
Standardizing IoT Network Security
Policy Enforcement

David Barrera
Polytechnique Montréal

david.barrera@polymtl.ca

Ian Molloy
IBM T.J. Watson Research Center

molloyim@us.ibm.com

Heqing Huang
IBM T.J. Watson Research Center

hhuang@us.ibm.com

Abstract—This paper discusses the design of a stan-
dardized network security policy enforcement architec-
ture for IoT devices. We show that the network behavior
of many consumer IoT devices tends to be predictable,
and thus simple to profile and constrain. We propose an
automated approach to derive network security policies
for devices without requiring vendor cooperation or
changes to devices or cloud infrastructure. We also
describe a scalable and effective multi-layered policy
enforcement architecture that limits the impact of IoT
device compromise.

I. Introduction

The rise in attacks targeting IoT devices (e.g., Mi-
rai [5] or Brickerbot [17]) is perhaps unsurprising. As
the cost of adding wireless capabilities to devices de-
creases, more consumer electronics, toys, appliances,
and other “things” have become Internet-enabled. A
2015 report [8] estimates that by 2020, there will be
around 20 billion IoT devices online, with 65% of those
existing in the consumer space. IoT devices exhibit de-
sirable characteristics for attackers: they are powered-
on and networked 24/7, they use weak security config-
urations, and they are underpowered and thus unable
to run anti-malware, intrusion detection, or auditing
services. Software update procedures for IoT devices
tends to be clunky and error-prone, allowing devices
to remain unpatched for long periods of time. More-
over, embedded devices often lack displays, making it
difficult to know whether the device is behaving as
expected at any given time.

When vulnerabilities are discovered in IoT prod-
ucts, some vendors are quick to develop and distribute
patches. However, this level of support is currently
far from the norm, with many vendors discontinuing
products support shortly after product release, leaving
user devices and data at risk. Proposals for securing
IoT devices, including best practices [15], secure hard-
ware [13], secure operating systems [14], and secure

protocols [9] exist, but are not yet widely deployed.
While we wait for these proposals become standard,
end users and network administrators need immedi-
ately deployable tools to help secure their IoT devices.

One strategy to reduce the impact of IoT device
compromises is to enforce the principle of least priv-
ilege for every device on the network. By restricting
what a device can connect to and what type of data
it can send out, malicious activity originating on the
device can be blocked without changes to hardware
or software. To achieve this, we propose the creation
and use of standardized network security policies that
describe the essential network behavior of IoT devices.
For example, a smart light bulb should accept on/off
commands from its manufacturer’s cloud servers, but
should never send HTTP traffic to Twitter or Reddit.
Given the small network footprint of many devices,
these types of network security policies could be auto-
matically learned by observing a device. Alternatively,
policies could be provided by manufacturers or re-
trieved from sources curated by experts.

This paper discusses the motivation and require-
ments for IoT network security policies, and demon-
strates their use on a small network. We focus on
standardizing the policies instead of the enforcement
for several reasons. (1) It encourages a more de-
centralized ecosystem where many vendors can offer
software and appliances to enforce the network access
rules. (2) It allows policy enforcement to be deployed at
gateway routers, smartphones, middleboxes, IoT hubs,
etc. (3) Policies can be audited and refined, giving
visibility and transparency into device behavior.

II. Background and Related Work

This section briefly describes relevant IoT security
research. A more detailed treatment including surveys,
regulatory approaches, and new architectures is given
our technical report [3]

Large-scale analysis. A 2010 study [6] scanned the
IPv4 address space and found about 13% of devices
that responded were vulnerable to compromise due to
the use of default credentials. Costin et al. [2] analyzed
32,000 embedded device firmware images for printers,
routers, cameras, etc. Without prior knowledge of the

Workshop on Decentralized IoT Security and Standards (DISS) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-51-7
https://dx.doi.org/10.14722/diss.2018.23007
www.ndss-symposium.org



firmware image layout or access to the device for which
the firmware was developed, the authors were able
to extract 35,000 RSA private keys, weak password
hashes, and hardcoded credentials.

Device-specific attacks. Many IoT devices have been
found to be insecure. Ho et al. [11] evaluated the
security of several IoT smart locks, finding that cloud-
based access control rules are a poor choice for locks
due to the potential lock-outs if the cloud services is
unavailable. A survey on printer security [12] found the
presence of decades-old vulnerabilities in new printers.
Ronen et al. [18] identified critical vulnerabilities in
Philips smart lightbulbs which allowed the authors to
recover the private key used to authenticate firmware
updates.

Inter-IoT Security Policies. Most closely related to
our present focus, Yu et al. [20] proposed a software-
defined networking (SDN) architecture to secure inter-
IoT device communication. Their IoTSec proposal adds
a virtual middlebox between each IoT device on the net-
work and the gateway. At each middlebox, a high-level
policy (i.e., defining allowed application-layer interac-
tions rather than packets or protocols as described
herein) is installed, which defines a set of allowed inter-
actions between a protected device and other devices
on the network. IoTSec requires that home networks
be re-architected to support SDN, and that all possible
cross-device interactions be enumerated in order to
create the policies.

III. Toward Standard Network Security Policies for
IoT Devices

Today’s consumer IoT devices do not behave like
general purpose computers. The lack of graphical or
other interfaces on most IoT devices prevents users
from directly running their own software on the de-
vices, even though the underlying operating system
may support it. However, many networks treat IoT
devices as general purpose computing systems, giving
the IoT devices unrestricted network access. This is
despite the fact that IoT devices typically only require
a small set of connections to support their functionality.
This over-privilege creates an opportunity for attackers
to use victim IoT devices to launch other attacks (e.g.,
the Mirai DDoS attacks [5]).

Table I summarizes the network behavior of 19
IoT devices. To populate this table, we monitored net-
work traffic to/from each device for approximately 12
minutes beginning with device power-on. We avoided
interacting with devices during the capture period,
which gave us a baseline of network activity performed
automatically by devices at boot time. We augmented
our dataset with the public data of Sivanathan et
al. [19]. Our analysis shows that simple devices such
as digital scales, smart light bulbs, and Bluray players
have a small network footprint. These devices look up
a small set of domain names (typically API endpoints

Distinct Distinct HC
Device Endpoints Domains IPs

AT&T Microcell 2 0 2
Fitbit Aria Digital Scale 2 1 0
Withings Smart scale† 2 1 0
Withings Baby Monitor† 2 1 0
PIX-STAR Photo-frame† 2 1 0
Belkin Wemo switch† 2 1 0
Blipcare BP meter† 2 1 0
Samsung Bluray Player 4 1 0
Netatmo Weather Station 5 1 0
LIFX Gen 1 bulbS 5 1 0
LIFX Gen 2 bulbS 5 2 0
Triby Speaker† 6 2 0
NEST Smoke Alarm† 6 4 0
TP-Link Smart plug† 7 2 0
Netatmo Welcome† 7 2 6
Amazon Fire TV 8 4 0
Amazon Kindle 9 8 1
TP-Link Cloud camera† 15 2 3
Amazon EchoS 20 13 0

AppleTV 4th Gen 37 23 2
Samsung Galaxy Tab†S 48 21 0
Android Phone† 57 48 0
Microsoft XBox One 74 57 0
Laptop† 140 101 0

TABLE I: Network behavior of several IoT devices.
General purpose computing systems given in the bot-
tom rows for comparison. HC IPs are hardcoded IP
addresses, marked if no corresponding DNS lookup was
made prior to connecting to an IP address. Devices
with S ignored the DHCP-provided DNS resolver and
used Google’s resolver (8.8.8.8) instead. Data for de-
vices with † was obtained from the public dataset of
Sivanathan et al. [19].

and domains used for network connectivity checks),
and only connect to the servers returned by the DNS
lookups of those domain names. By contrast, more com-
plex devices allowing installation of apps (e.g., laptops,
mobile phones, and game consoles) connect to a larger
set of remote hosts and perform more DNS lookups.

A. Design Goals

In designing network security policies, our goal is to
precisely describe the behavior of a given IoT devices
that is required for regular operation. The policies
specify network activity that should be allowed, while
any traffic not specified in the policy is dropped at a
policy enforcement point. Our focus on standardizing
the policies, instead of the enforcement points or mech-
anisms, seeks to achieve the following goals:

• Interoperability. Standard network security policies
enable a diverse set of policy enforcement points
and mechanisms. This gives users freedom to select
an enforcement architecture that is suitable to their
environment and devices. For example, some home
users may be unable to replace their ISP-provided
router/modem. Other users may have Bluetooth-
only devices, necessitating enforcement on a mobile
phone or tablet.

2



• Deployability. Policies should be easily deployable
by not requiring changes to either the IoT devices
or to the cloud services that that support them.
The policies should be modifiable without requiring
vendor or third-party support (but could benefit from
such support, as explained later).

• Extensibility. With the growing applications of IoT,
it is unreasonable to expect a solution designed for
today’s devices will also work for all future devices.
The policies should be extensible to support new
behavior as devices and technologies evolve. Simi-
larly, the enforcement points can be swapped out for
more powerful or more effective alternatives when
available.

B. Policy Details

Our proposed IoT security policies are machine-
readable descriptions of expected network behavior for
the IoT device. Policies are whitelists, meaning that
any outgoing traffic that is not defined in the policy
will be denied. We chose a whitelisting approach in-
stead of blacklisting for two reasons. First, whitelisting,
when describing a narrow set of behavior, provides
the strongest security guarantees; it forces an adver-
sary to operate within the confines of rules in the
whitelist, as opposed to operating around rules of a
blacklist. Second, IoT vendors designing devices should
be able to describe how and to what the device needs
to connect; while IoT developers may not be security
experts, they must be aware of network activity since it
is this very activity that gives the device functionality.
Because of the whitelisting approach, device policies
must ensure the inclusion of rules for all expected
connections including periodic API calls, user-triggered
network behavior, software/firmware updates, etc.

Listing 1: Netatmo weather station sample policy

1 {"Netatmo Weather Station": {
2 "MACAddr": "70:ee:50:13:ab:cd",
3 "IPAddr": "172.16.1.2",
4 "AllowedDNSQueries": [
5 {"type": "A", "query": "netcom.netatmo.net

", "resolver": "192.168.1.1"}
6 ],
7 "AllowedDNSReplies": [
8 {"type": "A", "query": "netcom.netatmo.net

", "answers": "62.210.92.0/24"}
9 ],

10 "AllowedConnections": [
11 {"family": "IPv4", "dest": "netcom.netatmo

.net", "proto": "TCP", "dstport": "2505
0", "freq": "6/hr"}

12 ]}}

Listing 1 shows an example policy for the Netatmo
weather station. Our analysis of network traces col-
lected for the weather station revealed that the de-
vice wakes up every 10 minutes, performs readings

Type Example Parameters

Metadata Schedule, rate, bandwidth, packet size
Contents Protocol, IP Address, port number, connection flags/state
Application Types of DNS lookups and responses, TLS certificates, HTTP

GET/POST/PUT request

TABLE II: Example parameters that could be defined in
the network security policies

of CO2, temperature, air quality, and air pressure, and
uploads the measurements to Netatmo’s cloud servers.
To obtain the IP address(es) of Netatmo’s servers,
the device performs an IPv4 (type A) DNS lookup of
netcom.netatmo.net. The upload takes place over TCP
on port 25050 to an IP address returned by the previous
DNS lookup. Line 11 in Listing 1 concisely captures
all the described behavior. It allows outgoing IPv4 TCP
connections to port 25050 to any IP address returned
by a lookup to netcom.netatmo.net, with at most 6 of
these connections being initiated per hour (one every
10 minutes). Line 8 restricts the IP addresses that are
allowed as answers when performing the DNS lookup,
and Line 5 allows lookups of only one domain name via
a single resolver.

Note that the minimal policy in Listing 1 appears to
be sufficiently restrictive. However, even such a policy
could leave room for an attacker to be disruptive. For
example, the policy would permit an attacker gaining
control of this Netatmo weather station to flood the
DNS resolver with a large number of A lookups of
netcom.netatmo.net, or send gigabytes of TCP traf-
fic to any of Netatmo’s servers. The policy could be
further tightened by specifying additional restrictions
such as number of bytes, packets, or number of allowed
lookups. Table II shows additional options that could be
defined in the policy. While the table is not meant to be
comprehensive, we note that adding a new parameter
to the policy only requires a corresponding way to
inspect and enforce that parameter at the enforcement
point.

C. Obtaining policies

We envision several ways to obtain a policy for a
given device.

1) Manufacturer. The device manufacturer can cre-
ate the policies for devices they ship. We believe
manufacturers are in the best position to do so,
since they also develop or commission the software
for the device. It is thus reasonable to expect the
manufacturers to know what functionality the device
needs. Policies could be made available through
vendor websites (e.g., a QR code on the box pointing
to mysmarttoaster.io/securitypolicy), or distributed
along with the software for managing the device.

2) Third party. Policies can be written by third par-
ties, either from scratch after analyzing the device’s

3



iptables,
ipfw, pf,

other firewall

HTTP Proxy
TLS Proxy
DNS Proxy
Other Proxy

* Allowed dst IPs
* Allowed proto/ports
* Allowed schedule
* Allowed throughput
…

* Allowed HTTP GET
* Allowed TLS cert
* Allowed DNS lookup
…

Network
Filtering

Application
Filtering

Per-device Network 
Security Policy

IoT 
Device Internet

(A)

(B)

Fig. 1: Components of the network security policy
enforcement architecture.

behavior, or by modifying manufacturer-provided
policies to be more/less restrictive (e.g., by re-
moving/adding rules). The home automation com-
munity has already enabled integration of vendor-
unsupported services and devices (e.g., Home-
bridge1, Home Assistant2), so they may provide poli-
cies for certain devices. Anti-malware and security
firms could also provide policies as a service to their
customers, creating an additional revenue stream.

3) Automatic. It is possible to programatically create
policies by observing the network behavior of a
device for a given amount of time. The device can
be assigned a temporary allow all rule at the en-
forcement point, during which all network traffic is
recorded. After the monitoring period ends, a policy
matching the observed behavior can be created and
enforced.

Once a policy has been retrieved and is being en-
forced, functionality changes to the behavior of an IoT
device (e.g., through a firmware update) may require
updating the previously installed policy. We expect that
policy enforcement points will require a mechanism to
securely authenticate and verify updated policies. One
strategy may be to digitally sign policies and verify the
validity of the signature against a set of pre-installed
trust roots. Alternatively, self-signed certificates along
with a trust-on-first-use mechanism (à la Android [4])
could be used. We leave policy verification and updates
to future work.

D. Policy Enforcement

To be effective at restricting network capabilities,
the policy enforcement logic must be positioned at a

1https://github.com/nfarina/homebridge
2https://home-assistant.io

vantage point where all network traffic to and from
IoT devices can be inspected. Such vantage points will
vary depending on the wireless technology used by
the IoT devices, and depending on the topology of the
network being instrumented. For example, devices us-
ing Zigbee, Bluetooth, and similar short-range network
technologies require a hub or smartphone to provide
connectivity to cloud services. For these devices, policy
enforcement can be built into the hub if supported, or
the hub itself may be treated as an Internet-capable
IoT device. For devices that support IP connectivity,
enforcement can be applied at the wireless access
point, WAN gateway, or at a middlebox between the
wireless AP and the gateway.

Once an enforcement point has been selected, a
policy obtained through one of the methods described
in Section III-C is installed. Depending on the type
of entries in the policy, rules are loaded into one of
two filtering modules, as shown in Figure 1. Network
layer and metadata entries are loaded into the net-
work filtering module (A). This module converts entries
into software firewall rules suitable for use in one of
the well-known packet filtering frameworks on Linux,
BSD, or other firewall appliances. Application layer
entries are loaded into application-layer proxies, each
implementing their own enforcement logic. Each proxy
inspects payload data from packets, and transparently
forwards the request to the destination if the request
is compliant with the policy.

E. Auditability

An inevitable consequence of the large number of
IoT devices is that non-expert users will become the
administrators of dozens of devices. We see IoT net-
work security policies as a step toward improving the
auditability of devices, since its machine readable poli-
cies can easily be converted to human readable form
and displayed on another device (e.g., smartphones
or PCs). These policies could allow even non-experts
to gain visibility into what their devices are allowed
to do. For example, the entries max-bw-out: 10M/w
and valid-domains: api.lightbulbs.io can be con-
verted to: “This light bulb will not send more than 10
MB of data per week to api.lightbulbs.io” or simpler
“This light bulb will only send data to api.lightbulbs.io”.

Another way to offer transparency and auditability
is to collect and display statistics at the policy enforce-
ment point. Measurements showing number of times a
rule has been matched, or displaying extraneous con-
nections can help identify devices that are misbehaving
or policies that are too restrictive.

IV. Proof of concept

As a proof of concept, we implemented a custom
policy enforcement system and created policies for 3
devices: a Netatmo Weather station, a LIFX smart light
bulb, and a Fitbit Aria digital scale.

4



Our test environment was a Raspberry Pi Zero W
running a recent build of Archlinux. The Raspberry
Pi acts as a middlebox between IoT devices and the
network gateway by advertising a wireless network
using hostapd3. We configured link layer isolation by
setting ap_isolate=1 in the hostapd configuration.
This prevents wireless clients from seeing each other at
layer 2. We selected iptables, Linux’s built-in packet
filtering framework to enforce network layer rules. For
DNS filtering, we selected dnsmasq [7], a lightweight
network infrastructure tool that supports DNS forward-
ing.

A. Creating Policies

For each device, we created a policy using the
automatic method (see Section III-C) and manually
inspected the policies for correctness. To automatically
create the policies, we developed a tool in golang that
reads network packet captures (in the form of pcap
files) and produces a JSON policy as shown in Listing 1.

For the weather station and the light bulb, we cap-
tured network traffic for 12 minutes. Both devices per-
formed some background activity. The digital scale only
performs network activity for uploading measurements.
Thus, we stepped on the scale twice and recorded
network activity.

Once the packet capture has been read, the tool
removes duplicate entries (e.g., recurring DNS queries
or TCP connections) and produces a policy object. The
object can then be printed to the screen, or written to
a file in JSON or other formats.

B. Enforcement

We wrote a simple tool that takes as input a policy
file and converts entries into iptables rules or dnsmasq
whitelist entries. For example Listing 1 is converted to:

#iptables -t nat -A PREROUTING -i wlan0 \\
-s 172.16.1.2 -d 62.210.92.0/24 -p tcp \\
--dport 25050 -m limit --limit 6/hour -j ACCEPT

#iptables -t nat -A PREROUTING -i wlan0 \\
-s 172.16.1.2 -d 192.168.1.1 -p udp \\
--dport 53 -j ACCEPT

Note that our tool combines multiple policy en-
tries (in this case lines 7 and 11) to create a stricter
iptables rule. Since the connections entry specifies
a destination hostname, and there is a corresponding
rule specifying allowed IPs for that hostname, the rule
can precisely specify allowed sources (-s) and destina-
tions (-d). The second rule allows UDP traffic to destina-
tion port 53 as required for DNS lookups. The firewall
is configured to drop all traffic that doesn’t match at

3https://w1.fi/hostapd/

least one rule, and to allow replies to connections that
were allowed outbound.

We configured dnsmasq to only forward received
DNS queries that are allowed by the policy using
no-resolv and by whitelisting domains. Whitelisted
entries are extracted from the JSON policies by
looking for the “AllowedLookups” directive. Allowed
lookups are added to the dnsmasq configuration
file as: server=/netcom.netatmo.net/8.8.8.8. Any
lookup that isn’t whitelisted will receive an answer of
127.0.0.1 (address=/#/127.0.0.1).

C. Testing

After deploying the enforcement rules, we at-
tempted to use the IoT devices to ensure their function-
ality was not impaired by our filtering. The Fitbit Aria
successfully uploaded weights. The Netatmo weather
station was able to perform periodic reporting every 10
minutes, but repeated on-demand readings (triggered
by pressing a button on top of the device) made the
number of connections exceed the 6/hour threshold. A
more permissive value of 10-20 per hour may be more
appropriate to allow a small number of on-demand
readings.

The LIFX bulb worked as expected, although with
higher latency between commands and responses. The
LIFX bulb can be controlled through a smartphone ap-
plication, which is expected to be on the same local net-
work as the bulb. By having the bulb and smartphone
on different networks, commands were sent to LIFX’s
cloud servers, which were then read by the bulb’s long-
lived TCP connection to the same servers. While this
added latency, it had no effect on functionality.

V. Discussion

This section discusses technical challenges in de-
ploying network filtering solutions to secure IoT de-
vices.

Device-to-device connectivity. Certain IoT devices
require discovery and connectivity to other devices on
the local network. In particular, devices that do not rely
on cloud services may operate by discovering nearby
devices and interacting with them directly. While dis-
abling access point isolation may enable certain use
cases, it also opens up the all devices on the wireless
network to attacks. There may be opportunities for
“selective AP isolation”, where devices are allowed to
communicate only with authorized devices on the same
network.

Device identification. Current IP networks identify
devices based on layer 2 identifiers (MAC addresses)
and IP addresses. When creating or loading a policy
that applies to a given device, it is still possible for a
compromised device to modify its behavior, and simul-
taneously modify its identifiers. Miettinen et al. [16]
show that fingerprinting device types can be done

5



with high accuracy, but identifying distinct firmware
builds or hardware variants of the same device is more
challenging. Being unable to identify a device correctly
could allow a device to spoof the behavior of a differ-
ent device with a less restrictive policy. While better
fingerprinting techniques are developed, an alternative
solution to this problem is remote attestation, but this
requires a trusted hardware module.

Complex IoT devices. Throughout the paper, we have
described how our proposed policy enforcement frame-
work can be effective when devices have a small set
of predictable functionality. Given the rapid pace of
innovation in IoT, it is reasonable to expect IoT devices
to grow in complexity. As devices gain features that
allow customization or extensibility, our ability to pro-
file and restrict them drops. This is already the case
for IoT-ish devices like the Xbox or the AppleTV (see
Table I). These multimedia boxes allow the installa-
tion of applications, blurring the line between single-
purpose functionality and general purpose computers.
Because each new application may require connecting
to a variety of cloud services, enumerating all possible
servers and protocols may become infeasible. Personal
desktop firewalls experienced usability challenges for
this reason over a decade ago; repeated prompts to
allow network connectivity for each new application
were often dealt with by allowing all outbound connec-
tions [10].

WAN-enabled IoT devices. As wireless technology
costs decrease, manufacturers may start shipping prod-
ucts with built-in WAN connectivity. Direct WAN con-
nectivity increases usability by removing the need
for complex network attachment procedures, and also
gives vendors direct access to the device for diag-
nostics and updates. The downside of direct WAN
connectivity is the consumer’s inability to control the
communication channel. IoT devices with such capabil-
ities already exist; for example, the Amazon Kindle can
download books and updates over its built-in 3G con-
nection. Another emerging technology is LoRaWAN [1],
a low-power wireless protocol which allows devices to
effortlessly join city-wide networks.

VI. Conclusion

This paper discussed the challenges in securing
billions of consumer IoT devices. We argue that security
solutions requiring vendor involvement, such as mod-
ifications to hardware and software are unlikely to be
successful. Instead, we show that IoT devices have a
small network footprint which facilitates the creation of
standard network security policies. These policies help
enforce the principle of least privilege on IoT networks
and reduce the impact of device compromise even on
unsupported devices.

References

[1] L. Alliance, “LoRaWAN Home,” 2016, accessed Apr 14, 2017.
[Online]. Available: https://www.lora-alliance.org

[2] Andrei Costin, Jonas Zaddach, Aurelien Francillon, and Davide
Balzarotti, “A Large-Scale Analysis of the Security of Embedded
Firmwares,” in USENIX Security, 2014.

[3] D. Barrera, I. Molloy, and H. Huang, “IDIoT: Securing the
Internet of Things like it’s 1994,” ArXiv e-print 1712.03623,
Dec. 2017.

[4] D. Barrera, J. Clark, D. McCarney, and P. van Oorschot, “Under-
standing and Improving App Installation Security Mechanisms
through Empirical Analysis of Android,” in ACM SPSM, 2012.

[5] I. Z. Ben Herzberg, Dima Bekerman, “Breaking Down
Mirai: An IoT DDoS Botnet Analysis,” 2016, accessed Apr
14, 2017. [Online]. Available: https://www.incapsula.com/blog/
malware-analysis-mirai-ddos-botnet.html

[6] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity
of embedded network devices: results of a wide-area scan,” in
ACSAC, 2010.

[7] Dnsmasq, “Dnsmasq,” 2017, accessed Apr 14, 2017. [Online].
Available: http://www.thekelleys.org.uk/dnsmasq/doc.html

[8] Gartner, “Gartner Says 6.4 Billion Connected Things Will Be
in Use in 2016, Up 30 Percent From 2015,” 2015, accessed
Apr 14, 2017. [Online]. Available: http://www.gartner.com/
newsroom/id/3165317

[9] J. Granjal, E. Monteiro, and J. Sa Silva, “Security for the
Internet of Things: A Survey of Existing Protocols and Open
Research Issues,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 3, pp. 1294–1312, 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7005393/

[10] A. Herzog and N. Shahmehri, “Usability and Security of Per-
sonal Firewalls,” in New Approaches for Security, Privacy and
Trust in Complex Environments, 2007.

[11] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart Locks: Lessons for Securing Commodity Internet of
Things Devices,” in ACM CCS, 2016.

[12] Jens Müller, Vladislav Mladenov, and Juraj Somorovsky, “SoK:
Exploiting Network Printers,” in IEEE Security and Privacy,
2017.

[13] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx,
Anthony Van Herrewege, Christophe Huygens, Bart Preneel,
Ingrid Verbauwhede, and Frank Piessens, “Sancus: Low-
cost Trustworthy Extensible Networked Devices with a Zero-
software Trusted Computing Base,” in USENIX Security, 2013.

[14] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish
et al., “sel4: Formal verification of an os kernel,” in ACM
SIGOPS, 2009.

[15] G. McGraw, “Software security,” IEEE Security & Privacy,
vol. 2, no. 2, pp. 80–83, 2004.

[16] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi,
and S. Tarkoma, “IoT Sentinel: Automated Device-Type Identi-
fication for Security Enforcement in IoT,” in IEEE Distributed
Computing Systems (ICDCS), 2017.

[17] Radware, “BrickerBot Results In PDoS At-
tack,” 2017, accessed Apr 14, 2017. [Online].
Available: https://security.radware.com/ddos-threats-attacks/
brickerbot-pdos-permanent-denial-of-service

[18] E. Ronen, C. O’Flynn, A. Shamir, and A.-O. Weingarten, “IoT
Goes Nuclear: Creating a ZigBee Chain Reaction,” in IEEE
Security and Privacy, 2017.

[19] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wi-
jenayake, A. Vishwanath, and V. Sivaraman, “Characterizing
and Classifying IoT Traffic in Smart Cities and Campuses,” in
IEEE InfocomWorkshop on Smart Cities and Urban Computing,
May 2017.

[20] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling
a trillion (unfixable) flaws on a billion devices: Rethinking
network security for the Internet-of-Things,” in ACM HotNets,
2015.

6


