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ABSTRACT

Process confinement is a key requirement for workloads in the
cloud and in other contexts. Existing process confinement mecha-
nisms on Linux, however, are complex and inflexible because they
are implemented using a combination of primitive abstractions
(e.g., namespaces, cgroups) and complex security mechanisms (e.g.,
SELinux, AppArmor) that were designed for purposes beyond basic
process confinement. We argue that simple, efficient, and flexible
confinement can be better implemented today using eBPF, an emerg-
ing technology for safely extending the Linux kernel. We present a
proof-of-concept confinement application, bpfbox, that uses less
than 2000 lines of kernelspace code and allows for confinement at
the userspace function, system call, LSM hook, and kernelspace
function boundaries—something that no existing process confine-
ment mechanism can do. Further, it does so using a policy language
simple enough to use for ad-hoc confinement purposes. This paper
presents the motivation, design, implementation, and benchmarks
of bpfbox, including a sample web server confinement policy.
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1 INTRODUCTION

Process confinement is a critical problem for cloud computing.
Whether one is running conventional servers, container-based
workloads, or untrusted third-party code, a fundamental require-
ment is that some processes need to be restricted to enforce least
privilege. Today, we have a wide variety of technologies on Linux
for confining processes: user and group permissions, Linux capabil-
ities, SELinux [45], AppArmor [12], seccomp(2) [41], cgroups [9],
namespaces [26] and even the venerable ptrace(2) [36]. While
these technologies can be used to contain processes, none were
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designed specifically for this task. As a result, process confinement
implementations must combine these disparate approaches in order
to create working solutions.

When security mechanisms require complex implementations,
we can expect many vulnerabilities to be found, as they have for
every major Linux confinement implementation!. But even worse,
complexity makes changes more difficult, stifling innovation. The
natural solution for this sort of challenge would be to implement
an extension API which would allow for different process con-
finement solutions. The Linux community long ago recognized
the need to support different security abstractions, resulting in
the LSM (Linux Security Modules) framework [33]. LSM provides
the interface used by mandatory access control systems such as
AppArmor and SELinux. Developing new process containment
abstractions on top of LSM and other in-kernel APIs is certainly
possible; however, kernel modules can be very expensive to develop
and maintain, and small errors in them can lead to catastrophic
failures. Due to stability and security concerns, many environments
will refuse to use solutions that require their own kernel modules.
These challenges are why current confinement solutions build on
top of existing kernel functionality rather than adding their own,
despite the inevitable implementation complexity.

The key insight of this paper is that recent additions to the Linux
kernel have enabled a third path to implementing process con-
finement: Extended Berkeley Packet Filter (eBPF) [47]. Originally
developed to improve packet filtering, in Linux BPF has been ex-
tended to allow fine-grained introspection of kernel and userspace
behavior. As with kernel modules, code is loaded by the root user
into the kernel; unlike kernel modules, eBPF is a bytecode language
that is verified at load time and then just-in-time compiled before
being linked into the kernel. This verification step, combined with
the limitations of eBPF bytecode, allows kernel functionality to be
extended in a safe yet performant way.

Here we present bpfbox, a prototype process confinement sys-
tem consisting of a policy language and eBPF-based implementation
that can run on Linux 5.8 and newer kernels. The key advantages of
bpfbox are that it combines simple yet flexible policies with an im-
plementation that can be easily changed and improved, exploiting
the flexibility of eBPF. bpfbox is implemented in bcc [2], a devel-
opment toolchain for Linux eBPF programs that combines Python
userspace code with eBPF code written in a restricted subset of
C. While policy errors can impede the functioning of specific pro-
grams, implementation errors in bpfbox will not harm the system,
due to the safety guarantees of eBPF.

bpfbox policies advance the state of the art in process confine-
ment by allowing simpler yet more precise policies to be written.
Specifically, it is possible to go beyond system calls and network

1A small selection of CVEs show how common confinement vulnerabilities are.
seccomp: CVE-2019-2054, AppArmor: CVE-2019-18814, SELinux: CVE-2020-10751,
Docker: CVE-2020-13401, snap: CVE-2019-11503, flatpak: CVE-2019-8308


https://doi.org/10.1145/3411495.3421358
https://doi.org/10.1145/3411495.3421358
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2054
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18814
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10751
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13401
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11503
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8308

connections and instead specify restrictions on userspace and ker-
nelspace functions. Instead of simply preventing a process from
making a call to execve(2) (or an execve of specific program bi-
naries), bpfbox can specify that execve calls for a process must
originate in a specific function and should optionally pass certain
functional checks in the kernel (e.g., that the program being run is
an ELF binary rather than a script). While such additional instru-
mentation does result in additional runtime overhead, as we show
the overhead is quite modest in practice—for example, when alert-
ing on every security operation, bpfbox slows down a web server
by around 8.4%, slightly less than running AppArmor in a similar
configuration. Further, bpfbox is implemented using less than 2000
lines of in-kernel code, smaller than seccomp-bpf and much smaller
than SELinux. The relative simplicity of bpfbox means that it can
be used on its own to do ad-hoc process confinement; its flexibility,
however, means that it could be used to simplify and extend the
confinement technology in container management systems or even
in regular Linux distributions. Looking forward, we see bpfbox as a
proof of concept that demonstrates the potential of eBPF to enable
more secure fine-grained resource sharing in the cloud.

The rest of this paper proceeds as follows. We first review stan-
dard Linux security mechanisms in Section 2. Next, we describe the
rationale for bpfbox (Section 3) in the context of existing process
confinement solutions. We explain eBPF and related technologies
in Section 4. In Section 5, we explain how bpfbox policies are en-
forced using eBPF, and we describe the bpfbox policy language in
Section 6. We present a web server policy example in Section 7. Sec-
tion 8 presents a quantitative evaluation of bpfbox’s performance
impact. Section 9 discusses limitations, potential enhancements
to the current research prototype, and future research directions.
Section 10 concludes.

2 LINUX CONFINEMENT MECHANISMS

Process confinement is extensively used on desktop, mobile, and
server/cloud systems to protect systems from running partially or
fully untrusted code. On the desktop, web browsers isolate pro-
cesses running JavaScript loaded by web applications. On mobile
devices, third-party applications are confined so they have lim-
ited access to system resources and other applications. On servers,
containers separate applications from each other, enabling smooth
deployment and load balancing. Many mechanisms are used to
implement confinement on Linux systems. In this section we dis-
cuss these confinement mechanisms; in the following section we
examine why these are insufficient.

On Linux, the main implementation technologies for containing
processes are Unix discretionary access controls, mandatory access
controls, cgroups, namespaces, Linux capabilities, and seccomp. We
discuss each in turn below.

Unix DAC: The most basic way to confine processes in Linux is
to make use of the traditional Unix user-oriented discretionary
access controls that determine how a process’s user and group IDs
restrict what files, system calls, and other processes it can access.
Unprivileged users can only send signals to their own processes, and
access to files can be limited using per-inode permission bits. Unix
users, however, are given significant access to system resources, as
they do have a significant amount of trust given to them—after all,

they are authorized users of the system. Further, the root user can
do almost anything to a system. Fine-grained process confinement
thus typically requires additional mechanisms.

Linux MAC: Mandatory access control (MAC) limits the privileges
of all users, including the root user, and thus serves as another set of
mechanisms that can help confine processes. On Linux, kernel mod-
ules implementing MAC policies use the Linux Security Module
(LSM) API [33] to hook into the security checks made throughout
the kernel. Whether the implementation is SELinux [45], AppAr-
mor [20], TOMOYO [21], or other, all MAC implementations limit
the access processes have to kernel resources, including files and
network sockets, based on attributes associated with the process or
thread.

Namespaces and cgroups: On Linux, namespaces and cgroups
allow system resources to be partitioned. Namespaces partition
resources in terms of naming, giving a group of processes a private
view of enumerable system resources such as process IDs, filesys-
tems, network sockets, and user IDs. Cgroups limit non-enumerable
resources such as memory, CPU, and I/O bandwidth. By limiting the
resources that a process can name and how much of that resource
it can use, namespaces and cgroups provide the base abstractions
for operating system virtualization. Because OS virtualization is
fundamentally a way to separate groups of processes from each
other, these mechanisms can also be used for the simpler case of
process confinement.

Linux capabilities: The root user in Unix systems traditionally
has access to all resources; thus if an attacker gains control of a pro-
cess running as root, all security controls are null and void. Linux
capabilities (based on the withdrawn POSIX.1e standard?) subdivide
root’s privileges into individual capabilities which a privileged pro-
cess can retain or keep individually. Alternately, program binaries
can be set to have specific capabilities when execve’d, thus getting
more privileges than normal, but not getting all privileges a setuid
root program would get. Linux capabilities help minimize the privi-
leges given to processes that manage access to resources, whether
they be networking, filesystems, devices, or kernel modules.
Ptrace: The ptrace(2) system call is used to allow one process to
monitor and control the execution of another process. Debugging
tools such as gdb and strace are fundamentally based on ptrace.
Because a process controlled by ptrace can have its execution arbi-
trarily monitored or changed, unprivileged users can only ptrace
their own unprivileged processes. Additionally, modern Linux dis-
tributions enable the Yama [8] LSM by default, which restricts
access to ptrace such that only parent processes may ptrace their
children; tracing other unrelated process requires changing a kernel
runtime option. While ptrace isn’t normally used in production
environments, it can be used to confine process behavior by intro-
ducing traps on restricted behavior.

Seccomp: While Linux capabilities allow for restrictions on priv-
ileged operations, they aren’t sufficient to limit the system calls
that unprivileged processes can normally make. seccomp(2) [41]
is a system call that causes a process to enter a restricted state
where it can only respond to signals, terminate, and read and write
to open file descriptors. Other system calls cause forcible process
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termination. Seccomp-bpf [14] is an extension to seccomp that al-
lows additional system call rules to be defined through classic BPF
(not eBPF) filters. For example, with seccomp-bpf open(2) can be
allowed, but only for specific files. Note the filtering is very flexi-
ble because it is implemented using BPF; this flexibility, however,
comes at the price of complexity.

We explain more about classic BPF and eBPF in Section 4.

3 MOTIVATION

To understand the potential benefit of lightweight process confine-
ment using eBPF, consider how existing systems separate processes
in a cloud context. Cloud computing can be said to be (in part) an
evolving platform for allocating computational resources so that
machine-level boundaries are less and less significant—applications
can span multiple hosts, and multiple applications can share specific
hosts. Process confinement is a fundamental part of this evolving
cloud computing story. Here we discuss how non-Linux systems
have addressed process confinement and the limitations of existing
approaches to process confinement on Linux.

The process confinement problem dates back half a century [28].
Dozens of tools and frameworks, some more practical than others,
have been proposed to limit the impact of untrusted software on
the rest of the system [43]. The isolation provided by containers
is really a form of operating system virtualization, something that
has a long history on Unix, with implementations including the
standard chroot (2), BSD jails [25] and Solaris Zones [38]. While
OS virtualization partitions resources, on its own it does not really
implement least privilege: processes can still have dangerous levels
of access to system and network resources. Fine-grained access
control can be used to complement OS virtualization, as shown
with Capsicum [23, 48]. Also, system call filtering has been widely
used to confine untrusted applications [17, 18, 24, 37, 39], both with
and without OS virtualization.

Modern containers on Linux are simply instances of OS virtu-
alized systems that are packaged for easy deployment and man-
agement. To a developer they appear almost as separate hosts, just
without their own OS kernel and (often) some core system services.
The actual separation of processes, however, is hardly more than
the separation between processes on a regular Unix system. Of
particular concern is that sufficiently privileged process inside of a
container can “break out” and access any resources on the system,
and such privileges can be obtained using any number of privi-
lege escalation attacks. Container security thus relies on exactly
the same mechanisms to separate processes that are used on any
reasonably secured server.

We can see this pattern with the separation mechanisms used by
Docker [13]. Docker uses Linux cgroups, namespaces, and filesys-
tem mounts to implement OS virtualization. Other security mecha-
nisms are employed to actually make sure processes remain sepa-
rated and operate with least privilege. Linux capabilities are dropped
so that root processes inside of a container cannot break out. Sec-
comp is used to restrict access to dangerous system calls, with
the default policy restricting many system calls (such as those for
managing kernel modules). AppArmor or SELinux are frequently
used to further limit what resources container processes can access.
Thus, while Docker provides easy-to-use mechanisms to developers

and systems administrators, under the hood it must deal with the
full complexity of securing a service on a Linux host.

Desktop container solutions are no better. For example, snap [46],
Flatpak [16], Bubblewrap [5], and Firejail [15] also implement virtu-
alized operating systems through cgroups, namespaces, and filesys-
tem mounts. This OS virtualization is augmented with extensive
integration with the host operating system’s security mechanisms
(i.e., Linux capabilities, seccomp, and MAC frameworks). While
packaged in a friendly way, under the hood full Linux userlands
must be secured for each installed application.

Operating system virtualization on Linux was originally devel-
oped to support the needs of shared hosting, in particular to allow
multiple customers to administer their own web servers without
the overhead of separate physical boxes or multiple kernels. With
Docker and snaps, this same technology is used for application
management. While some containers can be very complex, using
multiple binaries, libraries, configuration files, and processes, oth-
ers can be as simple as a single statically-linked binary running as a
single process. In such contexts the elaborate container machinery
is really only being used as a way to conveniently limit the access
of a single binary.

Consider that all of the mechanisms used to secure containers,
from cgroups to SELinux, are simply different mechanisms for
telling the Linux kernel what resources processes can access. We
use these multiple mechanisms because they are available, each
having been built to solve specific problems from the past. If we
started from scratch, we would certainly have developed simpler,
more coherent mechanisms for isolating processes. bpfbox can thus
be seen as an attempt to develop such a mechanism, made feasible
by eBPF.

4 EXTENDING LINUX WITH EBPF

For this work, we wished to implement a new process confinement
mechanism using eBPF, a new Linux technology for adding code to
the kernel safely and efficiently. To understand the significance of
eBPF, here we place it in the context of similar work in operating
systems research and practice. We also explain the history of eBPF,
present its high-level design, and discuss how it has been previously
used for security applications.

In research on extensible operating systems, there has been ex-
tensive work on ways to safely extend their functionality. Adding
code to an operating system is the perfect way to add abstractions
and change system behavior; it is also the perfect way to make a
system crash or silently corrupt its filesystems. Most work on ex-
tensible operating systems has been on microkernels such as Mach
[1] and L4 [31], which facilitate extensibility by putting most of the
OS into userspace processes; however, systems like SPIN [3] allow
for code written in a safe language to be added to kernelspace. eBPF
thus has similarities to SPIN, except it was designed to facilitate
system introspection, not application performance.

The closest system and predecessor to eBPF is Solaris’s DTrace [6,
19], which was created to allow for safe introspection of production
systems by dynamically extending the Solaris kernel. The idea
was that small scripts could be written in a constrained language
that could be compiled, verified for safety, and then loaded into
kernelspace. For licensing and technical reasons, DTrace has not



been ported to Linux. Instead, the Linux community has ended up
building a superset of DTrace’s functionality in the form of eBPF.

Classic BPF has a rich history in Unix-like systems. BPF [32] first
emerged as a packet filtering solution for BSD Unix in 1993. The key
insight of classic BPF was its use of a register-based filter machine
and buffering of results before returning them to userspace, result-
ing in significant performance increases over contemporary packet
filtering solutions. Since then, it has been incorporated into many
operating system kernels, notably Linux, OpenBSD, and FreeBSD,
where it continued to be predominantly used for packet filtering. A
notable exception to this is the seccomp-bpf extension under the
Linux kernel, in which classic BPF programs may be written to
augment seccomp, as we discuss in Section 2.

In 2014, Starovoitov and Borkmann [47] merged a major rewrite
of the BPF engine into the Linux kernel. This new incarnation of
BPF, dubbed Extended BPF (eBPF), added 10 new general purpose
registers, a new instruction set with just-in-time (JIT) compilation
to native instruction sets, access to allowed kernel helpers, a rich
collection of specialized data structures, and new program types
to enable tracing various aspects of system behavior. Since its in-
ception, eBPF has seen rapid development with a myriad of new
features in each kernel release3. bpfbox’s in-kernel enforcement
engine leverages many of the new features provided by eBPF and
requires no modification of existing kernel source code, meaning
that any recent Linux kernel with support for eBPF LSM programs
can run bpfbox without needing to be patched or recompiled.

eBPF programs themselves consist of a set of eBPF instructions
that may be written by hand or optionally compiled from a restricted
subset of a higher level language such as C. Many development
toolchains such as bee [2] and libbpf [30] exist to make this process
easier. These eBPF instructions are then submitted to the kernel
using the bpf(2) system call where they undergo a verification
process before being loaded for JIT compilation. This verification
process involves checking for program safety to ensure that an eBPF
program cannot damage the running system. Since eBPF programs
must be verifiably safe, they are fundamentally restricted in what
they can do—eBPF is not Turing-complete. For instance, eBPF pro-
grams are not allowed to exceed 1 million instructions, lack support
for advanced looping constructs, and have very limited support for
handling strings. Pointer arithmetic is also disallowed unless it can
be proved not to overflow or underflow the corresponding region
of memory. These restrictions afford eBPF a distinct advantage over
extending kernel behavior—modifying the source directly or adding
kernel modules—particularly from a security perspective, as many
traditional bugs such as buffer overflows and memory corruptions
are outright prevented.

While nearly all system call filtering approaches have required
OS-level modifications to implement security policy enforcement,
seccomp-bpf can now act as a standard interface for these tools
on Linux. MBOX [27] is one such sandbox that uses seccomp-bpf
and redirects filesystem calls to a layered, app-specific filesystem.
Notably MBOX does not require any changes to the host operating
system. bpfbox uses eBPF instead of seccomp to sandbox processes

3 An up to date list of features: https://github.com/iovisor/bce/blob/master/docs/kernel-
versions.md

beyond system call filtering, while retaining a small codebase, al-
lowing fine-grained filtering, and avoiding the usual race conditions
that impact system call filtering systems [17].

Probably the closest work to our own is the eBPF-based sand-
boxing system Landlock [40], an out-of-tree patchset for Linux that
allows exposing LSM hooks to unprivileged userspace applications.
Like bpfbox, Landlock attaches eBPF programs to LSM hooks to
make access control decisions. Unlike bpfbox, Landlock envisions
unprivileged processes specifying their own LSM restrictions using
its C API The key challenge faced by Landlock is that of securely
exposing eBPF and LSM to unprivileged processes, something that
the primary developer now believes is no longer possible in a world
with CPU-level vulnerabilities [10]. In contrast, bpfbox runs with
root privileges and assumes that policies have also been installed
by a privileged user. Rather than requiring code-level additions,
bpfbox separates policy generation from application development.

5 BPFBOX IMPLEMENTATION

In this section, we explain the implementation of bpfbox’s pol-
icy generation and enforcement mechanisms. First, we present an
overview of the userspace and kernelspace components of bpfbox
(Section 5.1). Next, we discuss how bpfbox generates policy in
userspace and stores and enforces it in kernelspace (Section 5.2)
and manage process state (Section 5.3). Finally, we discuss how
bpfbox logs per-event audit data in userspace (Section 5.4). bpfbox
is free and open source software, available under the GPLv2 license
at https://github.com/willfindlay/bpfbox.

5.1 Architectural Overview

Figure 1 depicts bpfbox’s architecture, which consists of a userspace
daemon bpfboxd, a collection of eBPF programs for tracing events
and enforcing policy, and several maps (eBPF data structures acces-
sible from both kernelspace and userspace) for storing information
about active processes and loaded policy. bpfboxd parses policy
files, compiles and loads eBPF code into the kernel, and interacts
with running eBPF code using eBPF maps. bpfboxd is primarily
written in Python; however, it links in a stub C library to facilitate
interactions with eBPF code as explained below.

When eBPF code is loaded into the kernel, it is associated with a
specific event so that when that event occurs, the registered code
is run. eBPF code can be associated with arbitrary functions in ker-
nelspace (kprobes) or userspace (uprobes); however, as functions
can and do change, eBPF code can be associated with explicitly de-
fined tracepoints in kernelspace or userspace (as USDTs). Through
KRSI (Kernel Runtime Security Instrumentation) [10, 44], eBPF code
can also be associated with any LSM hook (see Section 5.2).

While eBPF programs are loaded and eBPF maps can be accessed
through the bpf (2) system call, USDT provides a way for userspace
code to directly call eBPF code in the kernel. An eBPF program
(loaded via the bpf (2) system call) defines kernelspace functions
and associates them with USDTs defined in userspace stub functions.
When those stub functions are called, they trap directly to the
associated eBPF program. bpfboxd’s linked-in C library defines
such USDT stub functions, allowing it to define a custom interface
between its userspace and kernelspace portions, bypassing the
normal system call interface.
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Figure 1: An overview of bpfbox’s components. bpfbox relies on three major categories of eBPF program: USDT probes which
instrument libbpfbox to load and update policy; tracepoints, kprobes, and uprobes to instrument application behavior and
manage process state; and LSM probes to enforce policy based on the information stored in policy and process state maps.

5.2 Implementing Policy

bpfbox policies are written using a custom policy language. bpfbox’s
policy language allows for specific operations to be allowed, audited

(logged), and/or tainted. All operations not so specified are denied.

Tainting is similar in spirit to Perl’s classic taint mode [22], how-
ever, rather than marking data, it marks the entire process. Tainting

allows for more restrictive policies to be enforced once a process

has engaged in specific unsafe operations, say by reading from a

network socket. We present the design and syntax of the bpfbox

policy language in Section 6; here we discuss the functionality it

provides and how it is implemented.

bpfbox policies are per executable and are stored in an exclu-
sively root-controlled directory (by default, /var/1lib/bpfbox/),
written in bpfbox’s policy language (Section 6). When an executable
is loaded, bpfbox loads the corresponding policy file (if it exists)
and translates it into a series of function calls to USDT stub func-
tions. These function calls trigger the corresponding eBPF code,
thus recording the policy in the policy maps as a set of policy struc-
tures. A policy structure consists of three distinct access vectors:
one to define tainting operations, one to define allowed operations,
and one to define audited operations.

In order to enforce policy, bpfbox leverages the KRSI patch by
KP Singh [10, 44] which was upstreamed in Linux 5.7. This patch
provides the necessary tools to implement MAC policies in eBPF by
instrumenting probes on LSM hooks provided by the kernel. The
eBPF program can then audit the event and optionally enforce pol-
icy by returning a negative error value. bpfbox instruments several
LSM probes covering filesystem access, interprocess communica-
tion, network sockets, ptrace(2), and even bpf (2) itself. When
these hooks are called in the kernel, they trigger the execution of
the associated eBPF program which is, in general, composed of the
following six steps:

(1) Look up the current process state. If no state is found, the
process is not being traced, so grant access.

(2) Determine the policy key by taking the executable’s inode
number and filesystem device number together as a struct.

(3) Look up the policy corresponding to the policy key calculated
in step (2). If the process is tainted and no such policy exists,
deny access.

(4) If the process is not tainted and the current access corre-
sponds to a TAINT rule, taint the process and grant access.

(5) If the current access matches an ALLOW rule, grant access.
Otherwise deny access.

(6) If the current access matches an AUDIT rule or access is
denied, submit an audit event to userspace.

When a sandboxed application requests access, a corresponding
LSM hook is called which in turn traps to one of bpfbox’s LSM
probes. The probe queries the state of the currently running process
along with the policy corresponding to the requested access and
takes these factors together to come to a policy decision.

bpfbox can optionally augment the information provided by the
LSM hooks themselves with additional context obtained by instru-
menting other aspects of process behavior. For instance, profiles
may optionally define function contexts which determine the valid-
ity of specified rules; a rule could specify that a certain filesystem
access must occur within a call to the function foo() or that it
must be audited within a call to the function bar (). The ability to
combine various aspects of system behavior, both in kernelspace
and in userspace, is a key advantage of an eBPF-based solution over
traditional techniques. This allows for the creation of extremely
fine-grained policies at the discretion of the policy author. The
mechanisms by which this is accomplished are discussed further in
Section 5.3.

Due to bpfbox’s strict resolution of filesystem objects at policy
load time, a problem arises when dealing with applications that
read or write temporary files on disk or create new files at runtime.
In order to circumvent this issue, bpfbox treats the creation of new
files as a special case. In order for a new file to be created, the



process must have write access to the directory in which the files
will be created. Supposing, for instance, the temporary file would
be written to /tmp, this means that, at a minimum, the policy in
question must specify that /tmp is writable. When the sandboxed
application creates a new child inode of /tmp, bpfbox dynamically
creates a temporary rule that grants the application full read, write,
link, and unlink capabilities on the created file. This rule is keyed
using a combination of the standard filesystem policy key and
the PID (process ID) of the sandboxed process. This rule is then
automatically cleaned up when the process exits or transitions to a
new profile.

Another important detail to consider is the possibility of other
applications using the bpf (2) system call to interfere with bpfbox’s
mediation of sandboxed applications. For instance, another appli-
cation might attempt to unload an LSM probe program or make
changes to the policy or process state maps. To prevent this, bpfbox
instruments an additional LSM probe to mediate access to bpf. It
uses this probe to deny all calls to bpf that attempt to modify
bpfbox’s programs or maps that do not directly come from bpfbox
itself. Further, all sandboxed applications are strictly prohibited
from making any calls to bpf—a sandboxed application has no busi-
ness performing the kind of powerful system introspection that
eBPF provides.

Similarly to mandatory access control systems like SELinux [45]
and AppArmor [12], bpfbox supports the ability to run in either
permissive mode or enforcing mode. When running in permissive
mode, bpfbox continues to audit denied operations, but allows them
to continue unobstructed. This enables the user to debug policies
before putting them into effect and also introduces the possibility
of creating new policy based on the generated audit logs.

5.3 Managing Process State

In order for bpfbox to know what policy to apply to a given pro-
cess, it must track the lifecycle of processes through the instru-
mentation of key events within the kernel. For this, bpfbox uses
three tracepoints exposed by the scheduler: sched: process_fork,
sched:process_exec, and sched:process_exit. Figure 2 shows
the events that bpfbox instruments in order to track process state,
along with their corresponding probe types. These tracepoints
are used to create, update, and delete per-task entries in a global
hashmap of process states. Each entry in the map is keyed by TID
(thread ID). The entries themselves consist of a data structure that
tracks policy key association and a 64-bit vector representing the
state of the running process. This state vector is used to track
whether the process is currently tainted and what important func-
tion calls are currently in progress.

Instrumenting a tracepoint on sched: process_fork allows bpf-
box to detect when a new task is created via the fork (2), vfork(2),
or clone(2) system calls. This tracepoint creates an entry in the
process states hashmap and initializes it according to the state of the
parent process; if the parent process is associated with a bpfbox
profile, its key is copied to the child until such time as the child
makes an execve(2) call.

The sched:process_exec tracepoint is triggered whenever a
task calls execve to load a new program. bpfbox uses this trace-
point to manage the association of policy keys to a particular process
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Figure 2: The various mechanisms that bpfbox uses to man-
age process state. Probes marked sched: * are tracepoints in-
strumenting scheduler events in the kernel. Uprobes and
kprobes instrument userspace and kernelspace function
calls respectively.

state. bpfbox policy may optionally specify whether a transition
from one profile to another may occur in a given call to execve;
this transition is disallowed by default.

Finally, the sched:process_exit tracepoint allows bpfbox to
detect when a task exits. This tracepoint deletes the corresponding
entry in the process states map.

5.3.1 Context-Aware Policy. If the policy for a given executable
defines specific function call contexts for particular rules, bpfbox
instruments these function calls using uprobes (for userspace func-
tions) and kprobes (for kernelspace functions). Each instrumented
function call is associated with a unique bit in the process’ state
bitmask. A probe is triggered on entry that causes bpfbox to flip
the corresponding bit to a 1, and again on return, flipping the corre-
sponding bit back to a 0. An inherent limitation of this approach is
that it prohibits recursive function calls from being used to specify
rule contexts, though we believe that this limitation should be ac-
ceptable in practice (see Section 9.1). In such cases, the policy can
simply fall back to specifying ordinary rules.

5.4 Collecting and Logging Audit Data

When an operation is denied or matches with an audit rule, bpfbox
submits an event to userspace for logging. To accomplish this, we
leverage the new ringbuf map type added in Linux 5.8 [35], a ring
buffer that is efficiently shared across all CPUs. In userspace, the
bpfbox daemon uses mmap(2) to map the corresponding memory
region and polls for new data at regular intervals. As events are
consumed in userspace they are removed from the ring buffer to
make room for new events. Since the ringbuf map provides strong
order guarantees and high performance under contention, we can
ensure that bpfbox always provides highly reliable and performant
per-event auditing.



6 BPFBOX POLICY LANGUAGE

In this section, we discuss the bpfbox policy definition language.
Our design goals for the bpfbox policy language were as follows:

Simplicity: To facilitate policy creation and auditability, bpfbox
policies should be as short and simple as possible while remaining
expressive enough to sandbox most applications effectively.
Application Transparency: bpfbox policies should be applica-
tion transparent—defining and implementing a bpfbox policy should
not require any modification to the source code of the target appli-
cation.

Flexibility: bpfbox policies should be flexible enough such that it
is possible to be define both fine-grained and coarse-grained policy
according to the needs of the end user.

Security: bpfbox policies should be designed with security in
mind, adhering to all basic security principles. It should be difficult
to write an insecure policy.

In the rest of this section we describe the basic constructs and
syntax used to define bpfbox policy and explain the rationale for
our design decisions.

6.1 Writing bpfbox Policy

bpfbox policies are a series of directives and rules. Directives deco-
rate either individual rules or blocks of rules denoted by braces and
are used to specify additional context or policy actions. The first line
in a bpfbox policy is always a special profile directive, written as
#![profile "/path/to/exe"], which marks the executable to which
the policy should be associated. Other than the profile directive, all
others take the form of #[directivel{rule()}. Multiple directives
may be specified before a set of rules, meaning that all directives
apply to each rule.

Profile assignment occurs when a process makes an execve(2)
call that results in loading the specified executable. Once a process
has been assigned a profile, this profile cannot change again, unless
an execve(2) occurs which has been explicitly marked with the
#[transition] directive. This ensures that policy transitions only
occur when expected and prevents malicious execve (2) calls from
changing bpfbox’s treatment of a process.

In the subsections that follow, we will describe the rule categories
supported by bpfbox (Sections 6.1.1 to 6.1.4) and the directives that
may optionally be used to decorate them (Sections 6.1.5 to 6.1.6).
Listing 1 depicts a simple example bpfbox policy.

6.1.1 Filesystem Rules. Filesystem rules in bpfbox govern what
operations a process may perform on filesystem objects such as files
and directories. They are written as fs("pathname", access) where
"pathname" is a string containing the pathname of the file and access
is a list of one or more file access permissions joined by the vertical
bar symbol (|). For instance, to represent read and append permis-
sions on /var/log/my_log, the corresponding bpfbox rule would
be fs("/var/log/my_log", read|append).In total, bpfbox supports
nine distinct filesystem access flags as shown in Table 1.

bpfbox supports a limited globbing syntax when defining path-
names, allowing multiple rules matching similar files to be com-
bined into one. Although filesystem rules are specified using path-
names, bpfbox internally uses inode and device numbers rather

Listing 1: An example of a bpfbox policy.

/* This poli
* executabl
#![profile "

cy applies to the /usr/bin/foo
e x/
/usr/bin/foo"]

/* Taint process state upon binding to

x any IPv4/
#[taint] {
net(inet

net(ineté6,

}

/* Allow the

IPv6 network socket =*/
, bind)
bind)

check_login function to read

* /etc/passwd and /etc/shadow x/
#[func "check_login"] {

fs("/etc
fs("/etc
}

/% Allow the
* and appen
events to th

#[ func "add_

#[audit] {
fs("/etc
3

/* Read and
* of the /v
fs("/var/log

/* Allow the

* profiles

(2)}

* and untai
#[transition
#[untaint] {

fs("/bin
3

/passwd",
/shadow",

read)
read)

add_user function to read
d to /etc/passwd, but log such
e audit logs =*/
user"]

/passwd", read|append)

append to any immediate child
ar/log/foo/ directory */
/foo/*", read|append)
execution of /bin/bash,
to bash's profile after the \texttt{execve

transitioning

nting the process */

]

/bash", read|exec)

Table 1: The filesystem access flags supported in bpfbox.

Flag Meaning

read The subject may read the object.

write The subject may write to the object.

append  The subject may append to the object.

exec The subject may execute the object.

setattr The subject may change the object’s filesystem
attributes.

getattr The subject may read the object’s filesystem
attributes.

rm The subject may remove the object’s inode.

link The subject may create a link to the object’s
inode.

ioctl The subject may perform an ioctl call on the

object.




than the pathnames themselves. When loading policies, bpfbox au-
tomatically resolves the provided pathnames into their respective
inode-device number pairs. This information is then used to look
up the correct policy whenever a sandboxed application attempts
to access an inode. Since bpfbox does not check the pathnames
themselves when referring to files, it is able to defeat time-of-check-
to-time-of-use (TOCTOU) attacks, where an attacker quickly swaps
out one file with a link to another in an attempt to circumvent
access control restrictions in a privileged (most often setuid) bi-
nary [4]. In such a situation, bpfbox would simply see a different
inode and deny access.

In addition to regular filesystem rules, bpfbox provides a spe-
cial rule type for /proc/pid entries in the procfs virtual filesys-
tem. procfs rules, written as proc("exe", access) where "exe" is
a string containing the pathname of another executable and access
is the desired access. For example, read-only access to the procf's
entries of executables running /usr/bin/1s may be specified with
proc("/usr/bin/1s", read). Access to any procfs entry may be
specified using the special keyword any.

6.1.2  Network Rules. bpfbox implements networking policy at the
socket level, covering both Internet sockets as well as Unix domain
sockets. Networking rules are specified using net (protocol, access
), where protocol is a networking protocol like inet, inet6, or
unix and access is a list of socket operations (Table 2) separated
by vertical bars. For example, a rule targeting bind, accept, and
connect operations on an inet6 socket would look like net (inet6
, bind|connect|accept), while a rule targeting create operations
on a unix socket would look like net(unix, create).

Table 2: The socket operation flags supported in bpfbox.

Flag Meaning

connect  Subject may connect a socket to a remote ad-
dress.

bind Subject may bind a socket to a local address.

accept Subject may accept an incoming socket connec-
tion.

listen Subject may listen for incoming socket connec-
tions.

send Subject may send messages over a socket.

recv Subject may receive messages over a socket.

create Subject may create new sockets.

shutdown Subject may shut down a socket connection.

6.1.3  Signal Rules. Specifying signal behavior in bpfbox is done
using the signal("exe", access) where "exe" is the pathname of
another executable and access is a list of signals allowed to be
sent, separated by vertical bars. Normally, only processes running
the executable "exe" are allowed to be signaled, but the special
keyword any may be used instead to specify the ability to signal
any process on the system. Two additional keywords, parent and
child, allow parent and child processes to be signaled instead. The
access argument supports any Linux signal, in addition to a few
helper keywords that can be used to specify broad categories, such
as fatal for fatal signals and nohandle for signals that cannot be

handled. For example, to specify the ability to send fatal signals to
any process running /usr/bin/1s, the corresponding bpfbox rule
would be signal("/usr/bin/1s", fatal). To narrow permissions
such that only SIGTERM and SIGINT are allowed, signal("/usr/bin
/1s", sigterm|sigint) could be used instead.

6.1.4 ptrace Rules. Just like with signals, ptrace access is spec-
ified as ptrace("exe", access), where access is a list of allowed
ptrace modes separated by vertical bars. The child keyword is
also available for ptrace rules to allow tracing of any child process,
regardless of the child’s current profile. For instance, a rule that
allows a process to read and attach to a child process would be writ-
ten as ptrace(child, read|attach), while a rule that allows only
read access to processes running /usr/bin/1s would be written
as ptrace("/usr/bin/1s", read). Note that currently ptrace rules
do not override other ptrace restrictions, such as those imposed
by Yama [8].

6.1.5 Allow, Taint, and Audit Directives. bpfbox supports three dis-
tinct directives for defining actions that should be taken when a
given access matches a rule. The #[allow] directive causes bpfbox
to allow the access; however, it is not typically necessary to explic-
itly specify this as undecorated rules are assumed to be allowed
by default. Regardless, it may be desirable to decorate such rules
with #[allow] to improve the clarity of the policy. #[taint] is used
to mark a rule as a taint rule, which causes the process to enter
a tainted state when matched. These rules can be thought of as
gateways into the rest of the policy. Once a process is tainted, this
cannot be reversed unless it makes an execve(2) call explicitly
marked with #[untaint]. Finally, #[audit] may be combined with
#[allow] to cause bpfbox to log the matching operation to its audit
logs. This can be useful for marking rare behavior that should be
investigated or for determining how often a given rule is matched
in practice.

6.1.6  Func and Kfunc Directives. One of the key features of bpfbox
is the ability to specify specific application-level and kernel-level
context for rules. In the policy language, this is done by decorat-
ing rules with the #[func "fn_name"("filename")] and #[kfunc "
fn_name"] directives for userspace and kernelspace instrumentation
respectively. Here, "fn_name" refers to the name of the function to
be instrumented and "filename" refers to the filename where the
function symbol should be looked up — this parameter is optional
and allows for the instrumentation of shared libraries. These direc-
tives provide powerful tools for defining extremely fine-grained,
sub-application level policy. For instance, to declare that read ac-
cess to the file /etc/shadow should only occur during a call to
the function check_password(), the corresponding bpfbox rule
would look like:

#[ func "check_password"]
fs("/etc/shadow", read)

A process that is sandboxed using this policy would be unable to
access /etc/shadow except within a call to the specified function.

7 APACHE HTTPD: AN EXAMPLE BPFBOX
POLICY

In this section, we present an example bpfbox policy for Apache’s
httpd webserver and offer a comparison to the AppArmor and



seccomp-bpf profiles used by snap’s httpd* policy. We hope that
this policy should serve both as an illustrative example of bpfbox’s
capabilities as well as a motivating comparison between bpfbox
policy and the state of the art in process confinement.

The bpfbox policy, depicted in Listing 2, begins by specifying the
location of the Apache httpd executable as well as the conditions
required for tainting the httpd process. These taint rules define the
boundary between httpd’s setup phase and its main work loop by
instrumenting the point at which it binds to either an IPv4 or IPv6
network socket. If there is a taint rule, the rest of the policy file is
only enforced once the taint condition is satisfied. In other words,
with taint rules the policy only applies when the process begins
processing untrusted input.

Listing 2: An example policy for the Apache httpd web-
server.

#![profile "/bin/httpd"]

/* Taint on binding to an inet or inet6 socket =*/
#[taint] {

net(inet, bind)

net(inet6, bind)
}

/* Specify allowed network access */
net(inet, any)

net(inet6, any)

net(unix, create|connect|send|recv)
net(netlink, create|bind|send]|recv)

/* Allows kill(2) to check for process existence
* and to send fatal signals =/
signal("/bin/httpd", check|fatal)

/* Write to logs x/
fs("/var/log/httpd/*log", getattr|append)
fs("/var/log/httpd", getattr)

/* Create PID file =*/

fs("/run/httpd/", write)

/* Delete or modify an existing PID file if necessary */
fs("/run/httpd/httpd.pid", getattr|rm|write)

/* Serve files from /srv/html/ and all subdirectories =/
fs("/srv/html/*x"  read|getattr)

/* Read configuration =*/
fs("/usr/share/httpd/*x", read|getattr)
fs("/etc/httpd/", getattr)
fs("/etc/httpd/conf/*x", read|getattr)
fs("/usr/share/zoneinfo/*x", read|getattr)

fs("/etc/resolv.conf", read|getattr)
fs("/etc/hosts", read|getattr)

fs("/proc/sys/kernel/random/boot_id", read)
fs("/proc/sys/kernel/ngroups_max", read)

fs("/usr/lib/httpd/modules/x.so", getattr|read]|exec)
fs("/usr/lib/libnss*.so.x", getattr|read|exec)
fs("/usr/lib/libgcc_s.so.x", getattr|read]|exec)

/* Transition to a separate suexec policy =*/
#[transition]

4The Nextcloud snap package: https://snapcraft.io/nextcloud

fs("/usr/bin/suexec", getattr|read]|exec)

Once tainted, we specify a set of allowed socket operations, both
for networking and for interprocess communication, as well the
ability for httpd to send fatal signals to other processes running the
same profile. The file system rules for httpd are slightly more granu-
lar. Some notable examples include the ability to append to log files,
read configuration files, and read static content from /srv/http.
In practice, this could be easily reconfigured according the needs
of the end user, say to add support for a writable subdirectory.

This policy allows for the execution of all httpd shared library
modules. If desired, this could be easily restricted to a subset of
these modules by providing explicit pathnames. It also specifies that
the suexec program, used by httpd to execute external programs
with different privileges, should cause the process to transition to
a separate profile. The suexec profile can then be used to control
specifically which programs should be run and what transitions (if
any) might occur as a result.

Note this policy works at the LSM level rather than the system
call level, with all LSM hooks that are not explicitly allowed being
denied. As a result, virtually all privileged operations are forbidden.
Accesses to devices, kernel modules, other processes—these and
more are excluded because they are not listed in the policy. By
enabling direct access to process state and LSM, bpfbox policies
work at an abstraction level that is both straightforward and precise.

7.1 A Comparison with Snap

Snap packages define their security policy [46] through an app dec-
laration provided in the package’s snapcraft.yml file (depicted in
Listing 3). The package author lists the "apps" provided by their
package and assigns attributes and policy plugins for each app. This
coarse-grained policy is then translated into corresponding AppAr-
mor and seccomp-bpf policy files according to the information
specified in the app declaration. For comparison with the bpfbox
policy in Listing 2, we will consider both the snapcraft.yml dec-
larations as well as the generated policy files.

Listing 3: The relevant portions of httpd’s snapcraft.yml
app declaration.
apps:
# Apache daemon
apache:
command: run-httpd -k start -DFOREGROUND
stop-command: httpd-wrapper -k stop
daemon: simple
restart-condition: always
plugs: [network, network-bind, removable-medial

In order to make writing policy for snap packages as easy as pos-
sible, policy definitions within the app declaration are very coarse
grained, emphasizing simplicity and terseness over expressiveness.
snap’s httpd policy lists the network, network-bind, and removable-
media policy plugins in addition to the default snap policy. While
this approach undoubtedly makes it simple and easy to write policy,
it does little to improve policy auditability; at a glance, it is unclear
what effect each policy plugin has on the resulting security policy.

These snap declarations produce much more complex, often
overly generalized AppArmor and seccomp-bpf policies. They are
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rather large, consisting of 494 lines of policy (ignoring blank and
comment lines) for AppArmor and 410 lines for seccomp-bpf. Fur-
ther, the generated seccomp-bpf policy contains several generic
rules that allow chown(2) to change the owner and group of files
to root, despite the fact that httpd runs under its own httpd user.
Even worse, the generated AppArmor policy permits the execution
of 120 common shell utilities, many of which are unnecessary for
httpd’s normal operation.

The result of attempting to combine a very high-level approach
with two complex, low-level confinement mechanisms is three
difficult-to-audit policy files. The app declaration is far too coarse-
grained to be precisely sure what each policy plugin is doing, while
the AppArmor and seccomp-bpf policy files are so fine-grained,
verbose, and overly generalized that their auditability suffers as well.
If this app declaration were replaced with a single bpfbox policy,
we posit that it would not be significantly harder to write than the
original app declaration while maintaining a steady advantage in
auditability, as well as an advantage in terseness over the generated
AppAmor and seccomp-bpf policy files.

8 PERFORMANCE EVALUATION

In this section, we present a series of performance benchmarks
aimed at ascertaining the overhead imposed by bpfbox on both
sandboxed applications and the system itself. Benchmarking data
was collected using the Phoronix Test Suite [29], a comprehensive
benchmarking platform for the Linux operating system, and an
ad-hoc kernel compilation benchmark. To establish a metric for
comparison against other process confinement mechanisms, we
ran the same benchmarks under the AppArmor [12] mandatory
access control LSM. All benchmarks were run under three distinct
conditions, summarized below.

Base: No policy engine is running. This measures the baseline
operation of the system.

Passive: The policy engine is running in the background without
any active profiles. This measures the impact of the policy engine
on unconfined processes.

Permissive The policy engine is running in permissive mode in
the background with empty profiles for each benchmarking pro-
gram. This represents the worst case scenario where the policy
engine complains about (i.e., logs) every security-sensitive opera-
tion.

Tests were conducted on an x86_64 Arch Linux virtual machine
running a Linux 5.8.0-rc6 kernel, with eight virtual CPUs running
at 2.99GHz and 16GB of RAM. Our results show that bpfbox incurs
acceptable overhead, on par with and in some cases better than
AppArmor. The benchmarking results are presented in Table 3 and
are summarized in the subsections that follow.

8.1 Phoronix OSBench Benchmarks

The Phoronix OSBench benchmarking suite provides a series of
tests that measure the performance of various aspects of operating
system functionality. In particular, it measures file creation, process
creation, thread creation, program execution, and memory allo-
cation. Data for each test was collected using strict-run mode,
which prioritizes the accuracy of results, running as many tests as
needed.

The results of the OSBench benchmark show that bpfbox im-
poses modest overhead on an unconfined system, with a difference
of under 4% in all tests. The "Memory Allocations” tests actually
show the bpfbox and AppArmor configurations slightly outper-
forming the base system; however, given they are all separated
by less than one standard deviation (1.87% standard deviation for
base), they should all be seen as essentially the same for this test.
When bpfbox was actively logging all security-sensitive operations
performed by the benchmarking programs, this overhead increased
to about 15% at the highest. Predictably, the "Create Files" and
"Launch Programs" tests exhibited the most overhead, as both test
cases resulted in significantly more instrumentation work on the
part of bpfbox.

Although AppArmor exhibited slightly less overhead on uncon-
fined processes, the difference between the two is largely marginal,
within a few microseconds. In the worst case, bpfbox performed sig-
nificantly better than AppArmor in the "Create Files" and "Launch
Programs" tests. This difference is likely attributable to the fact
that bpfbox’s kernelspace logging mechanisms transfer data to
userspace more efficiently.

8.2 Kernel Compilation Benchmarks

Kernel compilation benchmarks present an ideal test case for mea-
suring overhead under a busy workload with execve(2) calls and
significant disk I/O. This workload is more representative of the
worst case for bpfbox overhead, especially when bpfbox is instru-
menting the behavior of all involved processes. In particular, the
"Permissive" phase of the benchmark involved the instrumentation
of 15 distinct profiles and resulted in several thousand audit log
events per second.

Each trial consisted of six timed Linux 5.8.0-rc6 kernel compila-
tions, with the initial run discarded to eliminate transient disk I/O.
Compilations were timed using the GNU time(1) command line
utility.

In the kernel compilation benchmarks, bpfbox and AppArmor
exhibit roughly equivalent overhead on unconfined processes. In
the worst case, bpfbox exhibits significantly less overhead in ker-
nelspace but loses out in total elapsed time by just over 130 sec-
onds. This disparity is likely due to the fact that the current ver-
sion of bpfbox does not buffer writes to its log file in userspace.
The sheer volume of events generated by this benchmark causes
bpfbox’s userspace logging component to consume significantly
more CPU resources than in previous trials. This performance bot-
tleneck can be fixed with a relatively straightforward change to
bpfbox’s userspace code.

8.3 Phoronix Apache Benchmarks

The Phoronix Apache benchmark provides an excellent test case for
measuring the performance impact of bpfbox on socket networking
operations. This test runs the Apache httpd server and attempts as
many requests as possible within a fixed amount of time. Higher
requests per second results in a better score.

In this benchmark, bpfbox is shown to have a slightly higher base
impact on the system than in previous benchmarks at just under
6%, but the worst-case "Permissive" impact on requests per second
is quite modest at under 9%, a difference of just over 1000 requests



Table 3: The results of the Phoronix OSBench, kernel compilation, and Phoronix Apache benchmarks. Percent differences
are given in parentheses. For the kernel compilation benchmarks, “User” and “System” represent total CPU time spent in
userspace and kernelspace while “Elapsed” represents real elapsed time.

Base Passive Permissive
bpfbox AppArmor bpfbox AppArmor

Phoronix OSBench (lower is better):

Create Files (us) 27.86 28.94 (3.81%) 28.01  (0.55%) 3231 (14.80%) 96.56 (110.44%)

Create Threads (us) 25.96 26.90  (3.56%) 26.28  (1.24%) 27.67  (6.39%) 26.09  (0.51%)

Launch Programs (ys) 75.12 78.02  (3.79%) 77.64  (3.30%) 8731 (15.01%) 10243 (30.76%)

Create Processes (us) 51.32 52.53  (2.34%) 51.61 (0.57%) 51.85 (1.04%) 52.11 (1.54%)

Memory Allocations (ns) 113.98 11233 (-1.45%) 11229 (-1.50%) 11275 (-1.09%) 11274  (-1.09%)
Kernel Compilation (lower is better):

User (s) 14457.01 14564.80 (0.74%) 1471142 (1.74%) 14829.11 (2.54%) 14432.09 (-0.17%)

System (s) 1712.59  1760.02 (2.73%)  1765.69 (3.05%)  1804.10 (5.20%)  2544.72 (39.09%)

Elapsed (s) 2086.92 2114.83 (1.33%) 2130.38  (2.06%) 2397.48 (13.85%) 2261.09 (8.01%)
Phoronix Apache (higher is better):

Requests Per Second (r/s) 14686.95 13887.59 (-5.59%) 13743.88 (-6.63%) 13504.23 (-8.39%) 13431.34 (-8.93%)

per second. bpfbox’s performance here is roughly equivalent to
AppArmor.

9 DISCUSSION

Our work began with the dual insight that eBPF was now capable
of implementing kernelspace security mechanisms and that there
was an opportunity to create a better solution for Linux process
confinement. bpfbox serves as a proof of concept of the former and
a significant argument for the latter. bpfbox is a research prototype,
however, and as such it has a number of limitations and opportu-
nities for enhancements. We believe it also shows that there are a
number of unexplored opportunities in systems security that are
made feasible with eBPF. We discuss each of these in the rest of
this section.

9.1 Limitations

While our current implementation has a number of limitations,
we see most of them as opportunities for future work rather than
inherent limitations of our approach. For example, one limitation
of our approach to sub-application level confinement (i.e., the #[
func] directives discussed in Section 5.3.1 and Section 6.1.6) is that
it breaks for recursive function calls. This limitation exists due to
the nature of how uprobes work in eBPF. A uprobe temporarily re-
places the address of a function call with a trap to the eBPF program
which trampolines back to the original address when it terminates.
Uretprobes work in much the same way, instrumenting the return
address instead. This means that eBPF programs cannot distinguish
between a return from a recursive function call and a return from a
top-level function call. Since the current implementation of bpfbox
relies on setting and unsetting per-process flags to manage state,
this may lead to unexpected denials within such recursive function
calls. Having said this, we do not believe this limitation to be sig-
nificant in practice, and if it were a factor, several workarounds are
possible including explicitly defined userspace tracepoints (USDTs).

Since bpfbox relies on instrumenting various eBPF programs in
order to manage process-to-policy associations as well as enforce

the policy itself, the current implementation of bpfbox is unable
to sandbox processes that started before bpfbox has run, as no
profile will be associated with those processes. To overcome this
limitation, future iterations of bpfbox could scan the entries in
/proc/{pid}/exe on start to manually perform the correct policy
associations.

Despite the fact that bpfbox does not require modifications to
the Linux kernel source code, it does require a compatible Linux
version that has been compiled to support specific eBPF features.
In particular, bpfbox depends on the KRSI LSM instrumentation
framework (available in Linux 5.7+) and the ringbuf map type
(available in Linux 5.8+), as well as a kernel that has been compiled
with support for loading eBPF programs and exposes BTF (BPF Type
Format) debugging symbols. Many mainstream Linux distributions
come with this support enabled by default, while others require
the user to manually set the appropriate configuration flags before
compiling the kernel. It may be some time, however, before many
systems upgrade to Linux 5.8+ kernels.

9.2 Potential Improvements

Perhaps the most obvious extension to bpfbox is the introduction
of seccomp-like functionality, through which policies could spec-
ify access at the system call level in addition to the LSM hook
level. eBPF already supports instrumentation of processes at the
system call level through the syscalls:* and raw_syscalls:*
tracepoint families. Unlike traditional seccomp-bpf, these filters
could be applied externally to the target application and without re-
lying on execution through a wrapper application (e.g., MBOX [27])
for application transparency. Filters could then be integrated with
the existing LSM probe framework to provide one cohesive policy
definition language rather than relying on two distinct solutions.
The extensibility and flexibility of eBPF is highly conducive to
integration with various aspects of the operating system, including
other security solutions. For instance, it may be possible to integrate
future versions of bpfbox with intrusion detection and prevention
systems, assigning specific detection thresholds to particular rules.



bpfbox could deny access to a specific set of files or prevent the
execution of specific programs if the system detects an attack in
progress. This integration could also be extended to other eBPF
programs monitoring various other aspects of system behavior.
Rather than strictly focusing on policy enforcement at the appli-
cation and sub-application levels, bpfbox could be extended to also
enforce policy at the container level rather than just the process
level. Policies could be written to harden containers and further
restrict access to external system resources. eBPF has excellent sup-
port for the instrumentation of individual cgroups, so this would
be a natural extension to the current bpfbox implementation.
Thanks to bpfbox’s detailed event logging, it should be possible
to integrate audit2allow-like [42] functionality such that profiles
can be automatically generated through the analysis of permissive
mode audit logs. This should allow even inexperienced stakeholders
to quickly generate working bpfbox policies that capture normal
application behavior. These policies should then be relatively easy
to audit and extend, due to bpfbox’s simple policy language syntax.
Although bpfbox currently depends on the Python 3 bee toolchain
and its LLVM backend, future versions may be ported to libbpf CO-
RE [34] (Compile Once, Run Everywhere), a framework that uses
BTF type information and an automatically generated header file
to allow eBPF programs to be compiled once and distributed to
any compatible Linux configuration. This will enable bpfbox to be
deployed on embedded systems where the disk space and runtime
overhead of its dependencies would otherwise be prohibitive.

9.3 Future Directions

eBPF provides a verifiably safe way to add functionality to the
Linux kernel at runtime. Code can be triggered by and respond to
a wide variety of kernel-level and userspace events. While this sort
of code could always be written, eBPF simplifies its development:
terminating the eBPF loading process will cause the eBPF code to be
safely unloaded without requiring a system reboot. Further, eBPF’s
shared maps and buffered event output mechanisms allows for
easy, performant data exchange between userspace and kernelspace.
Many others are excited about the performance gains that eBPF can
bring to applications [7, 11, 49]. We suspect, however, that eBPF
may have an even bigger impact on security.

A central challenge in systems security is how to appropriately
recognize and respond to security-critical events. Sometimes it is
clear, as with opening a file, that an action has potential security
implications. With complex systems, such as those underpinning
large cloud infrastructures, security problems can arise in almost
any context. As attacks evolve, defenders must evolve as well. To-
day this evolution manifests as a never-ending series of software
updates. Applications must be updated because that is our primary
means by which vulnerabilities can be mitigated. But what if we
had other options?

Sandboxing is ultimately an aspiration rather than a technical
mechanism. In principle, a proper reference monitor architecture
would prevent untrusted code from ever violating system policy;
in practice, shared code, shared state, and imprecise policies allow
for numerous opportunities for sandbox escapes and privilege es-
calation. If we want to do better, we have to rethink our approach
to the boundaries around our computations.

Exploits respect no fixed boundaries, yet standard security mech-
anisms do. The kernel does not directly control how processes run,
and processes do not control the kernel; instead, they interact (pri-
marily) through the system call interface. When security problems
arise on one side of this divide, traditionally it must be solved on
that side.

bpfbox demonstrates that, with technologies like eBPF, we don’t
have to be so rigid in our thinking. Applications can change how
the kernel makes security decisions, and the kernel can directly
manipulate how procesess run to improve security. Implementing
security mechanisms changes from an either/or problem—do we
make security enhancements in userspace or kernelspace?—to both.
We can cross the boundaries to mitigate vulnerabilities just as
attackers cross boundaries to exploit them.

By exposing LSM hooks, bpfbox makes it feasible to add sandbox-
ing to any process. It also potentially enables security mitigations
that go beyond any conventional sandbox. Authorizations can be
tied to functions in userspace and restrictions placed on core ker-
nel functionality. Further, with modest extensions, security policy
could be directly tied to program activity. In some contexts such as
denial-of-service attacks, resource allocation can impact security.
When allocations can be observed and manipulated system-wide
and communicated to critical processes, resource allocations can be
made in light of security priorities, rather than simply attempting
to be fair to all requesters. The design space of potential mecha-
nisms is very large, and we believe there is a huge opportunity in
exploring it.

10 CONCLUSION

We have presented the design and implementation of bpfbox, a
novel process confinement engine written entirely in eBPF using
the KRSI framework. We leverage the flexibility of eBPF to provide
finer-grained instrumentation on application behavior than previ-
ously possible and integrate this information with an extensible
enforcement framework that enables simple yet expressive poli-
cies. We are confident that bpfbox can be extended to meet the
confinement requirements of almost any application in practice.

State-of-the-art confinement solutions like snap and docker
combine various complex and heterogeneous mechanisms for limit-
ing access to system resources. What these approaches all lack is a
unified solution built from the ground up for process confinement.
Such a unified approach could potentially have significant benefits
for cloud applications by allowing for simplified and more secure
container management, even enabling new application deployment
abstractions. We believe bpfbox is a step towards such a unified
solution.
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