
Standardizing IoT Network Security Policy Enforcement

David Barrera*, Ian Molloy, Heqing Huang

IBM Research

* Polytechnique Montreal

http://www.gartner.com/newsroom/id/3165317

20 Billion IoT devices online by 2020

13.5 billion (65%) devices in the consumer space

http://www.gartner

Security Challenges of
consumer IoT devices

• Transparency – What are the devices
doing?

• No screens/displays, communicate status
via LEDs

• No keyboard, cannot debug easily

• Currently require full trust in vendor

Security Challenges of
consumer IoT devices

• Security

• Devices can run arbitrary code

• Often use weak credentials

• Do not/cannot run anti-malware on-device

• Weak and default credentials

• SSH keys and backdoors

Features!

• Set bulb state: on or off

• Get bulb state

• Allow three year old to yell at Alexa to turn
on the lights

• DoS Dyn

• Exfiltrate data

• Send spam

• Meddle in US elections

Overview

• IoT devices often serve a single purpose
(lightbulb on/of, upload video footage,
collect temperature data)

• The network profile of IoT devices is
simpler than desktops/servers

• Idea: restrict network behavior of IoT
devices to only what is required for
essential functionality

• Avoid requiring installation an agent on the
IoT device

• Deployability, Extensibility, Simplicity

Comparison to related technologies

Consumer firewalls
–Basic network filtering and blocking of unsolicited inbound traffic
–Allow outbound traffic by default
–No support for application-layer filtering

Enterprise solutions:
–Network Access Control (NAC) – most effective when used with an agent on the device
–Next-generation firewalls and Unified Threat Management
▪ Incorporate DPI, IDS/IPS, anti-malware, VPN, etc.
▪Heavyweight solutions
▪Expensive

Comparison to related technologies

IDIoT brings enterprise-like security features to the consumer space, focusing on simplicity of policy
management.
– IoT devices don’t significantly change their behavior over time – allows for simple policies and

lightweight filtering
▪Our development board is a Raspberry Pi

– IoT devices don’t support installation of agents – focus on passive network monitoring
–Automate as much as possible, as home users are not expert administrators
–Support exporting policies to different targets

Overview

▪ Create a security policy enforcement mechanism that
restricts the network communication of IoT devices to
only what is essential
– E.g., surveillance cameras can upload footage to a

cloud storage provider, but can’t flood DNS resolvers
with bogus queries

▪ Policy rules supporting multiple layers
– Network layer (IP addresses, throughput, packet

length, etc.)
– Application layer (DNS, NTP, HTTP, etc.)

▪ Flexible enforcement
– At the edge - better visibility control
– In the cloud – easier setup and management

– Handle Zigbee, Bluetooth, etc. on mobiles or hubs

Policies

Policies

In the network space, Yu et al. [?] proposed software-
defined networking (SDN) architecture to secure inter-IoT
device communication. The proposal, called IoTSec, adds a
virtual middlebox between each IoT device on the network
and the gateway. At each middlebox, a high-level policy
(i.e., defining allowed application-layer interactions rather
than packets or protocols) is installed, which defines a set
of allowed interactions between a protected device and
other devices on the network. IoTSec requires that home
networks be re-architected to support SDN, and that all
possible cross-device interactions be enumerated in order
to create the policies.

3.3 Regulation
From a non-technical standpoint, there has been an increas-
ing call to regulate the IoT space [?], citing market failures
as the primary reason for which IoT vendors will not inde-
pendently secure their products. While regulation appears
necessary, concrete examples of how regulation can help
IoT security remain to be seen. Moreover, regulation has a
number of challenges:

• What regulations are actionable by vendors? Requir-
ing more secure defaults is something that can be imple-
mented easily by vendors. However, weak default cre-
dentials and configurations are not the only source of
attacks. More complex vulnerabilities arising from buffer
overflows or weak entropy are difficult to solve prior to
release, as is known from the desktop software space.

• Who becomes the regulator? There are challenges in
selecting or forming a third-party verifier who can give
a security stamp of approval. This is particularly chal-
lenging and costly to enforce across borders. Additionally,
lack of consistency across verifiers (e.g., different defini-
tions of “secure”) can lead to confusion for consumers [?
].

• How long are products regulated? With IoT devices
acting as simple switches, sensors, and toys, many of
these will outlive warranty and support periods with some
even outliving the company that produced them. It is
unclear if security regulation can be effective or enforced
beyond the support period, giving vendors incentive to
obsolete their products more rapidly.

• Compliance. As has been seen with regulation in other
domains (e.g,. PCI-DSS, HIPAA, automotive emissions),
imposing a set of minimum security standards often leads
to vendors complying with exactly those minimum stan-
dards, since every additional security feature or system
has additional cost. That additional cost will typically not
be recovered since security is not a differentiator in the
consumer space [?].

Distinct Distinct HC
Device Endpoints Domains IPs

AT&T Microcell 2 0 2
Fitbit Aria Digital Scale 2 1 0
Withings Smart scale† 2 1 0
Withings Baby Monitor† 2 1 0
PIX-STAR Photo-frame† 2 1 0
Belkin Wemo switch† 2 1 0
Blipcare BP meter† 2 1 0
Samsung Bluray Player 4 1 0
Netatmo Weather Station 5 1 0
LIFX Gen 1 bulbS 5 1 0
LIFX Gen 2 bulbS 5 2 0
Triby Speaker† 6 2 0
NEST Smoke Alarm† 6 4 0
TP-Link Smart plug† 7 2 0
Netatmo Welcome† 7 2 6
Amazon Fire TV 8 4 0
Amazon Kindle 9 8 1
TP-Link Cloud camera† 15 2 3
Amazon EchoS 20 13 0

AppleTV 4th Gen 37 23 2
Samsung Galaxy Tab†S 48 21 0
Android Phone† 57 48 0
Microsoft XBox One 74 57 0
Laptop† 140 101 0

Table 1: Network behavior of several IoT devices. Gen-
eral purpose computing systems given in the bottom
rows for comparison. HC IPs are hardcoded IP ad-
dresses, marked if no corresponding DNS lookup was
made prior to connecting to an IP address. Devices
with S ignored the DHCP-provided DNS resolver and
used Google’s resolver (8.8.8.8) instead. Data for de-
vices with † was obtained from the public dataset of
Sivanathan et al. [?].

4 THE IDIOT POLICY ENFORCEMENT
SYSTEM

Today’s consumer IoT devices do not behave like general
purpose computers. The lack of graphical or other inter-
faces on most IoT devices prevents users from directly
running their own software on the devices, even though the
underlying operating system may support it.

Table 1 lists a summary of the network behavior of 19
IoT devices. To populate this table, we monitored network
traffic of each device for approximately 12 minutes begin-
ning with device power-on. We avoided interacting with
device during the capture period, which gives us a baseline
of network activity done automatically by devices at boot
time. Our dataset was augmented with the public dataset
of Sivanathan et al. [?]. Our analysis shows that simple

4

Quick Analysis

• Monitored network traffic for 12 minutes
from cold start

• “Representative” devices from our houses
and UNSW Data

• IoT devices connect to small number of
services and domains

• General purpose devices more complicated
network behavior

• Apps and skills complicating separation

Policy Enforcement Details

▪ Schedule (fixed: Mon-Fri, 10:00-10:30, periodic: once per week)
▪ Throughput/quota: packet rate (10Kb/s), Bandwidth (10 MB/month), session bytes (500 Kb out)
▪ Endpoints: Src/Dst (IP or hostname)
▪ Protocols (TCP/UDP) and port numbers
▪ Layer 7:
– HTTP requests (URI http://api.lifx.co/status, parameters: POST, PUT, including wildcards for auth tokens

and nonces)
– NTP (version, mode, stratum, etc)
– DNS (query/response type, hostnames)
– TLS (ciphers, public key, certificate metadata)

http://api.lifx.co/status

Architecture

▪ Containers act as the default gateways for
IoT devices

▪ One container per type of device. Each
container can enforce policies for multiple
devices of the same type (e.g., Philips light
bulbs or Linksys surveillance cameras)

▪ Containers allow traffic specified in policies
to reach the Internet
– Traffic that violates the policy is dropped

and logged

Policy Enforcement Containers
and Implementation

▪ Docker Alpine Linux base (5 MB base
image)

▪ Pre-configured proxies and firewall rules
according to policy

▪ hostapd (ap_isolate=1)
▪ iptables
▪ dsnmasq (no-resolv)

▪ Separated network into 172.16.1.0/24 and
192.168.1.0/24 networks

▪ server=/netcom.netatmo.net/8.8.8.8
▪ address=/#/127.0.0.1

http://netcom.netatmo.net/8.8.8.8

iptables,
ipfw, pf,

other firewall

HTTP Proxy
TLS Proxy
DNS Proxy
Other Proxy

* Allowed dst IPs
* Allowed proto/ports
* Allowed schedule
* Allowed throughput
…

* Allowed HTTP GET
* Allowed TLS cert
* Allowed DNS lookup
…

Network
Filtering

Application
Filtering

Per-device Network
Security Policy

IoT
Device Internet

(A)

(B)

Figure 2: Components of the IDIoT policy enforce-
ment architecture.

well, in situations where devices are globally reachable
(e.g., when using IPv6 with no border firewall).

Once an enforcement point has been selected, a policy
describing essential network behavior of the IoT device
must be obtained. Enumerating the network behavior that
is essential for regular operation of an IoT device can be
challenging. For example, should periodic reporting of de-
vice usage analytics be considered essential?, How do we
distinguish between user-generated network traffic and au-
tomated connections? For now, we assume the existence
of a policy for each device and in Section 4.3 we discuss
strategies for creating, retrieving, and adapting policies to
desired behavior.

IDIoT security policies aim to enforce the principle of
least privilege. That is, they should describe the minimal
set of allowable network connections. Policies are there-
fore whitelists; any connections that do not match at least
one entry in the policy will be dropped. Entries may spec-
ify connection metadata (e.g., packet sizes, traffic rates,
or schedules) or contents (e.g,. IP addresses, ports, pro-
tocols, flags). Policies may also specify application layer
contents for supported protocols. More details are given in
Section 4.3.

Depending on the type of entries, policies are loaded into
one of two filtering modules, as shown in Figure 2. Network
layer and metadata entries are loaded into the network
filtering module (A). This module converts entries into soft-
ware firewall rules suitable for use in one of the well-known
packet filtering frameworks on Linux, BSD, or other fire-
wall appliances. Application layer entries are loaded into
application-layer proxies, each implementing their own en-
forcement logic. Each proxy inspects payload data from

packets, and transparently forwards the request to the des-
tination if the request is compliant with the policy.

4.3 Policies

Listing 1: "Example policy for the Netatmo weather
station"

1 {"Netatmo Weather Station": {
2 "MACAddr": "70:ee:50:13:ab:cd",
3 "IPAddr": "172.16.1.2",
4 "AllowedDNSQueries": [
5 {"type": "A", "query": "netcom.netatmo.net",

"resolver": "192.168.1.1"}
6],
7 "AllowedDNSReplies": [
8 {"type": "A", "query": "netcom.netatmo.net",

"answers": "62.210.92.0/24"}
9],

10 "AllowedConnections": [
11 {"family": "IPv4", "dest": "netcom.netatmo.

net", "proto": "TCP", "dstport": "25050",
"freq": "6/hr"}

12]
13 }
14 }

IDIoT policies are machine-readable descriptions of ex-
pected network behavior for the IoT device. Policies are
whitelists, meaning that any outgoing traffic that is not
defined in the policy will be denied. We chose a whitelist-
ing approach instead of blacklisting for two reasons. First,
whitelisting, when describing a narrow set of behavior,
provides the strongest security guarantees; it forces an
adversary to operate within the confines of rules in the
whitelist, as opposed to operating around rules of a black-
list. Second, IoT vendors designing devices should be able
to describe how and to what the device needs to connect;
while IoT developers may not be security experts, they must
be aware of network activity since it is this very activity
that gives the device functionality. Because of the whitelist-
ing approach, device policies must ensure the inclusion of
rules for all expected connections including periodic API
calls, user-triggered network behavior, software/firmware
updates, etc.

Listing 1 shows an example policy for the Netatmo weather
station. Our analysis of network traces collected for the
weather station revealed that the device wakes up every
10 minutes, performs readings of CO2, temperature, air
quality, and air pressure, and uploads the measurements
to Netatmo’s cloud servers. To obtain the IP address(es)
of Netatmo’s servers, the device performs an IPv4 (type
A) DNS lookup of netcom.netatmo.net. The upload takes

6

Example

#iptables -t nat -A PREROUTING -i
wlan0 \\
 -s 172.16.1.2 -d 62.210.92.0/24 -p
tcp \\
 --dport 25050 -m limit --limit 6/
hour -j ACCEPT

#iptables -t nat -A PREROUTING -i
wlan0 \\
 -s 172.16.1.2 -d 192.168.1.1 -p udp
\\
 --dport 53 -j ACCEPT

Testing / Comments

• Need to accommodate user-initiated activity (netatmo pulls every 10m)

• Some additional latency for some devices (going to cloud)

• Device identification has obvious caveats (e.g., MAC spoofing)

• Skills and Apps require more complicated profiles — enforced on device?

• Multihoming (e.g., cellular) moves enforcement point

Obtaining Network Access
Policies

▪ Vendor provided: delivered with device
purchase (scan QR code, install from
website)

▪ Dynamically learned: observe IoT device
traffic for some time, generate a policy

▪ Crowdsourced: leverage blockchain to
collect anonymized network profiles of
devices and build policies

▪ Blockchain

Security Policy

IoT Bulb

Conclusions

• Most IoT devices serve a single purpose—
keep it that way

• Profiled IoT devices using through network
analysis to create security policies

• Enforce policies using per-device network
stacks in Docker containers on a Raspberry
Pi

• Provide human and machine
understandable policies for what devices
should do

Questions?

MUD

• Trust manufacturer

LB100
{
 "Device": "50:c7:bf:5e:
47:41",
 "AllowedLookups": [
 "A
devs.tplinkcloud.com",
 "A pool.ntp.org",
 "A time-a.nist.gov"
],
 "NeedsDHCP": true,
 "AllowedConnections": [
 {
 "IP": "",
 "Domain": "",
 "Protocol": "",
 "Port": 0,
 "Lookup": false,
 "Bytes": 0,
 "InPackets": 0,
 "OutPackets": 0

 },
 {
 "IP":
"52.204.41.30",
 "Domain":
"devs.tplinkcloud.com",
 "Protocol": "TLS",
 "Port": 50443,
 "Lookup": true,
 "Bytes": 7710,
 "InPackets": 12,
 "OutPackets": 20,
 "TLSHandshake": {
 "ClientFP":
"0303/2F353C3D9C9DC004C005C009
C00AC00EC00FC013C014C023C024C0
25C026C027C028C029C02AC02BC02C
C02DC02EC02FC030C031C032C09CC0
9DC0A0C0A1CC13CC14/00/000A0019
001800170015001301000012060305

030403020306010501040102010101
",

"ClientVersion": "TLSv1.2"
 }
 },
 {
 "IP":
"45.76.92.117",
 "Domain":
"pool.ntp.org",
 "Protocol": "UDP",
 "Port": 123,
 "Lookup": true,
 "Bytes": 90,
 "InPackets": 1,
 "OutPackets": 1
 }
]
}

{
 "Device": "34:d2:70:6d:c5:2e",
 "AllowedLookups": [
 "A spectrum.s3.amazonaws.com",
 "A 2.android.pool.ntp.org",
 "A kindle-time.amazon.com",
 "AAAA pindorama.amazon.com",
 "AAAA www.example.com",
 "A ntp-g7g.amazon.com",
 "AAAA www.example.net",
 "AAAA www.example.org",
 "A dcape-na.amazon.com",
 "A device-messaging-
na.amazon.com",
 "A todo-ta-g7g.amazon.com",
 "A arcus-uswest.amazon.com",
 "A softwareupdates.amazon.com",
 "A dp-rsm-prod.amazon.com",
 "A dp-gw-na.amazon.com",
 "A api.amazon.com",
 "A device-metrics-us.amazon.com",
 "A det-ta-g7g.amazon.com"
],
 "NeedsDHCP": true,
 "AllowedConnections": [
 {
 "IP": "",
 "Domain": "",
 "Protocol": "",
 "Port": 0,
 "Lookup": false,
 "Bytes": 0,
 "InPackets": 0,
 "OutPackets": 0
 },
 {
 "IP": "52.216.66.32",
 "Domain":
"spectrum.s3.amazonaws.com",
 "Protocol": "TCP",

 "Port": 80,
 "Lookup": true,
 "Bytes": 3032,
 "InPackets": 7,
 "OutPackets": 12
 },
 {
 "IP": "176.32.98.203",
 "Domain": "kindle-
time.amazon.com",
 "Protocol": "TCP",
 "Port": 80,
 "Lookup": true,
 "Bytes": 721,
 "InPackets": 3,
 "OutPackets": 4
 },
 {
 "IP": "54.239.29.231",
 "Domain":
"pindorama.amazon.com",
 "Protocol": "TLS",
 "Port": 443,
 "Lookup": true,
 "Bytes": 55551,
 "InPackets": 216,
 "OutPackets": 359,
 "TLSHandshake": {
 "ClientFP":
"0303/345689A1112131415162F32333538393C3D4
0676A6B9C9D9E9FA2A3FFC002C003C004C005C007C
008C009C00AC00CC00DC00EC00FC011C012C013C01
4C023C024C025C026C027C028C029C02AC02BC02CC
02DC02EC02FC030C031C032/00/0032000E000D001
9000B000C00180009000A001600170008000600070
01400150004000500120013000100020003000F001
0001103000102001E0601060206030501050205030
40104020403030103020303020102020203",
 "ClientVersion": "TLSv1.2"
 }

 },
 {
 "IP": "93.184.216.34",
 "Domain": "www.example.com",
 "Protocol": "TCP",
 "Port": 80,
 "Lookup": true,
 "Bytes": 264,
 "InPackets": 1,
 "OutPackets": 4
 },
 {
 "IP": "72.21.195.82",
 "Domain": "dcape-
na.amazon.com",
 "Protocol": "TLS",
 "Port": 443,
 "Lookup": true,
 "Bytes": 7653,
 "InPackets": 10,
 "OutPackets": 12,
 "TLSHandshake": {
 "ClientFP":
"0303/52F32333538399C9D9E9FFFC007C009C00AC
011C013C014C02BC02CC02FC030/00/0032000E000
D0019000B000C00180009000A00160017000800060
007001400150004000500120013000100020003000
F0010001103000102001E060106020603050105020
503040104020403030103020303020102020203",
 "ClientVersion": "TLSv1.2"
 }
 },
 {
 "IP": "52.94.225.171",
 "Domain": "device-messaging-
na.amazon.com",
 "Protocol": "TLS",
 "Port": 443,
 "Lookup": true,
 "Bytes": 7638,

 "InPackets": 10,
 "OutPackets": 12,
 "TLSHandshake": {
 "ClientFP":
"0303/52F32333538399C9D9E9FFFC007C009C00AC
011C013C014C02BC02CC02FC030/00/0032000E000
D0019000B000C00180009000A00160017000800060
007001400150004000500120013000100020003000
F0010001103000102001E060106020603050105020
503040104020403030103020303020102020203",
 "ClientVersion": "TLSv1.2"
 }
 },
 {
 "IP": "52.94.225.226",
 "Domain": "todo-ta-
g7g.amazon.com",
 "Protocol": "TLS",
 "Port": 443,
 "Lookup": true,
 "Bytes": 7817,
 "InPackets": 9,
 "OutPackets": 10,
 "TLSHandshake": {
 "ClientFP":
"0303/52F32333538399C9D9E9FFFC007C009C00AC
011C013C014C02BC02CC02FC030/00/0032000E000
D0019000B000C00180009000A00160017000800060
007001400150004000500120013000100020003000
F0010001103000102001E060106020603050105020
503040104020403030103020303020102020203",
 "ClientVersion": "TLSv1.2"
 }
 },
 {
 "IP": "52.94.208.165",
 "Domain": "arcus-
uswest.amazon.com",
 "Protocol": "TLS",
 "Port": 443,

Policy Enforcement at
Multiple Layers

– Network layer (firewall rules)
▪ Allowed endpoints
▪ Allowed ports, protocols
▪ Allowed bandwidth

– Application layer (proxies)
▪ Allowed DNS lookups, answers
▪ Allowed TLS certificates
▪ Allowed GET/POST requests

