
TARANET: Traffic-Analysis Resistant Anonymity
at the Network Layer

Chen Chen
chenche1@andrew.cmu.edu

Carnegie Mellon University

David Barrera
david.barrera@polymtl.ca
Polytechnique Montreal

Daniele E. Asoni
daniele.asoni@inf.ethz.ch

ETH Zürich

George Danezis
g.danezis@ucl.ac.uk

University College London

Adrian Perrig
adrian.perrig@inf.ethz.ch

ETH Zürich

Carmela Troncoso
carmela.troncoso@epfl.ch

EPFL

Abstract—Modern low-latency anonymity systems, no matter
whether constructed as an overlay or implemented at the
network layer, offer limited security guarantees against traffic
analysis. On the other hand, high-latency anonymity systems
offer strong security guarantees at the cost of computational
overhead and long delays, which are excessive for interactive
applications. We propose TARANET, an anonymity system
that implements protection against traffic analysis at the net-
work layer, and limits the incurred latency and overhead.
In TARANET’s setup phase, traffic analysis is thwarted by
mixing. In the data transmission phase, end hosts and ASes
coordinate to shape traffic into constant-rate transmission us-
ing packet splitting. Our prototype implementation shows that
TARANET can forward anonymous traffic at over 50 Gbps
using commodity hardware.

1. Introduction
Users are increasingly aware of their lack of privacy and

are turning to anonymity systems to protect their commu-
nications. Tor [28] is currently the most popular anonymity
system, with over 2 million daily users [11]. Unfortunately,
Tor offers neither satisfactory performance nor strong an-
onymity. With respect to performance, Tor is implemented
as an overlay network and uses a per-hop reliable transport,
increasing both propagation and queuing latency [29]. With
respect to anonymity guarantees, Tor is vulnerable to traffic
analysis [49, 51, 48, 62].

Users also have the option of anonymity systems with
stronger guarantees such as DC-nets [19, 33, 67], Mix
networks [20, 13], and peer-to-peer protocols [58, 31]. How-
ever, these systems either scale poorly or incur prohibitive
latency and reliability, making them unsuitable for many
practical applications.

In an effort to improve the performance of anonym-
ity networks, research has built on the idea of network-
layer anonymity (e.g., LAP [39], Dovetail [57], and HOR-
NET [21]). Network-layer anonymity systems assume that
the network infrastructure (e.g., routers) participates in es-
tablishing anonymous communication channels and assists

in forwarding anonymous traffic. Intermediate anonymity
supporting network nodes (or nodes for short) first cooperate
with senders to establish anonymous sessions or circuits,
and then process and forward traffic from those senders to
receivers. While these systems achieve high throughput and
low latency, the security guarantees of these systems are no
stronger than Tor’s. Moreover, LAP and Dovetail leak the
position of intermediate nodes on the path and the total path
length, which reduces the anonymity set size, facilitating de-
anonymization [21].

The problem space appears to have an unavoidable
tradeoff: strong anonymity appears achievable only through
drastically higher overhead [27]. In this paper, we aim to
push the boundaries of this anonymity/performance tradeoff
by combining the speed of network-layer anonymity systems
with strong defenses.

To improve the anonymity guarantees, traffic analysis
attacks need to be prevented, or made significantly harder for
the adversary to perform. The common method to achieve
this is to insert chaff (also known as cover traffic), which
consists of dummy packets which to an adversary look
indistinguishable from encrypted data packets. By mixing
chaff with data packets, one can add noise to the underlying
traffic patterns to defeat traffic analysis. For example, one
can insert chaff to maintain a constant transmission rate
on an adversarial network link, so that the traffic patterns
observed by the observing adversary stay unchanged and
leak no identifying information.

However, both existing methods of applying chaff traffic,
i.e., constant-transmission-rate link padding [65, 31, 42, 41]
and probabilistic end-to-end padding [44, 54], are un-
satisfactory. On one hand, constant-transmission-rate link
padding uses chaff to shape traffic between adjacent pairs
of nodes making it perfectly homogeneous, thus provably
concealing the underlying traffic patterns from a network
adversary. However, a compromised node is able to distin-
guish chaff traffic from real traffic, giving link padding no
anonymity guarantees when compromised nodes are present.
On the other hand, probabilistic end-to-end padding enables
end hosts to generate chaff traffic that is indistinguishable

137

2018 IEEE European Symposium on Security and Privacy

© 2018, Chen Chen. Under license to IEEE.
DOI 10.1109/EuroSP.2018.00018

from real traffic, but existing schemes [44, 54] fail to fully
conceal the end-to-end transmission rate and can be defeated
by packet-density attack [59].

We take the best of both worlds and propose a new
method of applying chaff traffic that has so far not been
explored: an end-to-end padding scheme that shapes a flow’s
traffic pattern into constant-rate transmission on all tra-
versed links. At a flow’s origin, the sender divides its traffic
into small flowlets that transmit packets at a globally-fixed
constant rate. Each forwarding node modulates the outgoing
transmission rate of each flowlet so that the transmission rate
remains constant over time and also remains constant across
all links traversed by the flowlet. This approach prevents
traffic patterns from propagating across nodes. We call this
technique end-to-end traffic shaping.

However, end-to-end traffic shaping is surprisingly tricky
to achieve in the presence of natural packet loss, adversar-
ial packet drops, or packet propagation delays. The main
challenge for coordinated traffic shaping is how to maintain
constant-rate transmission across all traversing links when
a forwarding node’s incoming transmission rate is lower
than the outgoing transmission rate. A simple approach that
enables a forwarding nodes to create valid packets to send
toward the destination appears promising, but unfortunately,
this approach could be abused, as packet injection requires
the cryptographic keys that the sender shares with down-
stream nodes. Moreover, such an approach would enable
two malicious nodes that are on the same flowlet path to
trivially link observed packets of the same flowlet. Simi-
larly, allowing a node to replay existing packets cannot be
permitted, as replicated packets themselves would constitute
a trivially detectable pattern.

An initial idea is to enable each node to have a spare
packet queue, containing packets that can be sent to make
up for the difference between the incoming transmission rate
and the required outgoing transmission rate. But this poses a
conundrum: how can we fill up the spare packet buffer if the
flowlet rate remains constant in the first place? Our solution
is packet splitting, a cryptographic mechanism which allows
an end host to generate a packet that splits into two different
valid packets of the same size as the original packet at a
specific node. Through splittable packets, an end host can
fill up the spare packet queue at forwarding nodes, which in
turn enables constant-rate transmission even in case of lost
or delayed incoming packets.

In this paper, we propose TARANET, a scalable, high-
speed, and traffic-analysis-resistant anonymous communi-
cation protocol, which uses the end-to-end traffic shaping
assisted by packet splitting as one of its novel mechanisms.
TARANET is directly built into the network infrastructure
to achieve short paths and high throughput. It uses mixing
for its setup phase and end-to-end traffic shaping for its data
transmission phase to resist traffic analysis. Our paper makes
the following contributions:

1) We propose an efficient end-to-end traffic shaping tech-
nique that maintains per-flow constant-rate transmis-
sion on all links and defeats traffic analysis attacks. We
also propose in-network packet splitting as the enabling

mechanism for the end-to-end traffic shaping technique.
2) We present an onion routing protocol that enables

payload integrity protection, replay detection, and split-
table packets, which are essential building blocks for
end-to-end traffic shaping.

3) We design, implement, and evaluate the security and
performance of TARANET. Our prototype running on
commodity hardware can forward over 50 Gbps of
anonymous traffic, showing the feasibility to deploy
TARANET on high-speed links.

2. Background and Related Work

This section presents background on network-layer ano-
nymity protocols. We also discuss adversarial traffic analysis
techniques to de-anonymize end points, focusing on those
that current network-layer anonymity protocols fail to deter.

2.1. Network-layer Anonymity Protocols

Recent research [39, 57, 21] proposes network-layer an-
onymity systems that incorporate anonymous communication
as a service of network infrastructures in the Internet and
next generation network architectures [69, 32, 70]. The basic
assumption of a network-layer anonymity system is that Au-
tonomous Systems (AS) can conduct efficient cryptographic
operations when forwarding packets to conceal forwarding
information. Additionally, a network-layer anonymity sys-
tem uses direct forwarding paths rather than reroute packets
through overlay networks as in Tor [28]. This processing
would be done on (software) routers, for instance, but more
abstractedly the term node is used to refer to the device or
set of devices dedicated to the anonymity system within an
AS.

A network-layer anonymity system anonymizes its traf-
fic by relying on ASes to collaboratively hide the forwarding
paths between senders and receivers. We remark that a
network-layer anonymity system can offer neither sender
anonymity nor recipient anonymity as defined by Pfizmann
and Köhntopp [53]. A compromised first-hop AS on the
path can observe the sender of a message, violating sender
anonymity. Similarly, a compromised last-hop AS can iden-
tify the receiver, which breaks recipient anonymity. Instead,
a network-layer anonymity system offers relationship ano-
nymity [53] that prevents linking two end hosts of a message.

Besides anonymity, the basic design goals for a network-
layer anonymity system are scalability and performance.
With respect to scalability, a network-layer anonymity sys-
tem minimizes the amount of state kept on network routers
who possess limited high-speed memory. With respect to
performance, a network-layer anonymity system should of-
fer low latency and high throughput.

HORNET [21] improves on the security guarantees for
network-layer protocols by using full onion encryption to
guarantee bitwise unlinkability. HORNET introduces sev-
eral useful primitives for stateless onion routing, which we
extend in TARANET.

138

HORNET is circuit-based like overlay systems, but it
operates at the network layer. As with LAP and Dovetail,
processing data packets at intermediate nodes requires only
symmetric cryptography. This design comes at the expense
of a relatively slow round-trip time for setup packets which
requires nodes on the path to perform public-key cryptog-
raphy at the start of each session. During setup, the sender
establishes keys between itself and every node on the path.
The sender embeds these keys along with routing informa-
tion for each hop into the header of each subsequent data
packet. Since the state is carried within packets, intermediate
nodes do not have to keep per-flow state, which enables high
scalability.

Through bit-pattern unlinkability in its traffic and con-
fidentiality of the packet’s path information, HORNET can
defend against passive adversaries matching packets based
on packet contents. Nevertheless, the protocol is vulnerable
to more sophisticated active attacks. HORNET headers are
re-used for all data packets in a session, and payloads are not
integrity-protected. Thus, HORNET cannot protect against
packet replays since an adversary could change a payload
arbitrarily, making the packet look indistinguishable from a
legitimate new packet to the processing node. Such a replay
attack can be used in conjunction with traffic analysis to
insert recognizable fingerprints into flows, which can help
de-anonymize communicating endpoints.

Lightweight anonymity systems. The first class of
network-layer anonymity protocols proposed is the so-
called lightweight system, which consists of two proposals,
LAP [39] and Dovetail [57]. These systems defend against
topological attacks by encrypting forwarding information
in packet headers. However, in both schemes, packets stay
unchanged from hop to hop, thus enabling bit-pattern cor-
relation of packets at distinct compromised nodes.

2.2. Traffic Analysis Attacks

Traffic analysis aims to identify communicating end-
points based on metadata such as volume, traffic patterns,
and timing. The literature broadly classifies traffic analysis
techniques into passive and active, depending on whether
the adversary manipulates traffic.

2.2.1. Passive Attacks. Flow dynamics matching. An ad-
versary eavesdropping on traffic at two observation points
(including an adversary observing the ingress and egress
traffic of a single node) can try to detect whether (some of)
the packets seen at the observation points belong to the same
flow by searching for similarities among the dynamics of all
observed flows [72, 44, 49, 46]. For example, the adversary
can monitor packet inter-arrival times, flow volume [15], or
on/off flow patterns [66, 71].

Template attacks. An adversary can construct a database
of traffic patterns (templates) obtained by accessing known
websites or other web-services through the anonymous com-
munication system. When eavesdropping on the traffic of
a client, the adversary compares the observed flows with

the patterns stored in the database, and if a match is found
the adversary is able to guess the website or web-service
accessed by the client with high probability [34, 40, 64].

Network statistics correlation. Another possible attack
consists in monitoring network characteristics of different
parts of the network, and comparing them to the char-
acteristics of targeted anonymized flows. For instance, by
comparing the round-trip time (RTT) of a target bidirectional
flow with the RTTs measured to a large set of network
locations, an adversary can identify the probable network
location of an end host in case the RTT of the flow showed
strong correlation with the RTT to one of the monitored
network locations [35]. Similarly, by simply the throughput
(over time) of a unidirectional flow and comparing it with
the throughput to various network location, the adversary
can guess the end host’s location [47].

2.2.2. Active Attacks. Active traffic analysis uses similar
techniques as passive traffic analysis, but it additionally
involves traffic manipulation by the adversary, in particular
packet delaying and dropping, to introduce specific patterns.
Chakravarty et al. [17] show that active analysis can have
high success rates even when working with aggregate Net-
flow data instead of raw packet traces.

Flow dynamics modification. By modifying the flow dy-
namics (inter-packet timings), the adversary can add a wa-
termark (or tag) to the flow, which the adversary is then
able to detect when observing the flow at another point
in the network [66, 38, 36]. This attack is known as flow
watermarking. A similiar attack, called flow fingerprinting,
enables an adversary to encode more information into the
flow dynamics, which can later be extracted from the same
flow seen at another point in the network [37]. For both
attacks, depending on the coding technique, flows may
require more or fewer packets for the watermark/fingerprint
to be reliably identified within the network.

Clogging Attacks. Flow dynamics modification requires
that the adversary control multiple observation points in
the network. Clogging attacks are similar, but the adversary
only needs to be able to observe the target flow at a single
network location. For these attacks, the adversary causes
network congestion [49, 30], or fluctuation [18] at other
nodes in the network, and then observes whether these
actions affect the observed target flow. If so, it is likely
that the target flow traverses the nodes at which conges-
tion/fluctuation has been caused.

2.3. Chaff-based Defenses

Adding chaff traffic (also referred to as padding traffic
or dummy traffic) is a defense mechanism that thwarts
traffic analysis by concealing real traffic patterns. An im-
portant family of chaff-based anonymity protocols uses link
padding [59, 65, 31, 42, 41]. Link padding, used together
with link encryption, allows neighboring forwarding nodes
to add chaff to shape the patterns of all traffic on a network

139

link into either constant-rate transmission [59, 65] or a pre-
determined packet schedule [31, 42, 41]. However, because
in link padding a node is able to distinguish chaff packets
from real packets, attackers that compromise nodes are still
capable of identifying the underlying traffic patterns and
conduct traffic analysis.

Another class of chaff-based protocols uses end-to-end
padding [44]. In the end-to-end padding scheme, end hosts
craft chaff packets that traverse the network together with
real packets, and the added chaff packets carry flags to
inform the forwarding nodes about when to drop the chaff
packets. Thus, an end host’s traffic demonstrates different
patterns as the traffic traverse the network. Compared to
link padding, in end-to-end padding a compromised node
cannot distinguish chaff traffic from real traffic, and is thus
unable to discover the real traffic patterns. Nevertheless, the
existing work, defensive dropping [44], fails to fully conceal
the timing information of the real traffic, and is trivially
defeated by measuring packet density [59].

3. Problem Definition

We consider a scenario where an adversary secretly
conducts a network mass-surveillance program. By stealthily
tapping into inter-continental fiber links, or by controlling a
set of domestic ISPs/IXPs, the adversary gains bulk access to
network traffic. Besides matching identifiers to filter packets,
the adversary is also capable of conducting traffic manipu-
lation and traffic pattern matching. A pair of anonymity-
conscious users would like to communicate through the
network, hiding the fact that they are communicating from
the adversary. The communication between the pair of users
is bi-directional. Without loss of generality, we call the user
that initiates the anonymous communication sender, and the
other user receiver.

3.1. Network Assumptions

The underlying network is divided into ASes, or simply
nodes. Each node forwards packets according to a routing
segment. Each routing segment contains forwarding infor-
mation for a node between the sender and the receiver. For a
sender to reach a receiver, the sender can obtain a sequence
of routing segments, named path.

Except the ingress and egress links that are needed as
forwarding information through an AS, routing segments
should leak no extra information about the end hosts or
the path before or after the forwarding node. This property
is satisfied by several next-generation Internet architectures
that use source-controlled routing (e.g., SCION [52, 70],
NIRA [69], or Pathlet [32]), or in the Internet through IPv6
Segment Routing [8].

3.2. Threat Model

We consider a global active adversary, that is capable of
controlling all links between any pair of ASes, or between

an AS and an end host. This means that the adversary has
bulk access to contents and timing information of packets on
all links and can also inject, drop, delay, replay, and modify
packets. We additionally assume that the adversary is able
to compromise a fraction of ASes. By compromising an
AS, the adversary learns all keys and settings, has access to
all traffic that traverses the compromised AS, and is able to
control the AS including delaying, redirecting, and dropping
traffic, as well as fabricating, replaying, and modifying
packets. We only guarantee relationship anonymity for end
hosts if there exists at least one uncompromised AS on
the path between sender and receiver. We remark that the
adversary under this assumption is able to perform all traffic
analysis attacks in Section 2.2.

3.3. TARANET Goals

Anonymity. TARANET aims to provide relationship an-
onymity (defined by Pfizmann and Köhntopp [53]) when
a sender and a receiver share mutual trust. We refer to
the relationship anonymity under this condition as third-
party relationship anonymity. While requiring trust in re-
ceivers limits our protocol’s application scope, third-party
anonymity is actually sufficient when communicating parties
are authenticated end-to-end (e.g., VoIP), when avoiding
censorship where the receiver (e.g., a foreign news site) is
known not to cooperate with the censoring entity, when a
warrant canary1 has been recently updated for that endpoint,
or when the receiver is a trusted node acting as a proxy.

High throughput and low latency. The processing over-
head should be small, i.e., it should only require symmetric
cryptographic operations and access to a small amount of
easy-to-manage per-flow state. Consequently, an efficient
implementation (running at line speed) on a network device
should be possible with a small amount of extra hardware.

Scalability. Nodes should be capable of handling the large
volume of simultaneous connections as observed on Internet
core routers. TARANET aims to minimize the amount of
per-flow state maintained. Moreover, adding new nodes to
the network should additionally not require coordination
with all other nodes.

4. Protocol Design

Communication Model. Hosts communicate anonymously
through TARANET-enabled Autonomous Systems (ASes)
using flowlets. A TARANET flowlet allows an end host to
send traffic anonymously at a constant rate B for a fixed
time period T . All anonymous traffic is divided into a set
of flowlets by end hosts to leverage TARANET’s service.
Figure 1 graphs the lifecycle of a TARANET flowlet.

A flowlet’s life-cycle begins with a setup phase followed
by a data transmission phase. At the beginning of the setup
phase, a sender first anonymously retrieves two paths: a
forward path from the sender to the receiver and a backward

1. E.g., see www.rsync.net/resources/notices/canary.txt.

140

���

����

���
� �

�

�

	

�

	

��	

���

����

���
� �

��	

�������������
�
��
��

��
	

��
�

�

�
�

�

��
��
��
�
�

��
	

��

������������� ���������������������������

�� ���

!�"���#$��������%����
����&������'

����������� ���������������������

�����������
��(�

Figure 1. TARANET design overview.

path from the receiver back to the sender. A path contains
the routing segments, the public keys, and the certificates
of all nodes between the two end hosts. One mechanism
for anonymously retrieving paths is to have end hosts query
global topology servers through TARANET flowlets that are
established using network configuration information (e.g.,
distributed to end hosts through a DHCP-like infrastruc-
ture [21]). Another mechanism is to disseminate paths and
public keys throughout the network to end hosts, as done in
certain future network architectures (e.g., SCION [52, 70],
NIRA [69], or Pathlet [32]). A third mechanism could be
based on private information retrieval (PIR) [23], which
allows to trade off a lower communication overhead for an
increased computation overhead on the servers providing the
network information and the keys.

Once the sender successfully obtains both paths, the
sender and the receiver exchange two setup messages
traversing the obtained paths. By processing a setup mes-
sage, each on-path node establishes a shared symmetric key
with the sender. The per-node shared key is later used to con-
ceal routing information by layered encryption/decryption
in the data transmission phase. To avoid storing per-flow
cryptographic state on each node, a node encrypts the shared
key using a local secret key that the node never reveals. The
resulting encrypted shared key, which we call the Forward-
ing Segment (FS), is carried by all data packets and allows
the node to dynamically retrieve its shared symmetric key.

With routing segments, FSes, and per-node symmetric
keys, the sender is able to create TARANET data packets
that can reach the receiver. An on-path node can process a
data packet with only symmetric cryptographic operations,
enabling highly efficient packet forwarding. Within the first
batch of packets along the forward path, the sender transmits
all routing segments, FSes, and shared symmetric keys for
the backward path, so that the receiver can send packets
back to the sender.

Traffic analysis resistance. TARANET resists traffic anal-
ysis attacks by combining an onion routing protocol (an
enhanced adaptation of the one in HORNET), a newly pro-
posed end-to-end traffic shaping scheme, and mixing. First,
compared to HORNET which provisions confidentiality, au-
thenticity, and bit pattern unlinkability, TARANET addition-
ally offers payload integrity protection, replay protection,
and packet splitting, which is a vital enabling technique for
the end-to-end traffic shaping scheme (Section 4.1). Second,
for the data transmission phase, TARANET enables end-to-
end traffic normalization for flowlet traffic. For each flowlet,
the sender and receiver maintain a constant transmission rate
shared by every end host. Each forwarding node maintains
the same constant transmission rate for outgoing packets
belonging to the flowlet (Section 4.2). Third, for messages
in the setup phase, TARANET requires each node to conduct
mixing [20] in order to prevent linking messages based on
their timing and order (Section 4.3). Finally, to hide the
difference between setup packets and data packets and to
defeat a global eavesdropper that monitors the number of
flowlets on links between nodes, TARANET additionally
requires neighboring nodes to perform link encryption and
link padding (Section 4.4).

We adopt different techniques for the circuit setup and
data transmission due to the observed need for different
performance characteristics in those two phases. Regarding
the setup phase, assuming a large number of simultaneous
connection setups, batching setup messages on a node will
result in a small delay for the setup phase. Moreover,
because changing the order of messages received by a node
has no impact on the performance of the setup phase, we
can randomize the order of messages within each batch.
Finally, since processing a chaff setup message requires
public-key cryptographic operations, creating chaff setup
messages would result in a large computational overhead.

For the data transmission phase, on the other hand,
because packet order is important for TCP performance,
randomizing the message order severely impacts application
performance. Additionally, because data packet processing
is highly efficient, we can actively conduct traffic shaping
on both end hosts and intermediate nodes by using chaff
packets (Section 4.2).

4.1. TARANET Onion Routing Protocol

Like the HORNET onion routing protocol [21], the
TARANET protocol offers bit-pattern unlinkability, payload
confidentiality, and per-hop authenticity. Bit-pattern unlink-
ability eliminates any identifiers that facilitate packet match-
ing. Payload confidentiality prevents leaking upper-layer
sensitive information. An important difference to HORNET,
however, is that the TARANET header is modified by the
sender for each packet to include a per-hop MAC that protect
the integrity of both the header and the payload, unlike
HORNET, whose per-hop integrity guarantees only cover
the header (since in HORNET the same header is used
for multiple packets). Therefore, in TARANET, tampered

141

or forged packets will be detected by benign nodes on the
path and dropped immediately.

TARANET also adopts the scalable design of HORNET,
i.e., using packet-carried forwarding state. This reduces the
amount of state that has to be kept by nodes, and improves
packet processing speed, since no memory lookup has to be
performed to retrieve the flowlet information (i.e., keying
material, next-hop information, control flags).

Protocol
Bit-pattern

unlinkability
Scalability

Payload
Integrity

Replay
Protection

Packet
Splitting

HORNET Yes Yes No No No
TARANET Yes Yes Yes Yes Yes

Table 1. COMPARISON BETWEEN TARANET AND HORNET ONION

ROUTING PROTOCOLS

We highlight three new features that TARANET intro-
duces for the data transmission phase compared to HOR-
NET. First, integrity protection is extended to data packets’
payloads, eliminating tagging attacks targeting at manipulat-
ing data payloads to create recognizable patterns. Second,
data packets within the same flowlet have unique identifiers
bound to the packets themselves, enabling replay protection.
Third, TARANET allows an end host to create special chaff
packets, each of which splits into two packets at a specific
node. To all other nodes, the original packet and the resulting
packets are indistinguishable from ordinary data packets in
the same flowlet. Split packets traverse the same path as
other packets in the flowlet and their per-hop MACs need
to be correct at each downstream node. Splitting a chaff
packet into multiple packets plays a vital role in the end-
to-end traffic shaping technique described in Section 4.2.
We defer the detailed description of the technical aspects of
packet splitting to Section 5.

Replay protection. In TARANET, each TARANET packet
header is uniquely identifiable, enabling intermediate nodes
to detect replay attacks by checking the header’s freshness.
Specifically, an intermediate node can retrieve 3 fields from
each packet: (1) a shared secret with the sender, (2) a per-
packet Initial Vector (IV), and (3) a coarse-grained per-
packet expiration time. The first two fields together uniquely
identify a packet and are used as input to membership
queries and for the insertions to the replay detector. The
third field is used to check and drop expired packets.

TARANET nodes detect replayed packets by maintain-
ing a rotating Bloom filters composed of 3 subject Bloom
filters, as described by Lee et al. [43]. A packet received at
t = [i· TTL

2 , (i+1)· TTL
2] is checked against all 3 filters and

is only inserted into i′-th Bloom filter, where i′ ∼= i mod 3.
The i-th subject filter is cleared at time (3N+ i) · TTL

2 (N is
an integer). The rotating Bloom filter guarantees that each
packet inserted has a lifetime between TTL and 3

2TTL,
where TTL is the maximum lifetime of a packet. To reduce
cache misses and increase performance, we also use blocked
Bloom filters [56] instead of standard Bloom filters.

Replay detection state is not per-flow state, since the size
of the detector grows linearly with its node’s bandwidth,
and not with the number of flowlets traversing that node.

The size of our detector is ~15 MB2 for a 10 Gbps link
when the false positive rate is at most 10−6 and TTL = 6 s
(the maximum packet lifetime we consider in Section 5.4.1).
Each false positive result causes the corresponding packet to
be dropped. Given that the packet drop rate of the Internet
is around 0.2% [61], we could reduce the detector’s size by
allowing higher false positive rate.

4.2. End-to-end Traffic Shaping

Flowlet. Our basic idea for defending data transmission
against traffic analysis is to shape traffic from heterogeneous
applications into constant-rate transmission. A flowlet is the
basic unit through which an end host is able to transmit
packets at a constant throughput B and for a maximum
lifetime T . During the lifetime T of a flowlet, the end
host always transfers packets at rate B, inserting chaff
packets if necessary. More generally, if an end host needs
to transfer data at rate B′ for time T ′, it initiates a sequence
of �T ′/T � flowlet batches, each of which contains �B′/B�
simultaneous flowlets.

An end host shuts down a flowlet before the flowlet
expires when there is no more data to send. When shutting
down multiple simultaneous flowlets, an end host pads each
flowlet with a random number of packets to prevent linking
the flowlets by their expiration times. A node erases local
state and terminates a flowlet when there are no more
packets in its outgoing packet queue.

The key property of a flowlet is to maintain constant
transmission rates not only at end hosts but also on all
traversed links, for which the flowlet relies on end-to-
end padding instead of link padding. In link padding, a
pair of neighboring intermediate nodes coordinate to inject
chaff to maintain a constant sending rate on a link. While
link padding is effective against a network adversary, it is
insufficient in the case of compromised nodes, since they
can distinguish chaff inserted by neighbors from actual data
packets. To defend against compromised nodes, we need
chaff packets that are indistinguishable from data packets.
Because TARANET uses onion encryption as a basic build-
ing block, one can create such indistinguishable chaff only
when possessing shared keys with all traversing nodes. Thus,
only sending end hosts are able to create such chaff.

Necessity of packet splitting. To achieve constant-rate
transmission, every flowlet should ideally arrive and leave
with rate B at every node. However, drops/jitter may cause
the incoming rate to vary: a higher rate is absorbed by the
queues, but a lower rate requires that the node be able to
produce “extra packets”, which need to resemble legitimate
packets to any downstream node. This implies that these
packets must also be generated by the sender like end-to-end
chaff. But since the sender cannot send at a rate higher than
B, it cannot send additional packets for the nodes to cache
and use when needed. The only option then seems to be to
have very long queues, and let each node fill a significant

2. Computed using the CAIDA dataset described in Section 7.

142

fraction of them with packets when the transmission of the
flowlet first begins, before the node starts forwarding packets
for that flowlet. However, this requires far too much state,
and also adds significant latency in terms of time to the first
byte, making this option unfeasible. The apparent dilemma
can be solved with a technique we call packet splitting.

The packet splitting technique allows an end host to
create a packet that can be split into two packets at a
specific intermediate node.3 The resulting packets should
be indistinguishable from other non-splittable packets. This
requirement indicates that the resulting packets should still
traverse the same path and reach the recipient’s end host.
We present the algorithm to split packets in Section 5.

Traffic shaping for flowlet outgoing rate. To enable end-
to-end traffic shaping, for each on-path node ni, an end
host selects a slot in its transmission buffer with probability

Prspliti and fills in a newly generated splittable chaff packet
that will split at node ni. As an optimization, the end host
can also select a slot that already contains chaff packets
and replace it with splittable chaff packets. When a node
receives a packet that should be split at the node, the node
performs the split and caches resulting packets in its chaff
packet queue.

Each node maintains a per-flowlet chaff queue of cached
chaff packets. To guarantee an invariant outgoing flowlet
rate, nodes periodically output a data packet from the data
packet queue. In case that the data packet queue is empty, the
node outputs a chaff packet from the flowlet’s chaff queue.
We limit the chaff queue size by a maximal length Lchf . In
the (unlikely) scenario where the chaff queue is also empty,
a local per-flowlet failure counter h is increased. When h
exceeds a threshold H negotiated during flowlet setup, the
node terminates the flowlet. H is a security parameter of the
flowlet that determines how sensitive the flowlet is against
potential malicious packet drops.

When a node shuts down a flowlet, an intermediate node
no longer receives packets from upstream nodes. It will first
drain its local chaff packet queue and then terminate the
flowlet when the threshold H is reached. We remark that
such a termination process results in successive termination
on nodes and small variable intervals between termination
times on different nodes because of the variable number of
cached chaff packets.

We remark that both the chaff queues and failure coun-
ters constitute per-flow state. However, the amount required
is tolerable, and the mechanisms that prevent senders from
creating an arbitrary number of flows (see Section 8.2) also
make the amount of state dependent only on the node’s
bandwidth. We evaluate the amount of state the queues
require in detail in Section 7.

4.3. Mixing in the Setup Phase

Each TARANET node applies a basic form of mixing
when processing setup messages. After a setup message is

3. The general packet splitting technique supports a n-way split. We con-
sider only two-way packet splits because of limited Maximum Transmission
Units (MTU) in the network.

processed by an intermediate node, the node queues the
message locally into batches of size m. Once there are
enough setup messages to form a batch, the node first
randomizes the message order within each batch and then
sends out the batch.

Through batching and order randomization, a
TARANET node aims to obscure the timing and order for
setup messages. An adversary that observes both input and
output setup messages of a non-compromised node cannot
match an output packet to its corresponding input packet
within the batch.

The batching technique introduces additional latency be-
cause the setup messages have to wait until enough messages
are accumulated. Assume that rsetup is the number of in-
coming setup messages every second, the added latency can
be computed as m

rsetup
. Given the large number of simultane-

ous connections within the network, the introduced latency
is very low, as shown by our evaluation in Section 7.2.

4.4. Link Encryption and Padding

Each pair of neighboring TARANET nodes agree upon
a constant transmission rate upon link setup. The negotiated
transmission rate determines the maximum total rate for
data packets. When the actual transmission rate exceeds
the negotiated rate on a link, the sending node drops the
excessive packets. When the actual transmission rate is
lower than the negotiated rate, the sending node will add
chaff traffic. The chaff traffic inserted by an intermediate
node to shape traffic on a link only traverses the link and is
dropped by the neighboring node.

To prevent an adversary observing a link between two
honest nodes from distinguishing chaff traffic from actual
data traffic, all pairs of neighboring nodes negotiate a sym-
metric key through the Diffie-Hellman protocol, and use it to
encrypt all packets transmitted on their shared link. This also
makes setup messages and data packets indistinguishable.

As an optimization to reduce chaff traffic and improve
bandwidth usage, we additionally allow neighboring nodes
to agree on a schedule of transmission rates as long as
transmission rate is detached from the dynamics of indi-
vidual traffic rates. For example, because the actual link
rate on a link often demonstrates similarity at the same
time of different days, we can reduce the amount of chaff
traffic by setting the transmission rate between [t, t′] to
B[t,t′] + k ·Σ[t,t′]. B[t,t′] is the historic average transmission
rate between [t, t′], Σ[t,t′] is the standard deviation for the
transmission rate, k is a factor that allows administrators to
account for temporal changes of the bandwidth usage.

5. Protocol Details

This section presents the details of TARANET data
packet formats and processing functions. We show how to
create a fixed-size packet that can be split into two new
packets of the same size whose per-hop MAC can still be
verified. Using the packet processing functions, we present

143

the TARANET data transmission phase on end hosts and
intermediate nodes.

5.1. Notation

We first describe our notation. In general, symdir stands
for the symbol sym of a specific direction dir ∈ {f, b},
which is either forward (src to dst) or backward (dst to src).
symdir

i indicates the symbol sym belongs to i-th node ndir
i

on the path in direction dir. For simplicity, we denote the
set of all sym for a path pdir as {symdir

i }. We also define
a series of string operations: 0z is a string of zeros with
length z; |σ| is the length of the string σ; σ[m..n] refers to
the substring between m-th bit to n-th bit of string σ where
m starts from 0; σ1 ‖ σ2 stands for concatenation of string
σ1 and σ2.

5.2. Initialization & Setup Phase

In the setup phase, the sender node aims to anonymously
establish a set of shared keys {sdiri } with all nodes on the
forward and backward path, and a shared key sSD with the
receiver. In the following protocol description and in our
implementation, we use HORNET’s Sphinx-based single-
round-trip setup [21]. Note that we can also set up flowlets
using Tor’s telescopic method [28] which increases latency,
but preserves perfect forward secrecy.

Once the setup phase is complete, in addition to the
shared keys, the sender also obtains from each node on both
paths a Forwarding Segment (FS) [21, Section 4]. The FS
created by the node ndir

i contains the key shared between
the sender and that node sdiri and the routing information
Rdir

i which tells the node how to reach the next hop on the
path. The FS is encrypted using a secret value known only
to the router that created the FS. As shown in Section 5.4,
these FSes are included in every data packet: each node can
then the retrieve the FS it created, decrypt it, and recover
the packet processing information within. Unlike HORNET,
we do not store the expiration time EXP in a FS, but include
it alongside the FS in the packet (see Section 5.3.2). This
allows the sender to set a different expiration time for each
packet and limit the time window in which the packet is
valid, which is necessary for replay protection.

5.3. Data Packet Processing

5.3.1. Requirements. TARANET data packets are fixed-
size onion packets whose integrity is protected by per-hop
MAC. Processing these packets should satisfy the following
three requirements:

• An output packet cannot be linked to the correspond-
ing input packet without compromising the processing
node’s local secret value.

• Processing a packet cannot leak a node’s position on
the path.

• Processing a packet cannot change the packet size
regardless of underlying operations.

�������
��	

�� ��

�	
���
��
	

�������
�������

�������	���
�������

�������
	�	�

����	�
	�	�

������	��

��

��
	����������

��
�

Figure 2. TARANET packet format.

The last requirement is particularly challenging to sat-
isfy, since TARANET allows flow mutations. Consider the
split operation, which takes a fixed-size packet and creates
two uncorrelated packets of the same size. The splitting
procedure needs to ensure that subsequent nodes can verify
the MACs in both new packets.

5.3.2. Data packet format. Figure 2 depicts TARANET
data packet format. At the beginning of each packet is an
IV field that carries a fresh initial vector for each packet
in a flowlet. After the IV field are four fields that form
an onion layer: an FS, a per-hop MAC, control bits, and
the expiration time. The rest of the fields, including the rest
of header information, padding bits, and the payload, are
encrypted, and are thus opaque to the processing node.

When a packet arrives, the first three fields are accessible
to a node without requiring cryptographic processing, so we
refer to these fields as public state. Note that while these
fields are immediately accessible, the contents of the FS
are encrypted with the local secret value known only to the
node. The control bits and the expiration time, on the other
hand, are only available after the node decrypts the packet
using the key retrieved from the FS, so we call these fields
secret state. In addition, each header is padded to a fixed
size regardless of the actual number of nodes on the path,
and the padding bits are inserted between the header and
the payload.

5.3.3. TARANET packet creation. Both end hosts gener-
ate data packets using a subroutine shown in Algorithm 1.
The subroutine creates an onion packet to be forwarded from
node nk to node nl. For each onion layer, it computes a
per-hop MAC (Line 14) and onion-encrypts both the header
(Line 12) and the payload (Line 14).

One important feature of this onion encryption algorithm
is to add per-hop state (specifically, an FS, a MAC, control
bits and an expiration time) to the packet header without
changing its total size. The function achieves this feature by
strategically pre-computing the padding bits in the header
(Line 6) to ensure that the trailing c bits of header after
encryption are always equal to 0c. As a result, the trailing
zero bits can be truncated without losing information when
the header is encrypted again (Line 12).

Normally, an end host creates a packet that traverses the
whole path from the first node ndir

0 to the last node ndir
ldir−1.

144

1: procedure CREATE ONION ROUTINE

Input: {si}, {FSi}, {ctrli}, {EXPi}, IV , k, l, O � with k < l
Output: (IVk,FSk, γk, βk, Ok)

2: φk ← ε
3: IVk ← IV
4: for i← k + 1, . . . , l do
5: IVi ← PRP(hPRP(s); IVi−1)
6: φi ← (φi−1 ‖ 0c) ⊕

PRG(hPRG(si−1 ⊕ IVi−1))[(r−i−1)c+b..rc+b−1]
7: end for
8: βl ←

{
RAND(c(r − l − 1)) ‖ φl

}
9: Ol ← ENC(hENC(sl); IVl;O)

10: γl ← MAC(hMAC(sl ‖ IVl);FS l ‖ βl ‖Ol)
11: for i← (l − 1), . . . , k do
12: βi ←

{
ctrli ‖ EXPi ‖ FS i+1 ‖ γi+1 ‖ βi+1[0..c(r−2)−1]

}

⊕ PRG(hPRG(si ‖ IVi))[0..b+(r−1)c−1]
13: γi ← MAC(hMAC(si ‖ IVi);FS i ‖ βi ‖Oi)
14: Oi ← ENC(hENC(si); IVi;Oi+1)
15: end for
16: end procedure

Algorithm 1: Create a partial data packet.

It generates such a packet by setting k = 0, l = ldir−1, and
all ctrli = FWD in function CREATE ONION ROUTINE.

Generate splittable packets. Creating a data packet that
can be split into two packets requires an end host to first
create two child packets and then merge them into a single
parent packet. Because we require all packets to have the
same size, the challenge is to guarantee that the per-hop
MACs in the child packets successfully verify even after
the splitting node adds padding bits to the child packets.
For this reason, the splitting node generates padding bits by
a PRG keyed by the key shared with the end host, so that
the end host can predict the padding bits and pre-compute
the per-hop MACs in both resulting packets accordingly.

Algorithm 2 shows the function TARANET uses to
create a splittable data packet. At a high level, the algorithm
CREATE SPLITTABLE DATA PACKET invokes the algo-
rithm CREATE ONION ROUTINE three times: it first creates
two child packets using CREATE ONION ROUTINE (Lines 3
and 5), merges the resulting packets into a new payload
(Line 6), and finally executes CREATE ONION ROUTINE

again to generate the parent packet (Line 7). To ensure
the correctness of the per-hop MACs in the child packets
after the payloads are padded, the function generates the
padding bits using a PRG keyed by the shared key between
the end host and the splitting node so that the latter can
re-generate the padding bits accordingly (Lines 3 and 4).
After the MACs are computed for the child packets, the
deterministic padding bits are truncated so that two child
packets can fit into the payload of their parent packet.

5.3.4. Onion layer removal. Nodes remove onion layers
when processing data packets. It essentially reverses a single
step of CREATE ONION ROUTINE. Algorithm 3 shows this
five-step process. First, the intermediate node retrieves the
symmetric onion key s shared with the sender (Line 3);
second, the node verifies a per-hop MAC using a key derived
from s (Line 4); third, the node ensures that the packet’s size
remains unchanged by adding padding bits to the header

1: procedure CREATE SPLITTABLE DATA PACKET

Input: {si}, {FSi}, {ctrli}, {EXPi}, IV , IV0, IV1 O0, O1, k
Output: (IV0,FS0, γ0, β0, O0)

2: O0 ← O0 ‖ PRG(hPRG((sk ⊕ IV0)‖ “left”))[0..m
2
+rc−1]

3: (IV ′0 , FS′0, γ
′
0, β

′
0, O

′
0)←

CREATE ONION ROUTINE({si, ∀i ≥ k}, {FSi, ∀i ≥ k},
{FWD}, {EXPi, ∀i ≥ k}, IV0, k, ldir − 1, O0)

4: O1 ← O1 ‖ PRG(hPRG((sk ‖ IV1)‖ “right”))[0..m
2
+rc−1]

5: (IV ′1 , FS′1, γ
′
1, β

′
1, O

′
1)←

CREATE ONION ROUTINE({si, ∀i ≥ k},
{FSi,∀i ≥ k}, {FWD}, IV1, k, ldir − 1, O1)

6: O′ ← (IV ′0 , FS′0, γ
′
0, β

′
0, {O′0}[0..m2 +rc−1]) ‖

(IV ′1 , FS′1, γ
′
1, β

′
1, {O′1}[0..m2 +rc−1])

7: (IV0, FS0, γ0, β0, O0)←
CREATE ONION ROUTINE({si, ∀i < k},
{FSi,∀i < k}, {FWD, . . . , FWD, SPLIT},
{EXPi,∀i < k}, IV, 0, k − 1, O′)

8: end procedure

Algorithm 2: Create a data packet that can be split into two
new packets.

and decrypting the resulting padded header with a stream
cipher; fourth, the control bits are extracted (Line 6); finally,
the payload is decrypted (Line 7) and the next initialization
vector is obtained by applying a PRP keyed with s to the
current IV (Line 8).

Note that the onion layer removal algorithm is different
from a simple decryption in two ways. First, the size of the
packet remains the same after processing, which prevents
leaking information about the total number of hops between
the sender and receiver. Second, the processing only happens
at the head of the packet, which reveals no information about
the processing node’s position on the path.

1: procedure REMOVE LAYER

Input: P , SV
Output: ctrl, P o, R, EXP

2: {IV ‖ FS ‖ γ ‖ β ‖O} ← P
3: s ‖R← PRP−1(SV,FS)
4: check γ = MAC(hMAC(s ‖ IV);FS ‖ β ‖O)
5: ζ ← {β ‖ 0c} ⊕ PRG(hPRG(s ‖ IV))[0...(r−1)c+b−1]

6: ctrl ‖ EXP ‖ FS ′ ‖ γ′ ‖ β′ ← ζ
7: O′ ← DEC(hDEC(s); IV ;O)
8: IV ′ ← PRP(hPRP(s); IV)
9: P o ← {IV ′ ‖ FS ′ ‖ γ′ ‖ β′ ‖O′}

10: end procedure

Algorithm 3: Remove an onion layer.

Depending on the value of control bits ctrl, the inter-
mediate node performs one of the following two actions:
FWD, or SPLIT. A node can split a data packet into two
new packets by Algorithm 4. First, the payload is split into
two new packets (Line 2). Then the node pads both newly
generated packets to the fixed size m using pseudo-random
bits obtained from a PRG keyed by s (Lines 3 and 4).

5.4. Data Transmission Phase

5.4.1. End host processing. To send packets to receiver D,
sender S first makes sure that the flowlet has not expired.
Then S chooses a value EXPmin, which has to be larger than
its local time plus the end-to-end forwarding delay plus the

145

1: procedure SPLIT ONION PACKET

Input: O, s, IV
Output: P o

0 , P o
1

2: {P ′0 ‖ P ′1} ← O
3: P o

0 ← P ′0 ‖ PRG(hPRG((s ‖ IV) ‖ “left”))[0..m
2
+rc−1]

4: P o
1 ← P ′1 ‖ PRG(hPRG((s ‖ IV) ‖ “right”))[0..m

2
+rc−1]

5: end procedure

Algorithm 4: Split a data packet into two new packets.

maximum global clock skew. We expect that adding a few
seconds to the local time would be adequate under most
circumstances. However, S cannot set the packet expiration
time to be equal at every hop, as otherwise this value could
be used as common identifier (which violates the bit-pattern
unlinkability property. Instead, S chooses an offset Δi ∈
[0,Δmax] uniformly at random, for each node nf

i on the
path. For every packet sent out, S determines EXPmin and
computes EXPi = EXPmin+Δi for each node. The value Δ
needs to be chosen large enough to ensure that the interval
[EXPmin, EXPmin+Δ] overlaps with the intervals of a large
number of other concurrent flows. We expect that Δ ≈ 5 s
would be a safe choice. To further reduce the amount of
information that may be carried by the expiration times,
we use very coarse-grained timing, such that the smallest
time difference would be in the order of 10–100 ms. (This
is particularly important for packet splitting, where a packet
may be cached for some time on a node, and this delay may
otherwise leak information to subsequent nodes.)

After determining {EXPi}, S also needs to decide which
flow mutation actions the packet will adopt. In case of packet
splitting, S also needs to decide where to split the packet.
For a packet that is forwarded to the receiver without being
split, we denote the payload to send is O. For a packet that
is split, we denote the payloads of the child packets as O0

and O1. Let k be the index of the node where the packet is
split. Accordingly, ctrli = FWD, ∀i 	= k. Third, S uses sSD

to encrypt the payload. This end-to-end encryption prevents
the last hop node from obtaining information about the data
payload. S also generates a unique nonce IV for the packet.
If the packet is splittable, S generates another two unique
nonces IV0 and IV1. Fourth, if the packet will be split, S
creates the packet P by

P = CREATE SPLITTABLE DATA PACKET({sfi }, {FSf
i },

{ctrlfi }, {EXP
f
i }, IV, IV0, IV1, O0, O1, k) (1)

If the packet will only be forwarded to the receiver without
a splitting action, S creates the packet P by

P = CREATE ONION ROUTINE({sfi }, {FSf
i }, {ctrlfi },

{EXP
f
i }, IV, 0, lf − 1, O) (2)

Finally, S forwards P to the first hop node towards the
receiver.

The process by which D sends packets back to S is sim-
ilar to the above procedure, but D will use the forwarding
segments and onion keys for the backward path. However,
right after S finishes the setup phase, D has not yet obtained

gxS , {sbi}, nor {FSb
i }. In the TARANET data transmission

phase, the first packet that S sends to D includes xS , {sbi}
and {FSb

i } as the payload.
When an end host (S or D) receives a data packet P ,

it can retrieve the data payload O from the packet by O =
P[rc..rc+m−1] The resulting O can thus be decrypted by sSD

to retrieve the plaintext payload.

5.4.2. Intermediate node processing. When a node re-
ceives a data packet P = (IV, FS, γ, β,O), with the local
secret SV , it first removes an onion layer by

ctrl, P o, R, EXP = REMOVE ONION LAYER(P, SV) (3)

Note that the MAC must check in REMOVE ONION LAYER

for the process to move on. Otherwise, the node simply
drops the packet. Then, the node checks tcurr < EXP and
ensures that the flowlet has not expired. Afterwards, the
node checks the control bits belonging to the current hop.
If ctrl = SPLIT, the resulting payload P o must contain two
sub packets. The node creates two child packets P o

0 , P o
1 :

{P o
0 , P

o
1 } = SPLIT ONION PACKET(O, s, IV) (4)

Lastly, if the packet is not dropped, the node forwards the
resulting packet according to the routing decision R.

6. Security Analysis

We discuss TARANET’s defenses against passive (Sec-
tion 6.1) and active attacks (Section 6.2). We also conduct
a quantitative analysis of TARANET’s anonymity set size
using the Internet topology and real-world packet traces
(Section 6.3). Our result shows that TARANET’s anonymity
set is 4 to 218 times larger than those of LAP and Dovetail.
We present a formal proof that the TARANET protocol
conforms to an ideal onion routing protocol defined by Ca-
menisch and Lysyanskaya [16] in our technical report [22].

6.1. Defense against Passive Attacks

Flow dynamics matching. In flow-dynamics matching at-
tacks [24, 50], adversarial nodes can collude to match two
observed flows by their dynamics, such as transmission
rate. TARANET prevents such attacks by normalizing the
outgoing transmission rate of all flowlets through the use
of chaff traffic. Adversarial nodes are unable to distinguish
chaff traffic from real traffic. Accordingly, no flow dynamics
are available to the adversary to perform matching.

Template attacks. TARANET enables end hosts to shape
their traffic by adding chaff packets to hide their real traffic
patterns. The resulting traffic pattern of an outgoing flowlet
is uniform across the network. In addition, all TARANET
packets have the same length, preventing information leak-
age from packet length. The combination of these two
features completely neutralizes template attacks.

Network statistics correlation. These attacks rely on the
capability of the adversary to observe macroscopic flow

146

characteristics which leak de-anonymizing information. Be-
cause of the uniformity of flowlets, no such information is
leaked in TARANET for isolated unidirectional flows. How-
ever, if the attacker is able to link the flowlets corresponding
to a bidirectional flow by their starting or ending time, then
an attack based on the RTT (see Section 2.2.1) could still be
possible. Such an attack can be thwarted by adding delays
for setup packets and flowlet start at the receiver, according
to the path length (the shorter the path, the longer the delay),
as suggested by previous work [21, Section 5.1].

6.2. Defense against Active Attacks

Tagging attacks. A compromised node can modify packets
adding tags that are recognizable by downstream colluding
nodes. This enables flow matching across flows observed
at different nodes [55]. TARANET defends against such at-
tacks through its per-hop packet authenticity (see Section 5).
A benign node will detect and drop any modified packet.

Clogging attacks. In clogging attacks, an adversary in-
tentionally causes network congestion [49, 30], or fluctu-
ation [18] to create jamming or noticeable network jitter on
relay nodes, and match such patterns to deanonymize the
path. Different from throughput fingerprint attacks that aim
to exert no influence on existing traffic patterns, clogging
attacks aggressively change the traffic patterns on victim
links and are prone to detection. First, clogging attacks
in TARANET itself require DDoS capabilities because of
nodes’ high bandwidth within the network. In addition,
TARANET nodes attacked by clogging would run out of
cached chaff packets, which in turn shuts down the flowlet
and prevents any additional matching. Moreover, given the
large number of flowlets in the network at any given time,
the number of flowlets terminated due to normal operations
is large, which hides the fact that the specific attacked
flowlet is terminated.

Flow dynamics modification attacks. Traffic pattern mod-
ulation attacks require attackers to modulate inter-packet
intervals to either create recognizable patterns (e.g., flow wa-
termarking attacks [38, 36]), or embed identity information
(e.g. flow fingerprinting attacks [37]), so that downstream
adversarial nodes can deanonymize traffic by extracting the
introduced traffic patterns. Depending on the amount of
perturbation introduced by the adversary, we can distinguish
two cases. In the first one, the adversarial actions fail to
exhaust the cached chaff packets on the node under attack
for the target flowlet. In this case, the outgoing rate for the
flowlet at the node remains unchanged, and the attack is
ineffective. In the second case, the victim node runs out of
cached chaff packets for the target flowlet. In this case, the
node terminates the flowlet to prevent downstream nodes
from observing the injected patterns.

6.3. Anonymity Set Size Evaluation

Relationship anonymity set. Network-layer anonymity pro-
tocols are vulnerable to passive attacks based on network

topology information launched by a single compromised
AS. Compared to overlay-based anonymity systems [28] that
allows global re-routing, traffic of network-layer anonymity
protocols follows paths created by underlying network ar-
chitectures. By observing the incoming and outgoing links
of a packet, a compromised AS can derive network location
information of communicating end hosts. For example, in
Figure 3(a), by forwarding a packet from AS1 to AS3, AS2
knows that the sender must reside within the set {AS0,
AS1} and the receiver falls into the set {AS3, AS4, AS5}.
We name the former anonymity set sender anonymity set,
denoted as Ss, and call the latter anonymity set recipient
anonymity set, denoted as Sd. Accordingly, we define rela-
tionship anonymity set Sr = {(s, d)|s ∈ Ss, d ∈ Sd}.

To evaluate relationship anonymity of different proto-
cols, we use anonymity-set size as the metric. By definition
of Sr, the anonymity-set size |Sr| = |Ss| × |Sd|. In Fig-
ure 3(a), there are 8 hosts in both AS0 and AS1. Thus,
|Ss| = 16. Similarly, we can calculate that |Sd| = 24 and
|Sr| = 16× 24 = 384.

Protocol designs influence corresponding anonymity-
set sizes. In LAP and Dovetail, by analyzing header for-
mats, a passive adversary can determine its position on the
packet’s path, i.e., its distances from the sender and the
receiver [39, 57]. In Figure 3(a), if the adversary in AS2
knows the sender is 2 hops away and the receiver is 1 hops
away through analyzing packet headers, it can deduce that
the sender must be in AS0 and the receiver must be in AS3.
The resulting anonymity-set size is reduced to 8 * 8 = 64.
In comparison, TARANET and HORNET’s header designs
prevent their headers from leaking position information.

Experiment setup. We use a trace-based simulation to
evaluate anonymity set sizes of different network-layer an-
onymity protocols in real world scenarios. We obtain the
real-world AS-level topology from CAIDA AS relationship
dataset [1]. We also annotate each AS with its IPv4 address
space using the Routeview dataset [7]. In addition, we es-
timate real-world paths using iPlane traceroute datasets [5].
We use the traceroute traces on Dec. 12th, 2014. For each
IP address–based trace, we convert it to AS path. Our
preliminary analysis shows that the median AS path length is
4 and the average AS path length is 4.2. More than 99.99%
of AS paths have length less than 8.

For each AS on a path in our path dataset, we compute
the sizes of the relationship anonymity sets observed by the
compromised AS in one of two scenarios: 1) the AS knows
its position on path as in LAP and Dovetail; 2) the AS has
no information about its position on the path as in HORNET
and TARANET. To compute anonymity set sizes, we first
derive relationship anonymity sets composed by ASes. Then
we compute the number of hosts in the ASes as the size of
anonymity set size. We approximate the number of hosts
within an AS by the number of IPv4 addresses of that AS.

Result. Figure 3(b) demonstrates CDFs of anonymity-set
sizes for LAP and Dovetail observed by a compromised
AS. Figure 3(c) shows the CDF of anonymity-set sizes for
TARANET and HORNET. In general, anonymity-set sizes

147

����#��'

����#�' ��	�#�'

����#�'

����#�'

�

�

����#�'

(a) Example scenario

0 5 10 15 20 25 30 35 40 45 50 55 60 64
Anonymity set size (log 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

an
on

ym
ity

se
ts

iz
e

1 Hops
2 Hops
3 Hops
4 Hops
5 Hops
6 Hops
7 Hops

(b) LAP and Dovetail

0 5 10 15 20 25 30 35 40 45 50 55 60 64
Anonymity set size (log 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

an
on

ym
ity

se
ts

iz
e

1 Hops
2 Hops
3 Hops
4 Hops
5 Hops
6 Hops
7 Hops

(c) TARANET and HORNET

Figure 3. (a) A toy example of an adversary that exploits topology information to de-anonymize a flowlet between sender S and receiver D. ASx (y)
denotes an AS with AS number x and y hosts attached. We assume that the adversary compromised AS2. (b) Cumulative Distribution Functions (CDF) of
anonymity set sizes for LAP and Dovetail. (c) CDFs of anonymity set sizes for TARANET and HORNET. In both (b) and (c), different lines demonstrate
anonymity set size distribution observed by an adversary that is a fixed number of AS hops away from S.

of TARANET and HORNET exceed 232 with probabil-
ity larger than 95% regardless of the adversary’s on-path
positions. The 90th percentiles of anonymity-set sizes of
TARANET and HORNET are 4–218 times larger than those
of LAP and Dovetail depending on the distances between
senders and receivers. We remark that when an AS is 6 or
7 hops away from a sender, it is the last-hop AS with high
probability, because 99.99% paths are less than 8 hops long.
When the compromised ASes are 1 hop away from senders
and when the ASes are close to receivers (6–7 hops away
from senders), the gap between TARANET/HORNET and
LAP/Dovetail is largest.

Topology-based attacks and traffic analysis. In LAP,
Dovetail, and HORNET, when an adversary compromises
more than 1 AS on a path, he/she can correlate obser-
vation from different non-adjacent ASes by traffic anal-
ysis, such as flow fingerprint attacks [37], to facilitate
topology-based attacks. Assume that an adversary compro-
mises q ASes and observes a series of sender anonymity
sets {Si

s; i ∈ [1, q]} and a series of recipient anonymity sets
{Si

d; i ∈ [1, q]}. The resulting relationship anonymity set
size |Sr| = mini∈[1,q] |Si

s|×mini∈[1,q] |Si
d|. For example, in

Figure 3(a), if the adversary compromises AS0 besides AS2
and correlates traffic from the same flowlet, the resulting
relationship anonymity-set size |Sr| is only 24 (1 × 24)
compared to 384 when only AS2 is compromised.

TARANET improves over LAP, Dovetail, and HOR-
NET by introducing defense against traffic analysis (see
Section 6.1 and 6.2). By defeating traffic analysis and
preventing correlation of flowlets at multiple non-adjacent
ASes, TARANET enlarges the observed relationship ano-
nymity set size. The resulting relationship anonymity set
is only the smallest one among the relationship anonym-
ity sets observed by non-collaborative compromised ASes.
|Sr| = mini∈[1,q] |Si

s| × |Si
d|. For instance, when the adver-

sary compromises AS0 besides AS2 and uses traffic analysis
to correlate observed flowlets, the resulting relationship
anonymity-set size |Sr| increased to 56.

7. Evaluation

This section describes our implementation of
TARANET, a performance evaluation, and our evaluation
of bandwidth overhead added by end-to-end traffic shaping.

7.1. Implementation on High-speed Routers

We implement TARANET’s setup and data transmission
logic on a software router. We use Intel’s Data Plane Devel-
opment Kit (DPDK [3], version 2.1.0), which supports fast
packet processing in user space. We assemble a customized
cryptography library based on the Intel AESNI sample
library [4], and the curve25519-donna [2] and PolarSSL [6]
libraries. We use 128-bit AES counter mode for encryption
and 128-bit AES CBC-MAC.

7.2. Performance Evaluation

Our testbed is composed of a commodity Intel server
and a Spirent TestCenter packet generator [9]. The Intel
server functions as a software router and is equipped with
an Intel Xeon E5-2560 CPU (2.70 GHz, 2 sockets, 8 cores
per socket) and 64 GB DRAM. The server also has 3
Intel 82599ES network cards with 4 ports per card, and is
connected to the packet generator through twelve 10-Gbps
links. Thus the testbed can test throughput up to 120 Gbps.

To remove implementation bias and allow fair com-
parison with other anonymity protocols, we additionally
implement LAP [39], Dovetail [57], HORNET [21], and
Sphinx [25] logic using our custom cryptography library and
DPDK. Note that LAP, Dovetail, and HORNET are high-
speed network-layer anonymity protocols but cannot defend
against traffic analysis attacks. Sphinx is a mix network that
requires performing public key cryptographic operations for
every data packet and incurs high computation overhead.

TARANET’s performance is lower than LAP, Dove-
tail, and HORNET, because TARANET’s traffic-analysis
resistance property incurs additional overhead by design.
However, TARANET should outperform Sphinx, which also

148

0 200 400 600 800 1000 1200 1400

Payload Size [Bytes]

103

104

105

106
La

te
nc

y
[C

yc
le

s]
LAP
Dovetail
HORNET
TARANET (FWD)
TARANET (Drop)
TARANET (Split)
Sphinx

(a) Latency

0 200 400 600 800 1000 1200 1400

Payload Size [Bytes]

0

1

2

3

4

5

6

7

8

9

G
oo

dp
ut

[G
bp

s]

LAP
Dovetail
HORNET
TARANET
Sphinx

(b) Goodput: 7-hop header

0 200 400 600 800 1000 1200 1400

Payload Size [Bytes]

0

1

2

3

4

5

6

7

8

9

G
oo

dp
ut

[G
bp

s]

LAP
Dovetail
HORNET
TARANET
Sphinx

(c) Goodput 14-hop header

Figure 4. (a) Average latency of processing a packet for different protocols with error bars (95% confidence intervals). For a packet with “SPLIT” flag,
we can only test packets with payloads at least 768 bytes, because the payload has to contain at least two other packet headers. Lower is better. (b) Data
forwarding goodput on a 10 Gbps link for packets with 7-hop headers and different payload sizes; (c) data forwarding goodput on a 10 Gbps link for
packets with 14-hop headers and different payload sizes. Higher is better.

offers traffic-analysis resistance. Additionally, as an essential
requirement of high-speed network-layer anonymity proto-
col, we expect that TARANET should sustain high forward-
ing throughput.

Processing latency. We first evaluate the average latency
of processing a data packet on a single core using different
anonymity protocols. For TARANET, we also compare the
latency of performing different mutation actions. The results
are shown in Figure 4(a).

TARANET’s processing latency is comparable to LAP,
Dovetail, and HORNET. When the payload size is smaller
than 64 bytes, processing a TARANET data packet (follow-
ing the steps described above) incurs less than 1μs (≈3700
cycles) per-hop overhead on a single core. For payloads
larger than 1024 bytes, the latency increases to up to 2μs
(≈7200 cycles). Splitting a TARANET packet incurs only
an additional 1μs (≈4200 cycles). Since the total number
of ASes on a path is usually less than 7 [21], TARANET
processing will add only ∼20μs to the end-to-end latency.

Processing a setup packet on our test machine incurs
around 250μs (0.66M cycles) per hop per packet. This is
due to setup packets requiring a DH key-exchange operation.
However, for path lengths of less than 7 hops, this latency
adds less than 2ms at the start of each flowlet.

Goodput. Goodput measures the throughput of useful data
that can be transmitted by the protocol as it separates data
throughput and packet header overhead. Figures 4(b) and
4(c) show the goodput of different protocols with 7-hop and
14-hop headers, respectively, on a single 10 Gbps link with 1
core assigned. We observe that even with longer processing
latency and larger headers, TARANET still achieves ≈45%
of HORNET’s goodput in both cases. With a single core,
TARANET can still achieve ∼0.37 Mpkt/s.

Maximum total throughput. To evaluate the maximum
total throughput of our protocol with respect to the number
of cores, we test TARANET with all twelve 10 Gbps ports
enabled while using all 16 CPU cores. Each port has 1 input
queue and 1 output queue. To fully distribute the computa-
tion power of 16 cores to 12 input and 12 output queues, we
assign 8 cores exclusively to 8 input queues, 4 cores each to

one input and one output queue, and the remaining 4 cores
to 8 output queues. The packet generator generates packets
that have random egress ports and saturate all 12 ports.
Our evaluation finds that TARANET can process anonymous
traffic at 50.96 Gbps on our software router for packets with
512 bytes of payload.

Delay of flowlet setup. For the setup phase, TARANET uses
packet batching and randomization to protect against traffic
analysis. Our observation is that if the number of flowlet
setups is sufficiently large, batching setup packets can still
end up yielding a short setup delay.

We conduct a trace-driven simulation using CAIDA’s
anonymized packet traces to evaluate the delay of the setup
phase. The packet traces are recorded by the “equinix-
chicago” monitor on a Tier-1 ISP’s 10 Gbps link between
1-2 pm on Mar. 20th, 2014 [10] We assume the first packet
in each flow in the dataset is a flowlet setup packet. We
simulate the latency introduced by batching, randomizing,
and cryptographic processing by injecting the setup packet
trace into a TARANET node and varying the batch size.

The resulting latency of flowlet setups increases almost
linearly as the batch sizes increases. When the batch size
is 16, the per-hop latency is 1.6 ± 1.0 ms (95% confidence
interval). When the batch sizes reaches 128, the per-hop
latency increases up to 12 ± 7 ms. For a path with 7 AS-
hops that means the flowlet setup will introduce less than
∼170 ms additional round-trip latency for the setup phase,
which is on the order of the latency of an inter-continental
path.

7.3. Overhead Evaluation

We conduct a trace-based evaluation of TARANET to
evaluate added bandwidth overhead for end hosts and the
amount of state for routers. For bandwidth overhead, we
evaluate the number of splittable packets required to ac-
commodate different levels of packet drops and the number
of chaff traffic needed to shape real-world traffic. We use
CAIDA’s anonymized packet traces as discussed in Sec-
tion 7.2. We filter out ICMP packets and small flows with

149

0.00 0.05 0.10 0.15 0.20

Drop Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
S

pl
it

R
at

e

0.90
0.95
0.99

(a) Minimum split rate to achieve various suc-
cess rates, for H = 2.

0.00 0.05 0.10 0.15 0.20

Drop Rate

0.00

0.05

0.10

0.15

0.20

S
pl

it
R

at
e

1
2
3
4
5

(b) Minimum split rate to achieve a success rate
of 95% for various H .

0 5 10 15 20 25

Flowlet Rate (kbps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

O
ve

rh
ea

d

All
TCP only
UDP only

(c) Overhead Caused by Chaff Traffic

Figure 5. (a) and (b) show the minimum packet splitting rate required to achieve a certain success probability, given a certain failure counter H (Section 4.2).
In (a), H = 2, with success rates of 90%, 95%, and 99%; in (b), the required success rate is 95%, and H ∈ {1, . . . , 5}. (c) Bandwidth overhead caused
by added chaff traffic for traffic shaping. We normalize the overhead by dividing the added overhead by the original bandwidth. Lower is better.

fewer than 10 packets or with a transmission rate of less
than 1 byte/second.

Split rate. First, we evaluate the number of splittable pack-
ets needed to account for packet drops. Note that an insuf-
ficient split rate causes a node to deplete its locally cached
chaff and prematurely terminate a flowlet. We convert each
flow in the trace into flowlets where B = 10 kbps and
T = 1 min and run the trace with different per-hop split
rates, different drop rates, and various failure counters H .
We set Lchf = 3 to let a node cache 3 chaff packets at
maximum for each flowlet. Figure 5(a) shows the minimum
per-hop split rate required to counter different drop rates in
order to achieve 0.9, 0.95, or 0.99 success rates. A flowlet is
considered successful if it is not terminated due to excessive
packet loss. The observed drop rate in the Internet is around
0.2% [61]. For such a low drop rate, and considering a
failure counter H = 2, a node can set the per-hop split
rate to almost 0 and still obtain high success rates as much
as 99%. To account for a highly lossy network link or
an adversary that manipulates timing patterns by dropping
packets, an end host can adjust the split rate up to 5%, which
is sufficient to achieve 95% success rate even for a per-hop
drop rate as high as 10%.

Figure 5(b) demonstrates the required per-hop split rates
with respect to different drop rates to guarantee a 95%
success rate when the failure counter H ranges from 1 to 5.
In general, given a certain packet drop rate, a larger H helps
reduce the per-hop split rate. For instance, when H=1, the
per-hop split rate can be as high as 12% for a packet drop
rate of 5%. However, when H increases to 2, the required
per-hop split rate is already at 3.4%. For H=4, we can
accommodate a per-hop drop rate of 15% by a per-hop split
rate as small as 3.7%.

Chaff overhead. We then evaluate the bandwidth overhead
of the added chaff traffic. We convert real-world flows in the
CAIDA packet traces into flowlets and compute the amount
of chaff required. Note that we normalize the resulting
overhead by dividing it by the total traffic volume.

Figure 5(c) plots the chaff overhead needed for the
conversion when the bandwidth parameter of flowlets B

varies and T=1 min. Generally, large B results in large chaff
overhead. When we use B=5 kbps, the overhead of chaff
packets is 7%. In comparison, when B becomes 20 kbps,
the overhead of chaff traffic is increased to 31%. Moreover,
we observe that small flow sizes, such as UDP flows for
DNS lookups, lead to large chaff overhead given the same
B because more packets in the resulting flowlets are chaff
packets. In Figure 5(c), the chaff overhead for UDP flows
is larger than for TCP flows because the size of UDP flows
is usually smaller than the size of TCP flows.

Required amount of state and scalability. To enable
traffic shaping for flowlets, an intermediate node maintains
state bounded by the node’s bandwidth (Section 4.2). To
demonstrate the scalability of TARANET with respect to
the Internet traffic volume, we evaluate the amount of state
required for a node to process real Internet traffic.

For each flowlet that consumes bandwidth B, a node
maintains Lchf chaff packets and a failure counter required
by the end-to-end traffic shaping technique (Section 4.2).
We set Lchf = 3 and vary the bandwidth parameter B for
flowlets. Using the flowlets converted from our CAIDA flow
trace, we can evaluate the amount of state required. Our
results show that a node stores 90 MB state when B=10 kbps
for a 10 Gbps link and that the node needs to store 52 MB
state when B=20 kbps.

8. Discussion

8.1. Incremental Deployment

Deployment Incentives. We envision that ISPs have incen-
tives to deploy TARANET to offer strong anonymity as a
service to their privacy-sensitive users or other customer
ISPs who in turn desire to offer anonymous communica-
tion services. This would give TARANET-deploying ISPs a
competitive advantage: both private and business customers
who want to use an anonymity service would choose an ISP
that offers privacy protection.

Incremental Deployment Strategy. The minimal require-
ment for deploying TARANET includes a topology server

150

that distributes path information, a few ISPs that deploy
border routers supporting the TARANET protocol, and end
hosts that run TARANET client software. We remark that the
network architectures that we consider, such as NIRA [69],
NEBULA [12] and SCION [52, 70], already assume such
topology servers as part of necessary control-plane infras-
tructure.

Admittedly, having a larger number of ISPs that deploy
TARANET would increase the anonymity set size, which in
turn benefits all users. However, a few initial TARANET-
enabled ISPs that share no physical links can establish
tunnels between each other through legacy ISPs and start to
carry anonymous traffic among users. As more TARANET-
capable ISPs join the TARANET network, tunnels are
increasingly replaced with direct ISP-to-ISP connections,
which provides increasingly stronger privacy guarantees.

8.2. Limitations

Long-term Intersection Attack. An adversary who ob-
serves presence of all sender and receiver clients over a long
period of time can perform intersection analysis [26, 45] to
reveal pairs of clients that are repeatedly online during the
same period. Clients can minimize their risk by being online
not only when they are actively communicating, possibly
by using dummy connections [14]. For further defenses,
TARANET could be enhanced using existing solutions, such
as the Buddies system [68], which allows clients to control
which subset of pseudonyms appears online for a particular
session. We leave analysis and evaluation of integration with
such systems to future work.

Routing Attacks. TARANET relies on underlying net-
work architectures for routing packets. Adversarial nodes
can attack the underlying network architecture to place
themselves at strategic positions to perform traffic analy-
sis [63, 60]. Although defeating routing attacks itself is
beyond TARANET’s scope, the network architecture candi-
dates we consider (e.g., SCION [52, 70] and NEBULA [12])
offer strong protections against routing attacks.

Denial-of-Service Attacks. An adversary can initiate a high
volume of flowlets passing through a node, to exhaust
the node’s computation power, bandwidth, and memory.
TARANET itself cannot defend against such a DoS attack.
To mitigate such DoS attacks, a node can require flowlet
initiators to solve cryptographic puzzles [26]. Additionally,
an ISP that operates TARANET can also directly restrict the
flowlet-initiation rate of its customers.

9. Conclusion

In this paper, we have shown that it is possible to obtain
the efficiency of onion-routing-based anonymity systems
and the security of mix-based systems while avoiding their
disadvantages. We have designed TARANET, which uses
mixing and coordinated traffic shaping to thwart traffic
analysis for the setup phase and the data transmission phase
respectively. To achieve high performance and scalability,

we build on the key observation that high-speed networks
process enough volume that mixing at their core routers
has minimal performance overhead. The performance and
security properties achieved by our protocol suggest that
efficient traffic-analysis-resistant protocol at the network
layer is feasible, and that the increased security warrants
the additional performance cost.

10. Acknowledgments

We would like to thank the anonymous reviewers for
their suggestions for improving the paper. We also appre-
ciate the insightful discussion with the members of ETH
Zurich Network Security group.

The research leading to these results has received fund-
ing from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement 617605. We gratefully acknowledge
support from ETH Zurich and from the Zurich Information
Security and Privacy Center (ZISC).

References
[1] CAIDA AS-relationship dataset. http://www.caida.org/data/

as-relationships/.
[2] curve25519-donna. https://code.google.com/p/curve25519-donna/.
[3] DPDK: Data Plane Development Kit. http://dpdk.org/.
[4] Intel AESNI Sample Library. https://software.intel.com/en-us/articles/

download-the-intel-aesni-sample-library.
[5] iPlane dataset. http://iplane.cs.washington.edu/data/data.html.
[6] PolarSSL. https://polarssl.org/.
[7] Routeview project. http://www.routeviews.org/.
[8] Segment routing architecture (IETF draft). https://datatracker.ietf.

org/doc/draft-ietf-spring-segment-routing/. Retrieved on January 27,
2016.

[9] Spirent TestCenter. http://www.spirent.com/∼/media/
Datasheets/Broadband/PAB/SpirentTestCenter/STC Packet
Generator-Analyzer BasePackage datasheet.pdf.

[10] The CAIDA UCSD Anonymized Internet Traces 2014. http://www.
caida.org/data/passive/passive 2014 dataset.xml.

[11] Tor metrics: Direct users by country. ”https://metrics.torproject.org/
userstats-relay-country.html. Retrieved on Nov.3, 2015.

[12] Tom Anderson, Ken Birman, Robert Broberg, Matthew Caesar, Dou-
glas Comer, Chase Cotton, Michael J Freedman, Andreas Haeberlen,
Zachary G Ives, Arvind Krishnamurthy, et al. The NEBULA future
internet architecture. In The Future Internet, pages 16–26. Springer,
2013.

[13] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web mixes:
A system for anonymous and unobservable internet access. In PETS,
2001.

[14] Oliver Berthold and Heinrich Langos. Dummy traffic against long
term intersection attacks. In PETS, 2003.

[15] Avrim Blum, Dawn Song, and Shobha Venkataraman. Detection of
interactive stepping stones: Algorithms and confidence bounds. In
Recent Advances in Intrusion Detection. Springer, 2004.

[16] Jan Camenisch and Anna Lysyanskaya. A formal treatment of onion
routing. In CRYPTO, 2005.

[17] Sambuddho Chakravarty, Marco V. Barbera, Georgios Portokalidis,
Michalis Polychronakis, and Angelos D. Keromytis. On the effec-
tiveness of traffic analysis against anonymity networks using flow
records. In PAM, 2014.

[18] Sambuddho Chakravarty, Angelos Stavrou, and Angelos D Keromytis.
Traffic analysis against low-latency anonymity networks using avail-
able bandwidth estimation. In ESORICS, 2010.

[19] David Chaum. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of cryptology, 1(1), 1988.

151

[20] David L Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2), 1981.

[21] Chen Chen, Daniele E. Asoni, David Barrera, George Danezis, and
Adrian Perrig. HORNET: High-speed onion routing at the network
layer. In ACM CCS, 2015.

[22] Chen Chen, Daniele E. Asoni, Adrian Perrig, David Barrera, George
Danezis, and Carmela Troncoso. TARANET: Traffic-analysis re-
sistant anonymity at the network layer. eprint arXiv:1802.08415
[cs.CR], 2018.

[23] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan.
Private information retrieval. Journal of the ACM, 45(6), 1998.

[24] George Danezis. The traffic analysis of continuous-time mixes. In
PETS, 2004.

[25] George Danezis and Ian Goldberg. Sphinx: A compact and provably
secure mix format. In IEEE S&P, 2009.

[26] George Danezis and Andrei Serjantov. Statistical disclosure or
intersection attacks on anonymity systems. In IH, 2005.

[27] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket
Kate. Anonymity trilemma: Strong anonymity, low bandwidth over-
head, low latencychoose two. In IEEE S&P, 2018.

[28] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. In USENIX Security, 2004.

[29] Roger Dingledine and Steven J. Murdoch. Performance im-
provements on tor or, why Tor is slow and what we’re go-
ing to do about it. ”http://www.torproject.org/press/presskit/
2009-03-11-performance.pdf, 2009. Retrieved on May. 23, 2016.

[30] Nathan S Evans, Roger Dingledine, and Christian Grothoff. A
practical congestion attack on tor using long paths. In USENIX
Security, 2009.

[31] Michael J Freedman and Robert Morris. Tarzan: A peer-to-peer
anonymizing network layer. In ACM CCS, 2002.

[32] P Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. Pathlet
routing. ACM SIGCOMM CCR, 39(4), 2009.

[33] Philippe Golle and Ari Juels. Dining cryptographers revisited. In
Eurocrypt, 2004.

[34] Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil Schear. Web-
site detection using remote traffic analysis. In PETS, 2012.

[35] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How
much anonymity does network latency leak? ACM TISSEC, 2010.

[36] Amir Houmansadr and Nikita Borisov. SWIRL: A scalable watermark
to detect correlated network flows. In NDSS, 2011.

[37] Amir Houmansadr and Nikita Borisov. The need for flow fingerprints
to link correlated network flows. In PETS, 2013.

[38] Amir Houmansadr, Negar Kiyavash, and Nikita Borisov. RAINBOW:
A robust and invisible non-blind watermark for network flows. In
NDSS, 2009.

[39] Hsu Chun Hsiao, Tiffany Hyun Jin Kim, Adrian Perrig, Akira Ya-
mada, Samuel C. Nelson, Marco Gruteser, and Wei Meng. LAP:
Lightweight anonymity and privacy. In IEEE S&P, 2012.

[40] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel
Greenstadt. A critical evaluation of website fingerprinting attacks. In
ACM CCS, 2014.

[41] Stevens Le Blond, David Choffnes, William Caldwell, Peter Druschel,
and Nicholas Merritt. Herd: A scalable, traffic analysis resistant
anonymity network for VoIP systems. In ACM SIGCOMM, 2015.

[42] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter Druschel,
Hitesh Ballani, and Paul Francis. Towards efficient traffic-analysis
resistant anonymity networks. In ACM SIGCOMM, 2013.

[43] Taeho Lee, Christos Pappas, Adrian Perrig, Virgil Gligor, and Yih-
Chun Hu. The case for in-network replay suppression. In ACM
AsiaCCS, 2017.

[44] Brian N Levine, Michael K Reiter, Chenxi Wang, and Matthew
Wright. Timing attacks in low-latency mix systems. In FC. Springer,
2004.

[45] Nick Mathewson and Roger Dingledine. Practical traffic analysis:
Extending and resisting statistical disclosure. In PETS, 2005.

[46] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and
Nikita Borisov. Stealthy traffic analysis of low-latency anonymous
communication using throughput fingerprinting. In ACM CCS, 2011.

[47] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and
Nikita Borisov. Stealthy traffic analysis of low-latency anonymous
communication using throughput fingerprinting. In ACM CCS, 2011.

[48] Steven J Murdoch. Hot or not: Revealing hidden services by their
clock skew. In ACM CCS, 2006.

[49] Steven J. Murdoch and George Danezis. Low-cost traffic analysis of
Tor. In IEEE S&P, 2005.

[50] Steven J Murdoch and Piotr Zieliński. Sampled traffic analysis by
internet-exchange-level adversaries. In PETS, 2007.

[51] Lasse Overlier and Paul Syverson. Locating hidden servers. In IEEE
S&P, 2006.

[52] Adrian Perrig, Pawel Szalachowski, Raphael M. Reischuk, and Lau-
rent Chuat. SCION: A Secure Internet Architecture. Springer Inter-
national Publishing AG, 2017.

[53] Andreas Pfitzmann and Marit Köhntopp. Anonymity, unobservability,
and pseudonymity - a proposal for terminology. In PETS, 2001.

[54] Ania Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and
George Danezis. The loopix anonymity system. In Usenix Security

,

2017.
[55] Ryan Pries, Wei Yu, Xinwen Fu, and Wei Zhao. A new replay attack

against anonymous communication networks. In ICC’08, pages 1578–
1582. IEEE, 2008.

[56] Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash-
and space-efficient bloom filters. In Workshop on Experimental
Algorithms, 2007.

[57] Jody Sankey and Matthew Wright. Dovetail: Stronger anonymity in
next-generation internet routing. In PETS, 2014.

[58] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. P5

:

A protocol for scalable anonymous communication. In IEEE S& P

,

2002.
[59] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-

latency mix networks: Attacks and defenses. In ESORICS. Springer,
2006.

[60] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer
Rexford, Mung Chiang, and Prateek Mittal. Raptor: routing attacks
on privacy in tor. In USENIX Security, 2015.

[61] Srikanth Sundaresan, Walter de Donato, Nick Feamster, Renata Teix-
eira, Sam Crawford, and Antonio Pescapè. Broadband Internet
performance: a view from the gateway. In ACM SIGCOMM, 2011.

[62] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr.
Towards an analysis of onion routing security. In PETS, 2001.

[63] Laurent Vanbever, Oscar Li, Jennifer Rexford, and Prateek Mittal.
Anonymity on quicksand: Using BGP to compromise Tor. In ACM
HotNet, 2014.

[64] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian
Goldberg. Effective attacks and provable defenses for website finger-
printing. In USENIX Security, 2014.

[65] Wei Wang, Mehul Motani, and Vikram Srinivasan. Dependent link
padding algorithms for low latency anonymity systems. In CCS

.

ACM, 2008.
[66] Xinyuan Wang and Douglas S. Reeves. Robust correlation of en-

crypted attack traffic through stepping stones by manipulation of
interpacket delays. In ACM CCS, 2003.

[67] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron
Johnson. Dissent in numbers: Making strong anonymity scale. In
Usenix OSDI, 2012.

[68] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. Hang with your
buddies to resist intersection attacks. In ACM CCS, 2013.

[69] Xiaowei Yang, David Clark, and Arthur W Berger. NIRA: a new
inter-domain routing architecture. IEEE/ACM TON, 15(4), 2007.

[70] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian
Perrig, and David G. Andersen. SCION: Scalability, control, and
isolation on next-generation networks. In IEEE S&P, 2011.

[71] Yin Zhang and Vern Paxson. Detecting stepping stones. In USENIX
Security, 2000.

[72] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao.
On flow correlation attacks and countermeasures in mix networks. In
PET, 2004.

152

