

POLYTECHNIQUE MONTRÉAL

WORLD-CLASS ENGINEERING

Introduction

Why TLS?

- TLS is a widely deployed protocol used to secure online communications.
- The protocol itself is actively maintained, and its robustness and security are improved upon regularly.
- TLS is a complex protocol that can be painful to correctly configure and maintain for non-experts [1].

Potential configuration flaws with critical impact on user security and privacy.

Why IoT Devices?

- IoT devices are known to be poorly secured [2].
- IoT devices have been targeted by hackers for large scale attacks.
- Similar analyses lead on Android apps highlighted several misconfigurations on implementations where TLS is used for API calls [3].

IoT devices could present misconfigurations in their TLS implementations.

Objectives

Develop a methodology to automate TLS analysis on home IoT devices to identify vulnerable implementations.

Analysis features :

- Threat detector. Identify devices vulnerable to known TLS flaws and presenting misconfigurations.
- Black box tests: No modifications on devices are needed
- Active audits: Analyzer can intercept / block / modify packets.
- Fully automated: Analyses are run without needing any user intervention.
- Low profile analysis: Could be deployed in a home environment to monitor IoT devices without interfering in a noticeable way with their behavior.

LIFX Smart Build

WeMo Mini Smart Plug

TP-Link Smart Bulb

TP-Link Smart Plug

D-Link Smart Cam

Our analysis has shown that:

Analyzing TLS Use on IoT Devices Corentin Thomasset, David Barrera École Polytechnique de Montréal, Montréal, QC, Canada

Methodology

Conclusion

• Most of tested IoT devices conforms to minimum security requirements but are unnecessarily vulnerable. Fixes require manufacturers to issue firmware updates.

All devices advertise a large set of cipher suites when no backwards compatibility is needed (few API endpoints controlled by the manufacturer). For IoT devices, supporting old cipher suites extends the attack surface.

Why this is problematic:

- Negotiation and support of weak cipher suites can lead to attacks where a MITM attacker is able to decrypt the connection. This is problematic for devices that can leak sensible information about habits & presence.
- IoT devices are known to be hard to keep up to date. Conforming to minimum security today means vulnerable in near future.

Future work & improvements:

- We aim to develop a complete solution to protect vulnerable home IoT devices [4]. This TLS analysis module is part of a larger project for IoT traffic monitoring.
- Improve stability and develop more active audit scripts.

IOT TLS ANALYFER

Soft. Architecture

References

- [1] Jeremy Clark and Paul C. van Oorschot. SSL and HTTPS: **Revisiting Past Challenges and Evaluating Certificate** Trust Model Enhancements. IEEE S&P 2013
- [2] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Earlence Fernandes, Blase Ur. Rethinking Access Control and Authentication for the Home Internet of Things (IoT). USENIX Security 2018.
- [3] A. Razaghpanah, A.A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann, P. Gill - Studying TLS Usage in Android Apps. ACM CoNEXT 2017
- [4] D. Barrera, I. Molloy, H. Huang IDIoT : Securing the Internet of Things like it's 1994. Technical Report arXiv: 1712.03623