
FiGD: An Open Source Intellectual Property Violation Detector

Carson Brown, David Barrera, Dwight Deugo
The School of Computer Science, Carleton University

Ottawa, Ontario, Canada
carson@ccsl.carleton.ca, dbarrera@ccsl.carleton.ca, deugo@scs.carleton.ca

Abstract: FiGD (Fingerprint Generator/Detector) is an

open source Java application capable of detecting

intellectual property violations in compiled Java

programs without requiring access to the original source

files. FiGD uses a modification of the n!gram method

which is very accurate in discovering everything from

blatantly copied source, to more advanced attempts of

obfuscation (such as variable refactoring or white-space

insertions). Our improvements to the algorithm allow us

to increase the speed of detection and create small

fingerprints which can be stored for future comparisons.

1. Introduction

In recent years, Open Source Software (OSS) has

seen a surge in popularity. It is now common to find OSS

running on a variety of systems ranging from web servers
[14] to super-computers to mobile phones. There are

currently numerous OSS projects which have reached a

level of maturity sufficient for use by governments and

large corporations [15]. As this software makes its way

into more areas, legal concerns begin to emerge. It is

unclear who is at fault when an open source library in a

commercial product fails. Open source licenses [12] can

also be incompatible with each other, creating legal

problems for companies developing OSS. These are

legitimate concerns, but they are difficult to address if the

origins of the code are unknown.

1.1 Problem

The problem we focus on in this paper is clone

detection for software. We define a software clone as

source code in a unknown project that has been copied
(either fully or in part) from a known project. Clone

detection is useful for pinpointing code theft, as well for

general code auditing. Although clone detection has

already been extensively researched, this paper focuses

only on a small part of the problem which applies to

software written in the Java programming language. We

assume a black-box (A device or system whose workings

are not understood by, nor accessible to, the user and is

thus viewed in terms of its input and output characteristics)

approach where we generally do not have access to the

source code of the projects we are analyzing.

1.2 Motivation

The main motivation of this paper is to contribute to

the Open Source philosophy. When open source software

is stolen, any changes, improvements or otherwise, made
by the intellectual property (IP) thief are unlikely to make

it back into the community. Since the open source

software development cycle relies heavily on developers

contributing, IP theft can prove to be a dangerous threat to

this particular ecosystem.

Another motivation is cost: we would like to make it

affordable for companies or developers to audit their code

for the existence of other OSS. As of October 2008, there

are no known open source tools that (easily) allow this.

Some available software packages allow source code

comparison through simple string-matching, and others

are designed to work with only specific programming
languages. There are two commercial solutions, [13, 10],

costing between $50,000 to $250,000 for annual

subscriptions. Both of these companies also allow the end

user to pay by the megabyte (Mb), but still at prices

ranging from $3,000 to $25,000 for less than 100 Mb.

Prices this high could prove to be a significant barrier of

entry for small and medium-sized businesses.

1.3 Goals

Our goal is to write an application that will have the

following functions:

• Generate a unique signature (fingerprint) from

a Java ARchive (JAR) file.

• Search for similarities between a previously

generated fingerprint and a new, unknown JAR
file.

• Output relevant information regarding the

matches found and percentage of certainty.

1.4 Objectives

Given the goals described in Section 1.3, our

objectives are to focus not only on accuracy, but also on

performance and system resources. The current string-

matching approaches found in other projects [3, 4, 16]

tend to be very precise but extremely slow, on the order of

O(n2). These approaches also assume access to the

536

original source code which is not always provided. Our

objective is also to avoid using large amounts of memory

while generating our fingerprints or performing a

comparison. These concerns are of particular importance

when fingerprinting large files (i.e., >5Mb).

As another improvement, we will also avoid looking

at source code. We believe that since the source code is

not always packaged within JAR files, it would be better

to work without relying upon it, and base our comparison

on compiled Java byte-codes (Java byte-codes are what

the Java Virtual Machine (JVM) actually executes. It is

the compiled version of source code, where each byte-

code instruction is exactly one byte in length [7].).

The final objective is to make our fingerprint-detector

immune to variable refactoring (to change all references to

a variable, for example, to a different name). It is in this

manner that our algorithm will still detect a match based

on functionality, but not on semantics. Our algorithm is

thus resistant to changing variable names, method names,

or class names.

In order to generate small fingerprints, we will find

and store parts of the JAR file which are highly

representative of that file only. In essence, this technique

closely resembles what is done in the anti-virus industry

(and, in fact, in any signature-based detection environment)

where the smallest matching string of a virus is used as a

signature. Anti-virus software programs are able to rapidly

look for thousands of signatures in a given file. We have

created software that achieves similar behaviour at the

Java method level.

1.5 Outline

The remainder of the paper is structured as follows:

Section 2 describes certain basic concepts and

terminology, as well as look at related projects that

attempt to solve a similar problem. Section 3 explains our

design strategy, including decisions that had to be made in

order to reach our objectives. In Section 4 we present our

results. Section 5 provides a conclusion and elaborates on

future work.

2. BACKGROUND

Clone detection can usually be done either by string-

matching the source code or looking at binary file

signatures. The string-matching technique requires

looking at small sub-strings in the file (called n-grams,

where n is the number of characters in the string, or gram)

and then try to identify those strings in a different file.

This obviously requires a large amount of memory and

processing, especially if a sliding window of the entire file

is taken. For example, if the original file has 1000

characters in total (including white spaces and line

termination), using n-grams of size 10 without a sliding

window would give us 100 10-grams. If a sliding window

were used, we would have 991 10-grams (1000!10+1).

Continuing this example, we would need to search for

occurrences of 991 strings in a new file.

Binary file signature matching provides the added

benefit that the original source code is not required. This

is useful, for example, in the anti-virus industry, where

viruses and worms are packaged and distributed globally.

There is a slight difference that prevents us from using

this approach directly: source code may be slightly

modified and rebuilt, producing a completely different

binary file. For example we take the (extremely simple)

method in Listing 1:

int method() {

 int i=10;

 return i;

}

Listing 1: Simple Method

This method would have a certain binary signature

once compiled. However if we were to change its source

to the following, Listing 2:

int method() {

 int i=10;

 i--;

 i++;

 return i;

}

Listing 2: Modified Simple Method

The binary signature may be completely different,

even though the method has no changes in functionality

(i.e., it still returns the value of i=10). This problem is of

serious concern when considering OSS fingerprinting, as

the source code is almost always easily available and can

be changed and compiled by any software recipient.

2.1 JAR files and Class files

Our software will take as input any valid JAR file [5].

A JAR file is a file-type based on the popular “ZIP” file

format. It was developed by Sun Microsystems, and it

allows many files to be aggregated into one, with optional

compression. JAR files contain the Java resources

necessary to run Java programs. For this paper, we are

interested in one set of resources called “Class” files [8].

Class files are Java’s compiled files. A source file

(usually ending in .java) will be compiled to produce one

or more class files which are (for the most part) platform

independent (excluding platform-specific system

functions). Class files contain byte-code groups of Java’s

instruction sets that will be run (or interpreted) inside a

JVM.

2.2 Related Software

Although there are countless papers on clone

detection [2], software products that can detect clones of

compiled Java programs are difficult to find. Many papers

describe early prototypes of their algorithms and therefore

have not yet released their software. Other papers describe

537

the best ways of comparing strings, but generally require

access to source files. Software such as Simian [6], Clone

Digger [3], CCFinderX [1] and Clone Doctor [4] are

readily available, but also work only source files. The

advantage of these tools, however, is that they should

work on any type of source code (C, Python, Java,

assembly, even plain text) since they are performing basic

string matching techniques.

3. APPROACH

In this section describes at a high level our approach.

We provide the main algorithms for FiGD as well as what

decisions had to be made in order to achieve our goals.

3.1 Design

Rather than create a general purpose fingerprinting

program, this project has the particular distinction of

comparing JAR files. These have a known composition,

both in compression and file structure. For the purposes of

this project, we are looking for code reuse from one JAR

to another. Thus, we have distilled our approach from the

general case considerably: our fingerprint generator and

detector considers only Java class files, and more specific

still, considers only the byte codes of each method

contained in these class files.

We have made this decision based on what we feel is

representative of the uniqueness of a JAR file. When

considering JAR files, we cannot guarantee the inclusion

of source code (Java or otherwise), nor can we guarantee

that any part of the comparison JAR file retains similar

naming or folder structure of Java packages. What we can

consider, however, is that the essence of a Java method

will be retained, regardless of moving the method to

another class or changing its name. That is to say, the

method will still do the same thing.

This section has been broken down into two sections,

comparing the two components of the project: the

fingerprint generator, and the detector.

3.1.1 Fingerprint Generator

The fingerprint generator must first open the JAR file

to be compared. All JAR files are created with the ZIP

standard, and can be decompressed rather easily. In the

Java API, the java.util.jar package contains many useful

objects, including the JarFile and JarEntry classes. It is

then possible to compute a listing of all files contained in

the JarFile object, and a simple file type check allows for

a complete listing of all class files.

The decompressing of the JAR file contents into class

files is done through the JarResources class, adapted from

a Java-World article [9]. We have modified the class to

only decompress the JAR’s class files into memory. Our

fingerprint generator can then iterate over all class files,

by requesting each class file individually from the

JarResources object. This is done by writing the class out

to a temporary file, which is later deleted upon the

program’s exit. FiGD incurs in a slight memory overhead

due to the extensive utilization of objects as opposed to

programming in a structural language such as C. This,

however, proves to be a negligible performance limitation,

since the JAR files we are testing usually fall within the

0Mb-50Mb file size range.

With the Java class file written out to a temporary file,

we made use of another open source library to access the

necessary methods. The org.netbeans.modules.classfile

package [11] allows for direct access to the class file byte-

codes, by loading the file as a ClassFile object, part of the

NetBeans package. It is then possible to iterate through all

methods of the ClassFile object, which are available as

instances of the Method class. Each method can then be

extracted as a list mof Java byte-codes using other classes

found in the NetBeans package.

Rather than use the byte-codes for a whole method

(which would increase the size of our fingerprint

considerably), we decided on only storing a single n-gram

per method. We first compute all n-grams of each method,

then the most unique n-gram is selected to represent that

method in the JAR file’s fingerprint. The uniqueness of n-

grams differ based on the size of n, but our testing has

shown that using n a gram size of 10 (i.e., 10 byte-codes)

strikes a good balance between accuracy and fingerprint

size. Also, using larger values for n did not improve

accuracy. By using this approach, the fingerprint size is

linearly dependent on the number of methods found in the

JAR file. It is this list of unique n-grams, as well as some

statistical information—such as the number of methods, n-

grams stored and total n-grams—that form the fingerprint

of a JAR file.

3.1.2 Detector

Detection requires an original fingerprint as well as a

comparison JAR file. The result returned from our

detector contains both our certainty percentage that code

from the fingerprinted JAR file is contained in the

comparison, and also our calculation of how much of that

original code appears. This is calculated by opening the

JAR in much the same way as the fingerprint generator,

save that our generator does not throw away non-unique

n-grams but instead compares these to the representative

n-grams of the fingerprint. This is done by first generating

a list of n-grams for a given method in a class file. These

are then compared to the n-grams in the fingerprint which

have not already been matched by n-grams in the

comparison JAR file. The list of n-grams generated by the

detector are not stored for later use: the only n-grams

stored in working memory are those that are being

compared to the fingerprint. When a match has been

found between the fingerprint and the comparison JAR

(i.e.: both JAR files contain the same method) the next

method in the comparison JAR is considered for detection.

The number of matches is stored, and used in the

calculations of the detector’s final result. The number of

matches divided by the total number of n-grams in the

538

original fingerprint yields the percentage of the original

JAR file in the comparison JAR file. The certainty of the

final result is calculated by the percentage of the n-grams

included in the original fingerprint divided by the total

number of n-grams created from the JAR file.

3.1.3 Summary

The algorithms in Listing 3 and 4 detail the

fingerprint generation and detection approaches from

Sections 3.1.1 and 3.1.2.

Algorithm Generator

Input: Jar File

Output: Fingerprint

1. G ! { " }

2. C ! {c | ! Class File c # Jar File }

3. for c # C

4. do M ! { m | ! Method m # c }

5. for m # M

6. do compute n-grams

 from byte-codes of m

7. s ! n-gram of lowest count

8. add s to G

9. add G to Fingerprint

10. return Fingerprint

Listing 3: Generator Algorithm

Algorithm Detector

Input: Fingerprint

Input: Jar File

Output: FingerprintResult

1. count 0

2. C ! { c | !Class File c # Jar File }

3. for c # C

4. do M ! { m | " !Method m # c }

5. for m # M

6. do consider each n-gram gc of m:

7. if gc # Fingerprint

8. then count ! count + 1

9. remove gc from considered

 Fingerprint entries

10. continue to next Method m

11. certainty ! count / Fingerprintsize * 100%

12. add certainty to FingerprintResult

13. return FingerprintResult

Listing 4: Detector Algorithm

3.2 Decisions Made

Over the course of creating the fingerprint generator

and detector, we made a variety of design decisions. Our

first implementation for creating fingerprints at the Java

method level involved computing simple hashes of every

method, which significantly reduced our accuracy when

situations such those described in Section 2. This inability

to catch “useless” modifications to the code in a method

led us to desire a way of capturing the uniqueness of a

method. We then implemented the n-gram implementation,

and extracted only the first n-gram of lowest frequency.

This involved some loss in accuracy, but it is our belief—

proven through testing— that this loss is negligible when

compared to the large decrease of the generated

fingerprint’s footprint.

Our experiments also show that using n-grams where

n is 10 have shown to be the most representative. When n

is set to lower values, accuracy of the algorithm suffers, as

the n-grams represent very little of a method’s structure.

This loss of accuracy can be attributed to false positives

when comparing the fingerprint to another JAR file.

Similar to the method hashing described above, having

large values of n leads to loss of accuracy, where truly

equivalent methods are no longer detected as such. As the

size of n increases, the algorithm approaches behaviour

similar to the method hashing described above.

Our implementation of generating fingerprints and

detecting similarities between JAR files compares based

on the contents of class file methods. This means that

“empty” or unimplemented methods are not considered.

We are aware that our implementation cannot properly

deal with interface classes, or the non-implemented

abstract methods found in abstract classes. We do not

believe this to be a fault in our design, as interfaces are by

definition public, and abstract classes are still considered;

only the abstract methods are ignored.

4. RESULTS

This section documents the results of testing FiGD on

various, representative JAR files. The subsections below

describe testing in both accuracy and performance during

the implementation’s construction and as a completed

product in “real world” use cases.

4.1 Accuracy

For testing the accuracy of FiGD, we used two

random JAR files found in the Eclipse JAVA IDE

installation. We created fingerprints for each one, and then

compared them to themselves using the detector. Both

fingerprints were generated in under 3 seconds, and the

output claiming a 100% match was displayed immediately

after. A 99.999% certainty was also displayed in both

cases, confirming that with high confidence, the files are

fully identical.

One of the features of FiGD is that as soon as the first

n-gram is matched for a given method, no further n-grams

are compared for that method, since we assume we have

found a cloned code segment. This greatly speeds up the

detection phase when we know a priori that there is some

kind of similarity between two files. If the files are

completely different (i.e., zero matching methods), then

our detector has to compare every single n-gram to the

539

fingerprint, which takes timeO(n · m), where n and m

represent the number of methods in each JAR file.

Although false positives have not been extensively

tested, we believe the chance of them occurring is small,

since our n-grams are large enough to make each method

signature reasonably unique.

4.2 Performance

For performance testing, we used a large JAR file

(about 10Mb) and a small JAR file (about 300Kb). We

saved copies of both JAR files with slight modifications.

The modifications were simply to remove a random

number of class files from each one. We then compared

the original unmodified file to the modified variations. We

obtained results in less than 5 seconds with FiGD

reporting between 70% and 80% matches between the

JAR files. This seems correct, as only ma small number of

Class files were removed. The certainty percentage

reported was still high at over 80% for both test cases,

confirming that our algorithm is not only fast, but correct

as well.

4.3 Real World Testing Results

Our various tests over the course of developing FiGD,

made use of a variety of JAR files, including many from

the Eclipse 3.4 Classic IDE plugin directory, chosen due

to Eclipse’s popularity. Two JAR files have been included

in Table 2 from this software: org.eclipse.jface.text

3.4.0.v200806032000.jar and org.eclipse.jdt.ui

3.4.0.v20080603-2000.jar (abbreviated in the table due to

file name length). The third JAR file used, commons-

attributes-api-2.2.jar, is from the Apache Commons

library. These three JAR files include mcompiled Java

class files and are three representative sizes, mthe largest

being included for “stress” testing. The tests have been

performed on a Toshiba Satellite PSM40-SF300E laptop,

with an Intel Pentium M processor (1.86GHz, 533MHz

FSB, 32KB of L1 cache, 2MB of L2 cache), 1 GB of

memory (2 x 512 PC2700 DDR SODIMM) running

Ubuntu 8.10 GNU/Linux.

The JAR files used in Table 1 have been created

especially for testing FiGD, and include small, easy to

manage Java class files used in first-year programming

assignments. These class files have been modified and

compiled into various JAR files, as described in the table.

“Original” is in reference to an original set of Java class

files serving a particular purpose. For each of the test

cases where files were modified, a significant number of

changes were made—for example, more than 60% of all

variable names were changed for the second test in Table

1. These tests show that FiGD is insensitive to aesthetic

source-code changes such as variable name refactoring or

source code comments.

Table 2 demonstrates more “real world” testing,

involving real world JAR files. These files were

deliberately chosen because they are not obviously related

by purpose or content. The certainty percentages

calculated are entirely dependent on how well FiGD can

form a representative fingerprint on a given JAR file,

while the inclusion percentage (Inc %) relies on the

number of matched methods. These tests confirm our

suspicions: that the JAR files are convincingly different.

The only non-obvious data set is the last pair of tests

comparing the two Eclipse-based JAR files. We believe

these inclusion percentages to be correct, as both of these

JAR files share a common Eclipse plug-in architecture,

and likely do share similar code bases in this respect.

These tests also confirm the worst-case running time

calculated above, as these files have very few similarities,

causing near quadratic run-times, executing over a few

minutes on the test machine.

Table 1: Accuracy Testing

Description Certainty Inc (%)

Original compared to copy

where method names were

changed

100% 100

Original compared to

copy where variables were

renamed and comments added

or removed!

100% 100

Original compared to copy

where additional class files

were added

100% 100

 Previous test in reverse 100% 61.6

Original compared to copy

with methods and class files

removed!

100% 83.8

Above text in reverse 100% 100

Table 2: Performance Testing

Description Certainty Inc

(%)

Time

(ms)

commons-attributes-

api-2.2.jar (35.9Kb)

compared to itself

93.6%

100

220

org.eclipse.jface.text.jar

(922.7Kb) compared to

itself

88.5%

99.9

2137

org.eclipse.jdt.ui.jar

(9.2Mb) compared to

itself!

97.6%

99.9

19304

commons-attributes-

api-2.2.jar compared to

org.eclipse.jface.text.jar

93.6%

0

3333

Previous test in reverse 88.5% 0 3643

commons-attributes-

api-2.2.jar compared to

org.eclipse.jdt.ui.jar

93.6%

0.6

28203

Previous test in reverse 97.6% 0 37660

org.eclipse.jface.text.jar

compared to

org.eclipse.jdt.ui.jar

88.5%

22.7

719561

Previous test in reverse 97.6% 3.0 820536

540

5. CONCLUSION

In this paper we have presented FiGD, an algorithm

and implementation for detecting clones in compiled Java

projects. Even when access to the source code is not

available, FiGD is able to produce very accurate results in

shorts periods of time by using a combination of previous

approaches as well as custom optimizations. Source code

for FiGD is released under the BSD license and is

available by request. Included with the source code is full

Javadoc documentation describing all methods and classes.

5.1 Review Goals and Contributions

Our main goals discussed in Section 1.3 are achieved

with the design and implementation of our algorithm. We

believe we are the first to approach the clone detection

problem for software through a black box approach,

giving the OSS community another tool for detecting IP

violations.

5.2 Future Work

While we have shown that we are able to compare

fingerprints quickly, there are still some possible

optimizations that could be made in terms of generating

each fingerprint. Making use of an advanced data structure

(such as heaps) would provide us with faster searching

than the current array-based implementation. This could

theoretically reduce our worse-case running time for

computing fingerprints to O(n · logn). Together with

stored pre-computation of all the known JAR files

previously fingerprinted and stored offline, we believe

that FiGD would operate significantly faster. We would

also like to do more work on finding optimal n-gram sizes

and how they impact the accuracy of the detector. Finally,

we would like to expand the fingerprint to also include

source code and plain text files as opposed to only

considering Class files, and include these findings into a

more advanced detection schema.

6. REFERENCES

[1] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue:

CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code. IEEE Trans.

Software Eng. 28(7): 654-670, 2002.

[2] Clone Detection Literature - University of Alabama at

Birmingham.

http://students.cis.uab.edu/tairasr/clones/literature/).

Accessed November 3, 2008.

[3] Clone Digger. http://sourceforge.net/projects/clonedigger/.

Accessed November 3, 2008.

[4] Ira D. Baxter, Andrew Yahin, Leonardo Mendonça de

Moura, Marcelo Sant'Anna, Lorraine Bier: Clone

Detection Using Abstract Syntax Trees. ICSM 1998: 368-

377. 1998.

[5] JAR File Specification.

http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html.

Accessed November 3, 2008.

[6] Simian - Similarity Analyzer.

http://www.redhillconsulting.com.au/products/simian/index

.html. Accessed November 3, 2008.

[7] Wikipedia - Bytecode.

http://en.wikipedia.org/wiki/Bytecode. Accessed November

2, 2008.

[8] Wikipedia - Class File.

http://en.wikipedia.org/wiki/Class_(file_format). Accessed

November 3, 2008.

[9] Arthur Choi. Java tip 49: How to extract java resources

from jar and zip archives.

http://www.javaworld.com/javaworld/javatips/jw-

javatip49.html. Accessed October 30, 2008.

[10] Black Duck Software.

http://www.blackducksoftware.com/protex. Accessed

October 30, 2008.

[11] NetBeans.org. Classfile reader java documentation.

http://bits.netbeans.org/dev/javadoc/org-netbeans-modules-

classfile/. Accessed October 30, 2008.

[12] Open Source Licenses - Free Software Foundation.

http://www.fsf.org/licensing/licenses/. Accessed October 31,

2008.

[13] Palamida Software. http://www.palamida.com/products.

Accessed October 25, 2008.

[14] HTTP Server Project. http://httpd.apache.org/. Accessed

October 25, 2008.

[15] Apache Tomcat. http://tomcat.apache.org/. Accessed

October 25, 2008.

[16] P. Bulychev, M. Minea, Duplicate code detection using

anti-unification, in: Spring Young Researchers Colloquium

on Software Engineering, SYRCoSE 2008, 2008, p. 4

541

