Mercury: Recovering Forgotten Passwords
Using Personal Devices*

Mohammad Mannan® David Barrera? Carson D. Brown?

David Lie! Paul C. van Oorschot?

! Dept. of Electrical and Computer Engineering
University of Toronto, Toronto, Canada
2 School of Computer Science
Carleton University, Ottawa, Canada

Abstract. Instead of allowing the recovery of original passwords, forgot-
ten passwords are often reset using online mechanisms such as password
verification questions (PVQ methods) and password reset links in email.
These mechanisms are generally weak, exploitable, and force users to
choose new passwords. Emailing the original password exposes the pass-
word to third parties. To address these issues, and to allow forgotten
passwords to be securely restored, we present a scheme called Mercury.
Its primary mode employs user-level public keys and a personal mobile
device (PMD) such as a smart-phone, netbook, or tablet. A user gener-
ates a key pair on her PMD; the private key remains on the PMD and
the public key is shared with different sites (e.g., during account setup).
For password recovery, the site sends the (public key)-encrypted pass-
word to the user’s pre-registered email address, or displays the encrypted
password on a webpage, e.g., as a barcode. The encrypted password is
then decrypted using the PMD and revealed to the user. A prototype
implementation of Mercury is available as an Android application.

1 Introduction and Motivation

Users often forget their login passwords. This is not news to the security re-
search community (see [26], a 1993 user study). Forgetting a password leads to a
password reset through systems such as Personal Verification Questions (PVQs)
or sending the new password to a pre-registered email address. Today’s Web
has brought about an increase in number of password-protected sites (on aver-
age 25 accounts per user [7]), leading to more forgotten passwords. Some users
choose weak passwords and reuse them across many sites to cope. Password
mangers have mushroomed in most desktop and smart-phone platforms as an
offered solution. Some users instead keep notes, written on a piece of paper or
stored in a digital file. Others rely on online reset mechanisms offered by most
password-protected websites.

* Version: April 5, 2011. Post-proceedings of Financial Cryptography and Data Secu-
rity 2011. Contact author: m.mannan@utoronto.ca

Weaknesses in online reset techniques pose a significant threat to password
based schemes. Several studies—old and new (e.g., [19], [26])—have repeatedly
identified these drawbacks: answers to reset questions are publicly available or
easily guessed, and even more so by close contacts. Although users may initi-
ate reset requests only occasionally, attackers can misuse these techniques at
any time. Indeed, in several real-world incidents, PVQs have been exploited to
compromise user accounts [3], [23]. Such techniques have also been exploited
by social engineering attacks [15, p. 272]. Beyond security, forgotten passwords
often incur significant cost to current IT-dependent organizations. According to
Gartner, 20 — 50% of all help desk calls are for password resets, each costing
about $70 depending on the organization type.>

Despite the critical problem of password loss by large numbers of users,
little research effort has been directed towards solutions, compared to online
authentication. Several mechanisms (e.g., PVQs and their proposed variants [6],
[10], [25]) mandate recalling multiple infrequently-used, text-based secrets to
reset a password. The “crime” of password forgetfulness is punished by burdening
users with additional cognitive loads. This is clearly not a winning strategy.
Others have begun to explore ways to improve such reset techniques, e.g., using
pictures (rather than text questions in normal PVQ schemes) as visual cues to
prompt for answers [17].

This paper offers a new approach, based on securely restoring existing pass-
words rather than resetting to new ones. A recent study [24] has confirmed the
suspicion that users evolve passwords in a predictable manner, when they are
forced to update their passwords. Our key insight is that a secure personal mobile
device (PMD), such as a smart-phone or tablet, in combination with a simple
to use channel between a PC and the device can solve the difficult problem of
password recovery (i.e., delivering the original password back to the user) and
reduce the need for password reset (i.e., creating a new password). Thus, we
propose a password recovery mechanism called Mercury.* The basic idea is as
follows: a user creates a public/private encryption key pair on her PMD using
entropy from a private object (e.g., an unshared personal image, cf. [13]), or
a random source. The public key is shared (e.g., during registration) with the
sites hosting the user’s accounts. For password recovery, a public-key encrypted
password is sent to a registered email address, or displayed on the site’s page
as a barcode. Using her PMD, the user decrypts the password which is then
displayed on the PMD screen. The same public key can be used with different
sites. Mercury’s focus is to restore forgotten passwords, but it can also be used
for traditional password resets, e.g., by sending a (new, system-generated) re-
set password through Mercury. This scheme can also be used offline for local
password recovery, which requires no participation from sites.

3 See http://www.mandylionlabs.com/PRCCalc/PRCCalc.htm. Estimates vary.

* In Roman/Greek mythology, Mercury is a messenger of gods and a deity of mer-
chandise and merchants, which we find to be suitable in the context of the proposed
recovery method, as passwords are securely delivered from the server to the end-user.

http://www.mandylionlabs.com/PRCCalc/PRCCalc.htm

2 New Approach: Mercury

2.1 Components and Threat Model

Components. Main components of the Mercury scheme are as follows: (a) User
PC: The system that will be used to initiate password recovery. It must be ca-
pable of establishing a communication channel between itself and a personal
mobile device (PMD) in close proximity. The system will relay the encrypted
password received from the remote server to the PMD. (b) Server: The system
that stores and will send a user’s encrypted password back to her upon request.
(¢) PMD: A device capable of performing basic encryption/decryption of data,
and capable of establishing a communication channel to the user PC. We use
a smart-phone as a PMD. (d) Mercury software: Application that is used to
(re)generate, and store cryptographic keys, transmit public keys to servers and
decrypt data received from the user PC. We have implemented Mercury as an
Android application. (e) Local communication channel: The channel used for
transmitting the encrypted password from user PC to PMD. Candidate chan-
nels include Bluetooth, 2D barcodes such as QR codes,® or a USB cable. (f) Se-
cure offline storage: A secure (physical/digital) location for storing user data
necessary for re-generating cryptographic keys in case of PMD loss or upgrade.

U,S User and the website, respectively.

1Dy User ID of U at S (unique in S’s domain).

P, Ay U’s password and email address as shared with S.
M A key generating object selected by U.

publ, privU U’s public and private keys respectively, as generated from M.
{data}EpubU Asymmetric (public-key) encryption of data using pubU.

PkGen(-) A custom function to generate (pubU, privU) using a specified source
of randomness.

MdGen(-) A function to convert data into Mercury-encoded text.

M Ret(-) A function to recover data from Mercury-encoded text.

Table 1: Notation

Operational assumptions and threat model. Assume that user U has a
PMD running Mercury software (see Table 1 for notation). U generates a public-
private key pair (encryption-only). Integrity of the public key pubU is important;
pubU must be sent to website S (from the phone or PC) via a secure channel,
such as HTTPS. U may verify pubU as received by S as follows: S encrypts a
known object (e.g., the site URL, favicon, or site logo) using pubU, and transmits
it to the user PC. U can then use her PMD to decrypt/verify the known object.

Like any password-only system, we assume that the memorized/recovered
password is used only on a trustworthy machine, and the password (hash or
plaintext) database on S remains beyond attackers’ reach. Attackers may com-
promise U’s recovery email account and initiate a recovery. Email traffic is also

5A QR (Quick Response) code is a two-dimensional barcode, see developed in 1994
by a Japanese company called Denso-Wave; see http://qrcode.com/index-e.html.

http://qrcode.com/index-e.html

available to attackers, and Mercury does not require email content be encrypted
for password confidentiality.

2.2 Setup and Recovery Operation

Account setup. Assume that U has generated a public and private key-pair for
Mercury; see Section 2.3 for key generation and backup. During account creation
using a PC browser, U uploads a key file containing pubU to S. S may display the
URL to upload pubU as a QR code on the browser; U then scans that URL and
the phone forwards pubU to the URL. A recovery email address (as customary
to many existing systems) Ay is also specified. As an additional step, S may
verify both pubU (i.e., whether U can prove the possession of privU through
challenge-response) and Ay (i.e., whether U can access email sent to Ary).

User (U) Server (S)
I Dy, “forgot my password”

m = MGen({P}x,...,) S retrieves P, pubU

U transfers m to the
personal device, retrieves
P ={MRet(m)}p,,;,u

Fig. 1: Password recovery steps

Password recovery steps. See also Fig. 1.

1. U sends her user ID I Dy and an indication to recover her password to S.

2. Using IDy as an index, S retrieves U's real password (or optionally assigns
her a system-generated temporary password) P, and encrypts P using U’s
pre-shared public key pubU. The encrypted result is then converted to a
Mercury-encoded format and sent to Ay (or displayed on the PC browser).
S notifies U to check her email.

3. U accesses her email and retrieves the Mercury data. The Mercury data is
transferred to the PMD via the available communication channel (see Section
2). The device is now used to decrypt P (using the stored/re-generated
privU). P is then displayed on the device screen.

Note that U can use the same public key for all her services; she is not
required to generate a new key-pair for each site. The key-pair is used only for
encryption—no signature nor ID management are required (i.e., no need for a
revocation list, or other components of a regular PKI).

2.3 Key Generation and Backup

We discuss here two methods for user-level public key generation, and key backup
procedures. The mobile nature of today’s smart-phones and other PMDs makes
them more prone to loss. Losing the key pair stored on the personal device would
be comparable to losing the master password in a password manager: passwords
would no longer be decryptable; see also Section 3: item 3 under “Limitations.”
To address this issue, we have added a second-level (i.e., only used when the
PMD is lost or upgraded) backup that allows the regeneration of the original
key pair. Our generation and backup procedures include:

& PRIVATE EYE

| MEDIA TO BLLAME

User selected content (M)

(private image, audio, video)

Extract randomness
(e.g., apply crypto hash)

\ 4

| Hashed value (H) |

Use H to create a key pair

Private key Public key
\ 4 v
Use for password recovery Forward to a PC
or store on the phone Share with sites

Fig. 2: Mercury key generation from an unshared personal file

(a) Generate keys using entropy from a private digital object. Mercury
allows U to generate a key pair by seeding the key generator using entropy from
a private object. Steps include (see also Fig. 2):

1. U selects a private object M (e.g., personal image, self-composed music)
from her phone to be used for the recovery key pair generation.

2. Using a cryptographic hash function h, the Mercury program on the phone
extracts randomness from M: H = h(M). M may be truncated at some value
(e.g., 1,000,000 bytes) for efficiency reasons. To gather sufficient entropy, a
minimum length for M (e.g., 100,000 bytes) must be enforced.

3. The key pair is generated: (pubU, privU) = PkGen(H). pubU is forwarded
to the user PC or remote site S, but privU does not leave the phone; in fact,
privU may be generated on-the-fly when needed (PkGen ensures that the
same key pair is generated from the same H value, i.e., as long as U selects
the same M).

Backing up a user-selected file appears to be easier than storing keys generated
from random sources. It is important to note that this method allows on-the-fly
generation of keys so privU does not have to be kept on the device. The user-
chosen file must also be stored offline and remain unmodified as even a single bit
change may generate different keys. Using the first several hundred bytes may be
avoided as some file formats store meta-data (e.g., camera-related information
in an image file) in the beginning of a file; meta-data may be updated, e.g., via
an image processing program. To ensure sufficient entropy for key generation,
low-entropy objects must be avoided, e.g., a single-color image with all pixels
having the same value. Users must also refrain from sharing M (e.g., on Flickr
or Facebook) as such sharing may compromise Mercury.

(b) Using a random seed. Alternatively, Mercury can use a standard key
generator using a random seed (i.e., without user-chosen files) and display a
string to the user which contains the seed used to generate the keys (e.g.,
0xB5CEG9ECFFA21082430E6). If the string is given as input to the key gen-
erator, it will use that string as a seed, resulting in the same key pair being
generated. The random seed in this case (as well for the object-based gener-
ation) may be manually written down or converted into a QR code, and the
printed copy may serve as a physical backup.

2.4 Variants

Mercury with symmetric keys only. A symmetric-key only variant of Mer-
cury may be called password recovery through reverse cookies; instead of having
the server store a cookie on a client machine (as customary to the use of browser
cookies), it is the client that stores a password cookie on the login server. The
server sends the cookie to the client when the client requests help remembering
a password.

In this mode, U generates a symmetric key (K = Ky) with one of the
methods of Section 2.3, but instead of sending the key to S during account
creation, U sends an encrypted string of her password ({ P} k) for the website to
store (along with her email address and hashed password as usual). For password
recovery, S sends { P} x to U’s email, where she can use a PMD with Mercury to
decode and decrypt her password using K. In this mode, K can also be generated
on-the-fly from M during password recovery, or stored on the PMD. Since the
same key is used for encryption and decryption, K must be kept secret.

The downside of using the symmetric key variant of Mercury is that when
the user wants to update her password, a new encrypted password must be sent
in parallel. Advantages of using the public key version of Mercury over this
variation are discussed in Section 3.

Alternative data channels. While Mercury can be implemented using any
type of data channel between the PC and the personal device, some channel
properties are desirable. The channel should allow simple (minimal setup or need
for additional software) and fast communication between devices. QR codes are
a good candidate since they transfer data by simply taking a picture with the
user device. The use of QR code is rapidly increasing, and is apparently more
engaging for users than other channels. However, all cell-phones may not feature
a camera.

Universally available audio channels on cell-phones may also be used as an
alternative. S can send an encrypted password encoded as an audio file; U’s PC
can play the tune and the cell-phone application can decode and decrypt the
password (cf. Shazam®). As mentioned previously, Bluetooth or USB can also
be used as a data channel, but require additional setup such as device pairing
and carrying cables which may reduce convenience.

Variation with PMD as primary device. If a PMD is used as a primary
email communication device (which is already common for many users) and
the recovery email is accessed directly from the PMD, then neither the PC
nor the PC-to-PMD channel in the basic Mercury protocol is required. Here
text messages (SMS) may also be used, instead of email, to send the encrypted
password directly to a smart-phone.

Variation without a PMD. We have also considered a version of Mercury
which operates without a PMD by generating and storing keys on the PC exclu-
sively. To avoid the loss of portability and the requirement of storing long-term
keys on the PC, keys or key-generating objects may be stored on mobile storage,
e.g., USB flash drives, albeit at the risk of introducing different problems (e.g.,
lost/stolen drives).

Storing passwords: hashed, cleartext, or encrypted. Mercury is trans-
parent to how site maintainers store user passwords (cleartext, hashed, or en-
crypted). Security proponents recommend that only hashes of user passwords
be stored to prevent direct (e.g., without running a dictionary attack) reuse
of passwords in case the (hashed) password list is compromised. Password re-
covery requires access to the original cleartext password, but Mercury can also
work without access to it. For example, encrypted temporary passwords may be
sent to PMD, recovered and used to reset a password; see also the symmetric-key
variant of Mercury in Section 2.4. Alternatively, a site can store the hashed pass-
word, user public key, and public-key encrypted password (instead of storing the
cleartext password). The encrypted password is then forwarded when requested.
Note that password update in this case is affected by whether the public-key
encryption is done on the server side or at the client browser. If encryption is
performed at the server side (i.e., the site receives the initial cleartext password),
during password update, the site can replace the old encrypted password with
the updated one, without requiring any extra step from the user. For browser-

6 A music discovery tool for cell-phones, see: http://www.shazam.com/. We acknowl-
edge N. Asokan for proposing the use of audio channel in Mercury.

http://www.shazam.com/

side encryption (i.e., the site never receives cleartext password), the user must
have the public key available during the password update.

3

Features and Limitations

In this section, we list several features and limitations of Mercury.

Advantages and features.

1.

2.

There is no need to trust third-parties in Mercury. Just as in the current
practice, P is shared only between U and S.

If an encrypted password is compromised, e.g., by a malicious ISP or email
provider, attackers cannot run an offline dictionary attack as P is encrypted
with pubU (for RSA, using the EME-OAEP padding as defined in PKCS #1
v2.1 [11)).

Updating a password remains the same as current strategies; users resort
to Mercury only when a password recovery is needed, and in the public-key
variant do not require any extra step to “sync” their updated passwords (as
opposed to traditional password managers).

Users can easily replace their personal device with a new one. However, the
key-generating file must be deleted from the old device and copied to the
new one; this step is simpler when the file is stored on a removable memory
card. Also, the Mercury program must be installed on the new device. Note
that the key regeneration technique using a user-chosen private object may
simplify several user-level key management issues such as key transfer and
backup. Such public keys without a PKI might enable easier adoption of
other security applications including PGP, and authentication (cf. [22], [12]).

. Mercury may be used for password recovery in a local PC. Some consumer

systems, e.g., Mac OS X, Ubuntu Linux, offer users to setup a “password
hint” (a text string that may help U to recall her login password). If pubU
is stored on the local PC, then the login procedure may be modified to en-
able Mercury as follows. When U indicates that she lost her password, a
temporary password is encrypted with pubU, and displayed as a QR code.
U can use her smart-phone to retrieve the password. Note that most cur-
rent operating systems store only password hashes, thus requiring the use of
temporary password in this case. Alternatively, the original password may
be stored encrypted under pubU.

Once the public key pubU is stored on S, S can securely communicate addi-
tional information to U. For instance, a banking site could enable two-factor
authentication by requesting the user’s password, and sending a one-time
password encrypted with pubU. U decodes the one-time password and sub-
mits it back to S, proving that she is in possession of the corresponding
private key privU.

Limitations.

1.

Mercury requires service providers’ assistance for online deployment. How-
ever, some sites may be reluctant to implement Mercury as not all users

possess an additional personal device, or would be willing to use this ser-
vice. To deal with such cases, Mercury can be deployed gradually, e.g., as
an option so that users who want to take advantage of it, can do so without
imposing any requirements on others.

2. Users must carry their device for portability (i.e., password recovery from
anywhere). However, users can continue regular login without Mercury.

3. To deal with a lost or stolen personal device, users must keep a “secure”
backup of the personal object or random seed used for the key generation;
e.g., storing the object on a USB key and keeping it private, see Section 2.3.
If there is no backup, U must generate a new key-pair, login to all Mercury-
enabled sites (using recalled passwords), and then upload the new public key.
Note that losing the keys or not having access to the PMD do not necessarily
restrict login, as long as U has access to her primary login password.

4. Users may willingly or accidentally upload the key-generating private object
to public sites such as Facebook. Making users understand the risk of such
actions appears non-trivial, especially for users who want to share all their
digital content with both friends and strangers. However, this risk is reduced
by using a random seed for generating keys and storing the seed offline, e.g.,
as a printed QR code (see Section 2.3, item (b)).

Smart-phone compromise. If the smart-phone or other personal device is
infected with malware, the user’s private key might become available to an at-
tacker. However, the key alone may not be enough to gain access to user accounts.
The attacker needs access to both the key and the encrypted password sent dur-
ing password recovery. Recall that the password is sent to U’s email address,
which would require an attacker to also obtain the email account password. If
the recovery email is accessible from the compromised phone (e.g., logged in
email client on the phone), attackers may be able to compromise passwords for
all Mercury-protected accounts of a user. Operating system security mechanisms
such as built-in secure storage facilities and file system isolation might help lower
the risk of this attack. For the case of physical device theft, we recommend the
use of a PIN-lock” on the personal device.

4 Prototype Implementation on Android

Mercury has been implemented as a proof of concept application for Android.
Virtually all Android phones are equipped with cameras, network connectiv-
ity, and libraries for performing the basic functions of Mercury (generating
key pairs, RSA public key encryption/decryption, and data transmission over
HTTP/HTTPS). Thus, we use QR Codes as the data channel to transmit en-
crypted passwords from the user PC to the smart-phone. The prototype consists
of two parts: the client, an Android application; and the server, a demo of a
normal usage scenario for Mercury. The Android application is also capable of

7 Apple i0S and other smart-phone platforms allow the user to specify a number of
password entry attempts after which to format the device memory.

10

operating in a standalone way without a server-side component, enabling users
to immediately benefit from Mercury. We describe the implementation details
below, for an Android client.

Key pair creation. The Bouncy Castle Crypto API (bouncycastle.org) is
used to generate a 1024-bit RSA key pair (publU, privU). Keys are generated us-
ing Java SecureRandom as the source of entropy, and stored with the PKCS#1
Optimal Asymmetric Encryption Padding (OAEP) option [11]. OAEP helps pre-
vent guessing attacks on the encrypted string. The key pair is stored on the device
using the Android data storage, saving files into a dedicated per application di-
rectory [2]. By default, this directory is accessible only to the given application
(enforced through standard UNIX file permissions, as each application runs with
a different user ID). Upon launch of the application for the first time, users are
instructed to generate a key pair from the application menu.

Generating an encrypted password. Once a key pair has been created, U
can proceed to either create an account on a web server that supports Mercury
password recovery, or create new Mercury encrypted password for personal use.
In the latter case, U selects the “Encrypt password” menu option (Fig. 3a),
and inputs a password P. P is then encrypted with pubU, and the result is en-
coded to Base64 before being converted to a QR code (¢r = MGen({P}E,,,.))-
Base64 encoding is necessary to create a valid QR code of ASCII characters. The
application can email gr to U, which can be printed or stored for future use.

Scanning a password for recovery. A QR code of the encrypted password is
scanned using the ZXing® (“Zebra Crossing”) barcode reader library for Android.
If ZXing is not installed, the Mercury app prompts U and opens the Android
Market page for the Barcode Reader application that provides the ZXing service.
The scanned QR code will be decoded from Base64 and then decrypted so that
{MRet(qr)}D,,;,; = P; see Fig. 3.

%ma 2:21PM Mercury Forgot Password ﬁma 2:31 PM
The following is your encrypted password, scan it with the Mercury
device.

No key pair found,
generate key pair from
menu

Your password is:
Castries

Encrypt password Generate keypair

= 0

Transmit public key About

Scan QRCode

(a) Mercury startup (b) Password recovery on (c¢) Decrypted pass-
Mercury-enabled site word

Fig.3: User interface for password recovery
8 http://code.google.com/p/zxing

bouncycastle.org
http://code.google.com/p/zxing

11

Transmitting public keys to a server. We have implemented a feature to
transmit the generated public key directly from the phone to a server. This
feature works by having the user scan a QR code containing the URL of the
server and a nonce. The Mercury application then generates a POST request to
the scanned URL that includes the public key pubU. The key is saved into U’s
account on the server.

‘Web server. Our prototype server is a typical “Signup/Login/Forgot password”
system using PHP and MySQL. U creates a new account; the server S stores
(IDy, P), and then prompts U to send her public key. S verifies that the nonce
is valid, and stores pubU in a database.

In a typical use scenario, U attempts to log in, and realizes she has forgotten
P. Clicking the “forgot password” link after specifying I Dy emails her a QR
code generated by encrypting P with pubU. Alternatively the QR code can be
displayed immediately on the screen. U then uses her phone to scan the QR code
and retrieve P.

Limitations of the prototype. Our prototype does not use a secure applica-
tion data storage, such as the Android Credential Storage, available in versions
1.6 and higher. Despite this, the storage we used has UID/GID protection mech-
anisms offered by all versions of Android, which prevents the private key from
being accessed by other applications. Future versions of Mercury will make use
of the secure storage facility to reduce the risk of private key leaks.

Mercury currently uses 1024-bit RSA keys and the key length is hardcoded
in this prototype. We have tested Mercury on Nexus One phones, and operations
such as key generation, public key sharing and password recovery were completed
without any noticeable delay from a user’s perspective. During testing, we found
that 2048-bit keys add a small but non-perceptible delay to Mercury operations
on the Nexus One. Older devices with slower processors may exhibit a more
noticeable delay with larger key sizes.

5 Existing Approaches, Related Work and Comparison

5.1 Existing Password Recovery Approaches

Below we discuss common techniques used for password recovery and managing
multiple passwords.

Password managers. There are two types of common password managers: lo-
cal and remote/third-party-supported. In the first case, passwords (user-chosen
or system generated) are stored on the user’s PC (as a file managed by the pass-
word manager application, or integrated with a web browser), or on a PMD.
It is generally recommended that the password file must be encrypted with a
key derived from (or protected with) a password, called the master password.
However, most users do not use such passwords, as with the built-in browser
password managers [20]. The master password is susceptible to offline attacks if
a copy of the encrypted password file can be obtained. From a usability perspec-
tive, several issues may arise: losing the master password may result in losing

12

access to many accounts; the local password file must be backed up; the file must
also be carried with the user for portability (unless it is already on a PMD); and
if a password is updated at a site, the user must also update it in the manager.

When the password file is stored online with a third-party, users must trust
the service provider to be honest, even if the password file is sent encrypted
from a user machine. The remote party can be actively malicious, or become
compromised; strong incentives exist for attackers as such a compromise may
enable access to many accounts per user.

Email password recovery/reset. An email address is registered at the time
of account creation; when a user provides her user ID and indicates that she has
lost the account password, the registered email is used for sending the original
password, or a temporary password/URL to reset the account password. As long
as users can access the email account, this solution is portable. It is also quite
instant in today’s Internet, as email delivery is close to real-time. Because of low-
cost deployment, and the ubiquitous use of email, email-based recovery/reset
is most commonly used. One password survey [4] reports that about 92% of
sampled websites offer an email-based solution, with 44% sending a reset link
in the email, 32% sending a temporary (reset) password, and 24% sending the
original cleartext password.

The unencrypted nature of email enables the email provider (or someone
compromising the provider) to learn all reset links and passwords. Any interme-
diate party (e.g., ISPs, wireless access points) between the user and email server
can also access the reset emails when sent via an unencrypted channel such
as regular HTTP webmail as provided by Yahoo and Hotmail sites; optional
HTTPS-protected sites are also not always immune to attacks, see [9]. Other
pitfalls include [8]: recovery emails being classified as spam, and an exposed
cleartext passwords may be exploited at other sites due to password reuse.’ As
email is being used for increasingly important authentication tasks (e.g., do-
main registration and management), compromised accounts can result in costly
consequences [1].

Other methods. Preregistered questions/answers are sometimes used to reset
an account password. Concerns include: (i) users may forget answers to these
questions; and (ii) these answers may be easier to guess than a user-chosen pass-
word (see e.g., [16], [19]). Few other solutions are deployed in practice. Google
offers sending a reset code as an SMS to a pre-registered cell-phone number.
EBay allows three methods for reset: answering personal profile information
(e.g., postal code, phone number, and date of birth), sending reset code via an
automated call-back to a phone number, and instant messaging based live help
on the eBay site.

9 One survey [21] reported that 73% of online banking users share their banking pass-
word to access at least another less sensitive account.

13

5.2 Comparison: Mercury vs. Current Approaches

Table 2 compares Mercury to other password recovery/reset approaches. For
the feature comparison and analysis listed below, we assume Mercury’s primary
mode of operation based on a private-public key pair.

Independence Recovers | Overhead | Transparent
of 3" party |Portable| original | for account | to password
trust password | creation updates

Pass. managers (online) No Yes Yes High No
Pass. managers (offline) Yes No Yes High No
Email No Yes No'® Low N/A
PVQs Yes Yes No High N/A
Mercury Yes Yes Yes Low Yes

Table 2: Comparison of Mercury to other password recovery/reset methods.

Independence of 3"¢ party trust. Online password managers and email re-
quire the user to trust the transmission channel between the server and the PC,
as well as ISPs and email providers. Offline password managers require no third-
party trust, but the user must manually keep track of all accounts in a password
file. Mercury does not require trust in third-party sites, communication channels,
or service providers.

Portability. Mercury offers portability if the user is in possession of the personal
device at the time of password recovery. Other recovery /reset systems listed have
some degree of portability, but may require the user to carry a password file at all
times (e.g., offline password managers). This may reduce portability and increase
inconvenience for the user.

Restoring original password. PVQs do not typically allow the user to obtain
the original password, but rather allow the user to set a new password after
successfully answering verification questions. Email based recovery /reset systems
frequently send the user a link for password reset, or a one-time temporary
password. Password managers, as well as Mercury allow the user to retrieve the
original password.

Overhead for account creation. Password managers and PVQs must be
updated or configured every time a new account is created. Overhead is small
if there is an automatic way to keep track of new passwords (e.g., browser-
based password managers). Mercury requires the user to send the public key
to the server, also adding an extra step to account creation; this step can be
implemented (e.g., as in our Android prototype) to have minimal time overhead.

Transparency to password updates. When a password is updated, the cor-
responding account in a password manager must be updated as well. Similar to
the account creation phase, some password managers might detect password up-
dates and store them automatically. Mercury, by design, offers full transparency

10 Most sites email reset links/passwords as opposed to original passwords [4].

14

to password updates in the public key mode, allowing users to update their
passwords as usual without additional steps.

5.3 Other Related Work

Here we discuss other related proposals involving user-level public keys and
online authentication. Existing techniques for password recovery are discussed
in Section 5.1.

Seeing is Believing (SiB) [14] uses QR codes to transfer a public key from one
user device to another (equipped with a camera) as part of authenticated key
establishment between devices with no previously shared context. The SiB pro-
posal is used mainly for authenticating two devices in close proximity. Mercury
relies on an existing authentication channel, and is used only when credentials
are forgotten.

Snap2Pass [5] uses QR codes and a camera phone to implement a challenge-
response protocol for authentication; this is envisioned as a replacement for
password-based authentication. In contrast to replacing passwords, which are
currently deeply entrenched into the web ecosystem, the focus of Mercury is to
facilitate and simplify secure password recovery.

Some password managers, e.g., PwdHash [18] generate site-specific passwords
from a single, user-chosen password. If adopted widely, these may help reduce
the need for password reset as users are expected to remember only one master
password. However, the master password is vulnerable to offline dictionary at-
tack, if a site-specific password and the site URL is known (e.g., in a phishing
attack). Forgetting the master password results in denied access to all PwdHash-
protected accounts; access may be regained via resetting all such passwords.

Mercury does not aim to replace passwords as used. It is targeted towards
password recovery, and as such, it is designed for infrequent use. It employs user-
level public keys, which can be reconstructed from user-chosen digital objects.
No new private or secret keys are shared between the phone and website.

6 Concluding Remarks

Password recovery and reset techniques are as old as passwords themselves. Be-
fore the Internet, such techniques were relatively simple and secure; e.g., users
could talk to an administrator in person and reset their passwords. In current
large-scale enterprise environments, and online sites with millions of users, exist-
ing password recovery techniques are inadequate and costly in terms of security,
usability and expense. The proposed online password recovery technique — Mer-
cury — avoids limitations of current password managers (both online and offline),
email reset methods and PVQs.

In contrast to traditional approaches which require users to create a new
password when the old one is forgotten, Mercury allows what may seem like
a small, but we believe important paradigm shift: recovering an existing pass-
word in a secure manner. Mercury’s security is independent of plaintext email

15

or the compromise of a “master password” in password managers. Mercury is
also transparent to the server-side password storage method, as well as to the
communication channel between the PC and the personal device. In the cur-
rent implementation of Mercury, we take advantage of widely available Android
smart-phones as a PMD, and increasingly-used 2D barcodes as an engaging
communication channel between the PC and the phone. The Mercury Android
application and a demonstration site are available for public testing at: http://
www.ccsl.carleton.ca/software/mercury/.

Acknowledgments. We thank N. Asokan and anonymous referees for their
helpful comments. The first author is supported by an NSERC PDF. The last
author acknowledges NSERC funding under a Discovery Grant and as Canada
Research Chair in Authentication and Computer Security. Partial funding from
NSERC ISSNet is also acknowledged.

References

1. D. Ahmad. The confused deputy and the domain hijacker. IFEE Security an
Privacy, 6(1), 2008.

2. Android Open Source Project. Data storage (android developers). http://
developer.android.com/guide/topics/data/data-storage.html.

3. BBCNews.com. Obama Twitter account ‘hacked by Frenchman’. Mar. 24, 2010.
http://news.bbc.co.uk/2/hi/8586269.stm.

4. J. Bonneau and S. Preibusch. The password thicket: Technical and market failures
in human authentication on the web. In Workshop on the Economics of Informa-
tion Security (WEIS’10), Cambridge, MA, USA, June 2010.

5. B. Dodson, D. Sengupta, D. Boneh, and M. S. Lam. Secure, consumer-friendly web
authentication and payments with a phone. In Conference on Mobile Computing,
Applications, and Services (MobiCASE’10), Santa Clara, CA, USA, Oct. 2010.

6. C. M. Ellison, C. Hall, R. Milbert, and B. Schneier. Protecting secret keys with
personal entropy. Future Generation Computer Systems, 16(4), Feb. 2000.

7. D. Floréncio, C. Herley, and B. Coskun. Do strong web passwords accomplish
anything? In USENIX Workshop on Hot Topics in Security (HotSec’07), Boston,
MA, USA, Aug. 2007.

8. S. Garfinkel. Email-based identification and authentication: An alternative to PKI?
IEEE Security and Privacy, 1(6), 2004.

9. Guardian.co.uk. Gmail ups security after Chinese attack. News ar-
ticle (Jan. 13, 2010). http://www.guardian.co.uk/technology/2010/jan/13/
gmail-increases-security-chinese-attack.

10. M. Jakobsson, E. Stolterman, S. Wetzel, and L. Yang. Love and authentication. In
Conference on Human Factors in Computing Systems (CHI’08), Florence, Italy,
Apr. 2008.

11. J. Jonsson and B. Kaliski. Public-key cryptography standards (PKCS) #1: RSA
cryptography specifications version 2.1. RFC 3447 (Feb. 2003). Category: Infor-
mational.

12. J. Lopez, R. Oppliger, and G. Pernul. Why have public key infrastructures failed
so far. Internet Research, 15(5), 2005.

http://www.ccsl.carleton.ca/software/mercury/
http://www.ccsl.carleton.ca/software/mercury/
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html
http://news.bbc.co.uk/2/hi/8586269.stm
http://www.guardian.co.uk/technology/2010/jan/13/gmail-increases-security-chinese-attack
http://www.guardian.co.uk/technology/2010/jan/13/gmail-increases-security-chinese-attack

16

13

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. Mannan and P. van Oorschot. Digital objects as passwords. In USENIX
Workshop on Hot Topics in Security (HotSec’08), San Jose, CA, USA, July 2008.
J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using camera
phones for human-verifiable authentiction. Security and Networks, 4(1-2), 20009.
K. Mitnick and W. L. Simon. The Art of Deception. Wiley, 2002.

A. Rabkin. Personal knowledge questions for fallback authentication. In Sympo-
stum on Usable Privacy and Security (SOUPS’08), Pittsburgh, USA, July 2008.
K. Renaud and M. Just. Pictures or questions? Examining user responses to
association-based authentication. In British HCI Conference, Dundee, Scotland,
UK, Sept. 2010.

B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger pass-
word authentication using browser extensions. In USENIX Security Symposium,
Baltimore, MD, USA, 2005.

S. Schechter, A. J. B. Brush, and S. Egelman. It’s no secret. Measuring the security
and reliability of authentication via ‘secret’ questions. In IEEE Symposium on
Security and Privacy, May 2009.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer,
C. Kruegel, and G. Vigna. Your botnet is my botnet: Analysis of a botnet takeover.
In ACM Computer and Communications Security (CCS’09), Chicago, 1L, USA,
Nov. 2009.

Trusteer.com. Reused login credentials. Security advisory (Feb. 2, 2010). http://
www.trusteer.com/sites/default/files/cross-logins-advisory.pdf.

A. Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation
of PGP 5.0. In USENIX Security Symposium, Washington, D.C, USA, 1999.
Wired.com. Palin e-mail hacker says it was easy. Sept. 18, 2008. http://wuw.
wired.com/threatlevel/2008/09/palin-e-mail-ha/.

Y. Zhang, F. Monrose, and M. Reiter. The security of modern password expira-
tion: An algorithmic framework and empirical analysis. In ACM Computer and
Communications Security (CCS’10), Chicago, IL, USA, Oct. 2010.

M. Zviran and W. J. Haga. Cognitive passwords: The key to easy access control.
Computers & Security, 9(8), 1990.

M. Zviran and W. J. Haga. A comparison of password techniques for multilevel
authentication mechanisms. Computer Journal, 36(3), 1993.

http://www.trusteer.com/sites/default/files/cross-logins-advisory.pdf
http://www.trusteer.com/sites/default/files/cross-logins-advisory.pdf
http://www.wired.com/threatlevel/2008/09/palin-e-mail-ha/
http://www.wired.com/threatlevel/2008/09/palin-e-mail-ha/

	Mercury: Recovering Forgotten Passwords Using Personal Devices

