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Advantages:
• Works for any application
• Economic incentives
• Higher performance
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Deanonymized!
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• Packet counting
• Total duration of the flow
• Inter-packet timing
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packet splitting

Packet dropping

When is packet splitting done?
• Sender includes splittable packets
• … for each AS on the path
• … at random intervals
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Summary

• TARANET highlights:

• Protection against passive traffic analysis with flowlets

• Protection against active traffic analysis with packet splitting

• Good performance  –  3 Gbps on single core, acceptable latency

• Limitations:

• Chaff traffic creates a non-negligible bandwidth overhead

• Third-party anonymity
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Abstract—Modern low-latency anonymity systems, no matter
whether constructed as an overlay or implemented at the
network layer, offer limited security guarantees against traffic
analysis. On the other hand, high-latency anonymity systems
offer strong security guarantees at the cost of computational
overhead and long delays, which are excessive for interactive
applications. We propose TARANET, an anonymity system
that implements protection against traffic analysis at the net-
work layer, and limits the incurred latency and overhead.
In TARANET’s setup phase, traffic analysis is thwarted by
mixing. In the data transmission phase, end hosts and ASes
coordinate to shape traffic into constant-rate transmission us-
ing packet splitting. Our prototype implementation shows that
TARANET can forward anonymous traffic at over 50 Gbps
using commodity hardware.

1. Introduction
Users are increasingly aware of their lack of privacy and

are turning to anonymity systems to protect their commu-
nications. Tor [28] is currently the most popular anonymity
system, with over 2 million daily users [11]. Unfortunately,
Tor offers neither satisfactory performance nor strong an-
onymity. With respect to performance, Tor is implemented
as an overlay network and uses a per-hop reliable transport,
increasing both propagation and queuing latency [29]. With
respect to anonymity guarantees, Tor is vulnerable to traffic
analysis [49, 51, 48, 62].

Users also have the option of anonymity systems with
stronger guarantees such as DC-nets [19, 33, 67], Mix
networks [20, 13], and peer-to-peer protocols [58, 31]. How-
ever, these systems either scale poorly or incur prohibitive
latency and reliability, making them unsuitable for many
practical applications.

In an effort to improve the performance of anonym-
ity networks, research has built on the idea of network-
layer anonymity (e.g., LAP [39], Dovetail [57], and HOR-
NET [21]). Network-layer anonymity systems assume that
the network infrastructure (e.g., routers) participates in es-
tablishing anonymous communication channels and assists

in forwarding anonymous traffic. Intermediate anonymity
supporting network nodes (or nodes for short) first cooperate
with senders to establish anonymous sessions or circuits,
and then process and forward traffic from those senders to
receivers. While these systems achieve high throughput and
low latency, the security guarantees of these systems are no
stronger than Tor’s. Moreover, LAP and Dovetail leak the
position of intermediate nodes on the path and the total path
length, which reduces the anonymity set size, facilitating de-
anonymization [21].

The problem space appears to have an unavoidable
tradeoff: strong anonymity appears achievable only through
drastically higher overhead [27]. In this paper, we aim to
push the boundaries of this anonymity/performance tradeoff
by combining the speed of network-layer anonymity systems
with strong defenses.

To improve the anonymity guarantees, traffic analysis
attacks need to be prevented, or made significantly harder for
the adversary to perform. The common method to achieve
this is to insert chaff (also known as cover traffic), which
consists of dummy packets which to an adversary look
indistinguishable from encrypted data packets. By mixing
chaff with data packets, one can add noise to the underlying
traffic patterns to defeat traffic analysis. For example, one
can insert chaff to maintain a constant transmission rate
on an adversarial network link, so that the traffic patterns
observed by the observing adversary stay unchanged and
leak no identifying information.

However, both existing methods of applying chaff traffic,
i.e., constant-transmission-rate link padding [65, 31, 42, 41]
and probabilistic end-to-end padding [44, 54], are un-
satisfactory. On one hand, constant-transmission-rate link
padding uses chaff to shape traffic between adjacent pairs
of nodes making it perfectly homogeneous, thus provably
concealing the underlying traffic patterns from a network
adversary. However, a compromised node is able to distin-
guish chaff traffic from real traffic, giving link padding no
anonymity guarantees when compromised nodes are present.
On the other hand, probabilistic end-to-end padding enables
end hosts to generate chaff traffic that is indistinguishable

• Flowlet setup (asymm. crypto)


• Link padding (security in depth)


• Anonymity set size analysis


• Security analysis


• Chaff/setup packet trade-off


• Deployment incentives


• …

In the paper
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