
Understanding and Improving App Installation Security
Mechanisms through Empirical Analysis of Android

David Barrera Jeremy Clark Daniel McCarney
Paul C. van Oorschot

School of Computer Science
Carleton University

ABSTRACT
We provide a detailed analysis of two largely unexplored
aspects of the security decisions made by the Android op-
erating system during the app installation process: update
integrity and UID assignment. To inform our analysis, we
collect a dataset of Android application metadata and ex-
tract features from these binaries to gain a better under-
standing of how developers interact with the security mech-
anisms invoked during installation. Using the dataset, we
find empirical evidence that Android’s current signing ar-
chitecture does not encourage best security practices. We
also find that limitations of Android’s UID sharing method
force developers to write custom code rather than rely on
OS-level mechanisms for secure data transfer between apps.
As a result of our analysis, we recommend incrementally de-
ployable improvements, including a novel UID sharing mech-
anism with applicability to signature-level permissions. We
additionally discuss mitigation options for a security bug
in Google’s Play store, which allows apps to transparently
obtain more privileges than those requested in the manifest.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Cryptographic controls, Access controls

Keywords
Software installation, digital signatures, Android

1. INTRODUCTION
The wide-spread adoption of smartphones and tablets has

popularized third-party app development and consumption.
This new app-centric culture has encouraged users to install
an assortment of task-specific apps on their devices. The
average Google Android user has 32 installed apps, while the
average Apple iOS user has 44.1 In this paper, we consider

1The Mobile Media Report, Nielsen, Q3 2011

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPSM’12, October 19, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1666-8/12/10 ...$10.00.

the security decisions made by the Android operating system
(OS) during the app installation process. We perform an in-
depth study of the Android OS due to its popularity (at the
time of writing, the smartphone OS with the largest market
share) and open architecture.

We present a detailed description of the Android installa-
tion process, breaking it into three stages: Update Integrity
(whether to treat the installation as a new app or as an
update, overwriting the previous version), UID Assignment
(whether to assign the app a new Linux user ID (UID) or
allow the app to run under an existing UID), and Permis-
sion Assignment (which set of permissions are granted to,
or inherited by the newly installed app). To our knowledge,
the first two stages have been largely unexplored in the lit-
erature.

We believe it is important for research to be grounded
in real-world practices, especially in the case of Android’s
widespread adoption. Any recommended OS changes which
are compatible with current practices are more likely to be
adopted and to have higher impact than blank-sheet the-
oretical approaches. To better understand how developers
package and sign applications, we design and explore a cus-
tomized repository of meta-data and app components ex-
tracted from a representative set of Android apps. Our
dataset currently includes metadata, packaging and code
signing information for app packages collected from 7 dif-
ferent sources, including app markets, filesharing networks
and malware repositories.

Our repository allows us to use these components to in-
fer relationships between apps. For example, starting with a
single app, we can query information about the app, all ver-
sions of this app both within and across marketplaces and
other app sources, all other apps signed with the same key
(or key set), and all other apps that share compiled code,
resources or similar manifest entries.

Some notable findings from our dataset are: 18% of de-
velopers signed more than one app with the same key; 4%
of apps obtained from file-sharing networks have direct links
to known malware; 2 infected apps were found live on the
Aproov app store; a publicly available test key was used to
sign 291 apps in our dataset, including 51 malicious apps and
15 apps on the Google Play Store, posing a risk to update
integrity; and due to a peculiarity in the current Android im-
plementation, apps sharing a UID can display no requested
permissions and still perform privileged operations — in one

http://blog.nielsen.com/nielsenwire/online_mobile/
the-state-of-mobile-apps/

http://blog.nielsen.com/nielsenwire/online_mobile/the-state-of-mobile-apps/
http://blog.nielsen.com/nielsenwire/online_mobile/the-state-of-mobile-apps/

case observed from the dataset, obtaining full internet ac-
cess, location data and personal data.

We plan to release our full database of extracted app com-
ponents (and provide a web-interface which we call the An-
droid Observatory2 that allows a number of pre-constructed
queries to be made against the database). Our dataset cur-
rently contains information from 11,000 app packages and
is the first dataset to include apps from the Amazon App-
store, the MiKandi adult app market, the Aproov app store,
and the F-Droid open source repository. This modestly-sized
dataset allows representative observations to be made about
developer practices, which informs our analysis and sugges-
tions. Gathering a larger dataset, which is not our current
focus, may nonetheless be of interest to the community to
allow complementary ongoing research.

Outside of the installation process, security mechanisms
for Android [5, 12] are also applied before and after in-
stallation (e.g., app store vetting or run-time analysis re-
spectively). Security mechanisms that are applied pre-
installation [3, 14, 17, 7, 31] and post-installation [26, 13, 19,
9, 6] are important to the overall Android security architec-
ture, but beyond our present scope. Permission assignment
has been extensively studied in the literature [15, 17, 24, 23]
but the other portions of the installation process—update
integrity and UID assignment—remain largely unexplored
in the research literature prior to our work. See the related
work in Section 6 for additional details.

Our primary contributions are as follows.

1. We conduct an empirically-informed systematic anal-
ysis of the security mechanisms employed during An-
droid app installation. These mechanisms include sig-
nature verification and UID assignment, and how they
relate to granting (and possible inheritance) of permis-
sions.

2. We propose a mechanism for allowing distinct devel-
opers to share an Android UID while maintaining au-
thorship and control over updates to their respective
applications. Our proposal is incrementally deployable
and congruent with the developer practices seen in our
data. The proposed mechanism can also augment the
flexibility of signature-permissions.

3. We identify and describe a flaw in the Google Play app
that enables apps sharing UIDs to obtain higher priv-
ileges than those declared in their manifest. We call
these attacks“permission inheritance”and“retroactive
permission inheritance” and we explore possible pre-
vention mechanisms.

Section 2 reviews the Android security model and app in-
stallation process. We provide an empirically-based analysis
of update integrity on Android in Section 3. In Section 4,
we discuss the limitations of Android’s current UID sharing
mechanism, and propose improvements. Section 5 discusses
permissions as they relate to UID sharing and signature-level
protections. We present related work in Section 6 and con-
clude in Section 7. In Appendix A we provide more detail
on our dataset and web-interface.

2The name is inspired by the SSL Observatory [10], which
is in the same spirit as our own Observatory.

2. ANDROID PRELIMINARIES
For context, we first review background details [16, 29].

Android libraries and middleware run on top of a Linux ker-
nel. Thus, many OS and security properties are inherited
from the underlying Linux architecture. We first briefly re-
view the Android security model. We then detail the app
installation process, noting that it differs significantly from
standard Linux software installation.

App Packages.
An Android app package (apk file) is an archive. It con-

tains a Dalvik executable (dex file), which is a compiled An-
droid program that runs on a Dalvik virtual machine, and
a set of resources (non-executable files like graphics, media
files, user interface components, etc.). App packages also
contain a manifest (AndroidManifest.xml), which on An-
droid contains meta-information about the app like package
name, version, supported Android versions, and other at-
tributes. These components are digitally signed with the
developer’s signing key. The developer’s signing certificate
can be self-signed and is included in the application package.

Android Security Model.
The Android security model is based on the Application

Sandbox.3 Android enforces isolation between sandboxes,
preventing apps from modifying or otherwise interfering with
each other. Android assigns a unique Linux user ID (UID)
to each sandbox, which may contain one or more apps (see
Section 4). This mechanism allows apps to have private file
storage as well as private memory and process space, all
enforced by the kernel.

If necessary, developers request special privileges (e.g., use
of the camera, GPS sensor, microphone) for their app by in-
cluding a list of permissions in the app’s manifest. The man-
ifest is read at installation time, and the user is prompted to
accept or reject the permission set. On stock Android builds,
permissions cannot be individually rejected. Thus, develop-
ers assume that once their app has been installed they can
make use of all the features protected by the permissions
requested.

Codesigning is used in conjunction with the app sandbox
to provide several fundamental aspects of the Android secu-
rity model. The developer’s certificate is used to restrict who
can issue software updates to the app (described in detail
in Section 3), the app’s inter-process communication (IPC)
abilities, and whether certain permissions can be obtained.
As an example of the latter, the MASTER_CLEAR permission
allows an app to delete all user data and restore the device to
its factory state. While the MASTER_CLEAR permission can be
requested by any app, it can only be granted to apps signed
with the same key as the system image. These permis-
sions are called signature or signatureOrSystem permis-
sions. Third-party developers may additionally write public
APIs and protect them with signature-level permissions.

2.1 Deconstructing App Installation
Android allows any developer (even those who have not

registered with Google) to create and distribute apps. Apps
can be distributed through the official Google Play Store,
through third-party markets (e.g., Amazon Appstore) or

3http://developer.android.com/guide/topics/
security/security.html

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html

Figure 1: Our abstract model of the Android installation process for an app package (apk). Unless otherwise
specified, an answer of no to any conditional aborts the installation.

through developer websites (side-loading). The lack of con-
trol over the app distribution process raises the importance
of enforcing security within the Android OS.

When a new app is loaded for installation, either through
a third-party market or side-loading, the sequence of events
is as we depict in Figure 1. When apps are installed through
the Google Play Store, permissions are approved prior to
installation (see Section 5.1), but the rest of the process
remains the same.

First, the app package validity is verified: the system en-
sures that the Android app package has not been modified or
corrupted since being signed, and that it contains a valid cer-
tificate for the signing key. Next, Android decides whether
the app is a new installation or should overwrite an existing
app. If the app being installed has the same package at-
tribute in the manifest (e.g., com.google.android.music)
as another currently installed app, then Android will treat
the installation as an update. In this case the certificate
(or set of certificates if signed by multiple keys) is compared
to the certificate(s) of the already installed app. If both
apps were signed with the same key(s), then the currently
installed binary is removed (preserving any user data) and
the new app is installed in its place. Otherwise, the new app
is installed as an initial installation.

Next Android must assign a UID to the app. In this case,
the previous app’s UID is used. In the case of an initial
installation, Android checks if the app’s manifest contains
the sharedUserId directive. If so, Android looks for any
other installed apps that are signed with the same key(s)
and also have sharedUserId specified in their manifest. If
such apps are found, the app is assigned the same UID;
otherwise a new UID is created.

Finally permissions must be assigned to the UID. The
user is prompted to review and approve the permission as-

signments before the app is installed. When UID sharing
is not used, permissions listed in the app’s manifest are as-
signed to the UID. When UID sharing is used, the UID is
assigned the union of all permissions in the manifests of apps
sharing the UID. If the app is updating an already installed
app, the permissions listed in the updated app’s manifest
are assigned to the UID.

2.2 Empirical Dataset
To inform our research, we constructed a dataset intended

to roughly represent what typical Android users would be
exposed to when searching for and installing apps. To obtain
this diversity, we crawled, downloaded and parsed apps from
three types of repositories. See Appendix A.2 for details
on the types of apps contained in each repository, crawling
methodology and rationale for inclusion in our dataset.

1. Official and alternative app markets (8612 bi-
naries): Google Play Store (free apps, 6079 binaries),
Amazon Appstore (paid apps, 39 binaries), F-Droid
(open-source apps, 647 binaries), MiKandi (adult free
apps, 104 binaries), Aproov (free apps, 1743 binaries).

2. File sharing networks (2283 binaries): 3 applica-
tion packs found on the Bittorrent network.

3. Malware (209 binaries): Infected apps contributed
by security researchers and anti-virus firms

Our data collection process involves writing a custom
crawler or downloader for each application repository. We
note that in contrast to other researchers (particularly
those focused on permission analysis), we must obtain the
full Android application package instead of screen-scraping.
Our analysis depends heavily on code-signing details which
are not displayed on web-facing app repository front-ends.
Downloading the full apk files allows us to peer into the

archive and extract signatures and certificates, metadata,
compiled code and resources.

3. APP UPDATE INTEGRITY
App signing is the primary security mechanism that pro-

tects the integrity of the app after it is released by the devel-
oper, ensuring that only the developer can issue an update
to an already installed app. For an app to be installable on
Android, the app package must be digitally signed with at
least one developer’s signing key. Packages generally contain
a self-signed developer certificate binding the public signing
key to developer-supplied information. If an update contains
the same package name but is signed with a different key,
the Android OS will not allow it to install. Users can only
install such an update by first removing the current version
of the app, which also removes all user data associated with
it.

In this section, we analyze the specifics of app signing in
Android. With insight from our dataset, we show how the
current model has limitations regarding certificate expira-
tion, revocation and key evolution. We discuss alternatives
and enhancements, and offer some cautious recommenda-
tions.

3.1 Signing Details
We were not able to locate documentation defining the

precise process used to sign all the resources in an Android
app. We consequently reconstruct it for the current (as of
writing4) version of Android. App signing is handled by the
jarsigner tool supplied with Java development tools. The
developer generates a self-signed certificate, which can in-
clude standard X.509 certificate attributes like a common
name, organization, location and validity period. The sig-
nature algorithm can be either RSA or DSA. Out of 4,141
distinct signing certificates observed in our data set, 96%
used RSA and 4% used DSA. RSA is the default for the
Android Development Tools. The certificate is stored in the
META-INF/NAME.RSA file (or .DSA).

A manifest of every file in the app package (each resource,
the binary, and the app manifest) is created by jarsigner

in META-INF/MANIFEST.MF. This manifest file should not
be confused with the app manifest, AndroidManifest.xml,
which specifies developer-supplied meta-information about
the package (e.g., app name, version, permissions, etc.). For
each file, MANIFEST.MF includes an entry with its path and
a SHA1 hash.

Next, a signature file META-INF/NAME.SF is generated by
jarsigner. The signature file may include a hash of META-

INF/MANIFEST.MF and must include an individual hash of
each entry in MANIFEST.MF5 along with the path to the file
the entry concerns. This level of indirection (between MANI-

FEST.MF and NAME.MF) is redundant in Android apps as the
manifest entries themselves are only a file path and hash,
however this may not be the case for general JAR archives.
Finally, the file NAME.SF is hashed and signed. This signature
is appended to the certificate found in META-INF/NAME.RSA

(which itself is already signed). When apps are installed,
the OS verification process checks the signature on NAME.SF

using the public key in NAME.RSA, and the correctness of the
hashes in NAME.SF and MANIFEST.MF against the files in the
package.

4Android 4.0.4 (Ice Cream Sandwich).
5MANIFEST.MF entries are delimited with 0x0D0A0D0A.

Authentication Model.
Android takes a trust-on-first-use approach to app sign-

ing (aka leap-of-faith authentication [2]). The identity of
app developers is not authenticated but if an app is first in-
stalled from a legitimate developer, subsequent updates can
be recognized as being from the same developer. By con-
trast, in a full authentication model, a developer’s public
key is bound to her identity by an authoritative party. An-
droid’s recognition-based approach is lightweight,6 requires
no certificate authorities, or centralized PKI of any form
(cf. [1, 25, 22]). It is sufficient for preserving update in-
tegrity given a correct initial installation. Its drawback is
its inability to provide trust on an initial installation.

Android will install apps with CA-issued certificates. In
this case, the CA certificate must also be included in META-

INF/NAME.RSA with the developer certificate. Of the over
4000 certificates in our dataset, only 5 instances in our
dataset had a CA-issued certificate: three were issued by
Sprint Vision, one by Thawte Premium, and one by Thawte
Personal Email. Android does not reference a list of trusted
root CAs during installation, and it will accept a self-signed
certificate that authorizes itself as a CA (i.e., sets basic-

Constraints=CA:true).

Signature Stripping.
A modification to a signed app will cause verification of

the original signature to fail, making the signature useful for
preventing passive file corruption. However the original sig-
nature can be removed and replaced with a new signature
and self-signed certificate. For new installations, Android
will accept any signature accompanied by a self-signed cer-
tificate (by contrast, in standard iOS installation, apps must
be signed by Apple [11]).

As one apparent example of how signature stripping can
be useful to an adversary, our dataset contains multiple ver-
sions of the app Baseball Superstars (com.gamevil.bs2010)
from the Google Play Store, all signed with the same key.
We also observed another instance of this app in the Conta-
gio malware dump. It contained the same package name and
resources but had a different Dex file (one that contained the
malware Geinimi7), a larger permission set, and a different
signature. While we cannot conclusively classify this as an
example of signature stripping, it is consistent with a ma-
licious developer stripping the signature, weaponizing the
Dex file, resigning and redistributing the app.

Maintaining a Reputation.
The recognition-based approach used by Android can al-

low a developer to build an unforgeable reputation across
apps. Of 4141 certificates used to sign apps, 18% were used
to sign more than one unique app. Google signed all of their
apps with one of two keys.8 With a tool like the Android
Observatory (the web-interface to our dataset described in
Appendix A) to illustrate the set of apps signed with the
same key, this reputation can result in positive security as-

6In the categorization of Goldberg et al., it is a stateless non-
interactive message recognition protocol which is shown to
be one-to-one with a digital signature scheme [22].
7http://blog.mylookout.com/blog/2010/12/29/
geinimi_trojan/
8SHA1 certificate fingerprints:
38918A453D07199354F8B19AF05EC6562CED5788
24BB24C05E47E0AEFA68A58A766179D9B613A600

http://blog.mylookout.com/blog/2010/12/29/geinimi_trojan/
http://blog.mylookout.com/blog/2010/12/29/geinimi_trojan/

sertions such as: ‘the entity which signed this relatively un-
known app is the same entity signing another trusted app;’
or negative ones: ‘the entity which signed this app is also
the signer of another app with known malware.’

As an example of the latter, we found in our dataset
instances of the same signature applied to both apps
available on the Aproov marketplace and a different app
with known malware from the Contagio malware repos-
itory. Using Virus Total, we scanned the Aproov apps
(com.zft and com.droiddream.musicbox) and detected
malware (TrojanSpy:AndroidOS/DroidDream.A). We noti-
fied the Aproov marketplace of the malware and the apps
have since been removed from the market. Generally with
a dataset like ours (and the web-interface we have built for
it), it is easy to see apps signed with the same key. We
anticipate that developers of malicious apps will, if they do
not do so already, use a new unlinkable certificate for each
app to prevent detection via this method.

While we see no long-term benefit of code-signing for de-
tecting malicious apps, it is very useful for building a pos-
itive reputation as a developer. One drawback of this ap-
proach is that it may lead development teams to use a single
reputable key as often as possible, e.g., by sharing the key
and setting unreasonably long certificate expiration periods,
which could increase its exposure to internal compromise by
a single rogue developer or external compromise by having
it replicated on multiple platforms.

3.2 Alternative Signing Key Management
In this section, we analyze the Android app signing model

relative to other PKIs. We find theft-resistant measures
and deterrents from traditional PKIs like certificate expira-
tion and revocation are not available in Android, nor is any
mechanism for changing signing keys. Allowed measures like
signing apps with multiple keys are rarely used. We also con-
sider various ways the current model could be augmented.
As is common in PKI design, each augmentation presents a
trade-off as opposed to an unequivocal improvement.

Full Authentication.
One alternative to the entire reputation-based model is to

use a full-fledged PKI where developers prove their identity
to a certificate authority (CA) and are issued a certificate.
In this model, the certificate information can link developers
together as being the same person or from the same team
without needing to use the exact same key to sign every
app. While this is beneficial, the added complexity makes
the model a poor tradeoff in our opinion. It would require
developers to obtain CA certificates and Android to decide
on the set of trustworthy CAs as well as make security deci-
sions (or require the user to) based on certificate attributes.
Being a heavy-weight change for limited benefit, and one
that does not work particularly well in other domains (e.g.,
SSL/TLS), we do not recommend it.

Certificate Tree.
The self-sign model can be combined with a constrained

certificate hierarchy we refer to as a one-level certificate tree.
A development team (or single developer) would establish
a self-signed long-term CA certificate as the root of a one-
level tree. The signing key would be well-protected and used
only infrequently to issue shorter term certificates for actu-
ally signing apps. The update process would still use the

leaf certificate in the tree to decide on allowing an update to
an existing app but the root certificate could be used to es-
tablish a shared reputation amongst all certificates it issues.
In a team environment, this could be a shared reputation
across distinct developer certificates. With a single devel-
oper, it could be a shared reputation amongst distinct app
certificates.

A certificate tree can reduce the need to replicate copies
of the same key. It can also be useful if a developer wants
to transfer ownership of a signed and widely installed app
to another developer. If the signing key for an app is trans-
ferred to the buyer, the buyer can issue updates to all apps
signed with the key. A certificate tree can allow individual
signing keys for distinct apps while still allowing the devel-
oper to maintain a reputable link to their other apps. It is
not a fully satisfactory solution as transferring a key does
not sever the link to the CA certificate.

Certificate trees require no changes to Android but rede-
fine the purpose of a CA. Typically, if you hold a CA-issued
certificate, this is interpreted as the CA validated your iden-
tity. Here, CA-issued certificates are used to collect several
signing keys under one shared reputation. For the latter
type of CA to distinguish itself from the former, they could
use a naming convention that would be obvious (or, more
formally, use an X.509 extended attribute).

Using our dataset, we found one example of a comple-
mentary approach to a certificate tree used (ostensibly9) by
Sprint. Sprint established a CA certificate for Sprint Vi-
sion Root CA, which itself issued a CA certificate for Sprint
App CA. The app CA issued a shorter lived certificate used
to sign two different apps in our dataset. We did not see
more than one certificate issued by the App CA but this is
a similar hierarchy to the tree approach.

Certificate Expiration.
Android requires the app signing certificate to specify a

validity period but Android does not currently enforce ex-
piration through preventing app installation. We found 2%
of the 4,141 observed signing certificates in our dataset were
expired. If expiration were enforced, the reputation model
would still encourage developers to specify a long validity
period for their certificate. The Android documentation en-
courages this (it is still written as if expiration were en-
forced) and claims that the Google Play Store explicitly re-
quires certificates to be valid until at least 203310 (there are
examples to the contrary in our data from the Android Mar-
ketplace but we did not verify if this requirement is presently
enforced). Long expiration periods are a poor security prac-
tice, and having no enforced expiration means a compro-
mised or stolen signing key can be used indefinitely (unless
a revocation mechanism exists, like kill switches discussed
below).

Signature Key Updates.
An unintended consequence of trust-on-first-use is that

the first app signed with a new key appears suspicious even
if the key update is legitimate. To ensure a developer can
continue to update existing apps after switching signing keys

9The issue with self-signed certificates is, of course, that you
can never be certain who issued them.

10The Developer’s Guide: Signing Your Applications
http://developer.android.com/guide/publishing/
app-signing.html

http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/publishing/app-signing.html

(due to certificate expiration or other reasons) without in-
volving the user, the developer could use their existing key
to sign their newly issued certificate. Establishing certifi-
cate continuity in this way will also allow a clean transfer of
ownership of an app (cf. key evolution in Bin-locking [30]).

In our dataset, we observed one high-profile example of a
key update where Google attempted to switch the signing
key for its two-step authentication app called Google Au-
thenticator.11 As mentioned, Google typically signs their
apps with one of two keys. In the case of Google Authenti-
cator, Google released an update that switched from one of
their commonly used signing keys to their other key. Since
Android has no mechanism for updating keys, users cannot
install such an update directly. To cope with this short-
coming, developers (in this case Google) must ask users to
uninstall the current version before installing the update.
This effectively turns the “update” into a new installation
with the same package name, causing all user data to be
lost.

If data preservation is necessary, developers need to write
a custom data backup mechanism. In the case of Authen-
ticator (com.google.android.apps.authenticator),
Google opted to release the update as an en-
tirely new app with a new package name
(com.google.android.apps.authenticator2). Users
were instructed to install authenticator2 alongside the
existing authenticator, and authenticator2 would copy
the data from authenticator using a custom API built
into the last release of authenticator to do authenticated
inter-process communication (IPC). The user was then
prompted to uninstall authenticator.

This case is interesting because it illustrates two draw-
backs in different parts of the Android installation process:
(1) the inability to update an existing key, which we have
discussed in this section on update integrity; and (2) the
inability for two apps, which in this case must necessarily
be assigned different UIDs, to securely share data using OS
services, which we discuss in Section 4 on UID assignment.

Revocation of Signing Keys.
There is no documented mechanism for key or certificate

revocation. Compounded with certificate expiration not be-
ing enforced, the only way to limit the use of a stolen signing
key in issuing malicious upgrades is through marketplace re-
moval of apps signed with the key and using a kill switch [16,
4] which is also implemented at the marketplace level. For
side-loaded apps, neither of these techniques will work. An
OS update could blacklist keys that pose a significant threat
outside of maintained app markets.

Distributed & Threshold Signing.
An approach to protecting against the theft of signing

keys is to use distributed signing, where n participants in-
dividually sign the app and all n participants are required
to sign each update (cf. TUF update framework [27]). An-
droid currently supports distributed signing. For each signa-
ture, an individual signature file (e.g., KEY1.SF) is created
and signed, appending the signature to individual certifi-
cate files (e.g., KEY1.RSA). Android will allow updates only
if the same exact set of signatures are used with each up-

11http://support.google.com/a/bin/answer.py?hl=
en&answer=1037451

date. Of all the apps in our dataset, only 42 had more than
one signature. For 30 of these, the additional certificate was
a temporary (and expired) debug certificate created by the
Android app development tool for testing purposes. For 4 of
them, a publicly available key pair was used—see Section 3.3
for discussion of this case. This leaves a small set of apps
that appear to be using distributed signing (in each case, a
2-out-of-2 access structure) for security purposes. One ex-
ample is the Mint app (com.mint), a financial management
service.

In the current model, there is no cross-certification be-
tween the multiple signatures. This means signatures can
be selectively stripped in distributed signing instances [30].
We verify that this is the case even if the first signatures
applied are included in the signature file for subsequent sig-
natures (e.g., KEY2.SF includes KEY1.SF and KEY1.RSA). In
one app from Sprint, (ostensibly) HTC added a signature
that updated MANIFEST.MF with Sprint’s SF and RSA files.12

We stripped Sprint’s signature and verified that the vali-
dation tool ignores files recorded in MANIFEST.MF that are
located in the META-INF/ subdirectory.

Android could be modified to allow apps to specify in
AndroidManifest.xml (a file that is explicitly signed) the
intention to use multiple signatures signing and pin the set
of public keys required to update the app (cf. certificate
pinning13). A simple extensions is to also permit developers
to specify a t-out-of-n access structure that requires the sig-
natures of any t ≤ n of a set of n signatures. This maintains
the security of distributed signing while adding robustness
against lost or unavailable keys [21].

For completeness, we note that threshold (and distributed)
signing can be conducted externally to jarsigner. Thresh-
old signing protocols are known for RSA signatures, both
with a trusted dealer that generates the key shares [28]
and with distributed key generation [8]. To the best of our
knowledge, no tool is available that implements a threshold
signature scheme and easily allows developers to perform
such a protocol.

Summary.
We cannot make any strong recommendations for mod-

ifying how Android provides update integrity through app
signing that would preserve backwards compatibility with
the majority of existing applications in our dataset. How-
ever, we hope that our discussion of the limitations and al-
ternatives to update integrity will be informative for the de-
sign of future systems that rely on app signing (e.g., browser
extensions or Mozilla’s Firefox Mobile OS14).

3.3 Publicly Available Key Pairs
In our dataset, we noticed one set of 291 apps, including

58 with known malware, were signed with the same key.15

Upon further investigation, we found that this particular key
belongs to a publicly available key pair that is distributed

12This changes the hash of MANIFEST.MF from the one re-
ported in Sprint’s SF file, which the verification tool ignored.
It appears to only verify the MANIFEST entries themselves.

13IETF Internet-Draft: HTTP Strict Transport Security
(HSTS)

14http://blog.mozilla.org/blog/2012/07/02/
firefox-mobile-os/

15SHA1 certificate fingerprint:
61ED377E85D386A8DFEE6B864BD85B0BFAA5AF8

http://support.google.com/a/bin/answer.py?hl=en&answer=1037451
http://support.google.com/a/bin/answer.py?hl=en&answer=1037451
http://blog.mozilla.org/blog/2012/07/02/firefox-mobile-os/
http://blog.mozilla.org/blog/2012/07/02/firefox-mobile-os/

with the Android source code.16 This test key is often used
to sign third-party Android builds. The danger in releasing
an app signed with only this key is that anyone can issue
an update for the app that is acceptable to the Android
OS. We observed apps signed with this key across multiple
marketplaces, including 15 on the Google Play Store. It
seems clear that all marketplaces should refuse to host or
distribute apps signed with this test key.

4. UID ASSIGNMENT
In Android’s current security model, new apps are as-

signed unique UIDs to enforce filesystem and process isola-
tion, as well as grant access to privileged device capabilities
(see Figure 1). Indeed, UIDs are an essential component of
the Android security model. Android allows developers to
write apps that share a UID. To use this feature, developers
set the sharedUserId directive to a common string value in
the AndroidManifest.xml file of each app that will share
the UID. The apps must be signed with the same key (or
set of keys) for Android to allow a shared UID. The com-
mon string allows for apps signed with the same key to have
multiple, distinct shared UIDs.

While Android already allows developers to write modular
apps that integrate with each other via interprocess commu-
nication (IPC) [16], UID sharing allows developers to split
app functionality into multiple installable pieces, yet share
binary resources such as fonts, images and sound clips. An-
droid itself uses shared UIDs for system apps to interact with
other system components. For example, the sharedUserId

“android.uid.system” is used by the Settings, VPN, and
AccountsAndSync settings in stock Android apps.

In our dataset, we observed 117 apps utilizing UID
sharing and 60 distinct shared UID strings. Most
of these were apps with modular designs such as
browsers and associated extensions with one main
component and several smaller plugins. Some exam-
ples are language packs for a dictionary (package name
com.socialnmobile.dictapps.notepad.color.note),
extensions for a browser (package name
mobi.mgeek.TunnyBrowser), and additional fonts for a
message app (package name com.handcent.nextsms). A
small number appear to be sharing UIDs without apparent
reason.

4.1 Improving Android’s UID Sharing
The main limitation of UID sharing as currently imple-

mented by Android is its dependency on app signing, which
precludes apps signed with different keys from sharing a
UID. First, this conflicts with the reputation-based model
implicitly encouraged by Android’s app signing protocol (see
Section 3). Second, it encourages developers to pursue in-
tegration through custom mechanisms, such as IPC which
by itself offers no authentication and is more open to devel-
oper error. While developer-defined permissions can protect
access to an API, either (1) any app can be granted the per-
mission or (2) only apps signed with the same key can be
granted the permission (see Section 2). This dichotomy is
a direct result of permissions in Android being assigned to
UIDs.

One example of UID sharing observed in our dataset was
a browser that shared its UID with browser extensions. In

16platform_build/target/product/security/testkey.pk8

this example, it is natural to consider that the extension
may be authored by a different developer than the browser,
and yet the browser’s developer must sign the extension for
it to function correctly. This could be problematic for the
browser developer as code signing is implicitly endorsing
someone else’s code, and it also fails to allow the extension
developer to transfer any reputation from other apps they
have released. The extension developer also loses attributed
authorship.

Properties for UID Sharing.
Android’s current model for UID sharing achieves a num-

ber of important properties which we have distilled into
Properties 1 to 6 below (we denote apps that share a UID
as members of a group):

1. Groups are Disjoint: Processes must run under a
single UID so there is no way for an instance of a run-
ning app to be a member of two or more groups.

2. Groups are Consistent: If app A is in the same
group as B, and app A is in the same group as C, then
B and C must be in the same group.

3. Group Size is Arbitrary: It is possible to specify
UID-sharing groups of size 1, 2 or greater than 2.

4. Membership is Authorized: An app cannot join a
group without being authorized to join.

5. Adding New Members is Efficient: If a new mem-
ber is added to a group, ideally no other group mem-
bers require an update. In the next best case, only
one app requires update (denoted ◦ in Table 1). In
the worst case, all members of the group require up-
date.

6. Different Groups with Same Key: It is possible
for apps signed with the same key to be members of
different groups.

Ideally, a UID sharing mechanism would satisfy all 6 prop-
erties above as well as allow apps signed with different keys
to share a UID (property 7). However, in the course of
redesigning the mechanism, we found that in every case,
adding property 7 precludes at least one other existing prop-
erty. We therefore consider the relative merits of trading off
various properties in order to achieve property 7.

Alternative Mechanisms for UID Sharing.
We consider three possible alternatives to Android’s cur-

rently implemented mechanism for UID sharing: mutual ap-
proval, pairs and parent-child (see Table 1 for a comparison
matrix).

• Mutual Approval: Each app specifies in its manifest
every other app in its UID sharing group. Apps in the
group are specified by package name and fingerprint
of their embedded signing certificate. This fulfills the
goal of allowing apps signed by different keys to share
a UID, but makes it difficult to add new members to
the group as every app in the group must be updated.
Mutual approval is also prone to group inconsistencies
since it is possible that one app (A) approve two apps
independently (B and C), without B and C mutually

M
u
tu

a
l

A
p
p
ro

va
l

P
a
ir

s

P
a
re

n
t-

ch
il
d

S
ig

n
a
tu

re
-b

a
se

d

1. Groups are Disjoint • • • •
2. Groups are Consistent • • •
3. Group Size is Arbitrary • • •
4. Membership is Authorized • • • •
5. Adding New Member is Efficient† ◦ ◦ •
6. Different Groups with Same Key • • • •
7. Different Keys within Same Group • • •
Viable • •

Table 1: A comparison of proposed UID sharing
mechanisms to signature-based sharing (the current
model).
† For new additions, • means only one member must be

updated, ◦ means two members must be updated, and

empty means all members must be updated.

approving each other. Android has no clear mechanism
to resolve such inconsistencies, so we conclude mutual
approval is not a viable replacement to the current
model.

• Pairs: This alternative constrains groups to a max-
imum size of two and can be seen a sub-case of the
Mutual Approval mechanism above. This restriction
helps satisfy group consistency, but has the obvious
disadvantage of not allowing groups larger than two
apps. In our dataset, nearly all instances of apps shar-
ing a UID were larger than two, so we do not consider
pairs to be a viable replacement.

• Parent-child: In this alternative, one parent app (e.g.,
a browser) authorizes in its manifest each other app
(child) in the group. This resolves the group inconsis-
tencies of mutual approval as well as our original goal
of divorcing UID sharing from application signing. The
main drawback of the parent-child mechanism is that
that the parent app must be updated every time a new
group member is added.

Implementing Parent-child UID Sharing.
To implement the Parent-child mechanism, the core An-

droid package installer framework17 must be updated and
a new set of XML attributes must be added to the offi-
cial API. This means that our mechanism would need to be
adopted by Google (or a popular third-party Android build)
for wide-scale deployment. Google routinely updates their
OS and manifest specification. For example, in API level 3,
Google introduced the sharedUserLabel directive.18

We suggest adding the following XML attributes to
the Android Manifest: sharedUserIdMode, parentOf, and
childOf. sharedUserIdMode specifies if the application in
question is intended to be a parent, a child, or to use the

17PackageManager.java and PackageManagerService.java
18http://developer.android.com/guide/topics/
manifest/manifest-element.html

traditional signature-based UID scheme. Not specifying a
sharedUserIdMode defaults to the traditional scheme for
backwards compatibility with apps that are no longer up-
dated. The parentOf attribute specifies (for the parent app)
each of the child apps with which it should share a UID.
Child apps are specified via package name and certificate
fingerprint (see Figure 2). Finally the childOf attribute
specifies the package name and certificate fingerprint of the
parent app with which to share a UID (see Figure 3).

We note that some restrictions must be enforced by An-
droid at install-time to guarantee integrity and consistency.

• An application must not declare both parentOf and
childOf.

• Applications must only specify one of “parent”, “child”
or “signature” for the sharedUserIdMode attribute.

• Shared UID Labels are not required as in the tradi-
tional signature-based scheme, since both child apps
and parent apps specify other apps in their manifest.

• At install-time, after verifying restrictions above, the
installer looks for apps specified as childOf or par-

entOf in the newly installed app’s manifest. If match-
ing apps are found and manifests are consistent (i.e.,
the parent and the child specify each other), child apps
are updated to use the parent’s UID.

AndroidManifest.xml (Browser)
<manifest xmlns:android="http://sche...com/apk/res/android"
. . .
 android:sharedUserIdMode="parent"
 android:parentOf:"com.cool.extension1, 67709F9D63BFD6A0"
 android:parentOf:"com.cool.extension2, 774A0E232918EE8B" >
. . .
</manifest>

Figure 2: The Android Manifest of a browser using
our improved UID scheme. The developer specifies
that the browser can be the parent of two exten-
sions.

AndroidManifest.xml (Extension)
<manifest xmlns:android="http://sche../apk/res/android"
. . .
 android:sharedUserIdMode="child"
 android:childOf:"com.cool.browser, 0DCDD39F12A07A25" >
. . .
</manifest>

Figure 3: The Android Manifest of an extension us-
ing our improved UID scheme. The developer spec-
ifies that the extension is a child of a browser, and
certificate fingerprint of the browser.

5. PERMISSION ASSIGNMENT
Android permissions have been extensively discussed in

the literature [15, 17, 24, 23]. In this Section, we focus
narrowly on permissions as they relate to UID sharing and
signature-level permissions protecting IPC calls.

http://developer.android.com/guide/topics/manifest/manifest-element.html
http://developer.android.com/guide/topics/manifest/manifest-element.html

(a) Market (b) Sideloaded

Figure 4: Screenshots of permissions requested by
installing the Desktop Toggle browser extension via
the Google Play Store and when side-loaded. In
both cases, the Dolphin Browser had been previ-
ously installed.

5.1 Inheritance through UID sharing
Through its user interface, Android implicitly treats per-

missions as if they were assigned to apps. In reality, per-
missions are assigned to UIDs. This distinction is generally
inconsequential, except in the case when apps share a UID.
Upon installation of a new app which will share a UID with
an existing app, the new app will be granted all the permis-
sions that have been granted to the existing app in addition
to its own requested permissions. We call this effect permis-
sion inheritance. Likewise, the existing app will be granted
all the permissions associated with the new app. We call
this retroactive permission inheritance.

An example of permission inheritance is shown in Fig-
ure 4. Here, we show two device screenshots taken during
the installation of a browser extension which requests no
permissions in its manifest, but shares a UID with a highly
privileged browser. When the extension is installed from the
official Google Play Store19 (Figure 4a), no permissions are
displayed. However, due to permission inheritance, the ex-
tension is granted the same permissions set as the browser.
The correct permission set is only displayed when the exten-
sion is side-loaded (Figure 4b).

Permission inheritance inconsistencies occur when the ap-
plication installer does not have an accurate, updated view
of all installed apps on a device. Google keeps track of ap-
plications installed through the Google Play store, but does
not know about side-loaded apps. If Google knew about all
apps (installed and side-loaded) installed, the Google Play
app should be able to accurately display the effective re-
sulting permission set at install-time. The package installer
invoked when side-loading does have an accurate list of all

19Google Play Store version 3.5.16 on Android 4.0.4, but this
behaviour is also reproducible on earlier versions of Android.

installed apps, and can therefore correctly display the per-
mission list.

One possible solution to this problem is to always use
the OS installer when installing apps that have the share-

dUserId attribute set in their manifest. The user experience
in these cases would suffer, since users would see an unfamil-
iar installation screen. The OS installer could additionally
be augmented to display which permissions are requested by
each app in the group, rather than only display the union of
all permissions.

5.2 Signature permissions
While UID sharing allows for tight integration of sepa-

rate installable apps, developers may want simpler IPC for
offloading tasks to other apps (e.g., send a tweet via any
installed Twitter client), or to offer some functionality to
other apps (e.g., download the latest prices of a stock).

IPC on Android is generally slower than sharing a UID
and is optimized for small data messages. We argue that
while technically possible, moving large amounts of data
over IPC is often impractical, and developers tend to rely
on other mechanisms such as shared UIDs or making files
world-readable on the device.

When writing Android apps, developers can define public
interfaces, and protect calls to those interfaces with signature-
level permissions. As expected, signature-level permissions
can only be granted to the caller app if it is signed with the
same key as the callee. Our parent-child manifest extensions
for UID sharing could be used similarly for permission-based
IPC calls by allowing apps to specify the package name and
certificate fingerprint of apps that are allowed to invoke the
declared methods. This change could also be deployed in-
crementally by defaulting to the traditional same-key con-
figuration if the apps are not written to target the latest
Android API level.

The Google Authenticator example of Section 3.2 serves
as a case study for showing limitations of the currently de-
ployed signature permission scheme. The primary failing
in this case was that changing the Google Authenticator
signing key requires a new installation, which if done in an
improper order could lead to data loss. If both versions
of Authenticator had used our signature-permission scheme,
the developers could have used OS-level support for mov-
ing the sensitive user data from authenticator to the new
version authenticator2. As it stands, Google developers
were forced to do this over IPC and handle authentica-
tion between apps through custom code. To ensure that
no app other than authenticator2 could obtain this pri-
vate data, Google implemented a custom API (under Java
class name dataexport.ExportServiceV2) in authentica-

tor, which manually checked that the signature on the re-
questing app matched authenticator2 before granting ac-
cess.

6. RELATED WORK
The smartphone security literature has matured consider-

ably in recent years, including an introduction to Android
security [16], general surveys of smartphone security [5, 12],
and a reference book on Android application security [29].

Several authors have performed pre-installation static anal-
ysis of applications outside of the Android environment.
Enck et al. [14] decompile 1,100 popular Android applica-
tions from the Android Market and analyze their security.

Felt et al. [17] build a tool to decompile applications and
identify over- and under-declaration of permissions. Bar-
rera et al. [3] explore the permissions of popular Android
applications and find no strong correlation between appli-
cation categories and requested permissions. Chia et al. [7]
analyze the correlation between application ratings, reviews
and permissions requested by both new and popular apps.
Jiang et al. [31] analyze approximately 200,000 Android apps
to identify instances of known and previously unknown mal-
ware.

Relatively little work has analyzed the installation pro-
cess on Android, other than a large focus on permissions.
Enck et al. [15] present an enhancement to the Android in-
staller that can specify dangerous permission combinations
in policy files. Apps that request these permissions can be
denied installation. Similarly, Hornyack et al. [24] describe
a modified Android app installer that allows the user to re-
duce privileges of new apps by selectively disabling individ-
ual permissions, and limiting access to private information.
Grace et al. [23] briefly describe “implicit capability leaks”
on stock Android builds through UID sharing. In contrast
to our analysis, these leaks are attributed to poor devel-
oper practices, rather than to limitations of the UID sharing
model itself. Van Oorschot and Wurster [30] provide a brief
analysis of Android code signing practices, comparing them
to the properties of their key-locking tool.

An app, once installed, can attempt to escalate its privi-
leges by either colluding with other installed apps, or abus-
ing unprotected interfaces on installed privileged apps (known
as the confused deputy problem). Ontang et al. [26] propose
a flexible policy language to define restrictions that devel-
opers can apply on inbound IPC requests. To minimize the
impact of confused deputy attacks, Felt et al. [19] propose
IPC inspection which reduces the privileges of a calling ap-
plication when it interacts with a higher privileged appli-
cation. Dietz et al. [9] use a form of call stack analysis to
track provenance on sensitive information, and prevent this
information from reaching unintended applications. Enck et
al. [13] also focus on sensitive information leakage by explor-
ing the use of taint analysis on Android. Malicious applica-
tion collusion is addressed by Bugiel et al. [6] who present
a broad security framework which establishes semantic links
between application calls, uses a reference monitor, and pro-
vides a kernel-level mandatory access control mechanism.

7. CONCLUDING REMARKS
In this paper, we have used a large collection of Android

application data to infer security-relevant relationships be-
tween apps. Most of these relationships were non-apparent
prior to our exploration. Using this dataset, we conducted
a detailed analysis, the first of its kind, of the Android app
installation process. We plan to make this dataset available
for download (with a web-interface we call Android Obser-
vatory), which will enable other researchers to replicate our
results and conduct investigations beyond the scope of this
paper.

We observed that test keys are widely used to sign ap-
plications. Clearly, markets should refuse the inclusion of
applications signed with these keys, as they pose a threat
to software updates. It also seems clear that inconsistencies
in the display of permissions during app installation involv-
ing shared UIDs are important to address. Finally, we have
have made a case that the Android development community

would benefit if UID sharing and signature permissions were
allowed between apps signed with different keys. Our sug-
gested UID mechanism could be incrementally deployed to
provide this flexibility.

Acknowledgements.
We thank the F-Droid maintainers for additional informa-

tion on their code signing policy. This research is supported
by the Natural Sciences and Engineering Research Council
of Canada (NSERC)—the first author through a Canada
Graduate Scholarship; the second through a Postdoctoral
Fellowship; and the fourth through a Discovery Grant and
as Canada Research Chair in Authentication and Computer
Security. We also acknowledge support from NSERC ISS-
Net.

8. REFERENCES
[1] Anderson, R., Bergadano, F., Crispo, B., Lee,

J.-H., Manifavas, C., and Needham, R. A new
family of authentication protocols. ACM SIGOPS
Operating Systems Review 32, 4 (1998).

[2] Arkko, J., and Nikander, P. Weak authentication:
How to authenticate unknown principals without
trusted parties. In Security Protocols (2002).

[3] Barrera, D., Kayacik, G., van Oorschot, P.,
and Somayaji, A. A Methodology for Empirical
Analysis of Permission-based Security Models and its
Application to Android. In CCS (2010).

[4] Barrera, D., and van Oorschot, P. Secure
software installation on smartphones. IEEE S&P
Magazine 9, 3 (2011).

[5] Becher, M., Freiling, F. C., Hoffmann, J.,
Holz, T., Uellenbeck, S., and Wolf, C. Mobile
Security Catching Up? Revealing the Nuts and Bolts
of the Security of Mobile Devices. In IEEE S&P
Symposium (2011).

[6] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T.,
Sadeghi, A., and Shastry, B. Towards taming
privilege-escalation attacks on Android. In NDSS
(2012).

[7] Chia, P. H., Yamamoto, Y., and Asokan, N. Is
this app safe? A large scale study on application
permissions and risk signals. In WWW (2012).

[8] Damgard, I., and Koprowski, M. Practical
threshold RSA signatures without a trusted dealer. In
EUROCRYPT (2001).

[9] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A.,
and Wallach, D. S. Quire: Lightweight provenance
for smart phone operating systems. In USENIX
Security (2011).

[10] Eckersley, P., and Burns, J. Is the SSLiverse a
safe place? In Chaos Communication Congress (2010).

[11] Egele, M., Kruegel, C., Kirda, E., and Vigna,
G. PiOS: detecting privacy leaks in iOS applications.
In NDSS (2011).

[12] Enck, W. Defending users against smartphone apps:
Techniques and future directions. In ICISS (2011).

[13] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P.,
Jung, J., McDaniel, P., and Sheth, A. N.
Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In OSDI
(2010).

[14] Enck, W., Octeau, D., McDaniel, P., and
Chaudhuri, S. A study of Android application
security. In USENIX Security (2011).

[15] Enck, W., Ongtang, M., and McDaniel, P. On
lightweight mobile phone application certification. In
CCS (2009).

[16] Enck, W., Ongtang, M., and McDaniel, P.
Understanding Android security. IEEE S&P Magazine
(Jan/Feb 2009).

[17] Felt, A., Chin, E., Hanna, S., Song, D., and
Wagner, D. Android permissions demystified. In
CCS (2011).

[18] Felt, A., Finifter, M., Chin, E., Hanna, S., and
Wagner, D. A survey of mobile malware in the wild.
In SPSM (2011).

[19] Felt, A. P., Wang, H. J., Moshchuk, A., Hanna,
S., and Chin, E. Permission re-delegation: Attacks
and defenses. In USENIX Security (2011).

[20] Gamma, E., Helm, R., Johnson, R., and Vlisides,
J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[21] Geer Jr., D. E., and Yung, M. Split-and-delegate:
Threshold cryptography for the masses. In FC (2002).

[22] Goldberg, I., Mashatan, A., and Stinson, D. On
message recognition protocols: Recoverability and
explicit confirmation. International Journal of Applied
Cryptography 2, 2 (2010).

[23] Grace, M., Zhou, Y., Wang, Z., and Jiang, X.
Systematic Detection of Capability Leaks in Stock
Android Smartphones. In NDSS (2012).

[24] Hornyack, P., Han, S., Jung, J., Schechter, S.,
and Wetherall, D. These aren’t the droids you’re
looking for: retrofitting Android to protect data from
imperious applications. In CCS (2011).

[25] Lucks, S., Zenner, E., Weimerskirch, A., and
Westhoff, D. Concrete security for entity
recognition: The Jane Doe protocol. In INDOCRYPT
(2008).

[26] Ongtang, M., McLaughlin, S., Enck, W., and
McDaniel, P. Semantically rich application-centric
security in android. In ACSAC (2009).

[27] Samuel, J., Mathewson, N., Cappos, J., and
Dingledine, R. Survivable key compromise in
software update systems. In CCS (2010).

[28] Shoup, V. Practical threshold signatures. In
EUROCRYPT (2000).

[29] Six, J. Application Security for the Android Platform:
Processes, Permissions, and Other Safeguards.
O’Reilly Media, 2011.

[30] van Oorschot, P., and Wurster, G. Reducing
unauthorized modification of digital objects. IEEE
Transactions on Software Engineering 38, 1 (2012).

[31] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X.
Hey, You, Get Off of My Market: Detecting Malicious
Apps in Official and Alternative Android Markets. In
NDSS (2012).

APPENDIX
A. DATASET DETAILS

In order to build a dataset representative of the types of

applications available to end-users, we acquired applications
from several sources. We describe the sources from which
we acquired applications and the rationale for selecting the
source. We detail the process by which application infor-
mation was imported into our dataset. Finally, we describe
the web-interface we built to explore the dataset called the
Android Observatory.

A.1 Application Sources

Google Play Store.
The Google Play Store20 is a factory-installed app on most

Android devices. Most applications in our dataset were ob-
tained by crawling the top free applications in the Google
Play Store for over a year beginning in early 2010 (then
known as the Android Market). In total, our dataset con-
tains 6,079 app packages from the Google Play Store, which
is the standard location from which the majority of Android
users currently acquire third party applications.

Alternative Markets.
Several markets have emerged to offer alternative appli-

cation delivery channels. These markets differ from the An-
droid Market by their terms of service, pricing and developer
payment schemes, restrictions on content, and user expe-
rience. For our data we examined applications from four
alternative markets.

• The Amazon Appstore21 is a mainstream alternative
to Google’s Play Store. It is featured prominently on
Amazon-branded devices such as the Kindle Fire. One
paid application per day is featured by Amazon and of-
fered for free download. This provided a low-cost (free)
means of including paid applications in our dataset.

• The F-Droid market22 offers only free and open source
Android apps. All apps are GPL and Apache licensed
and built from source by the F-Droid maintainers. The
authors of the applications themselves are not respon-
sible for signing the F-Droid app package, rather they
are signed by the market maintainers.

• The MiKandi market23 offers applications with adult
content. We included the top 100 free applications from
MiKandi. Adult content is prohibited on the Android
market so the inclusion of these apps expands author-
ship in the Observatory’s dataset.

• The Aproov market24 is an alternative market that pro-
vides more detailed app categorization, greater profit
shares for developers, and a more sophisticated app
rating system than Google Play. The top 100 appli-
cations from each Aproov category were included as a
large non-Google Play data source.

Contagio Malware Dump.
The Contagio website25 hosts known desktop and mobile

malware samples for research purposes. Some of the samples

20https://play.google.com/store/apps
21http://www.amazon.com/mobile-apps/b?ie=UTF8&node=
2350149011

22http://f-droid.org/
23http://www.mikandi.com/
24http://www.aproov.com/
25http://contagiominidump.blogspot.com/

https://play.google.com/store/apps
http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
http://f-droid.org/
http://www.mikandi.com/
http://www.aproov.com/
http://contagiominidump.blogspot.com/

Figure 5: Block diagram of application import pro-
cess.

were once available on the Android or alternative markets.
We downloaded 209 malicious Android apps from Contagio.
Some malware samples obtained from Contagio have been
independently analyzed in the literature [18, 31].

File-sharing.
We obtained 4 popular app collections that are available

on the Bittorrent network. File-sharing networks are a com-
mon source of pirated content and are commonly considered
to present a risk of malware. We note that our dataset does
not contain the app executables themselves, only meta-data
extracted from the application package.

A.2 Building Our Dataset
The database is populated with information extracted from

Android packages. A chain-of-responsibility pipeline [20] al-
lows the import and processing of applications from a variety
of sources. Each component of the chain is able to process
application information, insert database records, and pre-
pare the application for subsequent components. The mod-
ular nature of the pipeline allows for new analysis operations
(e.g., static analysis tools) to be integrated in order to aug-
ment the database with additional information.

The pipeline extracts two main types of data from each
Android app package (see Figure 5): (1) metadata extracted
from the package such as app names, package names, ver-
sion numbers, permissions, and certificate attributes from
file contents; and (2) a structural description of the package
such as the individual hashes of resources, compiled code,
and the application manifest. Distinct variants of the same
app (e.g., different versions or same version from difference
sources) are indexed separately as unique apks. Relevant
pieces of the extracted information are stored in separate
database tables for application packages, certificates, and
permissions. By using the relations constructed between
the tables, it is possible to locate common elements between
applications.

In order to obtain attributes from certificates for inclusion

in the dataset, we modified Oracle’s Java keytool utility26

to extract more detailed information than the base tool pro-
vided. We extracted the certificate serial number, public key
and public parameters (modulus and exponent for DSA and
RSA).

A.3 The Android Observatory
The ability to query a diverse set of Android applications

provides insight into developer behaviour and assists in hy-
pothesis validation. A large empirical dataset also helps
researchers to determine the feasibility of deployment of a
new technical proposal. The Android Observatory (which we
intend to make available at: androidobservatory.org) is
our first attempt at exploring relationships between apps
and their components.

Each field of our dataset is searcheable via the Observa-
tory web interface. Applications can be found by package
name, application name, permissions requested, version, or
shared user ID strings. Queries may also be posed in terms
of SHA1 hashes of the full binary or of its sub-contents,
such as the compiled dex code, the resource bundle, or the
manifest. Certificates may be searched by fingerprint, X.509
attributes, serial, and key parameters. We constructed a set
of SQL queries to obtain the information displayed in the
Observatory, however we don’t allow for arbitrary queries to
be executed. Instead we plan to make available a full copy
of the database for custom queries.

It is likely that most end-users will not know how to calcu-
late cryptographic hashes of Android apps or extract X.509
certificate details. With this in mind, the Observatory allows
users to upload their own APKs. Uploading APK files is
particularly useful for helping users decide whether a down-
loaded application (perhaps obtained from an untrustworthy
source) can be trusted. In the case of an APK upload, the
system will extract the app package, process and insert it
into the Observatory database, and display a new page for it
listing its properties and related applications. The Observa-
tory displays an alert to users if a queried application shares
a certificate with an application with known malware.

For each application, links are provided to applications
with the same (or similar) attributes: application name,
package name, signature, permissions, and identical dex files,
manifest, or resource bundles. A direct link to the certifi-
cate information is provided from the detailed view of each
application. The source of each application (i.e., Android
Market, Amazon Marketplace, etc.) is displayed in order to
aid in the identification of either identical or related appli-
cations acquired from several sources. In cases where the
application uses a shared UID the effective permissions of
the application are shown by taking the union of the per-
missions of all other applications with a matching shared
UID string and signing key.

Moving forward, we see the Android Observatory continu-
ing to be useful to researchers and the Android community.
We believe it would be useful to grow the dataset used herein
through the inclusion of new and emerging marketplaces, as
well as increased coverage of our existing sources. In addi-
tion, making the web-interface available will allow Android
users to obtain information about apps they have acquired
or are interested in installing, as well as helping them un-
derstand links between multiple apps.

26http://docs.oracle.com/javase/6/docs/technotes/
tools/solaris/keytool.html

androidobservatory.org
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

	Introduction
	Android Preliminaries
	Deconstructing App Installation
	Empirical Dataset

	App Update Integrity
	Signing Details
	Alternative Signing Key Management
	Publicly Available Key Pairs

	UID Assignment
	Improving Android's UID Sharing

	Permission Assignment
	Inheritance through UID sharing
	Signature permissions

	Related Work
	Concluding Remarks
	References
	Dataset Details
	Application Sources
	Building Our Dataset
	The Android Observatory

