
Access control models and technologies, pages
73–74, New York, NY, USA, 2009. ACM.

[12] D. Curry. UNIX System Security. Addison-Wesley,
1992.

[13] W. Enck, M. Ongtang, and P. D. McDaniel. On
Lightweight Mobile Phone Application Certification.
In E. Al-Shaer, S. Jha, and A. D. Keromytis, editors,
ACM Conference on Computer and Communications
Security, pages 235–245. ACM, 2009.

[14] W. Enck, M. Ongtang, and P. D. McDaniel.
Understanding Android Security. IEEE Security &
Privacy, 7(1):50–57, 2009.

[15] J. Han. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2005.

[16] T. Kohonen. Self Organizing Maps. Springer, third
edition, 2001.

[17] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev.,
8(1):18–24, 1974.

[18] M. Ongtang, S. E. McLaughlin, W. Enck, and P. D.
McDaniel. Semantically rich application-centric
security in android. In ACSAC, pages 340–349. IEEE
Computer Society, 2009.

[19] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter,
K. Bacon, K. How, and H. Strong. Expandable grids
for visualizing and authoring computer security
policies. In CHI ’08, pages 1473–1482, New York,
NY, USA, 2008. ACM.

[20] D. K. Smetters and N. Good. How users use access
control. In SOUPS ’09: Proceedings of the 5th
Symposium on Usable Privacy and Security, pages
1–12, New York, NY, USA, 2009. ACM.

[21] A. Ultsch and H. Siemon. Kohonen’s self-organizing
feature maps for exploratory data analysis. In
Proceedings of the International Neural Network
Conference (INNC’90), Dordrecht, Netherlands,
pages 305–308. Kluwer, 1990.

[22] J. Vesanto. Data Mining Techniques Based on the
Self-Organizing Map. Master’s Thesis, Helsinki
University of Technology, May 1997.

