
Meteor: Seeding a Security-Enhancing Infrastructure
for Multi-market Application Ecosystems

David Barrera
School of Computer Science

Carleton University

William Enck
Department of Computer Science

North Carolina State University

Paul C. van Oorschot
School of Computer Science

Carleton University

Abstract—Application markets providing one-click software in-
stallation have become common to smartphones and are emerging
on desktop platforms. Until recently, each platform has had only
one market; however, social and economic pressures have resulted
in multiple-market ecosystems. Multi-market environments limit,
and in some cases eliminate, valuable security characteristics
provided by the market model, including kill switches and
developer name consistency. We outline a novel approach to
retaining single-market security semantics while enabling the
flexibility and independence of a multi-market environment. We
propose Meteor as a security-enhancing application installation
framework that leverages information (e.g., app statistics, expert
ratings, developer history) from a configurable set of security
information sources. We build a proof-of-concept Android ap-
plication (Meteorite) to demonstrate the technical feasibility of
our proposal. The Meteor approach provides valuable decision-
making criteria useful not only for smartphone users, but
technology consumers as a whole, as new and existing computing
environments converge on a market-like model for software
installation.

I. INTRODUCTION

Consumer computing as we know it is currently undergoing
a transition. The emerging software ecosystem frequently
commoditizes functionality into discrete, purpose-driven ap-
plications (“apps”). Apps are plentiful, diverse, and frequently
redundant. For example, a smartphone app consumer is often
presented several, if not tens, of options when searching for
to-do lists, location-aware utilities, and games.

Smartphones are at the forefront of this computing transi-
tion. However, it is likely that general computing will follow
suit. Recent market statistics report more smartphones are sold
per month than PCs [24], indicating a new breed of users
whose only exposure to computing is the app-centric model.

Application markets for smartphones, such as Google’s
Android Market and Apple’s App Store, provide one-click
software installation. These markets have become the de facto
method of installing apps on smartphones, as they serve as a
central point of app distribution, sales and discovery.

A single, central application market offers an opportunity
to improve consumer security. Thus far, this model has ex-
hibited several clear advantages. First, a market acts as a
centralized chokepoint for detection of malware (e.g., Google’s

IEEE MoST 2012 (Mobile Security Technologies workshop). This paper
updates and obsoletes an earlier version that appeared as a Carleton University
School of Computer Science technical report [4].

Bouncer [16]).1 Second, it provides a means to remotely
uninstall distributed apps later identified as malicious. These
remote uninstalls (or “kill switches” [6], [5]) provide faster
clean-up than traditional antivirus software, as they push
actions to devices and do not require definition updates or
resource intensive scanning. Finally, search results display
consistent developer names for applications. Once a developer
has registered with the market, controls exist such that no
other developer can easily distribute applications under that
developer name. Hence, consumers have some assurance that
all applications provided by “John Smith” are provided by the
same John Smith. While this characteristic does not ensure
that “John Smith” is the John Smith the consumer intended,
it does allow the app market to apply sanity checks for well
known, high-impact entities, e.g., “Bank of America.”

Smartphone platforms such as Android have been designed
to allow multiple application markets. Multiple-market envi-
ronments are an inevitable response to social and economic
pressures. For example, Apple is frequently chastised for deny-
ing distribution of apps that do not meet its moral. On Android,
the Amazon Appstore offers sales and anti-piracy mechanisms,
and the MiKandi market publishes adult applications deemed
inappropriate for the official Android Market. However, while
this flexibility and independence provides social and economic
benefits, it undercuts valuable security properties such as kill
switches and developer name consistency.

In this paper, we examine the convergence of one-click
installation and multiple app markets. Specifically, we first
identify security properties that are lost by allowing the
existence of multiple application markets. We then propose a
software installation framework with the objective of achieving
single market security semantics while retaining the flexibility
and independence provided by a multiple-market setting. Our
proposed solution enhances app installation with an exten-
sible set of configurable security information sources and
kill switch authorities. Information sources provide the user
with additional app information, ranging from app age, virus
reports and privacy violations, to expert ratings on the app
and other apps by the developer. Kill switch authorities allow
consumer devices to be configured to subscribe to notifications
of dangerous apps for removal.

1We note that while market-level app vetting can be useful under some
circumstances, the practical effectiveness and scalability of this approach
remains uncertain [18].

A fundamental goal of our approach is to connect digital
properties such as package signatures to human evaluable
information such as developer and application names. Our key
observations are that 1) name collisions in both developer and
application names should be minimal; and 2) name collisions
should in fact raise suspicion, i.e., the more frequent cause of
a name collision is malicious substitution of an app.

Note that while our approach mitigates many threats in-
troduced by a multiple-market ecosystem, it cannot address
all threats. In particular, our architecture cannot automatically
determine the most (or least) secure application for a specific
task. This is a fundamental problem of app distribution even
for single-market ecosystems, and is outside the scope of this
paper.

Contributions. We believe we are among the first to look at
the security implications of allowing single-click installation
of software distributed through multiple app markets on a
single platform. The initial exploration of this problem has
lead us to identify the main design requirements necessary
to regain single-market security semantics in a multi-market
environment. With these requirements in mind, we design
and implement a security-enhancing installation architecture
which we call Meteor. Specifically, we discuss the need
for the following architectural components: universal applica-
tion identifiers, crowdsourced app and developer information
repositories and a decentralized kill-switch infrastructure. Fi-
nally, to demonstrate the technical feasibility of our proposal,
we build an Android-specific proof of concept app which can
be installed and used without buy-in from application markets
or developers.

The remainder of this paper proceeds as follows. Section II
describes background on app installation as well as current
protections provided by smartphone platforms. Section III
presents the threat model for the multiple market ecosystem.
Section IV describes our proposed architecture. Section V
covers the implementation of a proof-of-concept Android ap-
plication. Section VI discusses the advantages, limitations and
additional security and privacy considerations of the Meteor
architecture. Section VII presents related work. We conclude
in Section VIII.

II. BACKGROUND

We first briefly discuss the evolution of smartphone app
installation. Next, we discuss the role of digital signatures on
smartphones. The section concludes with a review of current
malware mitigation techniques on smartphone platforms.

Note that this and the following sections frequently discuss
properties specific to the Android platform. We do this for
two reasons. First, Android is the first platform to experience
the negative effects of a multiple-market ecosystem. Second,
focusing on a specific technology simplifies explanations.
However, the architectural lessons are generally applicable
across platforms.

A. Application Markets
The way users find and install applications on smart-

phones has changed drastically in recent years. Users of early

smartphone platforms would typically download apps from a
website, and then copy the downloaded file(s) to their device
using a USB cable. In 2008, Apple introduced its App Store
(along with the release of the iPhone 3G), which provided
users with a new installation paradigm: an on-phone interface
through which users could find, purchase, and install apps.
The simplicity and ease of use of this installation model has
led to over 10 billion downloads in only a few years [3].
This same use model has been adopted by others, including
by Google on Android and by Apple and Microsoft on their
desktop operating systems.

Each platform usually provides its own official application
market. However, strict terms of service and questionable
motivations for acceptance of an app in a specific market [12],
[7] often motivate multiple markets. For example, the Cydia
market has been created for “jailbroken” iPhones and the
Amazon Appstore has been created to provide developers with
better marketing capabilities. Multiple application markets
present a different use model to the consumer. To use multiple
markets, the user must currently download and install separate
applications which serve as gateways into each market. This
process may in fact negatively impact the security of the
device (e.g., iPhones must be jailbroken to install Cydia;
the Amazon Appstore requires users to disable the security
feature that disallows applications from unknown sources).
Next, managing apps becomes more difficult. Users may
become confused when managing apps available in multiple
markets. Finally, if a malicious app is identified, it is unclear
which market has the authority, responsibility, and capability
to employ a kill switch.

In a multiple-market environment, individual market ven-
dors can compete by offering the same app at a lower price
(e.g., the Amazon Appstore has a free “app of the day”). This
allows consumers to comparison shop to find the cheapest
version of an app. From an economics perspective, such
competition is healthy. However, without a mechanism to
determine if two or more apps are actually the same app, an
adversary can lure users to install a malicious version of an
app by distributing it into a market where the legitimate app
does not exist. Attackers may also sell the app at a lower price
to receive direct monetary revenue in addition to the return
provided by the malware.

B. Package Signing and Application Namespace

Modern smartphone OSs require applications to be digitally
signed [5]. On Android, app signatures are implemented as a
form of continuity signing [26]: the OS verifies that subsequent
application updates were signed by same developer as the
original.

In order to sign an app, developers generate a public/private
key pair and a self-signed certificate. As certificates are self-
signed and never displayed to the user, nothing prevents the
developer from inserting fake or incorrect information into
the certificate. Once an app is ready for distribution, the
developer uses the jarsigner [21] tool to sign the app
and embed the signature into the application package. Android

does not allow adding or removing certificates or keys during
app updates [26], which forces developers to release a new
application (under a new package name) in the event of losing
their private signing key.

Android internally uses the package name (e.g.,
com.company.app) as an identifier for installed apps,
and a new app is subjected to the continuity verification
mentioned above if it is identified by the same package name
as a currently installed app. If there is no currently installed
app with same package name, the app is installed without
additional checks. Continuity signing is verified for that
package name from that point forward.

Package namespace collisions can and do occur. Occasion-
ally, collisions result from careless developers who do not
choose a sufficiently distinguished package name. However,
package name collisions can also be a sign of an attack. For ex-
ample, the Geinimi trojan [17] grafted SMS-sending malware
on to the popular Monkey Jump 2.0 game. It was distributed
through an alternative app market for Android and used the
same package name (com.dseffects.MonkeyJump2) as
the original game. As a side-effect, the name collision prevents
a user from later installing the legitimate legitimate app
without previously uninstalling the malicious version.

C. Malware Mitigation

Similar to commodity desktop platforms, antivirus software
has emerged for smartphones. However, smartphone antivirus
software does not operate analogous to desktop antivirus soft-
ware due to differences in the execution environment. First, en-
ergy consumption prohibits routine scanning of files. Second,
since smartphone apps run within a sandboxed environment
(e.g., as in Android and iOS), antivirus apps do not have
sufficient low level API hooks. Instead, smartphone antivirus
programs frequently maintain blacklists containing identifiers
for malicious applications. The resulting functionality strongly
resembles that of kill switches.

The kill switches deployed by official markets are com-
monly integrated with the OS platform. If malware is detected
to have been distributed through the market, the kill switch
can remotely uninstall the app from phones. If the phone has
network connectivity, the removal can occur nearly instanta-
neously. For example, Android maintains such a connection
for Google services, including app installation and removal.
Otherwise, removal occurs when connectivity is restored. An
advantage of kill switches over antivirus software is the ability
for a remote server to decide which installed apps to remove,
as the market already maintains the list of installed apps. This
eliminates the need for the phone to download and maintain
blacklists, which conserves battery life.

We note that kill switches operate under the assumption
that the malicious app was contained by a sandbox. In March
2011, Android malware exploited a local privilege escalation
vulnerability [2], which required more attention than simply
uninstalling the malicious app. As hinted above, Android’s
kill switch mechanism is implemented as part of a protocol
that allows both removal and installation of apps. Therefore,

the Google Android Market automatically installed a security
fix to clean up devices known to have installed the malicious
apps. In this case, Google effectively used Android’s enhanced
kill switch to distribute an OS patch. While kill switches
clearly offer valuable functionality, it is less clear what trust
consumers should place in each application market.

III. THREAT MODEL

The goal of our system is to help users minimize the risk
of installing a malicious application. We consider “malicious”
applications to be those that contain code to harm user devices,
violate user privacy, or perform unwanted actions such as
sending SMS without user approval. We classify malicious
applications of interest to our architecture into three broad
categories depending on the state of installed apps on the
device, as well as the package name and signature of the
malicious app.

1) Colliding malicious app: A malicious application with
a package name matching that of another currently
installed application. The application signature is differ-
ent than the currently installed app, so Android would
prevent the app from being installed unless the current
version is removed by the user.

2) Non-colliding malicious app: An application with a
package name that is different from any currently in-
stalled apps. This category of apps includes look-alikes
e.g., Google Maps (com.goggle.maps); new apps
with original functionality; and weaponized apps with
trojaned components. The main characteristic of these
apps is that their package names do not collide with
the namespace of currently installed apps, therefore
triggering no alerts (aside from the standard permission
approval) to the user.

3) Rogue update: A formerly benign application is up-
dated with a properly signed new version that includes
malicious functionality. This can happen when a de-
veloper’s signing key is compromised or the developer
him/herself (or part of the development team) goes
rogue.

Meteor can help detect malicious apps in categories 2 and
3. Our system need not detect applications in category 1, since
they are blocked from installation by the OS (see Section II-B).
We note that intentional user circumvention of this block (e.g.,
by uninstalling the current version) would effectively move the
app to category 2.

Assumptions: We assume the adversary can successfully
submit malicious apps to any or all application markets. We
also assume the adversary is capable of creating duplicate
apps that are identical to the original, with the exception
of the digital signature. That is, we assume the adversary
cannot easily access or independently re-create to the original
developer’s signing key.

IV. PROPOSAL: METEOR

Meteor provides a flexible architecture for addressing the
security concerns of a multiple market ecosystem. Addressing

Info
Source

Info
Source

Info
Source

UAppID UAppID

UAppID UAppID

Kill Switch
Authority

Kill Switch
Authority

UAppID UAppID UAppID

{UAppID, ... } Meteor
phone

Meteor
phone

Fig. 1: Overview of the Meteor architecture. Each device running the Meteor client app (Meteorite) subscribes to a set of information
sources and kill switch authorities. Information sources are queried (using UAppIDs) at install-time while kill switch authorities broadcast
offending UAppIDs post-installation.

the app name consistency problem is a significant challenge.
For example, simply forcing a fixed namespace based on
DNS would be impractical to authenticate reliably, and it is
unrealistic to expect consumers to separate safe from unsafe
names. Instead, we leverage universally unique naming, and
then aggregate statistics and expert ratings from multiple
sources to enable a safer install-time environment.

Figure 1 overviews the Meteor architecture. At a high level,
Meteor works as follows: after downloading an app (and prior
to installation),2 a pre-configured set of online information
sources is queried to obtain additional information about the
app or app developer. Each of the sources provides information
which may help the user, or client-side app, gain confidence
or reconsider the installation of the app. The device may
also subscribe to one or more kill switch authorities, which
enable the remote uninstallation of apps if they are found to
be malicious.

Information sources queried by the Meteor smartphone
app (Meteorite) may be grouped by areas of expertise. For
example, one source might host information for apps related
to social networking while a different source may focus on
games. In fact it would be natural to expect multiple sources
of each type, used by different users or user groups in different
geographic regions. Narrowing the scope of coverage allows
experts to use domain-specific knowledge to contribute higher
quality information about apps.

The Meteor architecture is based upon the following four
fundamental underlying concepts. The remainder of this sec-
tion discusses these concepts in greater depth.

Universal application identifiers (UAppID): Meteor requires
a reliable method of uniquely identifying app instances for
reference by both information sources and kill switch authori-

2Optionally, additional checks could be deferred to the background and
done after install-time, at the risk that malicious activity could occur in the
meantime or alter security enforcement.

ties. To guarantee uniqueness, identifiers are cryptographically
bound to the binary code of app instances, as and they
incorporate the application name and digital signature data.

Developer registries: The first general type of information
source is aimed at developers. Developer registries serve
as repositories of developer submitted data such as contact
information, news about app updates or issues, and other apps
the developer authors. While a single developer registry is
ideal from a security perspective, we expect region-specific
developer registries to be more amenable to various global
political climates.

Application databases: The second general type of infor-
mation source targets applications. These sources host app
information manually entered by experts in a particular domain
(e.g., location-based shopping apps), or information automati-
cally gathered from crowdsourced submissions. For example,
databases may include expert reviews, ratings, permission
descriptions, number of downloads, etc.

Kill switch authorities: In Meteor, trust in a remote party to
uninstall malicious or inappropriate apps is decoupled from
application markets, as markets have varying levels of trust-
worthiness. Depending on consumer privacy requirements, kill
switch authorities may maintain a per-device list of installed
apps

A. Universal Application Identifiers

The Amazon Appstore and the Google Market (and possibly
others) use an app’s package name to uniquely identify apps
inside their stores. In a multi-market environment, using a
package name alone will not uniquely identify apps because
these names are sometimes arbitrarily chosen and may deliber-
ately collide with another completely independent application
(see Section III).

We propose the use of a universal application identifier
(UAppID), to provide a common handle for referring to

specific application instances. In Meteor, UAppIDs serve two
main purposes: 1) precise app lookups, useful for comparing
apps across multiple markets (similar to the way consumers
search for the best price of a specific TV model as opposed to
the best price of any TV); and 2) instance-specific kill switches,
which allow for the removal of specific binaries instead of any
app with a given package name.

Using a signed Android app as input, we construct its
unique UAppID by extracting the package name and developer
certificate (the two components used by Android to ensure
correct application continuity as discussed in Section II-B)
from the application package. Next we remove the applica-
tion’s signature3 and certificate, and compute a cryptographic
(collision-resistant) hash of the binary. Application names
and versions are not explicitly incorporated because they are
already embedded within the unsigned binary. Therefore:

UAppID = {H(package name, dev. cert), H(binary)}

The UAppID is a tuple of size two. The first element is
a hash of the package name and developer certificate4. The
first element of the tuple can be used to identify all apps that
Android considers to be equivalent. The second element is a
hash of the application’s binary. This portion of the UAppID
can help identify repackaged (including pirated) apps across
markets, or different version releases of the same app. The
concatenation of both elements results in a globally unique
string that can be used to identify a particular version of an
application using a specific package name and written by a
specific developer or organization.

This approach has the advantage that UAppIDs can be
quickly reconstructed on the device, and provide strong guar-
antees that two identical UAppIDs refer to the same executable
app if a strong hash function is used and verified. Of course, a
universally agreed upon collision-resistant hash function must
be designated and used (e.g., the Meteorite proof-of-concept
app uses SHA256). UAppIDs can be further encoded to be
more human-readable.

B. Developer Registries

One uncertainty users face when installing applications
results from the lack of available information about the app’s
developer. Installation screens (when installing via an applica-
tion market) typically show the developer’s name and website,
but these two pieces of information are provided by developers
themselves, and are generally unverified by the market vendor.
Furthermore, apps that are distributed outside of app markets
(e.g., through a developer’s website5) don’t generally display
any developer information at install-time.

We argue for the establishment of one or more central
locations where developers can voluntarily disclose more

3Removing the signature of a signed Android app can be done by deleting
the META-INF directory inside the app package.

4Due to the two inputs to this hash function being developer-supplied, we
also include the length of each string as input to the hash function to help
prevent attacks that rely on the concatenation of variable-length inputs.

5Non-malicious developers might choose to distribute apps on their own to
avoid paying registration fees or to keep 100% of the app’s sale price.

information about their apps, development cycle, company,
etc. These registries would be consulted to help resolve the
which John Smith? problem, or simply to learn more about
a developer before installing their software (similar to the
way one might research a charity prior to donation). A widely
used or relied upon central developer registry would ideally
motivate developers to opt-in as a best-practice.

Developer registries can be used in several ways. First,
application markets can obtain further confirmation of a de-
veloper’s history and portfolio during sign-up. Second, appli-
cation markets can show a “more info” section on an app
information screen which hooks into the developer registry
to show additional data about the developer. For example,
Registered developer since 04/2011, Developer of these 3 other
apps, No apps killed to date, 4 apps issued to date, etc. Third,
they provide a central point for a kill switch authority to look
up developer contact information if necessary before deciding
to throw a kill switch for their app. Finally, they provide a
website that developers can use to make announcements about
app issues or updates.

Our goals for such voluntary developer registries do not in-
clude becoming a certification authority for developers. These
registries are intended to be lookup services for retrieving
information that may help increase confidence in a developer.
As such, the enrollment process is envisioned to include only
minimal verification of submitted data (e.g., only verifying e-
mail retrieval capabilities and control of a signing key), but
fundamentally cannot provide assurance about the security or
accuracy of provided information. We expect, however, that
experts in each developer registry will help identify false or
misleading information.

Participating in one or more developer registries should
not be made mandatory as this would be both technically
challenging and go against (e.g., Android’s) open development
philosophy. Indeed, if developers wish to remain anonymous,
submit false information to the developer registry, or not
register at all (e.g., an anti-censorship app developer afraid of
political persecution) we envision that their apps would still
be installable by those who choose to take that risk. However,
we believe that in most cases, positive incentives and benefits
would motivate developers to opt-in.

Enrollment: A developer creates a password-protected ac-
count on a registry by providing a valid e-mail address. After
signing in, the developer asserts ownership of one or more
certificates (i.e., app signing keys). The proof of control of
the signing key is done using standard known techniques for
challenge-response based on digital signatures [19, pp. 404-
405], and could be designed to make use of current code-
signing infrastructure and tools (see Section II-B).

C. Application Databases
Similar to the developer registries above, databases contain-

ing information about apps available both within and outside
of markets would be valuable to end-users and experts. We see
application databases as extensible repositories of application
properties, statistics and reviews by subject area experts. For

TABLE I: Example types of information that may be provided by application databases.

Type of Information Description
App binary properties The name, version, package name and full developer certificates included in the binary.
App age and origin How long an application has existed and a list of markets or sites on which it has been made

available. This can help users determine if an app is brand new, or can be found elsewhere.
Expert reviews (or links to) This service allows (ideally well-known experts or sets of) users to test software and submit

technical or security reviews.
Blacklists and whitelists The presence of an application (or other applications by the same developer) on a blacklist or

whitelist. The reason(s) for being added to a list could also be recorded (e.g., privacy violations,
tasteless content, malware, etc.).

Anti-virus and other security
and privacy tests

Whether the app has been flagged by an anti-virus tool or has been reported for privacy
violations.

Number of installs and unin-
stalls

Market provided data related to the total number of installations or number of active users of
an app identified by a particular UAppID.

example, cartography enthusiasts can populate a database of
apps that relate to maps, while gamers can maintain a database
of game apps. We acknowledge that enthusiasts are not always
security experts. However, they often have a vested interest in
the security of apps in their area, so one might expect these
enthusiasts to also communicate with security experts, or at
least advanced users who report technical anomalies.

An application database contains a new entry for each
known instance of an app. Each entry in the database lists
information obtained from the package metadata (e.g., app
name, app version) and the package name. The entries would
also list the hash(es) of the developer certificate(s), as well as
a hash of the relevant application binary and any other useful
data for evaluating an app. Example types of information are
listed in Table I.

As an example, Table II shows a list of 5 app instances that
could have originated from a board-game app database. By
viewing and comparing entries, experts managing the database
could make the following observations (items with * trigger a
warning to the user):

• App versioning. (Apps 1 and 2). These apps use the
same package name and are signed with the same key.
The version numbers and application hashes differ, as
expected for a new release.

• Multiple app developer. (Apps 1, 2 and 4). A developer
in possession of a certificate with hash starting with
0x74A8 is developing the Checkers and Chess apps.

• *Certificate change. (Apps 2 and 5). App hashes are the
same indicating no code modification, but the certificates
do not match. Possible explanations are that the developer
lost access to the signing key, the developer is using
different certificates for different distribution channels, or
an attacker has stripped off the certificate from the binary
replacing it with a new one. All these cases trigger further
investigation, or notification of suspicious behavior to the
user or an agent working on behalf of the user.

• *Namespace collision. (Apps 1 and 3). These apps
share a package name and app name, but differ in
certificate hash and application hash. This could mean
that a malicious developer has grafted malware on to
to the legitimate chess application, or that by chance, 2

developers have chosen to use the same package and app
name, as well as coincided in version number.

In the event of certificate change and namespace collisions,
the application database itself cannot answer the question
which of the conflicting apps should I trust? The information
merely suggests the presence of malicious activity, and a
supplementary mechanism is necessary to decide which of the
apps should be downloaded. For example, the database might
also contain initial submission times or overall number of
submissions. The database could also include expert reviews,
or link to the appropriate developer registry.

Populating Application Databases: Databases should contain
relatively up-to-date information to be effective in helping
users make informed decisions. The database could be pop-
ulated in several ways: (1) by application market vendors
relaying information about apps they have accepted into their
respective markets; (2) by paid employees who look for
apps and submit them to a database; (3) by crowdsourced
submissions from volunteers and interested users.

The existence of an app in a database reflects the notion
that the app is known or has been seen. The absence of an
app in a database could also be leveraged to identify obscure
or “fly-by-night” apps. The devices of conservative users may
be configured to only allow installation of well-known apps
for which no suspicious behaviour has been reported (see
Figure 4a).

Transparency in Consulting a Database: It is unreasonable
to expect typical end-users to actively inspect all information
provided for an app. Detailed information retrieval is an
option that can be enabled by experts, but ordinary end-
users (or agents working on their behalf) would only be
alerted in the event of suspicious behaviour (e.g., certificate
change, namespace collision, blacklisted app, etc.). Deployed
this way, the application database and the client smartphone
app (Meteorite) would be transparent to users the vast majority
of the time as the most common scenario for new app entries in
the database would likely be new app versions. Mobile security
vendors, security researchers and other automated tools may
actively consult the database to find app inconsistencies and
overall app statistics, and to compile aggregate statistics.

TABLE II: Example application database. Hashes truncated for space.

ID Name Version Package Name Cert. Hash App Hash First Seen Submissions
1 Chess 1.5.2 com.games.chess 0x74A8. . . 0x93B1. . . Jan 2, 2012 100
2 Chess 1.6 com.games.chess 0x74A8. . . 0x8F2C. . . Jan 30, 2012 80
3 Chess 1.5.2 com.games.chess 0x1D51. . . 0xA33C. . . Feb 21, 2012 3
4 Checkers 0.5-beta com.games.checkers 0x74A8. . . 0xDB89. . . Mar 1, 2012 10
5 Chess 1.6 com.games.chess 0xF307. . . 0x8F2C. . . Mar 3, 2012 1

D. Kill Switch Authorities

The final component in the Meteor architecture is a kill
switch authority responsible for the remote removal of apps
on user devices. Kill switch authorities have the unique ability
to remove an app from subscribed devices independently of
the market or website from which they were obtained. This is
different to the way kill switches are handled in the current
smartphone ecosystem, where each market is responsible for
removing apps that it distributed.

Kill switch authorities have the capacity to securely broad-
cast offending UAppIDs to registered devices at any given
time (i.e., push). This is in contrast to developer registries
and application databases which serve information based on
a query (i.e, pull). Optionally, devices may transmit lists
of installed apps to kill switch authorities (as denoted by
the dotted lines in Figures 1 and 5) such that kill switch
signals are only received for installed apps. Informing a kill
switch authority of installed apps has significant resource
consumption advantages for mobile devices, as the authority
can perform management logic and only contact the device
when necessary; this however brings with it potential privacy
issues.

Similar to application databases and developer registries,
we expect kill switch authorities to specialize on a small set
of application domains. For example, a kill switch authority
could concentrate on identifying and disabling apps which are
unsuitable for children younger than a certain age.

V. IMPLEMENTATION

We have implemented a Meteor client app (called Mete-
orite) for Android along with the corresponding server-side
components to test the technical feasibility of our proposal.
Meteorite can be installed on any device running Android 2.2
or greater (which covers approximately 93% of the worldwide
Android install-base as of April 2012 [14]. It has three main
components as discussed in the following subsections, and
requires neither modifications to the underlying OS nor root
access. Section V-D discusses the advantages and limitations
of operating within unprivileged app boundaries.

A. Information source management

When the Meteorite app is first installed, the user adds new
information sources specifying the type (application database,
developer registry or kill switch authority) as well as a URL to
query. To minimize the amount of data to be manually entered,
servers (regardless of their type) publish a JSON-formatted
manifest file that lists services offered and additional server

information (see Figure 3). A screenshot of the information
source entry process is displayed in Figure 2.

Fig. 2: Adding an information source to the Meteorite app

manifest.json
{ "name" : "Example Meteor Server",
"description" : "This information source

offers descriptions of apps
that have been installed by
members of a security lab",

"services" :
[{ "type" : "application database",

"url" : "http://XXXXXXX/query.php",
"license" : "no" }] }

Fig. 3: The server manifest corresponding to the example in
Figure 2.

From a practical standpoint, popular or well-known infor-
mation sources could be preconfigured within the app. We
expect users to find other candidate servers via colleagues and
expert websites that recommend good sources for given tasks
and report poor quality or malicious sources.

The ideal number of configured servers will vary according
to security, usability, and cost requirements of each user.
Expert users who want as much information as possible
with full control over their installed apps may choose to
configure a large number of information sources and no kill
switch authorities. Non-experts and users who don’t want to

be involved in low-level technical details of making security
decisions may consider installing more kill switch authorities.

B. Information source query

Once information source(s) have been added, the Meteorite
app will receive a Broadcast Intent every time a new package
is installed or updated.6 Upon receiving the intent, Mete-
orite computes the newly installed app’s UAppID, and issues
a standard HTTP POST request to all enabled application
databases and developer registries (see item 2 in Figure 5).
Information sources currently send back information related
to the submitted UAppID if it exists. Depending on how
Meteorite has been configured, the retrieved app information
can be displayed to the user, who is then prompted to continue
or to uninstall the app.

(a) Configuration (b) New app installed notification

Fig. 4: Screenshots of the Meteorite app. On the left, the
settings window. On the right, a notification that a new app has
been installed and a query is in progress in the background.

C. Kill Switch Listener

The final component of the Meteorite app is the kill switch
listener (depicted as item 4 in Figure 5). We avoid polling
(which is expensive in terms of battery and network perfor-
mance) kill switch authorities by using Google’s Cloud to
Device Messaging (C2DM) Framework7 for push notifications
to devices. C2DM allows a server to send short data messages
(up to 1024 bytes) to registered devices. The messages are sent
from the kill switch authority to Google, and then relayed to
the Meteorite app using the existing connection most Android
devices maintain with Google servers.

6These intents are received regardless of the app’s installation origin (e.g.,
sideloaded, third party app market, official market).

7https://code.google.com/android/c2dm/index.html

Info
Source

Info
Source

Kill
Switch

Download
app from
a market 1

2

Decision
install/remove

3

Preconfigured
Servers List

4

Meteor
phone

Fig. 5: Overview of the Meteor app installation process.

When adding each kill switch authority to the Meteorite
app, a registration process must take place to inform the
kill switch authority that the user is willing to receive kill
notifications. The user can remove or temporarily disable kill
switch authorities from within the app, as well as choose to
ignore kill switch messages when they are received.

Our demonstration kill switch authority currently sends the
UAppID of the app to be killed, along with a reason the kill
switch was thrown. Receiving a kill switch launches Meteorite
in the background and compares the received UAppID against
a list of UAppIDs for all installed apps. If a match is found,
the user’s current Android activity is interrupted to display the
kill switch data. The user is then prompted to either uninstall
the app or dismiss the message.

As noted earlier, Meteorite does not have root privileges so
it is not capable of removing other apps without the user’s
consent. Meteorite only invokes Android’s package manager
and the user must confirm or deny the final uninstall process.

D. Implementation Notes
The Meteorite app leverages Android’s application life-

cycle and IPC to avoid running in the background and constant
server polling. The OS only invokes Meteorite at app installa-
tion time or upon receiving a kill switch, meaning that there
is negligible impact on battery life or overall performance.

Our choice to use non-privileged APIs comes with the trade-
off of creating a vulnerability window between app installation
and first launch. Malicious apps could register hooks to launch
automatically (e.g., after a device boots, after receiving an
SMS, or as a handler for specific file types). This window
could be avoided if the Android app installer were modified to
perform Meteor queries prior to installation, but would require
installing a full new Android firmware which may discourage
widespread adoption.

Source code for the Meteor app as well as UAppID utili-
ties are available for download at http://www.ccsl.carleton.ca/
software/meteor.

VI. DISCUSSION

Here we discuss the advantages and limitations of the
Meteor architecture as a whole, and review the specific benefits
of grouping information sources by domain and security focus.

https://code.google.com/android/c2dm/index.html
http://www.ccsl.carleton.ca/software/meteor
http://www.ccsl.carleton.ca/software/meteor

A. Advantages

Incrementally deployable and extensible: The proposed
architecture provides security benefits even if using as little
as one information source or kill switch authority. The client-
side software could initially be distributed as an app download,
and later possibly bundled as a core OS feature. The ability
to customize information sources offers an extensible solution
that can be adapted to a wide range of users/skill levels, and
facilitates the existence of a democratic application market-
place.

Scalability: By allowing experts in small domains to handle
application reviews and database maintenance, high quality
information may be produced and distributed quickly.

Low resource requirement: Servers are only queried upon
app installation, where a small amount of application-specific
data is sent and received. Meteor involves no massive (e.g.
antivirus) signature downloads and no CPU-heavy operations
performed on the device aside from hashing the app in
question.

Only intrusive on suspicious behaviour: The Meteorite app
can be configured to only display warning messages in the
event of detecting suspicious activity (by the developer or app).
If no malicious activity has been reported for the app being
installed, the installation process is not visibly different to the
end-user than the current app installation procedures.

B. Limitations

Usability: Meteorite requires some level of user input either
for adding servers or interpreting the results of the information
source query. While we can attempt to automate some of
these tasks (e.g., by specifying policies), our proposal is not
a one-size-fits-all solution. Future work is needed to identify
usability challenges when deploying a system like this.

Quality of information sources: There is no mechanism
to automatically handle malicious information sources, which
may allow attackers to craft a complex attack where a user is
tricked into installing a malicious information source as well
as a malicious app. In this example, the information source
could return positive comments and ratings for all apps, or at
least those an attacker wishes to be installed, giving the user
a false sense of trust that the app being installed is benign
(false negatives). The information source could also attempt
a denial of service by replying with warnings on all queries,
creating false positives which must be identified and resolved
by the user. While attacks like these are less likely as more
information sources are selected (assuming at least one has
identified the malicious app), they may still be possible for
users with small information server lists.

We believe that over time, individuals and sub-communities
will place their trust in information sources that deserve such
trust. While Meteor and other (e.g., single-market ecosystems
with state-of-the-art vetting) systems fundamentally cannot

preclude abuse of trust, Meteor can deal with abuse in the
longer run by user choice.

C. Security and Privacy Considerations

Separating content creators from content hosts: Meteor
does not require that databases be hosted by the same in-
dividuals who create the content within them. For various
reasons (e.g., high cost or unavailable expertise), expert users
may not want to operate a dedicated server even though they
have access to app or developer information. Similarly, end-
users may trust an entity with the app information they create,
but may not be willing to reveal to that entity the apps they
are installing. By allowing this separation, database hosts can
act as relays or proxies to help preserve end-user privacy.
Meteor could be extended to allow private information retrieval
(PIR [9]) for users with high privacy requirements.

Authenticating information: In its most basic form, Meteorite
clients communicate with Meteor servers via HTTPS using
Android’s default root CA list. Future work is needed to design
a proper way to handle man in the middle attacks on the
local network (e.g., an attacker intercepting both the app file
download and the Meteor query). We are exploring the option
of using signed database records that can be authenticated
locally, similar to the approach of Samuel et al. [25].

Lack of consensus in database entries: In a distributed
system like Meteor, it is possible that users subscribing to
many information sources will receive conflicting information.
For example, an app may exist on a whitelist for one reason
and simultaneously be listed on a blacklist for a completely
different reason. The Meteorite app currently requires con-
sensus among information sources that are queried, but future
work will look at ways to automatically resolve conflicts based
on pre-defined policies.

VII. RELATED WORK

Meteor builds upon known proposals for unique file iden-
tification, cross-checking information, cloud-based malware
detection and information crowdsourcing. This section reviews
some of these proposals.

Kim and Spafford propose Tripwire [15], a tool for record-
ing hashes of important system files and later detecting modifi-
cations or intrusions. UAppIDs are similar in that they involve
cryptographic hashes of the app’s binary code, but these hashes
are not stored to detect modification (code signing already
does this). UAppIDs uniquely identify and index (e.g., for app
lookup) app instances.

Oberheide et al. [22], [23] highlight advantages of offload-
ing malware detection to the cloud such as low resource
requirements and better detection coverage. The authors run
multiple antivirus engines on each submitted binary, and
hashes of binaries are stored to improve performance (i.e.,
avoid scanning the same file if the result is already known).
This is conceptually different from Meteor, which aggregates
information from multiple expert sources on the device rather
than aggregating multiple services on a central server.

A number of researchers have analyzed large collections of
apps across multiple markets. The results of these experiments,
including detection of malware [28], privacy leaks [11], and
poor developer practices [13] would be good candidates for
inclusion in a Meteor application database.

Perspectives [27] (and related projects such as Conver-
gence [20]) uses a set of “notary hosts” which monitor
web servers’ public keys from multiple vantage points on
the Internet. Clients query the notaries to detect man-in-the-
middle-attacks or changes to public keys. Information sources
in Meteor play a role somewhat similar to Perspectives’
notaries, but app information is collected by more than passive
monitoring (e.g., experts actively trying apps and submitting
reviews).

Meteor shares similarities with browser-based ad blocking
tools such as Adblock Plus [1], which allow users to subscribe
to ad blocking lists maintained by experts around the web.
Similar to Meteor information sources, each ad blocking list
filters specific types of advertisements (e.g., region-specific,
content-specific), allowing users to build a custom filter set
tailored to their needs.

Aggregate and personalized ratings from users in a social
circle can be helpful to find inappropriate apps, as users in
the same social circle tend to have similar definitions of
appropriateness [8]. However, detecting malicious applications
generally requires experts, who may not be present in all social
circles. Meteor attempts to create domain-specific services that
can individually crowdsource information. However, Meteor
does not specify how to deal with the problem of expert
recruiting or “fame management” [10]. We defer this aspect
to each information source.

VIII. CONCLUSION

In this paper, we have drawn attention to new security
concerns introduced by multi-market environments and single-
click software installation. We have proposed Meteor as a
scalable security-enhancing software installation architecture
designed to bridge the gap between non-cooperating appli-
cation markets. Each component in Meteor (i.e., UAppIDs,
developer registries, application databases and kill switch
authorities) plays a key role in providing security semantics
similar to those achieved in single-market environments while
retaining the benefits of multi-market environments. Future
work includes exploring usability issues of Meteor and de-
veloping a policy language to further minimize novice user
involvement.

ACKNOWLEDGEMENTS

We thank Michelle Burrows and Michael Doherty for their
contributions to the Meteor app. We also thank Patrick Traynor
for his valuable feedback. This research is supported by
the Natural Sciences and Engineering Research Council of
Canada (NSERC)—the first author through a Canada Graduate
Scholarship; and the third author through a Discovery Grant
and as Canada Research Chair in Authentication and Computer
Security. We also acknowledge support from NSERC ISSNet.

REFERENCES

[1] Adblock Plus. https://adblockplus.org, June 2011.
[2] Android Market. March 2011 Security Issue. http://googlemobile.

blogspot.ca/2011/03/update-on-android-market-security.html, Mar.
2011.

[3] Apple Inc. Apple’s App Store Downloads Top 10 Billion. http://www.
apple.com/pr/library/2011/01/22appstore.html, Jan. 2011.

[4] D. Barrera, W. Enck, and P. van Oorschot. Seeding a Security-Enhancing
Infrastructure for Multi-market Application Ecosystems. Technical
Report TR-11-06, Carleton University, School of Computer Science, Apr
2011.

[5] D. Barrera and P. Van Oorschot. Secure software installation on
smartphones. IEEE Security and Privacy, 9(3):42–48, 2011.

[6] R. Cannings. Exercising Our Remote Application Removal
Feature. http://android-developers.blogspot.com/2010/06/
exercising-our-remote-application.html, June 2010.

[7] B. X. Chen. Want Porn? Buy an Android Phone, Steve Jobs Says.
Wired Gadget Lab, Apr. 2010. http://www.wired.com/gadgetlab/2010/
04/steve-jobs-porn/.

[8] P. Chia, A. Heiner, and N. Asokan. Use of Ratings from Personalized
Communities for Trustworthy App. Installation. In Proceedings of the
15th Nordic Conference in Secure IT Systems (Nordsec), Oct 2010.

[9] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proceedings of the IEEE Annual Symposium on Foundations
of Computer Science (FOCS ’95), pages 41–50, 1995.

[10] A. Doan, R. Ramakrishnan, and A. Halevy. Crowdsourcing systems on
the World-Wide Web. Communications of the ACM, 54(4):86–96, 2011.

[11] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of Android
application security. In USENIX Security, 2011.

[12] Federal Communications Commission. Letter to Apple regarding Google
Voice and related iPhone applications. DA 09-1736, July 2009. http:
//hraunfoss.fcc.gov/edocs public/attachmatch/DA-09-1736A1.pdf.

[13] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In ACM CCS, 2011.

[14] Google. Platform Versions - Android Developers. http://developer.
android.com/resources/dashboard/platform-versions.html, Feb. 2012.

[15] G. H. Kim and E. H. Spafford. The Design and Implementation of
Tripwire: A File System Integrity Checker. In ACM CCS, 1994.

[16] H. Lockheimer. Android and Security. http://googlemobile.blogspot.
com/2012/02/android-and-security.html, Feb. 2012.

[17] Lookout. Security Alert: Geinimi, Sophisticated New Android Tro-
jan Found in Wild. http://blog.mylookout.com/2010/12/geinimi trojan/,
Dec. 2010.

[18] P. McDaniel and W. Enck. Not So Great Expectations: Why Application
Markets Haven’t Failed Security. IEEE Security & Privacy Magazine,
8(5):76–78, September/October 2010.

[19] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied
cryptography. CRC, 1997.

[20] Moxie Marlinspike. Convergence (Beta). http://convergence.io/index.
html, Aug. 2011.

[21] S. Oaks. Java Security. Chapter 12. Digital signatures. O’Reilly Media,
2001.

[22] J. Oberheide, E. Cooke, and F. Jahanian. Rethinking antivirus: Exe-
cutable analysis in the network cloud. In USENIX HotSec, 2007.

[23] J. Oberheide, E. Cooke, and F. Jahanian. CloudAV: N-version antivirus
in the network cloud. In USENIX Security, 2008.

[24] S. Perez. Smartphones Outsell PCs. The New York Times,
Feb. 2011. http://www.nytimes.com/external/readwriteweb/2011/02/08/
08readwriteweb-smartphones-outsell-pcs-74275.html.

[25] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine. Survivable key
compromise in software update systems. In ACM CCS, pages 61–72,
2010.

[26] P. van Oorschot and G. Wurster. Reducing unauthorized modification
of digital objects. IEEE Transactions on Software Engineering, 38(1),
2012.

[27] D. Wendlandt, D. Andersen, and A. Perrig. Perspectives: Improving
SSH-style host authentication with multi-path probing. In USENIX
Annual Technical Conference, 2008.

[28] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative Android
markets. In NDSS, 2012.

https://adblockplus.org
http://googlemobile.blogspot.ca/2011/03/update-on-android-market-security.html
http://googlemobile.blogspot.ca/2011/03/update-on-android-market-security.html
http://www.apple.com/pr/library/2011/01/22appstore.html
http://www.apple.com/pr/library/2011/01/22appstore.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://www.wired.com/gadgetlab/2010/04/steve-jobs-porn/
http://www.wired.com/gadgetlab/2010/04/steve-jobs-porn/
http://hraunfoss.fcc.gov/edocs_public/attachmatch/DA-09-1736A1.pdf
http://hraunfoss.fcc.gov/edocs_public/attachmatch/DA-09-1736A1.pdf
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://blog.mylookout.com/2010/12/geinimi_trojan/
http://convergence.io/index.html
http://convergence.io/index.html
http://www.nytimes.com/external/readwriteweb/2011/02/08/08readwriteweb-smartphones-outsell-pcs-74275.html
http://www.nytimes.com/external/readwriteweb/2011/02/08/08readwriteweb-smartphones-outsell-pcs-74275.html

	Introduction
	Background
	Application Markets
	Package Signing and Application Namespace
	Malware Mitigation

	Threat model
	Proposal: Meteor
	Universal Application Identifiers
	Developer Registries
	Application Databases
	Kill Switch Authorities

	Implementation
	Information source management
	Information source query
	Kill Switch Listener
	Implementation Notes

	Discussion
	Advantages
	Limitations
	Security and Privacy Considerations

	Related Work
	Conclusion
	References

