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ABSTRACT
We present HORNET, a system that enables high-speed end-to-end
anonymous channels by leveraging next-generation network archi-
tectures. HORNET is designed as a low-latency onion routing sys-
tem that operates at the network layer thus enabling a wide range
of applications. Our system uses only symmetric cryptography
for data forwarding yet requires no per-flow state on intermediate
routers. This design enables HORNET routers implemented on off-
the-shelf hardware to process anonymous traffic at over 93 Gb/s.
HORNET is also highly scalable, adding minimal processing over-
head per additional anonymous channel.

Categories and Subject Descriptors
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]: Gen-
eral—Security and protection

General Terms
Security, Performance

Keywords
Anonymity; onion routing; network layer

1. INTRODUCTION
Recent revelations about global-scale pervasive surveillance [26]

programs have demonstrated that the privacy of Internet users
worldwide is at risk. These revelations suggest massive amounts
of private traffic, including web browsing activities, location infor-
mation, and personal communications are being harvested in bulk
by domestic and foreign intelligence agencies.

To protect against these threats, several anonymity protocols,
tools, and architectures have been proposed. Among the most
secure schemes for anonymous communications are mix net-
works [30, 38, 21, 22], which provide high-latency asynchronous
messaging. Onion routing networks (most notably Tor [25]), offer
a balance between security and performance, enabling low-latency
anonymous communication suitable for typical Internet activities
(e.g., web browsing, instant messaging, etc.). Tor is the system of
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choice for over 2 million daily users [11], but its design as an over-
lay network suffers from performance and scalability issues. Tor’s
design requires per-connection state to be maintained by interme-
diate nodes, limiting the total number of concurrent anonymous
connections that can take place simultaneously.

The scalability and performance limitations of anonymous net-
works have been partially addressed by building protocols into the
network layer rather than implementing them as overlays. Among
these high-performing schemes are LAP [32] and Dovetail [44],
which offer network-level low-latency anonymous communication
on next-generation network architectures. The high performance
of both schemes, however, results in significantly degraded secu-
rity guarantees; endpoints have little to no protection against ad-
versaries that are not confined to a single network location, and
payload protection relies on upper layer protocols which increases
complexity.

In this paper, we present HORNET (High-speed Onion Routing
at the NETwork layer), a highly-scalable anonymity system that
leverages next-generation Internet architecture design. HORNET
offers payload protection by default, and can defend against at-
tacks that exploit multiple network observation points. HORNET
is designed to be highly efficient: it can use short paths offered by
underlying network architectures, rather than the long paths due to
global redirection; additionally, instead of keeping state at each re-
lay, connection state (including, e.g., onion layer decryption keys)
is carried within packet headers, allowing intermediate nodes to
quickly forward traffic without per-packet state lookup.

While this paper proposes and evaluates a concrete anonymity
system, a secondary goal herein is to broadly re-think the design
of low-latency anonymity systems by envisioning networks where
anonymous communication is offered as an in-network service to
all users. For example, what performance trade-offs exist between
keeping anonymous connection state at relays and carrying state in
packets? If routers perform anonymity-specific tasks, how can we
ensure that these operations do not impact the processing of regular
network traffic, especially in adversarial circumstances? And if the
network architecture should provide some support for anonymous
communication, what should that support be? Throughout the pa-
per we consider these issues in the design of our own system, and
provide intuition for the requirements of alternative network-level
anonymity systems.

Specifically, our contributions are the following:
• We design and implement HORNET, an anonymity system

that uses source-selected paths and shared keys between end-
points and routers to support onion routing. Unlike other
onion routing implementations, HORNET routers do not keep
per-flow state or perform computationally expensive opera-
tions for data forwarding, allowing the system to scale.



• We analyze the security of HORNET, showing that it can
defend against passive attacks, and certain types of active at-
tacks. HORNET provides stronger security guarantees than
existing network-level anonymity systems.
• We evaluate the performance of HORNET, showing that its

anonymous data processing speed is close to that of LAP and
Dovetail (up to 93.5 Gb/s on a 120 Gb/s software router).
This performance is comparable with that of today’s high-
end commodity routers [2].

2. PROBLEM DEFINITION
We aim to design a network-level anonymity system to frustrate

adversaries with mass surveillance capabilities. Specifically, an ad-
versary observing traffic traversing the network should be unable to
link (at large scale) pairs of communicating hosts . This property is
known as relationship anonymity [41].

We define sender anonymity as a communication scenario where
anonymity is guaranteed for the source, but the destination’s loca-
tion is public (e.g., web sites for The Guardian or Der Spiegel).
We define sender-receiver anonymity as a scenario where the an-
onymity guarantee is extended to the destination (e.g., a hidden
service that wishes to conceal its location). Sender-receiver ano-
nymity therefore offers protection for both ends, implying sender
anonymity. Depending on users’ needs, HORNET can support ei-
ther sender anonymity or sender-receiver anonymity.

Since our scheme operates at the network layer, network location
is the only identity feature we aim to conceal. Exposure of network
location or user identity at upper layers (e.g., through TCP sessions,
login credentials, or browser cookies) is out of scope for this work.

2.1 Network Model
We consider that provisioning anonymous communication be-

tween end users is a principal task of the network infrastructure.
The network’s anonymity-related infrastructures, primarily routers,
assist end users in establishing temporary anonymous sessions for
anonymous data transmission.

We assume that the network layer is operated by a set of nodes.
Each node cooperates with sources to establish anonymous ses-
sions to the intended destinations, and processes anonymous traffic
within the created sessions. We require that the routing state of a
node allows it to determine only the next hop. In particular, the
destination is only revealed to the last node and no others. This
property can be satisfied by IP Segment Routing [9], Future Inter-
net Architectures (FIAs) like NIRA [48] and SCION [51, 12], or
Pathlets [28]. In practice, our abstract notion of a node could corre-
spond to different entities depending on the architecture on which
HORNET is built. For instance, in NIRA and SCION, a node cor-
responds to an Autonomous System (AS); in Pathlets, a node maps
to a vnode.

Path and certificate retrieval. A path is the combination of rout-
ing state of all nodes between the source and the intended desti-
nation. We assume the underlying network architecture provides a
mechanism for a source to obtain such a path to a given destina-
tion. Additionally, we assume that the same mechanism allows the
source to fetch the public keys and certificates1 of on-path nodes.
Note that the mechanism should be privacy-preserving: the source
should not reveal its network location or intent to communicate
with a destination by retrieving paths, public keys, and certificates.
In Section 7.1, we further discuss how to obtain required informa-

1Depending on the underlying PKI scheme, the source might need
to fetch a chain of certificates leading to a trust anchor to verify
each node’s public key.

tion anonymously in selected FIAs. While a general solution rep-
resents an important avenue for future work, it remains outside of
our present scope.
Public key verification. We assume that end hosts and on-path
nodes have public keys accessible and verifiable by all entities. End
hosts can retrieve the public keys of other end hosts through an
out-of-band channel (e.g., websites) and verify them following a
scheme like HIP [39], in which the end hosts can publish hashes
of their public keys as their service names. Public keys of on-path
nodes are managed through a public-key infrastructure (PKI). For
example, the source node can leverage Resource Public Key Infras-
tructure (RPKI) [16] to verify the public keys of on-path nodes.

2.2 Threat Model
We consider an adversary attempting to conduct mass surveil-

lance. Specifically, the adversary collects and maintains a list of
“selectors” (e.g., targets’ network locations, or higher-level pro-
tocol identifiers), which help the adversary trawl intercepted traf-
fic and extract parts of it for more extensive targeted analysis [7].
An anonymity system should prevent an adversary from leveraging
bulk communication access to select traffic that belongs to the tar-
gets. Thus an adversary has to collect and analyze all traffic and
cannot reliably select traffic specific to targets unless it has access
to the physical links adjacent to the targets.

We consider an adversary that is able to compromise a fraction
of nodes on the path between a source and a destination. For sender
anonymity, the adversary can also compromise the destination. For
sender-receiver anonymity, the adversary can compromise at most
one of the two end hosts. By compromising a node, the adversary
learns all keys and settings, observes all traffic that traverses the
compromised node, and is able to control how the nodes behave
including redirecting traffic, fabricating, replaying, and modifying
packets.

However, we do not aim to prevent targeted de-anonymization
attacks where an adversary invests a significant amount of resources
on a single or a small set of victims. Like other low-latency schemes,
we cannot solve targeted confirmation attacks based on the analy-
sis of flow dynamics [45, 34, 40]. Defending against such attacks
using dynamic link padding [47] would be no more difficult than in
onion routing, although equally expensive. We defer the discussion
and analysis of such measures to future work.

2.3 Desired Properties
HORNET is designed to achieve the following anonymity and

security properties:
1. Path information integrity and secrecy. An adversary can-

not modify a packet header to alter a network path without
detection. The adversary should not learn forwarding infor-
mation of uncompromised nodes, node’s positions, or the to-
tal number of hops on a path.

2. No packet correlation. An adversary who can eavesdrop
on multiple links in the network cannot correlate packets on
those links by observing the bit patterns in the headers or
payloads. This should hold regardless of whether the ob-
served traffic corresponds to the same packet (at different
points on the network), or corresponds to different packets
from a single session.

3. No session linkage. An adversary cannot link packets from
different sessions, even between the same source and desti-
nation.

4. Payload secrecy and end-to-end integrity. Without com-
promising end hosts, an adversary cannot learn any informa-
tion from the data payload except for its length and timing
among sequences of packets.



3. HORNET OVERVIEW
The basic design objectives for HORNET are scalability and effi-

ciency. To enable Internet-scale anonymous communication, HOR-
NET intermediate nodes must avoid keeping per-session state (e.g.,
cryptographic keys and routing information). Instead, session state
is offloaded to end hosts, who then embed this state into packets
such that each intermediate node can extract its own state as part of
the packet forwarding process.

Offloading the per-session state presents two challenges. First,
nodes need to prevent their offloaded state from leaking informa-
tion (e.g., the session’s cryptographic keys). To address this, each
HORNET node maintains a local secret to encrypt the offloaded
per-session state. We call this encrypted state a Forwarding Seg-
ment (FS). The FS allows its creating node to dynamically retrieve
the embedded information (i.e., next hop, shared key, session expi-
ration time), while hiding this information from unauthorized third
parties.

The second challenge in offloading the per-session state is to
combine this state (i.e., the FSes) in a packet in such a way that each
node is able to retrieve its own FS, but no information is leaked
about the network location of the end hosts, the path length, or a
specific node’s position on the path. Learning any of this informa-
tion could assist in de-anonymization attacks (see Section 5.5). To
address this challenge, the source constructs an anonymous header
(AHDR) by combining multiple FSes, and prepends this header to
each packet in the session. An AHDR grants each node on the
path access to the FS it created, without divulging any informa-
tion about the path except for a node’s previous and next nodes
(see Section 4.4.1).

For efficient packet processing, each HORNET node performs
one Diffie-Hellman (DH) key exchange operation once per session
during setup. For all data packets within the session, HORNET
nodes use only symmetric cryptography to retrieve their state, pro-
cess the AHDR and onion-decrypt (or encrypt) the payload. To re-
duce setup delay, HORNET uses only two setup packets within a
single round trip between the source and the destination. Therefore,
session setup only incursO(n) propagation delay in comparison to
O(n2) by the telescopic setup method used in Tor (where n is the
number of anonymity nodes traversed on the path). While for Tor
the default value of n is 3, for HORNET n might be as large as
14 (4.1 in the average case, and less or equal to 7 in over 99% of
cases [6]), which emphasizes the need to optimize setup propaga-
tion delay.

3.1 Sender Anonymity
Anonymous sessions between a source and a destination require

the source to establish state between itself and every node on the
path. The state will be carried in subsequent data packets, enabling
intermediate nodes to retrieve their corresponding state and forward
the packet to the next hop. We now describe how the state is col-
lected without compromising the sender’s anonymity, and how this
state is used to forward data packets.

Setup phase. To establish an anonymous session between a source
S and a public destinationD, S uses a single round of Sphinx [22],
a provably secure mix protocol (an overview of Sphinx is given
in Section 4.3.1). This round consists of two Sphinx packets (one
for the forward path and one for the backward path) each of which
will anonymously establish shared symmetric keys between S and
every node on that path. For HORNET, we extend the Sphinx pro-
tocol to additionally anonymously collect the forwarding segments
(FSes) for each node. Our modified Sphinx protocol protects the
secrecy and integrity of these FSes, and does not reveal topology
information to any node on the path. We note that using Sphinx

also for data forwarding would result in low throughput due to pro-
hibitively expensive per-hop asymmetric cryptographic operations.
Therefore, we use Sphinx only for session setup packets, which
are amortized over the subsequent data transmission packets. We
explain the details of the setup phase in Section 4.3.

Data transmission phase. Having collected the FSes, the source
is now able to construct a forward AHDR and a backward AHDR
for the forward and backward paths, respectively. AHDRs carry the
FSes which contain all state necessary for nodes to process and
forward packets to the next hop. When sending a data packet, the
source onion-encrypts the data payload using the session’s shared
symmetric keys, and prepends the AHDR. Each node then retrieves
its FS from the AHDR, onion-decrypts the packet and forwards it to
the next hop, until it reaches the destination. The destination uses
the backward AHDR (received in the first data packet2) to send data
back to S, with the only difference being that the payload is en-
crypted (rather than decrypted) at each hop. We present the details
of the data transmission phase in Section 4.4.

3.2 Sender-Receiver Anonymity
Sender-receiver anonymity, where neither S nor D knows the

other’s location (e.g., a hidden service), presents a new challenge:
since S does not know D’s location (and vice versa), S cannot
retrieve a path to D, precluding the establishment of state between
S and nodes on the path to D as described in Section 3.1.

A common approach to this problem (as adopted by Tor3, LAP,
and Dovetail) is to use a public rendezvous point (RP) to forward
traffic between S and D without knowing either S or D. This
solution would also work for HORNET, but would require RPs to
maintain per-session state between sources and destinations. For
instance, when receiving a packet from S, an RP needs the state to
determine how to send the packet to D. Maintaining per-session
state on RPs increases complexity, bounds the number of receivers,
and introduces a state exhaustion denial-of-service attack vector.
Nested AHDRs. Our proposal for sender-receiver anonymity re-
quires no state to be kept at the RP by nesting the necessary state
for RPs to forward a packet within the packet’s header: a forward
AHDR from S to a RP will include the AHDR from the RP to D; a
backward AHDR from D to a RP will include the AHDR from the
RP back to S.

Briefly, to establish a HORNET session between S and D keep-
ing both parties hidden from each other, D selects a public ren-
dezvous point R and completes a HORNET session setup between
D and R. D publishes AHDRR→D to a public directory. Note that
this AHDR leaks no information aboutD’s location and can only be
used to send data to D through R within a specific time window.

When S wants to send traffic to D, S retrieves (from a public
directory) AHDRR→D . S then establishes a HORNET session be-
tween S and R and constructs a nested AHDR with AHDRR→D
inside AHDRS→R. Thus, when R receives a packet from S, R can
retrieve AHDRR→D from AHDRS→R and forward the packet to
D. S also includes AHDRR→S in the data payload of the first data
packet to D, allowing D to create a return path to S.

One of the advantages of our scheme is that any node on the net-
work can serve as a rendezvous point. In fact, multiple points can

2If the first packet is lost the source can simply resend the backward
AHDR using a new data packet (see Section 4.4).
3Tor additionally uses an introduction point, which enables S to
negotiate a rendezvous point with D. This design provides addi-
tional scalability and attack resistance [25], but increases the delay
of setting up a session. HORNET’s design favors simplicity and
performance, but nothing fundamentally prevents HORNET from
using Tor’s approach.



be selected and advertised, allowing the source to pick the RP clos-
est to it. Moreover, once a HORNET session has been established,
S and D can negotiate a better (closer) RP (e.g., using private set
intersection [27]). A disadvantage of the nested AHDR technique is
that it doubles the size of the header.

For space reasons, the formal protocol details and evaluation sec-
tions focus on sender anonymity only. Details of sender-receiver
anonymity can be found in the full paper [19].

3.3 Packet Structure
HORNET uses two types of packets: setup packets and data

packets (see Figure 1). Both types of packets begin with a com-
mon header (CHDR) which describes the packet type, the length of
the longest path that the session supports, and a type-specific field.
For session setup packets, the type-specific field contains a value
EXP which indicates the intended expiration time of the session.
For data packets, the specific value is a random nonce generated by
the sender used by intermediate nodes to process the data packet.

Session setup packets include a nested Sphinx packet and an FS
payload. Data packets carry an AHDR and an onion-encrypted data
payload. We explain each field in detail in Section 4.

HORNET Setup Packet

hopstype

HORNET Data Packet

hopstype

Sphinx Header

Sphinx Payload

FS Payload

AHDR

Data Payload

EXP nonce

Figure 1: HORNET packet formats. For both setup packet and
data packet, the shaded fields represent the common header
(CHDR).

4. FORMAL PROTOCOL DESCRIPTION
We now describe the details of our protocol, focusing on sender

anonymity. We begin with notation (Section 4.1) and initialization
requirements (Section 4.2). We then describe the establishment of
anonymous communication sessions (Section 4.3) and data trans-
mission (Section 4.4).

4.1 Notation
Let k be the security parameter used in the protocol. For evalua-

tion purposes we consider k= 128. G is a prime order cyclic group
of order q (q ∼ 22k), which satisfies the Decisional Diffie-Hellman
Assumption. G∗ is the set of non-identity elements in G and g is a
generator of G. Throughout this section we use the multiplicative
notation for G.

Let r be the maximum length of a path, i.e., the maximum num-
ber of nodes on a path, including the destination. We denote the
length of an FS as |FS| and the size of an AHDR block, containing
an FS and a MAC of size k, as c= |FS|+k.

HORNET uses the following cryptographic primitives:

• MAC : {0,1}k × {0,1}∗ → {0,1}k: Message Authentication
Code (MAC) function.
• PRG0,PRG1,PRG2 : {0,1}k→{0,1}rc: Three cryptographic

pseudo-random generators.

• PRP : {0,1}k ×{0,1}a → {0,1}a: A pseudo-random permu-
tation, implementable as a block cipher. The value of a will be
clear from the context.

Term Definition

k Security parameter (length of keys and MACs). k = 128 bits (16
B).

|FS| Length of a forwarding segment (FS). |FS|= 256 bits (32 B).

c Length of a typical block made of an FS and a MAC. c= |FS|+
k = 384 bits (48 B) .

r Maximum path length, including the destination. From our evalu-
ation, r = 7.

S,D Source and destination.

pf ,pb The forward path (from S to D) and the backward path (from D to
S).

lf , lb
Lengths of the forward and backward path (l, when it is clear from
the context to which path it refers). From our evaluation, 1≤ l≤
7.

nf
i ,n

b
j

The i-th node on the forward path and the j-th node on the back-
ward path, with 0≤ i < lf and 0≤ j < lb.

gxn ,xn Public/private key pair of node n.

sfi Secret key established between S and node nf
i .

R Routing information, which allows a node to forward a packet to
the next hop.

CHDR Common header. First three fields of both setup packets and data
packets (see Figure 1).

SHDR, SP Sphinx header and payload.

P FS payload, used to collect the FSes during the setup phase.

AHDR Anonymous header, used for every data packet. It allows each
node on the path to retrieve its FS.

O Onion payload, containing the data payload of data packets.

EXP Expiration time, included in each FS.

Table 1: Protocol notation and typical values (where applica-
ble).

• ENC : {0,1}k ×{0,1}k ×{0,1}mk → {0,1}mk: Encryption
function, with the second parameter being the Initialization Vec-
tor (IV) (e.g., stream cipher in CBC mode). m is a positive inte-
ger denoting the number of encrypted blocks.

• DEC : {0,1}k ×{0,1}k ×{0,1}mk → {0,1}mk: Decryption
function, inverse of ENC.
• hop : G∗→ {0,1}k: a family of hash functions used to key op,

with op ∈ {MAC,PRG0,PRG1,PRP,ENC,DEC}.
We denote by RAND(a) a function that generates a new uniformly
random string of length a.

Furthermore, we define the notation for bit strings. 0a stands for
a string of zeros of length a. |σ| is the length of the bit string σ.
σ[a...b] represents a substring of σ from bit a to bit b, with sub-
index a starting from 0; σ[a...end] indicates the substring of σ from
bit a till the end. ε is the empty string. σ‖σ′ is the concatenation of
string σ and string σ′. We summarize protocol notation and typical
values for specific parameters in Table 1.

In the following protocol description, we consider a source S
communicating with a destinationD using forward path pf travers-
ing nodes nf0 ,n

f
1 , . . . ,n

f
lf−1 and backward path pb traversing nodes

nb0,n
b
1, . . . ,n

b
lb−1, with lf , lb ≤ r, where nf0 and nblb−1 are the

nodes closest to the source. Without loss of generality, we let the
last node on the forward path nf

lf−1 = D and refer to the desti-
nation by these two notations interchangeably. In general we use
dir ∈ {f,b} as superscripts to distinguish between notation refer-
ring to the forward and backward path, respectively. Finally, to
avoid redundancy, we use {symdir

i } to denote {symdir
i |0 ≤ i ≤

ldir−1}, where sym can be any symbol.



4.2 Initialization
Suppose that a source S wishes to establish an anonymous ses-

sion with a public destination D. First, S anonymously obtains
(from the underlying network) paths in both directions: a forward
path pf = {Rf

0 ,R
f
1 , · · · ,R

f
lf−1} from S toD and a backward path

pb = {Rb
0,R

b
1, · · · ,R

f
lb−1} from D to S. Rdir

i denotes the rout-

ing information needed by the node ndiri to forward a packet. S
also anonymously retrieves and verifies a set of public keys g

x
ndir
i

for the node ndiri on path pdir (see Section 2.1). Note that gxD

is also included in the above set (as nf
lf−1 = D). Finally, S gen-

erates a random DH public/private key pair for the session: xS
and gxS . The per-session public key gxS is used by the source to
create shared symmetric keys with nodes on the paths later in the
setup phase. S locally stores

{
(xS ,g

xS ) ,
{
g
x
ndir
i

}
,pdir

}
, and

uses these values for the setup phase.

4.3 Setup Phase
As discussed in Section 3, in the setup phase, HORNET uses

two Sphinx packets, which we denote by PÊ and PË, to traverse
all nodes on both forward and backward paths and establish per-
session state with every intermediate node, without revealing S’s
network location. For S to collect the generated per-session state
from each node, both Sphinx packets contain an empty FS payload
into which each intermediate node can insert its FS, but is not able
to learn anything about, or modify, previously inserted FSes.

4.3.1 Sphinx Overview
Sphinx [22] is a provably-secure mix protocol. Each Sphinx

packet allows a source node to establish a set of symmetric keys,
one for each node on the path through which packets are routed.
These keys enable each node to check the header’s integrity, onion-
decrypt the data payload, and retrieve the information to route the
packet. Processing Sphinx packets involves expensive asymmet-
ric cryptographic operations, thus Sphinx alone is not suitable to
support high-speed anonymous communication.

Sphinx packets. A Sphinx packet is composed of a Sphinx header
SHDR and a Sphinx payload SP. The SHDR contains a group ele-
ment yidir that is re-randomized at each hop. Each yidir is used
as S’s ephemeral public key in a DH key exchange with node ndiri .
From this DH exchangeïijŇ node ndiri derives a shared symmetric
key sdiri , which it uses to process the rest of the SHDR and mutate
yi

dir .
The rest of the SHDR is an onion-encrypted data structure, with

each layer containing routing information and a MAC. The rout-
ing information indicates to which node the packet should be for-
warded to next, and the MAC allows to check the header’s integrity
at the current node. The Sphinx payload SP allows end hosts to
send confidential content to each other. Each intermediate node
processes SP by using a pseudo-random permutation.

Sphinx core functions. We abstract the Sphinx protocol into the
following six functions:
• GEN_SPHX_HDR. The source uses this function to generate two

Sphinx headers, SHDRf and SHDRb, for the forward and back-
ward path, respectively. It also outputs the symmetric keys {sdiri },
each established with the corresponding node’s public key g

x
ndir
i .

• GEN_SPHX_PL_SEND. The function allows the source to gener-
ate an onion-encrypted payload SPf encapsulating confidential
data to send to the destination.

• UNWRAP_SPHX_PL_SEND. The function removes the last en-
cryption layer added by GEN_SPHX_PL_SEND, and allows the
destination to decrypt the SPf .
• GEN_SPHX_PL_RECV. The function enables the destination to

cryptographically wrap a data payload into SPb before sending it
to the source.
• UNWRAP_SPHX_PL_RECV. The function allows the source to

recover the plaintext of the payload that the destination sent.
• PROC_SPHX_PKT. Intermediate nodes use this function to pro-

cess a Sphinx packet, and establish symmetric keys shared with
the source. The function takes as inputs the packet (SHDR, SP),
and the node’s DH public key g

x
ndir
i . The function outputs the

processed Sphinx packet (SHDR′, SP′) and the established sym-
metric key sdiri .

4.3.2 Forwarding Segment
We extend Sphinx to allow each node to create a Forwarding

Segment (FS) and add it to a data structure we name FS payload
(see below). An FS contains a node’s per-session state, which con-
sists of a secret key s shared with the source, a routing segment R,
and the session’s expiration time EXP. To protect these contents, the
FS is encrypted with a PRP keyed by a secret value SV known only
by the node that creates the FS. A node seals and unseals its state
using two opposite functions: FS_CREATE and FS_OPEN. They are
defined as follows:

FS = FS_CREATE(SV,s,R,EXP) =

= PRP(hPRP(SV );{s‖R‖ EXP})
(1)

{s‖R‖ EXP}= FS_OPEN(SV,FS)

= PRP−1(hPRP(SV );FS)
(2)

4.3.3 FS Payload
At the end of each HORNET setup packet is a data structure

we call FS payload (see Figure 1). The FS payload is an onion-
encrypted construction that allows intermediate nodes to add their
FSes as onion-layers.

Processing the FS payload leaks no information about the path’s
length or about an intermediate node’s position on the path. All
FS payloads are padded to a fixed length, which is kept constant
by dropping the right number of trailing bits of the FS payload
before an FS is added to the front. Moreover, new FSes are always
added to the beginning of the FS payload, eliminating the need for
intermediate nodes to know their positions in order to process FS
payloads.

An FS payload also provides both secrecy and integrity for the
FSes it contains. Each node re-encrypts the FS payload after in-
serting a new FS and computes a MAC over the resulting structure.
Only the source, with symmetric keys shared with each node on a
path, can retrieve all the FSes from the FS payload and verify their
integrity.
Functions. There are three core functions for the FS payload:
INIT_FS_PAYLOAD, ADD_FS, and RETRIEVE_FSES.

INIT_FS_PAYLOAD. A node initializes an FS payload by using a
pseudo-random generator keyed with a symmetric key s to generate
rc random bits:

P = PRG1(hPRG1(s)) (3)

where c = |FS|+k is the size of a basic block of the FS payload
(consisting of an FS and a MAC).

ADD_FS. Each intermediate node uses ADD_FS to insert its FS
into the payload, as shown in Algorithm 1. First, the trailing c bits



Algorithm 1 Add FS into FS payload.
1: procedure ADD_FS

Input: s, FS, Pin

Output: Pout

2: Ptmp←
{

FS‖Pin[0..(r−1)c−1]

}
⊕PRG0(hPRG0(s))[k..end]

3: α←MAC(hMAC(s);Ptmp)
4: Pout← α‖Ptmp

5: end procedure

Algorithm 2 Retrieve FSes from FS payload.
1: procedure RETRIEVE_FSES

Input: P , s, {si}
Output: {FSi}

2: Pinit← INIT_FS_PAYLOAD(s)
3: ψ← Pinit[(r−l)c..rc−1]

⊕PRG0(hPRG0(s0))[(r−l+1)c..end] ‖0c

⊕PRG0(hPRG0(s1))[(r−l+2)c..end] ‖02c
· · ·

⊕PRG0(hPRG0(sl−2))[(r−1)c..end] ‖0(l−1)c

4: Pfull = P ‖ψ
5: for i← (l−1), . . . ,0 do
6: check Pfull[0..k−1] =

MAC(hMAC(si);Pfull[k..rc−1])

7: Pfull← Pfull⊕ (PRG0(hPRG0(si))‖0(i+1)c)
8: FSi← Pfull[k..c−1]

9: Pfull← Pfull[c..end]

10: end for
11: end procedure

of the current FS payload, which are padding bits containing no
information about previously added FSes, are dropped, and then
the FS is prepended to the shortened FS payload. The result is
encrypted using a stream cipher (Line 2) and MACed (Line 4).
Note that no node-position information is required in ADD_FS, and
verifying that the length of the FS payload remains unchanged is
straightforward.

RETRIEVE_FSES. The source uses this function to recover all
FSes {FSi} inserted into an FS payload P . RETRIEVE_FSES starts
by recomputing the discarded trailing bits (Line 3) and obtaining a
complete payload Pfull. Thus, intuitively, this full payload is what
would remain if no nodes dropped any bits before inserting a new
FS. Afterwards, the source retrieves the FSes from Pfull in the
reverse order in which they were added by ADD_FS (see lines 6
and 8).

4.3.4 Setup Phase Protocol Description
Source processing. With the input

I =
{(
xS ,g

xS
)
,
{
g
x
ndir
i

}
,pdir

}
the source node S bootstraps a session setup in 5 steps:
1. S selects the intended expiration time EXP for the session and

specifies it in the common header CHDR (see Section 3.3).4

4EXP must not become an identifier that allows matching packets
of the same flow across multiple links. Since EXP does not change
during setup packet forwarding, a coarser granularity (e.g., 10s) is
desirable. In addition, the duration of the session should also have

2. S generates the send and the reply Sphinx headers by:

{SHDRf , SHDRb}= GEN_SPHX_HDR(I,CHDR) (4)

The common header CHDR (see Figure 1) is passed to the func-
tion to extend the per-hop integrity protection of Sphinx over it.
GEN_SPHX_HDR also produces the symmetric keys shared with
each node on both paths {sdiri }.

3. In order to enable the destination D to reply, S places the reply
Sphinx header SHDRb into the Sphinx payload:

SPf = GEN_SPHX_PL_SEND({sfi }, SHDRb) (5)

4. S creates an initial FS payload P f = INIT_FS_PAYLOAD(xS).
5. S composes PÊ = {CHDR ‖ SHDRf ‖ SPf ‖P f} and sends it to

the first node on the forward path nf0 .

Intermediate node processing. An intermediate node nfi receiv-
ing a packet PÊ = {CHDR ‖ SHDRf ‖ SPf ‖P f} processes it as
follows:
1. nfi first processes SHDRf and SPf in PÊ according to the

Sphinx protocol (using PROC_SPHX_PKT). As a result nfi ob-
tains the established symmetric key sfi shared with S, the pro-

cessed header and payload (SHDRf ′, SPf
′
) as well as the rout-

ing information Rf
i . During this processing the integrity of the

CHDR is verified.
2. nfi obtains EXP from CHDR and checks that EXP is not expired.
nfi also verifies that Rf

i is valid.

3. nfi generates its forwarding segment FSfi by using its local sym-
metric key SV f

i to encrypt sfi , Rf
i , and EXP (see Equation 1):

FSfi = FS_CREATE(SV f
i ,s

f
i ,R

f
i ,EXP) (6)

4. nfi adds its FSfi into the FS payload P f .

P f ′ = ADD_FS(sfi ,FS
f
i ,P

f ) (7)

5. Finally node nfi assembles the processed packet PÊ= {CHDR‖
SHDRf ′ ‖ SPf

′
‖P f ′} and routes it to the next node according

to the routing information Rf
i .

Destination processing. As the last node on the forward path, D
processes PÊ in the same way as the previous nodes. It first pro-
cesses the Sphinx packet in PÊ and derives a symmetric key sD
shared with S, and then it encrypts per-session state, including sD ,
into FSD , and inserts FSD into the FS payload.

After these operations, however, D moves on to create the sec-
ond setup packet PË as follows:
1. D retrieves the Sphinx reply header using the symmetric key
sD:

SHDRb = UNWRAP_SPHX_PL_SEND(sD, SPf ) (8)

2. D places the FS payload Pf of PÊ into the Sphinx payload SPb

of PË (this will allow S to get the FSes {FSfi }):

SPb = GEN_SPHX_PL_RECV(sD,P
f ) (9)

Note that sinceD has no knowledge about the keys {sfi } except
for sD ,D learns nothing about the other FSes in the FS payload.

only a restricted set of possible values (e.g., 10s, 30s, 1min, 10min)
to avoid matching packets within long sessions. For long-lived con-
nections, the source can create a new session in the background
before expiration of the previous one to avoid additional latency.



3. D creates a new FS payload P b = INIT_FS_PAYLOAD(sD) to
collect the FSes along the backward path.

4. D composes PË = {CHDR ‖ SHDRb ‖ SPb ‖P b} and sends it to
the first node on the backward path, nb0.
The nodes on the backward path process PË in the exact same

way nodes on the forward path processed PÊ. Finally PË reaches
the source S with FSes {FSbi} added to the FS payload.
Post-setup processing. Once S receives PË it extracts all FSes,
i.e., {FSfi } and {FSbi}, as follows:

1. S recovers the FS payload for the forward path P f from SPb:

P f = UNWRAP_SPHX_PL_RECV({sbi}, SPb) (10)

2. S retrieves the FSes for the nodes on the forward path {FSfi }:

{FSfi }= RETRIEVE_FSES({sfi },P
f ) (11)

3. S directly extracts from P bthe FSes for the nodes on the back-
ward path {FSbi}:

{FSbi}= RETRIEVE_FSES({sbi},P
b) (12)

With the FSes for all nodes on both paths,
{

FSfi
}

and
{

FSbi
}

, S
is ready to start the data transmission phase.

4.4 Data Transmission Phase
Each HORNET data packet contains an anonymous header AHDR

and an onion-encrypted payload O as shown in Figure 1. Figure 2
illustrates the details of an AHDR. The AHDR allows each inter-
mediate node along the path to retrieve its per-session state in the
form of an FS and process the onion-encrypted data payload. All
processing of data packets in HORNET only involves symmetric-
key cryptography, therefore supporting fast packet processing.

R
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Figure 2: Format of a HORNET anonymous header with de-
tails of a forwarding segment (FS).

At the beginning of the data transmission phase, S creates two
AHDRs, one for the forward path (AHDRf ) and one for the back-
ward path (AHDRb), by using FSes collected during the setup phase.
AHDRf enables S to send data payloads toD. To enableD to trans-
mit data payloads back, S sends AHDRb as payload in the first data
packet. If this packet is lost, the source would notice from the fact
that no reply is seen from the destination. If this happens the source
simply resends the backward AHDR using a new data packet.

4.4.1 Anonymous Header
Like an FS payload, an AHDR is an onion-encrypted data struc-

ture that contains FSes. It also offers the same guarantees, i.e.,
secrecy and integrity, for the individual FSes it contains, for their
number and for their order. Its functionalities, on the other hand,
are the inverse: while the FS payload allows the source to collect
the FSes added by intermediate nodes, the AHDR enables the source
to re-distribute the FSes back to the nodes for each transmitted data
packet.

Algorithm 3 Process an AHDR.
1: procedure PROC_AHDR

Input: SV , AHDR
Output: s, R, AHDR′

2: {FS‖γ ‖β}← AHDR
3: {s‖R‖ EXP}← FS_OPEN(SV,FS)
4: check γ = MAC(hMAC(s);FS‖β)
5: check tcurr < EXP
6: AHDR′←{β ‖0c}⊕PRG2(hPRG2(s))
7: end procedure

Algorithm 4 Anonymous header construction.
1: procedure CREATE_AHDR

Input: {si}, {FSi}
Output: (FS0,γ0,β0)

2: φ0← ε
3: for i← 0, . . . , l−2 do
4: φi+1← (φi ‖0c)

⊕
{

PRG2(hPRG2(si))[(r−1−i)c..end]
}

5: end for
6: βl−1← RAND ((r− l)c)‖φl−1
7: γl−1←MAC(hMAC(sl−1);FSl−1 ‖βl−1)
8: for i← (l−2), . . . ,0 do
9: βi←

{
FSi+1 ‖γi+1 ‖βi+1[0..(r−2)c−1]

}
⊕PRG2(hPRG2(si))[0..(r−1)c−1]

10: γi←MAC(hMAC(si);FSi ‖βi)
11: end for
12: end procedure

Functions. The life cycle of AHDRs consists of two functions:
the header construction (CREATE_AHDR) and the header process-
ing (PROC_AHDR). We begin with the description of PROC_AHDR
since it is simpler, and its helps understand the construction of
CREATE_AHDR.PROC_AHDR allows each intermediate node to ver-
ify the integrity of an incoming AHDR, and to check that the cor-
responding session has not expired. PROC_AHDR also retrieves
the key s shared with the source, as well as the routing informa-
tion R, from the FS of the node invoking the function. Finally,
PROC_AHDR also returns the processed header AHDR′, which will
be used by the next hop. The details of this function can be seen in
Algorithm 3.

Our AHDR construction resembles the Sphinx packet header
construction [22]. For each path (forward and backward),
CREATE_AHDR enables S to create an AHDR given the keys {si}
shared with each node on that path, and given the forwarding seg-
ments {FSi} of those nodes. All these keys and FSes are obtained
during the setup phase (see Section 4.3). The details are shown
in Algorithm 4. In essence, CREATE_AHDR is equivalent to a se-
ries of PROC_AHDR iterations performed in reverse. Initially, the
paddings φ are computed, each of which is the leftmost part of
an AHDR that results from the successive encryptions of the zero-
paddings added in PROC_AHDR (φ0 is the empty string since no
padding has been added yet). Once the last padding is computed
(the one for the AHDR received by the last hop, φl−1), the op-
erations in PROC_AHDR are reversed, obtaining at each step the
AHDRs as will be received by the nodes, from the last to the first.
This also allows the computation of the per-hop MACs.



4.4.2 Onion Payload
HORNET data payloads are protected by onion encryption. To

send a data payload to the destination, the source adds a sequence
of encryption layers on top of the data payload, one for each node
on the forward path (including the destination). As the packet is
forwarded, each node removes one layer of encryption, until the
destination removes the last layer and obtains the original plaintext.

To send a data payload back to the source, the destination adds
only one layer of encryption with its symmetric key shared with
the source. As the packet is forwarded, each node on the backward
path re-encrypts the payload until it reaches the source. With all
the symmetric keys shared with nodes on the backward path, the
source is capable of removing all encryption layers, thus obtaining
the original data payload sent by the destination.

Functions. Processing onion payloads requires the following two
functions: ADD_LAYER and REMOVE_LAYER.

ADD_LAYER. The function’s full form is:

{O′, IV ′}= ADD_LAYER(s,IV,O) (13)

Given a symmetric key s, an initial vector IV , and an input onion
payload O, ADD_LAYER performs two tasks. First, ADD_LAYER
encrypts O with s and IV :

O′ = ENC(hENC(s);IV ;O) (14)

Then, to avoid making the IV an identifier across different links,
ADD_LAYER mutates the IV for the next node:

IV ′ = PRP(hPRP(s);IV ) (15)

REMOVE_LAYER. The function is the inverse of ADD_LAYER,
decrypting the onion payload at each step, and mutating the IV
using the inverse permutation PRP−1 keyed with hPRP(s). Its full
form is the following:

{O′, IV ′}= REMOVE_LAYER(s,IV,O) (16)

4.4.3 Initializing Data Transmission
To start the data transmission session, S generates AHDRf and

AHDRb as follows:

AHDRf = CREATE_AHDR({sfi },{FSfi }) (17)

AHDRb = CREATE_AHDR({sbi},{FSbi}) (18)

S then sends AHDRb toD as payload of the first data packet (which
uses AHDRf ), as specified in the following section.

4.4.4 Data Transmission Protocol Description
Source processing. With AHDRf , S can send a data payload P
with the following steps:
1. S ensures that the session is not expired by checking that the

current time tcurr < EXP.
2. S creates an initial IV . With the shared keys {sfi }, S onion

encrypts the data payload M by setting Olf =M and IVlf =

IV and computing the following for i← (lf −1)..0:

{Oi, IVi}= ADD_LAYER(sD, IVi+1,Oi+1) (19)

3. S places IV0 in the common header CHDR.

4. S sends out the resulting data packet {CHDR,AHDRf ,O0}.

Processing by intermediate nodes. Each intermediate node nfi
on the forward path processes a received data packet of the form
{CHDR,AHDRf ,O} with its local secret key SV f

i as follows:

1. nfi retrieves the key sfi shared with S and the routing informa-
tion Rf

i from AHDRf :

{sfi ,R
f
i ,AHDRf ′}= PROC_AHDR(SV f

i ,AHDRf ) (20)

PROC_AHDR also verifies the integrity of AHDR, and checks that
the session has not expired.

2. nfi obtains IV from CHDR and removes one layer of encryption
from the data payload:

{O′, IV ′}= REMOVE_LAYER(sfi , IV,O) (21)

3. nfi updates the IV field in CHDR with IV ′.

4. nfi sends the resulting packet {CHDR′,AHDRf ′,O′} to the next
node according to Rf

i .
The above procedures show that the intermediate node process-

ing requires only symmetric-cryptography operations.

Destination processing. D processes incoming data packets as
the intermediate nodes. Removing the last encryption layer from
the onion payload D obtains the original data payload M sent by
S. Additionally, for the first data packet D retrieves AHDRb from
the payload, and stores the {sD,Rb

0,AHDRb} locally so that D can
retrieve AHDRb when it wishes to send packets back to S.

Processing for the backward path. Sending and processing a
HORNET packet along the backward path is the same as that for the
forward path, with the exception of processing involving the data
payload. BecauseD does not possess the symmetric keys that each
node on the backward path shares with S, D cannot onion-encrypt
its payload. Therefore, instead of REMOVE_LAYER, D and the in-
termediate nodes use ADD_LAYER to process the data payload, and
the source node recovers the data with REMOVE_LAYER.

5. SECURITY ANALYSIS
This section describes how HORNET defends against well-

known de-anonymization attacks and meets the design goals of
Section 2.3. We also present defenses against denial of service at-
tacks. A taxonomy of attacks against low-latency anonymity sys-
tems, as well as formal proofs showing that HORNET satisfies the
correctness, security, and integrity properties defined by Camenisch
and Lysyanskaya [17] are detailed in the full version [19].

5.1 Passive De-anonymization
Session linkage. Each session is established independently from
every other session, based on fresh, randomly generated keys. Ses-
sions are in particular not related to any long term secret or identi-
fier of the host that creates them. Thus, two sessions from the same
host are unlinkable, i.e., they are cryptographically indistinguish-
able from sessions of two different hosts.

Forward/backward flow correlation. The forward and backward
headers are derived from distinct cryptographic keys and therefore
cannot be linked. Only the destination is able to correlate forward
and backward traffic, and could exploit this to discover the round-
trip time (RTT) between the source and itself, which is common to
all low-latency anonymity systems. Sources willing to thwart such
RTT-based attacks from malicious destinations could introduce a
response delay for additional protection.

Packet correlation. HORNET obfuscates packets at each hop.
This prevents an adversary who observes packet bit patterns at two
points on a path from linking packets between those two points.
In addition to onion encryption, we also enforce this obfuscation



by padding the header and the payload to a fixed length, thwart-
ing packet-size-based correlation.5 While this does not prevent
the adversary from discovering that the same flow is passing his
observation points using traffic analysis, it makes this process non-
trivial, and allows upper-layer protocols to take additional measures
to hide traffic patterns. The hop-by-hop encryption of the payload
also hides the contents of the communication in transit, protect-
ing against information leaked by upper layer protocols that can be
used to correlate packets.

Path length and node position leakage. HORNET protects against
the leakage of a path’s length and of the nodes’ positions on the
path (i.e., the relative distance, in hops, to the source and the desti-
nation). In the setup phase, this protection is guaranteed by Sphinx,
so only the common header and FS Payload are subject to leakage
(see Section 3.3 for the exact structure of the packets). It is straight-
forward to see that the common header does not contain path or
position information. The FS Payload length is padded to the max-
imum size, and remains constant at each hop (see Algorithm 1).
After adding its FS to the front of the FS Payload, each node re-
encrypts the FS payload, making it infeasible for the next nodes to
see how many FSes have previously been inserted.

During data transmission, neither the common header nor the
data payload contain information about path length or node posi-
tion, so only the AHDR (anonymous header) needs to be analyzed.
The AHDR is padded to a maximum length with random bytes, and
its length remains constant as it traverses the network (see Algo-
rithm 3). The FSes contained in the AHDR are onion encrypted, as
is the padding added at each hop. Thus, it is not possible to dis-
tinguish the initial random padding from the encrypted FSes, and
neither of these from encrypted padding added by the nodes.

Timing for position identification. A malicious node could try
to learn its position on the path of a session by measuring timing
delays between itself and the source (or the destination) of that ses-
sion. HORNET offers two possible countermeasures. In the first,
we assume that the malicious node wishes to measure the network
delay between itself and the source. To perform such a measure-
ment, the node must observe a packet directed to the source (i.e.,
on the backward path) and then observe a response packet from the
source (on the forward path). However, HORNET can use asym-
metric paths [31], making this attack impossible if the single node
is not on both forward and backward paths.

The second countermeasure is that, even if the node is on both
paths, it is still non-trivial to discover that a specific forward flow
corresponds to a certain backward flow, since the forwarding seg-
ments for the two paths are independent. To link the forward and
backward flows together the node would need to rely on the traffic
patterns induced by the upper-layer protocols that are running on
top of HORNET in that session.

5.2 Active De-anonymization
Session state modification. The state of each node is included in
an encrypted FS. During the session setup, the FSes are inserted
into the FS payload, which allows the source to check the integrity
of these FSes during the setup phase. During data transmission,
FSes are integrity-protected as well through per-hop MACs com-
puted by the source. In this case, each MAC protecting an FS is
computed using a key contained in that FS. This construction is se-
cure because every FS is encrypted using a PRP keyed with a secret
value known only to the node that created the FS: if the FS is modi-
fied, the authentication key that the node obtains after decryption is

5A bandwidth-optimized alternative would be to allow two or three
different payload sizes, at the cost of decreased anonymity.

a new pseudo-random key that the adversary cannot control. Thus,
the probability of the adversary being able to forge a valid MAC is
still negligible.
Path modification. The two HORNET data structures that hold
paths (i.e., FS payloads in the setup phase and AHDRs), use chained
per-hop MACs to protect path integrity and thwart attacks like in-
serting new nodes, changing the order of nodes, or splicing two
paths. The source can check such chained per-hop MACs to de-
tect the modifications in the FS payload before using the modified
FS payload to construct AHDRs, and similarly intermediate nodes
can detect modifications to AHDRs and drop the altered packets.
These protections guarantee path information integrity as stated in
Section 2.3.
Replay attacks. Replaying packets can facilitate some types of
confirmation attacks [42]. For example, an adversary can replay
packets with a pre-selected pattern and have a colluding node iden-
tify those packets downstream. HORNET offers replay protection
through session expiration; replayed packets whose sessions have
expired are immediately dropped. Replay of packets whose ses-
sions are not yet expired is possible, but such malicious behavior
can be detected by the end hosts. Storing counters at the end hosts
and including them in the payload ensures that replays are recog-
nizable. The risk of detection helps deter an adversary from using
replays to conduct mass surveillance. Furthermore, volunteers can
monitor the network, to detect malicious activity and potentially
identify which nodes or group of nodes are likely to be misbehav-
ing. Honest ASes could control their own nodes as part of an intru-
sion detection system.

5.3 Payload Protection
Payload secrecy. Data packet payloads are wrapped into one layer
of encryption using the key shared between the source and the des-
tination, both for packets sent by the source on the forward and
for packets sent by the destination on the backward path (see Sec-
tion 4.4.4). Assuming that the cryptographic primitives used are
secure, the confidentiality of the payload is guaranteed as long as
the destination is honest. In Section 7.3 we discuss the guarantees
for perfect forward secrecy for the data payload.
Payload tagging or tampering. HORNET does not use per-hop
MACs on the payload of data packets for efficiency and because the
destination would not be able to create such MACs for the packets
it sends (since the session keys of the nodes are known only to the
source). The lack of integrity protection allows an adversary to tag
payloads. Admittedly, the use of tagging, especially in conjunction
with replay attacks, allows the adversary to improve the effective-
ness of confirmation attacks. However, end-to-end MACs protect
the integrity of the data, making such attacks (at a large scale) de-
tectable by the end hosts.

5.4 Denial-of-Service (DoS) Resilience
Computational DoS. The use of asymmetric cryptography in the
setup phase makes HORNET vulnerable to computational DoS at-
tacks, where adversaries can attempt to deplete a victim node’s
computation capability by initiating a large number of sessions
through this node. To mitigate this attack, HORNET nodes can
require each client that initiates a session to solve a cryptographic
puzzle [23] to defend against attackers with limited computation
power. Alternatively, ISPs offering HORNET as a service can se-
lectively allow connections from customers paying for the anonym-
ity service.
State-based DoS. HORNET is not vulnerable to attacks where ad-
versaries maintain a large number of active sessions through a vic-
tim node. One of HORNET’s key features is that all state is carried



within packets, thus no per-session memory is required on nodes or
rendezvous points.

5.5 Topology-based Analysis
Unlike onion routing protocols that use global re-routing through

overlay networks (e.g., Tor [25] and I2P [49]), HORNET uses short
paths created by the underlying network architecture to reduce la-
tency, and is therefore bound by the network’s physical intercon-
nection and ISP relationships. This is an unavoidable constraint for
onion routing protocols built into the network layer [32, 44]. Thus,
knowledge of the network topology enables an adversary to reduce
the number of possible sources (and destinations) of a flow by only
looking at the previous (and next) hop of that flow. For example,
in Figure 3(a), assume that AS0 is controlled by a passive adver-
sary. The topology indicates that any packet received from AS1
must have originated from a source located at one of {AS1, AS2,
AS3, AS4, AS5}.

We evaluate the information leakage due to the above topology
constraints in the scenario where a single AS is compromised. We
derive AS-level paths from iPlane trace-route data [6], and use AS-
level topology data from CAIDA [36]. For each AS on each path
we assume that the AS is compromised and receives packets from a
victim end host through that path. We compute the end host’s ano-
nymity set size learned by the adversary according to the topology.
For instance, in Figure 3(a), if AS0 is compromised and receives
from AS1 packets originally sent by a user in AS4, we compute the
size of the anonymity set composed of all the ASes that can estab-
lish valley-free paths traversing the link from AS1 to AS0. In this
example, the anonymity set size would be the sum of the sizes of
AS1, AS2, AS3, AS4, and AS5.

Similar to Hsiao et al. [32], we use the number of IPv4 addresses
to estimate the size of each AS. Figure 3(b) plots the CDF of the
anonymity set size for different distances (in number of AS hops)
between the adversary and the victim end host. For adversarial
ASes that are 4 hops away, the anonymity set size is larger than 231

in 80% of the cases. Note that the maximum anonymity set size is
232 in our analysis, because we consider only IPv4 addresses.

Implications of path knowledge. Knowledge about the path, in-
cluding the total length of the path and an adversarial node’s po-
sition on the path, significantly downgrades the anonymity of end
hosts. Considering again Figure 3(a), if the adversary controlling
AS0 sees a packet incoming from AS1 and knows that it is 4 hops
away from the source host, he learns that the source host is in AS4.
Compared with the previous case, we see that the anonymity set
size is strongly reduced.

We quantify additional information leakage in the same setting
as the previous evaluation. Figure 3(c) represents the CDFs of the
anonymity set sizes of end hosts according to the distance to the
compromised AS. The anonymity set sizes are below 228 in 90%
of the cases when the adversarial ASes are 4 hops away, with an
average size of 223. This average size decreases to 217 for the
cases where the adversarial ASes are 7 hops away from the target
hosts.

Previous path-based anonymity systems designed for the net-
work layer either fail to hide knowledge about the path [44] or only
partially obscure the information [32]. In comparison, HORNET
protects both the path length and the position of each node on the
path, which significantly increases the anonymity-set size.

6. EVALUATION
We implemented the HORNET router logic in an Intel soft-

ware router using the Data Plane Development Kit (DPDK) [4].
To our knowledge, no other anonymity protocols have been im-

Scheme Header Length Sample Length (Bytes)
LAP 12+2s · r 236

Dovetail 12+s · r 124
Sphinx 32+(2r+2)s 296

Tor 3+11 · r 80
HORNET 8+3r ·s 344

Table 2: Comparison between the length of different packet
header formats in bytes. s is the length of symmetric elements
and r is the maximum AS path length. For the sample length,
we select s=16 Bytes and r=7. Analysis of iPlane paths shows
that more than 99% of all paths have fewer than 7 AS hops.

plemented in a router SDK. We also implemented the HORNET
client in Python. Furthermore, we assembled a custom crypto
library based on the Intel AESNI cryptographic library [5], the
curve25519-donna library [3], and the PolarSSL libraries [8]. We
use IP forwarding in DPDK as our performance baseline. For com-
parison, we implemented the data forwarding logic from Sphinx,
LAP, Dovetail, and Tor using DPDK and our cryptographic library.

Fairly comparing the performance of anonymity systems at the
application layer with those that operate at the network layer is
challenging. To avoid penalizing Tor with additional propagation
delay caused by longer paths and processing delay from the kernel’s
network stack, we implemented Tor at the network layer (as sug-
gested by Liu et al. [35]). Tor’s design requires relay nodes to per-
form SSL/TLS and transport control. SSL/TLS between neighbor-
ing relays at the application layer maps to link encryption between
neighboring nodes at the network layer, which we consider orthog-
onal but complementary to HORNET (see Section 7.2). Hence, for
fair comparison, we implemented the network-layer Tor without
SSL/TLS or transport control logic. Throughout our evaluation we
refer to this implementation of Tor as L3 Tor.

Our testbed contains an Intel software router connected to a
Spirent TestCenter packet generator and analyzer [10]. The soft-
ware router runs DPDK 1.7.1 and is equipped with an Intel Xeon
E5-2680 processor (2.70 GHz, 2 sockets, 16 logical cores/socket),
64 GB DRAM, and 3 Intel 82599ES 40 Gb/s network cards (each
with 4 10 Gb/s ports). We configured DPDK to use 2 receiving
queues for each port with 1 adjacent logical core per queue.

6.1 Data Forwarding Performance
Forwarding latency. We measure the CPU cycles consumed to
forward a data packet in all schemes. Figure 4 shows the average
latency (with error bars) to process and forward a single data packet
in all schemes (except Sphinx6) when payload sizes vary. We ob-
serve that HORNET, even with onion encryption/decryption over
the entire payload and extensive header manipulation, is only 5%
slower than LAP and Dovetail for small payloads (64 bytes). For
large payloads (1200 bytes7), HORNET is 71% slower (about 400
nanoseconds slower per packet when using a single core) than LAP
and Dovetail. However, the additional processing overhead enables
stronger security guarantees.
Header overhead. As a result of carrying anonymous session state
(specifically cryptographic keys) within packet headers, HORNET
6We omit Sphinx from the comparison for better readability. In
our experiments, processing a Sphinx packet takes more than 640K
cycles due to asymmetric cryptographic operations. This is 3 or-
ders of magnitude slower than that of HORNET, L3 Tor, LAP, and
Dovetail.
7Because LAP, Dovetail, and HORNET all have large packet head-
ers of 300+ bytes, we limit the largest payload in our experiments
to be 1200 bytes.
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Figure 3: a) An example AS-level topology with an adversarial AS (AS0). b) CDF of anonymity-set size when a position-agnostic AS
on path is adversarial. “Hops” indicates the number of ASes between the adversarial AS and the victim end host. For example, the
point (25, 0.4) on the line “3 hops” means that the anonymity set size is smaller than 225 in 40% of cases when the end host is 3 hops
away from the adversarial AS. c) CDF of anonymity-set size when an adversarial AS knows its own position on the path. For Figures
b) and c), the maximum size of an end host’s anonymity set is 232 because we consider the IPv4 address space. Therefore, the ideal
case for an end host is that the anonymity set size is 232 with probability equal to 1.

headers are larger than Sphinx, L3 Tor, LAP, and Dovetail headers
(see Table 2). While larger headers reduce net throughput (i.e.,
goodput), this tradeoff appears acceptable: compared to L3 Tor,
no state is required at relay nodes, enabling scalability; compared
to Sphinx, data processing speed is higher; compared to LAP and
Dovetail, HORNET provides stronger security properties.
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Figure 4: Per-node data forwarding latency on a 10 Gbps link.
Lower is better.

Goodput. We further compare all the schemes by goodput, which
excludes the header overhead from total throughput. Goodput is a
comprehensive metric to evaluate both the packet processing speed
and protocol overhead. For example, a scheme where headers take
up a large proportion of packets yields only low goodput. On the
other hand, a scheme with low processing speed also results in poor
goodput.

Figure 5(a) and Figure 5(b) demonstrate the goodput of all
schemes (except Sphinx8) on a 10 Gb/s link when varying the num-
ber of hops r, with 40-byte and 1024-byte payloads, respectively.

8Sphinx’s goodput is less than 10 Mb/s in both cases because of
its large packet headers and asymmetric cryptography for packet
processing.

Larger r means larger header sizes, which reduces the resulting
goodput.

When the payload size is small, the goodput of all protocols re-
mains stable. This is due to the fact that no scheme can saturate
the link, and accordingly the goodput differences between the three
schemes mainly reflect the different processing latencies among
them. Consequently, L3 Tor’s and HORNET’s goodput is 32% less
than that of LAP and Dovetail. On the other hand, when the pay-
load size is large, all schemes except Sphinx can saturate the 10
Gb/s link. HORNET can reach 87% of LAP’s goodput while pro-
viding stronger security guarantees.

6.2 Max Throughput on a Single Router
To investigate how our implementation scales with respect to the

number of CPU cores, we use all 12 ports on the software router,
generating HORNET data packets at 10 Gb/s on each port. Each
packet contains a 7 AS-hop header and a payload of 512 bytes, and
is distributed uniformly among the working ports. We monitor the
aggregate throughput on the software router.

The maximal aggregate throughput of HORNET forwarding in
our software router is 93.5 Gb/s, which is comparable to today’s
switching capacity of a commercial edge router [1]. When the num-
ber of cores ranges from 1 to 4, our HORNET implementation can
achieve full line rate (i.e., 10 Gb/s per port). As the number of
cores increases to 5 and above, each additional port adds an extra
6.8Gb/s.

6.3 Session Setup Performance
We evaluate the latency introduced by processing setup packets

on each border router. Similar to measuring the latency of data for-
warding, we also instrument the code to measure CPU cycles con-
sumed to process packets in the session setup phase. Table 3 lists
the average per-node latency for processing the two setup packets
in HORNET’s session setup phase. Due to a Diffie-Hellman key
exchange, processing the two setup packets in the session setup
phase increases processing latency (by about 240µs) compared to
data packet processing. However, HORNET must only incur this
latency once per session.
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Figure 5: a) Data forwarding goodput on a 10 Gbps link for small packets (40 Byte payloads); b) Data forwarding goodput large
packets (1024 Byte payloads). Higher is better.

Packet Latency (K cycles) Latency (µs)
PÊ 661.95 ± 30.35 245.17 ± 11.24
PË 655.85 ± 34.03 242.91 ± 12.60

Table 3: Per-node latency to process session setup packets with
standard errors.

7. DISCUSSION

7.1 Retrieving Paths Anonymously in FIAs
HORNET assumes that the source can obtain a forward path and

a backward path to an intended destination anonymously in FIAs.
We briefly discuss how a source host using HORNET can retrieve
two such paths in NIRA, SCION and Pathlets.

SCION hosts rely on path servers to retrieve paths. In SCION,
each destination node registers on a central server its “half” path:
the path to/from the network “core”. To compose full paths (for-
ward and backward paths) between a source and a destination, the
source only needs to anonymously fetch the destination’s half paths
from/to the network core and combine them with its own half paths.

To anonymously retrieve a destination’s half paths, the source
can use one of the following two methods. As a first method, the
source can obtain the path to/from a path server through an unpro-
tected query using other schemes, from resolver configuration, or
from local services similar to DHCP. The source then establishes
an anonymous HORNET session to the server. Once a HORNET
session is created, the source can proceed to anonymously request
half paths of the destination. Though it is possible to reuse the
established HORNET session to a path server to query multiple
paths (for different destinations) for better efficiency, using a sepa-
rate session to retrieve each path is more secure because it prevents
profiling attacks.

Alternatively, the source can leverage a private information re-
trieval (PIR) scheme [20] to retrieve the path anonymously from
the path server, so that the path server cannot distinguish which
destination the source connects to. However, a PIR scheme will
inevitably add bandwidth and computational overhead to both the
source and the path server, increasing session setup phase la-
tency [37].

In NIRA and Pathlets, the situation is different because rout-
ing information (i.e., inter-domain addresses and route segments,
and pathlets, respectively) is disseminated to users. The source can
therefore keep a database local path database, querying it (locally)
on demand.

7.2 Integrating with Security Mechanisms
at Different Layers

At the network layer, HORNET can benefit from ASes that of-
fer traffic redirection to mitigate topology-based attacks (see Sec-
tion 5.5). For instance, ASes can allow paths that deviate from
the valley-freeness policy to increase the anonymity set size of end
hosts. This enables a trade-off between path length and anonymity,
as described by Sankey and Wright [44].

In addition, upper-layer anonymity protocols can be used in con-
junction with HORNET to provide stronger anonymity guarantees.
For example, to entirely remove the concerns of topology-based at-
tacks, a single-hop proxy or virtual private network (VPN) could be
used to increase the size of the anonymity sets of end hosts. Similar
solutions could also protect against upper-layer de-anonymization
attacks, in particular fingerprinting attacks on the transport proto-
col [46].

At lower layers, HORNET is also compatible with link-layer
protection such as link-level encryption. The role of link-level en-
cryption in HORNET is comparable to SSL/TLS in Tor. Link en-
cryption prevents an adversary eavesdropping on a link from being
able to distinguish individual sessions from each other, therefore
making confirmation attacks much harder for this type of adver-
sary.

7.3 Limitations
Targeted confirmation attacks. When for a certain session an
adversary controls both the node closest to the source and the node
closest to the destination (or the destination itself), it can launch
confirmation attacks by analyzing flow dynamics.These attacks can
be made more effective by replaying packets.

HORNET, like other low-latency onion routing schemes [25],
cannot prevent such confirmation attacks targeting a small number
of specific users [45, 33]. However, HORNET raises the bar of
deploying such attacks at scale: the adversary must be capable of



controlling a significant percentage of ISPs often residing in multi-
ple geopolitical areas. In addition, the packet obfuscation measures
built into HORNET (discussed in Section 5) make it non-trivial
to link two flows, since it is not possible to simply match packets
through bit patterns. Timing intervals for packet sequences need
to be stored and compared, thus performing such operations for a
large fraction of the observed flows is expensive. Furthermore, it
is difficult for attackers to perform active attacks (e.g., packet re-
play) at scale while remaining undetected. For instance, a down-
stream benign AS can detect replayed packets by a compromised
upstream AS; end hosts can also detect and report packet tagging
attacks when (a threshold number of) end-to-end MACs do not suc-
cessfully verify.
Perfect forward secrecy. A drawback of HORNET’s efficiency-
driven design is that it does not provide perfect forward secrecy for
the link between communicating parties. This means that an adver-
sary could record the observed traffic (the setup phases, in partic-
ular), and if it later compromises a node, it learns which node was
next on the path for each recorded session. This is an unavoidable
limitation of having a setup that consists of a single round-trip.

Other systems (e.g., Tor) use a telescopic setup9, which achieves
perfect forward secrecy at the cost of diminished performance (in
particular higher latency, and also an additional asymmetric crypto-
graphic operation per node). Using a telescopic setup is also possi-
ble for HORNET, but in addition to the performance cost it also re-
quires that all paths be reversible. However, this requirement does
not hold in today’s Internet, where a significant fraction of AS-level
paths are asymmetric [31].

It is important to note that in HORNET it is still possible to
achieve perfect forward secrecy for the contents of the communica-
tion, i.e., for the data exchanged between sources and destinations.
The destination needs to generate an ephemeral Diffie-Hellman key
pair, and derive an additional shared key from it.10 Destinations
also need to generate a new local secret SV frequently, so in the
event of a destination being compromised it is not possible for the
adversary to decrypt FSes used in expired sessions.

8. RELATED WORK
Anonymity systems as overlays. The study of anonymous com-
munication began with Chaum’s proposal for mix networks [18].
A number of message-based mix systems have been proposed and
deployed since [30, 38, 21, 22]. These systems can withstand an
active adversary and a large fraction of compromised relays, but
rely on expensive asymmetric primitives, and message batching
and mixing. Thus, they suffer from large computational overhead
and high latency.

Onion routing systems [43, 14, 15, 25] were proposed to effi-
ciently support interactive traffic. In general, low-latency onion
routing systems are vulnerable to end-to-end confirmation at-
tacks [34], and may fail to provide relationship anonymity when
two routers on the path are compromised [29, 33]. HORNET shares
these limitations.

One specific onion routing system, Tor, has a number of security
advantages over HORNET. Tor can prevent replays and has perfect
forward secrecy for its sessions. Additionally, due to its overlay
9In the telescopic setup, a source iteratively sets up a shared key
with each AS: the source sets up a shared key with the first-hop
AS; the source sets up a shared key with the nth-hop AS through
the channel through 1st-hop AS to (n−1)th-hop AS.

10This feature, though omitted in Section 4 for simplicity, is part of
our implementation. It is done in such a way that the forward se-
cret shared key is included in the destination’s FS during the setup,
without any additional packet being required.

design which uses global redirection, Tor is not constrained by the
underlying network topology. However, global redirection enables
the attack vector that allows even single compromised ASes to per-
form confirmation attacks [40, 13], as one AS can be traversed mul-
tiple times. This attack is not possible in HORNET since packets
traverse each AS on the path only once.

In addition, HORNET’s performance also distinguishes it from
all existing schemes based on overlay networks: first, HORNET
can directly use short paths provided by underlying network ar-
chitectures, reducing propagation latency; second, HORNET re-
quires only a single round trip to establish a session, reducing the
setup delay; third, HORNET eliminates the processing and queu-
ing delays both on relay nodes and in the kernel’s network stack;
finally, edge routers in HORNET offer higher throughput compared
to voluntarily-contributed end hosts, increasing the total throughput
of anonymous traffic.
Anonymity systems in FIAs. Hsiao et al. [32] explored the de-
sign space of efficient anonymous systems with a relaxed adversary
model. In their scheme, LAP, the adversary can compromise only
a single node, and the first hop must always be honest. Sankey
and Wright proposed Dovetail [44] (based on Pathlets [28] and
SCION [51, 12]) which has the same attacker model as LAP, ex-
cept it allows the first hop to be compromised. Moreover, neither
LAP nor Dovetail can support asymmetric paths where packets tra-
verse different sets of nodes in different directions. HORNET of-
fers three improvements over LAP and Dovetail: 1) HORNET fully
hides path information, i.e., total path length and nodes’ positions,
in packet headers; 2) HORNET protects and obfuscates packet con-
tents by onion-encryption/decryption, thwarting correlating pack-
ets of the same flow by selectors; 3) HORNET supports asymmet-
ric paths and allows the first hop ASes to be compromised. Though
HORNET introduces additional overhead in comparison with LAP
and Dovetail, our evaluation results show that HORNET can still
support high-speed packet forwarding at nearly 80% of line rate.

The research community has also explored applying onion rout-
ing to FIAs. Liu et al. [35] proposed Tor instead of IP as an FIA
that regards anonymity as the principal requirement for the network
architecture. However, details on how to scale Tor’s current design
(requiring per-circuit state) to Internet scale were not addressed.

DiBenedetto et al. [24] proposed ANDaNA, to enable onion rout-
ing in Named Data Networking (NDN) [50]. NDN focuses on con-
tent delivery and thus inherently different from the FIAs we con-
sidered.

9. CONCLUSION
In this paper, we address the question of “what minimal mecha-

nism can we use to frustrate pervasive surveillance?” and study the
design of a high-speed anonymity system supported by the network
architecture. We propose HORNET, a scalable and high-speed
onion routing scheme for future Internet architectures. HORNET
nodes can process anonymous traffic at over 93 Gb/s and require
no per-flow state, paving the path for Internet-scale anonymity. Our
experiments show that small trade-offs in packet header size greatly
benefit security, while retaining high performance.
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