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ABSTRACT

Android devices use volume encryption to protect private
data storage. While this paradigm has been widely adopted
for safeguarding PC storage, the always-on mobile usage
model makes volume encryption a weaker proposition for
data confidentiality on mobile devices. PCs are routinely shut
down which effectively secures private data and encryption
keys. Mobile devices, on the other hand, typically remain
powered-on for long periods and rely on a lock-screen for
protection. This leaves lock-screen protection, something
routinely bypassed, as the only barrier securing private data
and encryption keys. Users are unlikely to embrace a practice
of shutting down their mobile phones, as it impairs their com-
munication and computing abilities. We propose Deadbolt: a
method for maintaining most mobile computing functionality,
while offering the security benefits of a powered off device
with respect to storage encryption. Deadbolt prevents access
to internal storage even if the adversary can exploit a lock
screen bypass vulnerability or perform a cold boot attack.
Users can gracefully switch between the Deadbolt and un-
locked modes in less time than a system reboot. Deadbolt
offers the additional benefit of an incognito environment in
which logs and actions will not be recorded.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Privacy Protec-
tion; E.3 [Datal]: Data Encryption

Keywords
Disk Encryption; Lock-screen; Cold boot attack

1. INTRODUCTION

Due to the sensitive nature of data stored on mobile de-
vices, all major mobile OSes now offer some form of storage
encryption. Google introduced full disk encryption (FDE) in
Android 3.0 to encrypt the entire userdata partition. Some
OSes (e.g., BlackBerry) employ per-file encryption, to pro-
tect only privacy sensitive data. Other vendors (e.g., Apple,
Microsoft) leverage the use of on-device specialized hardware
to support encryption.

FDE traditionally operates below the filesystem to provide
on-the-fly decryption and encryption for every read/write
operation on the block device. For this reason, the encryption
key must always be available while the filesystem is mounted.
When the device is in this unlocked state, the key and data
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are both susceptible to disclosure (e.g., resident malware or
the cold boot attack [12]). FDE is used extensively in the PC
realm (e.g., Microsoft BitLocker, Mac FileVault, and LUKS
for Linux), however the mobile landscape presents a new set
of challenges. To protect the key and encrypted data, a PC
can be shut down or put into hibernation mode (assuming
swap space or hibernation files are also encrypted). In both
cases, the key is removed from memory and data is secure.

Mobile devices, on the other hand, are rarely shut down,
and are instead screen-locked® or PIN-locked to protect user
data while still providing basic communication functionality
(e.g., telephony, SMS, network connectivity). Indeed, the
always-on mobile usage model makes FDE a weaker proposi-
tion for data confidentiality on mobile devices; the desired
security benefits of FDE are not truly achieved while the
device is operational, and shutting off the device eliminates
the communication utility afforded by the device.

Solutions have been proposed to increase the security of
software-only FDE by avoiding the use of RAM to store keys
(see Section 6). These proposals, while generally effective
against cold boot attacks, must still keep encrypted data
unlocked while the device is powered on. If the device is
obtained in this state by an adversary, data is still vulnerable
to disclosure in the event of the lock-screen being bypassed,
or direct hardware manipulation.

In this paper, we introduce a method for providing en-
hanced data protection beyond that which is currently real-
ized by the combination of Android FDE with a lock-screen.
Android users are currently forced to decide between func-
tionality and security. If the device remains powered on, the
user can receive calls and notifications but the FDE key is
in memory. If the device is powered off, users get the full
protection of encryption but both lose the functionality and
incur the latency of booting up every time they want to
use it. Our proposal, Deadbolt, protects the FDE key and
encrypted data without losing communication functionality
or the need to incorporate additional hardware. Deadbolt
gives the protection of a device that is powered off, and the
functionality of a device that is powered on, as well as a
diminished delay in returning the device to a fully functional
state.

Deadbolt is meant to complement the Android lock-screen
in situations when additional protection is necessary to con-
tend with a skilled and motivated adversary. Under normal

'We use the term lock-screen or screen-locked throughout
the paper to refer to keeping the device powered-on, but
requiring a PIN, password or other user secret to resume
interaction with the device.



circumstances, the lock-screen and FDE may be enough to
discourage a casual antagonist from further attempting to
access the user’s data (e.g., at their place of employment). In
higher-threat situations (e.g., traveling home from work), the
device could be captured and subjected to more rigorous at-
tacks. In this situation, users should invoke Deadbolt (either
manually or automatically) to protect their FDE key and
encrypted data even in the event the lock-screen is bypassed.
While in the Deadbolt environment, the user can continue to
make phone calls, send text messages, and browse the web
via a mobile data network.

Contributions. We design, implement and evaluate a
software-only method for protecting the FDE key and en-
crypted user data, while still providing basic mobile smart-
device (e.g., smartphone, tablet) functionality. Our key
insight is that all user data need not be unlocked at all times,
especially when the device is not being actively used (e.g.,
in a bag or pocket). When the device is in Deadbolt mode,
it is resilient to cold boot attacks and lock-screen bypass
vulnerabilities. Additionally, because system partitions are
mounted and unmounted on the fly, resuming FDE mode
after leaving Deadbolt mode is faster than a full restart of
the device.

The remainder of the paper is organized as follows. Sec-
tion 2 covers background on mobile device encryption ap-
proaches including Android-specific details. Section 3 de-
scribes the design and implementation of Deadbolt. Section 4
provides a performance evaluation and security analysis. In
Section 5 we discuss enhancements and limitations of our
proposal. Section 6 explores related work. We conclude in
Section 7.

2. BACKGROUND

This section provides background on mobile device storage
encryption techniques. We also provide an overview of the
Android system and FDE implementation specifics.

2.1 Encrypted Storage on Mobile Platforms

For encryption, most manufacturers use either file-based
(e.g., i0S, BlackBerry) or full-disk encryption (e.g., Android,
Windows Phone). The advantage of file-based encryption
over FDE is that the storage encryption keys can be wiped
from RAM when the screen is locked without losing function-
ality. However, FDE provides transparent protection for all
data stored on the device (i.e., no special actions or routines
are required by the user or app developer to encrypt stored
data).

Apple. AppleiOS devices use a hardware crypto co-processor
physically between the storage and RAM [2]. The processor
contains a burned-in device unique ID (UID) encryption key.
All data stored on the device is, at minimum, encrypted with
the UID derived key. The dedicated crypto engine effectively
keeps all key material out of RAM and ties the encrypted
storage to a particular device (i.e., chip-off attacks would
amount to brute-forcing the AES key instead of the pass-
word [2]). Per-file keys are generated for each file stored on
the device. The file keys are stored in encrypted meta-data
and used to encrypt file contents. File keys are wrapped
using the AES-key wrap algorithm [27] with either a UID
derived key, or a UID and password derived key. Whether
the password is used depends on the situation — e.g., files
that may only be accessible after user authentication require

a UID and password derived key. This setup allows the OS
to respond to events such as phone calls and notifications
without access to any password protected content. App de-
velopers must explicitly call the encryption API to protect
app data with a password derived key, otherwise the data is
only protected with the UID key [34].

Blackberry. BlackBerry devices can enable the content pro-
tection feature to encrypt both internal and removable stor-
age [24]. Content protection does not use FDE, and instead
only certain data will be encrypted (e.g., emails, contacts).
Content protection uses a password derived key-encryption-
key (KEK) to encrypt a storage AES data-encryption-key
(DEK), and a message encryption public/private key pair.
These keys are encrypted with the KEK and stored in flash.
When a device is screen-locked, the DEK and message pri-
vate keys are wiped from RAM. Any messages received while
the device is locked are encrypted with the message public
key, and decrypted after unlocking the private key. En-
cryption and decryption are performed on-the-fly when the
storage is accessed. As the keys are stored in flash, a chip-off
technique could be used to brute-force the password and
recover the encrypted data.? BlackBerry devices also use a
memory cleaning enhancement to the Java garbage-collector,
to wipe plaintext fragments from RAM after a period of
inactivity [24].

Windows Phone 8. Windows Phone 8 provides storage
encryption based on BitLocker for the OS and internal user
data partitions [17]. BitLocker provides FDE-like filesystem
encryption [9]. Device encryption is enabled by mobile device
management policy (e.g., from Exchange ActiveSync server)
as opposed to the device’s local settings. According to the
Microsoft Windows Phone 8 security overview, the encryption
key is protected by the TPM [17]. Use of a TPM to store
the encryption key avoids the need to rely on a user secret to
protect the key (i.e., the user does not need to enter a PIN
or password for pre-boot authentication). Despite the use of
a TPM, the encryption key must remain in RAM while the
screen is locked for the software implementation of BitLocker.
While the key is in RAM, the encrypted data is vulnerable
to cold boot and lock-screen bypass attacks (see Section 3.2).

2.2 Android System

This section details Android’s FDE implementation, and
associated OS components.

Android’s FDE implementation. On Android, the user-
data partition holds all user-installed apps and user-created
data. The userdata partition is the only partition that is
encrypted in Android’s FDE implementation, which uses
the Linux kernel device-mapper crypto target (dm-crypt [7]).
The kernel and OS partitions are generally mounted read-
only, so no private user data will be stored in these locations.
Removable storage (if available) is not encrypted. Enabling
FDE on Android requires that the user set a lock-screen PIN
or password (i.e., pattern and face unlock secrets may not
be used).

A randomly chosen master volume key is used to decrypt
and encrypt data on-the-fly for any read/write operation
performed on the userdata storage [1]. The AES-128 cipher
is used in the CBC mode with ESSIV derived IVs. The user’s
screen unlock password is used to derive a key-encryption-key
(KEK) using 2000 iterations of the PBKDF2 [14] function.

’http://www.binaryintel.com/chip-forensics-device/
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Figure 1: Overview diagram of state transitions in the Deadbolt architecture. For each state, we note
advantageous security and usability properties. All transition steps are user-initiated (unless specified by
policy, see Section 3.3). Steps 1 and 3 require user input to generate the password-derived FDE key, which

is erased in steps 2 and 4. Step 5 is optional.

The KEK is used to encrypt the master volume key, which is
then stored in a volume footer located immediately following
the filesystem.

On system boot, the user is prompted for their password
before the entire Android framework is initialized. Their
password is used with PBKDF2 to regenerate the KEK
which in turn is used to decrypt the master volume key.
The userdata partition is mapped with the master volume
key and mounted onto the filesystem at /data. The master
volume key remains in RAM until the phone is shut off or
rebooted [1].

Since the lock-screen secret is also used to protect the
volume key stored in the footer, decrypting the storage is
reduced to brute-forcing this secret (note that both lock-
screen passwords and PINs are limited to 16 characters).
Furthermore, even when FDE is enabled, bypassing the
Android lock-screen provides access to unencrypted user data
(such vulnerabilities are not uncommon; see Section 3.2).

Android base install. Android devices ship with a base
OS image that includes a set of applications providing ba-
sic smart-device functionality. The open source release of
Android (AOSP) includes applications for contacts, web
browsing, calendar, image gallery, music player, and others.
When the target build device is a smartphone, additional
phone-specific apps are built, such as an app for sending
SMSs, making phone calls, and configuring the cellular data
network. Commercial Android releases include a suite of
Google apps with further base functionality (e.g., maps,
Google Play Store, etc.). These apps are on a read-only
partition of the device, but user data for the apps is stored
on the userdata partition.

3. DEADBOLT

This section describes our software-only method of pro-
tecting the Android FDE key, while maintaining core smart-
device functionality.

3.1 Overview

As mentioned, Deadbolt is meant to complement the default
Android lock-screen mechanism. When the user is in a low
risk environment, and their device will not be subjected to

rigorous attack (e.g., at home or work) they can use the lock-
screen to protect their device. When the possibility exists
that the device may be lost or confiscated and subjected
to higher attack (e.g., when commuting or traveling), they
should enable Deadbolt to further protect their private data.
Invoking Deadbolt pauses the running Android framework,
unmounts the encrypted storage, and removes the FDE key
from RAM (see step 2 in Figure 1). The user is delivered
into a functional Android environment in which the user’s
data volume is encrypted and the encryption key is discarded.
Thus, no private user data is accessible. The base set of An-
droid applications (see Section 2.2) are available for use, and
an empty userdata volume is mounted as a RAM filesystem
(tmpfs). This temporary instance of Android allows the user
to send and receive phone calls and text messages, and use
the cell phone data network. Although the base apps them-
selves are available from within the temporary environment,
the associated user data is not (e.g., the phone dialer app is
available, but the user’s contacts and call logs are not). In the
default configuration, none of the user’s after-market apps
are available in the temporary environment. The Deadbolt
environment can be initialized in one of two modes:

e Mobile incognito environment (default): all logs, files,
and activities are discarded when the user exits the tem-
porary environment, by default (¢f. modern browser’s
private/incognito mode). Users may optionally import
some data from the encrypted userdata volume (e.g.,
Wi-Fi passwords, contacts, etc.; see Section 3.4) into
the temporary environment, before invoking Deadbolt.
Users may also choose to copy certain changes back to
the encrypted volume (e.g., call log, received SMS mes-
sages, etc.) before ending the Deadbolt session. This
provides the user with the option of performing some
actions deniably (i.e., without maintaining any logs or
records on the device; cf. [8]). However, not unlike a
browser’s private/incognito mode, the cell carrier or
ISP may maintain activity records and private data
could otherwise be captured off-device (see e.g., [30]).

e Mobile safe-mode environment: Deadbolt can alterna-
tively be invoked in a mobile safe-mode environment



in which no data may be copied to/from the encrypted
storage. The user may wish to install an untrusted app
(e.g., from a 3rd party app market) or visit an insecure
website in this mode. Similar to incognito mode, none
of the user’s private data is accessible in this mode.
Thus, even a privileged app with access to the root
file system cannot compromise the confidentiality of
the user’s data (as the encrypted userdata volume
is unavailable). All of the changes made during the
present Deadbolt session (including app installations)
are discarded when the user resumes their encrypted
environment. Note that malware which can obtain
access to the read-only /system volume may be able
to stay resident when the Deadbolt session ends (see
e.g., [22]). The Deadbolt safe-mode can protect against
over-privileged apps and leakage of private user data.

3.2 Threat Model

The main attack that Deadbolt protects against is bypass-
ing the lock-screen to access the internal storage. The many
incarnations of this attack can be divided into:

1. Exploiting software vulnerabilities. Several vulnerabili-
ties have been discovered which can allow an adversary
to bypass the lock-screen without the user’s secret (e.g.,
a recent Skype bug3). There are also lock-screen by-
pass apps that can be pushed onto the device if the
adversary has the user’s Google credentials.* Potential
bugs in network services or the Android debug bridge
(adb) could allow the adversary to access the internal
storage without the unlock secret.

2. Cold boot attacks. The underlying dm-crypt system
employed by Android maintains keys and intermediate
state in RAM, and as such is susceptible to the cold
boot attack (see Section 6). Miiller et al. recently
demonstrated a successful cold boot attack against
Android FDE [20].

Deadbolt protects against lock-screen bypass vulnerabili-
ties by unmounting the encrypted userdata partition, and
securely deallocating (i.e., overwriting with zeros) the key
from RAM. Additional security benefits may be achieved by
attempting to scrub all sensitive plaintext fragments from
RAM (see Section 4.2). Deadbolt does not protect against
offline password guessing attacks on the stored volume key.
Such attacks are out of our present scope.

We assume the adversary is capable of obtaining physical
access to the device while it is in Deadbolt mode. As such,
any attacks requiring physical access are within scope.

Intended users. Deadbolt is designed for security conscious
users who have already enabled (or wish to enable) full disk
encryption on their device. We also consider enterprise users
who have been required to enable FDE on their devices (e.g.,
due to corporate policy). Since these users may not always be
experts, enterprise device administrators may wish to require
Deadbolt-like functionality for increased data protection. For
non-experts, automatically enabling Deadbolt after a period
of inactivity may be preferred (see Section 3.3 under the user
interface heading).

*nttp://seclists.org/fulldisclosure/2013/Jul/6
‘http://android.m.brothersoft.com/screen_lock_
bypass-115258.html

3.3 Implementation

We developed and tested Deadbolt on an Asus Nexus 7
tablet using the AOSP 4.2.2 source code. We managed to
incorporate our functionality into the Android volume mount-
ing daemon (vold) in less than 400 additional lines of code.
The volume mounting daemon was the logical component to
enhance, to provide Deadbolt functionality, as it is already
tasked with staging and mounting encrypted volumes on
the device. Additional minor changes were made to the An-
droid mount service to enable inter-process communication
between Dalvik system apps and vold.

Changes to vold subsystem. The Android framework
classifies services into 3 categories: core, main, and late start.
When an FDE-enabled device is powered on, a minimal set of
services are started to request the user’s password, which is
used to derive the FDE key (see Section 2.2). The encrypted
volume is then mounted on /data and the framework is
restarted with all services running. Android runs a system
properties service to maintain information about the system
state. The properties service stores key-value pairs in memory.
The init process monitors the property vold.decrypt to
determine which classes should be started or stopped. We
leverage this behavior to suspend and restart the framework
when unmounting the encrypted volume.

Two functions were added to the vold cryptfs subsystem:
cryptfs lock and cryptfs unlock. During the operation of
cryptfs lock, the vold.decrypt property is set to trigger_
shutdown_framework which instructs init to stop all services
in the main and late start classes. Some of the services in
these classes (e.g., Zygote — the parent Dalvik virtual ma-
chine that spawns all other Dalvik instances) require access
to a valid /data partition. None of the services in the core
class have this requirement. With only core framework ser-
vices running, we unmount the /data volume. We then issue
the ioctl command to delete the dm-crypt mapping which
calls dm-crypt’s crypt_dtr destructor function [15]. The
crypt_dtr function in turn calls kzfree (an atomic function
to zero then free kernel memory) on the crypt_config struc-
ture. The FDE key (and all related key material e.g., round
key schedules) are in the crypt_config structure, and hence
are securely erased before the memory is deallocated.

Vold maintains a copy of the unencrypted FDE key to
speed up the password change routine (i.e., changing the
password will only require one invocation of PBKDF2 instead
of two). We zero the memory containing vold’s copy of the
FDE key as well, using the memset function (see Section 4.2).
We do the same to securely deallocate the password used to
derive the KEK in the vold functions that require a password.
We then mount a 128 MB tmpfs RAM disk on /data and
set up the default directory structure that is required by the
services in the main and late start classes. Finally, we set
the vold.decrypt property to trigger_restart_framework
which instructs init to restart the main and late start ser-
vices. Upon successful framework restart, we create and set
the cryptlock.lockstate property to 1, indicating that the
device is currently running in Deadbolt mode.

While much of the Android framework gets shut down and
reloaded, the Linux kernel continues running. The user will
not have an interactive GUI for a brief time (see Section 4)
while the tmpfs environment starts up. This can be compared
to switching runlevels in a Linux OS (e.g., changing from
runlevel 5: full GUI to runlevel 1: single user mode). It is,
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Enable Deadbolt

[ ] Enable Safe Mode

Warning: If Safe Mode is enabled, any data created
while the device is in Deadbolt mode must be manually
backed up before returning to FDE mode.

Options
[+ Import Contacts
[ Import Wi-Fi Passwords

(a) Enter Deadbolt; The user may optionally choose
to import some private data into Deadbolt mode, or
enable safe-mode in which no private data may be
imported or exported from Deadbolt mode.

FDE Passweord

Disable Deadbolt

Options

[] save call log
[ | Save SMS
[¥ Save Pictures

(b) Exit Deadbolt; The user enters their FDE pass-
word to disable Deadbolt. The encrypted storage is
then unlocked and remounted. The user can option-
ally export/merge data created in Deadbolt with the
FDE mode (assuming safe-mode was not enabled).

Figure 2: Deadbolt Android GUI app.

however, much faster than a full reboot of the device (see
Section 4).

The cryptfs unlock function takes (as its only parameter)
the user’s password to derive the KEK. The framework shut-
down is triggered and then the tmpfs volume is unmounted
from /data. The Android FDE footer is fetched, and the
KEK is used to decrypt the master volume key contained
within. A dm-crypt target is mapped from the encrypted
storage volume and mounted on /data. We then trigger a full
framework restart. Finally we set the cryptlock.lockstate
property to O, indicating that the device is now running
in the default FDE mode. The whole process takes signif-
icantly less time that a full bootstrap from a powered off
state (see Section 4). Both the lock and unlock functions
can be accessed from a privileged shell through the vdc tool
(e.g., using adb), or by sending the vold command listener an
intent from a system-privileged app with the CRYPT_KEEPER
permission.

Deadbolt could have alternatively been implemented as
two separate readable and writable userdata partitions, each
used for varying levels of security. While this setup would
avoid the need to copy data to/from Deadbolt, it would
increase cognitive load on the user. With two userdata
partitions, users would need to keep track of where certain
data was created (e.g., trying to recall which environment
contains an SMS sent on Tuesday). We expect users to be
familiar with the private session capabilities (available for
some time) in modern browsers like Chrome and Firefox,
so the discardable environment seemed best suited to user
acceptance.

User interface and experience. We also created an An-
droid GUI app to invoke the underlying Deadbolt logic. The

app is installed in the /system partition, and therefore has
the necessary privileges to call the vold functions. In a future
version of Deadbolt, we may add the app to the power-button
long-press menu, or optionally automatically activate Dead-
bolt after a period of device inactivity or based on the user’s
behavior (e.g., location, time of day etc.; cf. [25]).

When the user wishes to suspend their FDE environment
and enter Deadbolt mode (see step 2 in Figure 1), they launch
the app. The app will check the cryptlock.lockstate prop-
erty, to determine in which mode the device is currently
running. If the device is currently in the default FDE mode,
the user will be shown the enable Deadbolt screen (see
Figure 2a). At this point the user can decide if they wish
to enable Deadbolt in the safe-mode. If they do not se-
lect safe-mode, they will instead initiate the incognito-mode
(see Section 3.2). The user may also choose to import cer-
tain private data from the encrypted userdata volume into
the tmpfs environment, if incognito-mode was selected (see
Section 3.4). If the user selects the safe-mode option, the
cryptlock.lockstate property is set to 2. This informs
the Deadbolt app that the options for importing/exporting
private data to the tmpfs environment are disabled.

To protect any imported data and the basic functionalities
of the device, a Deadbolt-specific PIN can be configured (e.g.,
to prevent outgoing phone calls and SMS). This has the
added benefit of separating the encryption password from
the screen-unlock password (i.e., if the adversary can guess
the Deadbolt PIN, he does not gain an advantage on guessing
the encryption password). In a future version of Deadbolt, we
may allow the user to set this PIN before enabling Deadbolt,
to save the user from the hassle of going through the system
settings menu.



While the device is restarting the framework and remount-
ing the /data volume, the user will not have access to the
Android GUI nor any apps. They will be shown a bootup
splash screen until the vold functionality has completed.
This nonfunctional period is brief in comparison with a full
shutdown or reboot (see Section 4).

When the device resumes in the tmpfs mode, the user
will experience what is essentially a clean Android install.
All settings will be reverted to defaults, and none of their
after-market apps and data will be accessible. The cellular
data connection is configured by selecting the appropriate
data access point name (APN) entry from a pre-configured
list (or optionally retrieved from a SIM card). Thus, when
entering Deadbolt mode, the device should require no addi-
tional user configuration to make use of the cellular network
for telephony, SMS, and mobile Internet. The user is able to
perform most smart-device tasks (e.g., web browsing, texting,
satellite navigation) without access to the encrypted storage.

When the user wishes to exit the tmpfs environment (see
step 3 in Figure 1), they will launch the Deadbolt app again.
The app detects, based on the cryptlock.lockstate prop-
erty, that the device is currently in Deadbolt mode and
presents the user with the disable Deadbolt screen (see
Figure 2b). The user then enters their password and, if safe-
mode is not enabled, chooses which data should be merged
back into the FDE environment. The device will again be-
come unresponsive for several seconds before returning the
user to their familiar FDE environment.

3.4 Data Transfer Between Environments

The default user experience when enabling Deadbolt is
similar to that of setting up a new device: no entries exist
in the address book, default wallpapers and notifications are
used, wireless network passwords are undefined, etc. While
this bare environment is sufficient for receiving phone calls
and browsing the web via a data connection, users may wish
to have some of their private data (from FDE mode) available
in Deadbolt mode. Likewise, users may wish to export some
of the data created in Deadbolt mode back to FDE mode
(e.g., SMS messages received while in Deadbolt). We provide
functionality to import/export data between environments
when Deadbolt is initialized in incognito-mode.

Importing data into Deadbolt. Importing entire content
providers (e.g., SQLite databases) and files from the FDE
mode into Deadbolt mode is achieved by mounting the tmpfs
to a temporary mount point before unmounting the encrypted
userdata partition. After creating the default directory
layout in the tmpfs, the desired files are copied from the
encrypted storage to the tmpfs. The encrypted volume is
then unmounted, and the tmpfs is moved (with the MS_MOVE
mount flag) to the /data mount point before resuming the
framework.

Although the cellular data connection is automatically
configured when entering Deadbolt mode, enabling a Wi-
Fi connection may be preferable for some users. As of
Android 4.2, all open and pre-shared key (PSK) Wi-Fi
networks and passwords are stored in the plaintext file
/data/misc/wifi/wpa_supplicant.conf. Deadbolt can op-
tionally (at the user’s request; see Figure 2a) copy this file
into the temporary environment, allowing the user to connect
to access points that he/she has previously connected to.

By default, the user’s address book is encrypted and locked,
and therefore not available in Deadbolt. While having an

empty address book does not limit the device’s ability to
receive phone calls and messages, users may find it difficult to
make phone calls without knowing contact’s numbers. Thus,
it may be useful to copy the address book contacts into
the Deadbolt environment. Our current prototype supports
copying the address book into Deadbolt, but we note that if
the device is compromised while in this mode, any contacts
copied from FDE mode or created during Deadbolt mode
may be accessible to an adversary if physical access to the
device is gained.

Exporting data from Deadbolt. All data created while
running Deadbolt (e.g., snapped photos, call logs, browsing
history) is written to RAM. As such, when the user switches
back to the encrypted environment, this data will be over-
written by RAM assigned to the FDE mode (or optionally
zeroed when exiting Deadbolt; see Section 4.2). Currently,
Deadbolt supports optionally exporting all camera photos and
merging call history and SMS/MMS messages into the user’s
encrypted storage (at the user’s request; see Figure 2b).
Merging the tmpfs data into the encrypted storage before
exiting Deadbolt mode requires having both volumes mounted
simultaneously. The camera photos and MMS multimedia
attachments are stored as files and directories. They are
simply copied from the tmpfs to the encrypted storage before
unmounting the tmpfs and moving the encrypted storage
to the to the /data mount point. To merge database con-
tent, the tmpfs content provider entries are dumped and in-
serted into the FDE content provider databases. e.g., sqlite3
/tmpfs/tmp_database.db .dump | sqlite3 /FDE/fde_database.db

4. EVALUATION AND PERFORMANCE

This section evaluates the performance and overhead in-
curred by switching to and from the Deadbolt mode. We also
discuss tests performed to verify that the claimed security
properties of locked FDE mode were achieved.

4.1 Performance

Experimental setup. All development and measurements
were performed on an Asus Nexus 7 tablet running a quad-
core 1.2 GHz Tegra3 processor with 1 GB of RAM. The
tablet was loaded with AOSP 4.2.2 which included our vold
modifications to support Deadbolt. Due to the way our
system pauses and re-launches the Android framework (see
Section 3.1) we are unable to rely solely on Android logs to
obtain timing information. Thus, we configured the running
AOSP image to save kernel messages to a log file on the
internal flash filesystem. Android specific (adb) logs were
redirected to the kernel logging facility, resulting in a unified
log view and homogeneous timing data with microsecond
resolution.

As a baseline, we measured the time taken to complete
two standard FDE activities, as noted below.

Power-off to unlocked FDE. This test measured the time
taken to arrive to an unlocked FDE state (i.e., where user
data is available and GUI is responsive) from a fully powered-
off state (i.e., where data is securely encrypted). Since we
were unable to reliably measure power-on self-test (POST)
time, we start our measurements at the time of logging the
first Linux kernel message which typically displays the kernel
version and CPU architecture. The time to input the FDE
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Figure 3: Timing comparison for locking/unlocking encrypted storage.

password was subtracted from our total.> The mean over 10
trials, for arriving to an unlocked FDE state, was 42.17 (std.
dev. 0.638) seconds.

Unlocked FDE to power-off. This test measured the
time taken to shut down a device that is already in unlocked
FDE mode. The measurements start when the power off
menu item is tapped (i.e., shutdown command is issued),
and end at the last logged kernel message. Over 10 trials,
it took an average of 14.03 (std. dev. 0.145) seconds, to go
from power button pressed to full device shut down.

Next, we performed measurements with Deadbolt enabled.
For these trials we measured the time taken to transition
from between FDE mode to Deadbolt mode, and then return
to FDE mode.

FDE to Deadbolt. Over 10 trials, the time to enable
Deadbolt from unlocked FDE mode averaged 31.62 (std. dev.
1.235) seconds. While this is slightly more than double the
time it takes to lock the userdata partition by shutting
down (see Figure 3b), the user doesn’t need to interact
with the device once the enable Deadbolt sequence has
been selected. Users could, if desired, start Deadbolt and
immediately put their device away. The increased time is due
to the initialization of system apps which must be unpacked
and installed on the tmpfs volume before first use.

Deadbolt to FDE. Returning to FDE from Deadbolt took
14.00 (std. dev. 0.122) seconds on average, over 10 trials.
This measurement describes the time it takes for a user to
gain access to his/her encrypted data. Comparing this time
to a full device power on cycle, (see Figure 3a), users would
be able to unlock their data on average 28 seconds faster
when using Deadbolt.

To summarize, Deadbolt allows users to more rapidly un-
lock private data when required by returning to FDE mode
without the need for a full reboot, at the expense of longer
times to lock data. However, much of the device functionality
remains available in Deadbolt, helping to justify the time
trade-off.

SWe calculate the time for password input by noting the time
it takes to arrive at the password prompt and subtracting
the time when the password is submitted to vold.

4.2 Security Analysis

Encryption key deletion. The dm-crypt subsystem uses
the kernel crypto module to perform AES encryption. The
FDE key, along with other key material (e.g., round key
schedule), are present in kernel memory while the dm-crypt
target is actively mapped. Furthermore, vold keeps a copy of
the decrypted FDE key in memory after successfully mount-
ing the userdata partition.

As discussed (see Section 3.3), dm-crypt uses the kzfree
function to zero all key material before deallocation from
RAM, when a target is unmapped [15]. Unlike the rema-
nence properties of magnetic storage, recovering the previous
state of a DRAM cell is non-trivial (e.g., requiring voltage
comparisons shortly after the cell has been overwritten [11]).
As an additional sanity check, using the LIME memory ex-
tractor kernel module [31], we take full RAM dumps of our
development device before, during, and after using Dead-
bolt. Statistical techniques for locating encryption keys in
large amounts of data exist (e.g., [28]). We make use of the
AESKeyFinder [13] tool described in the original cold boot
attack publication [12], to search the RAM dumps. While
the FDE key was successfully located in RAM dumps from
before and after using Deadbolt, no key material was located
in the Deadbolt mode RAM dump.

To securely deallocate (by zeroing before freeing) vold’s
copy of the FDE key, we use the memset function, and disable
compiler optimization (i.e., the -O0 gcc flag). We also take
steps to securely deallocate the password used to derive the
KEK in the vold functions that require a password. When
examining the region of memory that holds vold’s copy of
the key, we observe that the memory in fact contains zeros as
opposed to the FDE key. The same is true for the password.

Physical RAM access. Despite ensuring that the key has
been removed from RAM (effectively securing the encrypted
data), plaintext fragments of open files from FDE mode may
persist in RAM into Deadbolt mode. Android does not use
swap space, so there is no danger that these fragments will be
paged to disk. However, an adversary capable of obtaining
a RAM dump may be able to locate plaintext private data.
This problem can be mitigated by encrypting RAM, however
such techniques do incur some performance overhead [23].



Other approaches include modifying the kernel, C library,
and Java garbage collector memory deallocation routines to
enforce memory zeroing before deallocation [32, 6]. Although
these techniques also incur some performance overhead, they
help ensure that any other memory containing the key or
password are zeroed (e.g., password entry via the Android
keyboard).

We experimented with the smem [33] tool in an attempt
to zero all available RAM before initiating the tmpfs. In its
single-overwrite mode, smem will repeatedly call calloc, to
allocate and zero as much heap memory as possible. However,
due to the lack of swap space on Android devices, the tool
was always terminated by the Linux kernel out of memory
(OOM) Kkiller before completion. On average we were able
to wipe 725 MB of RAM before the process ended. We
also attempted to exempt the smem process from the OOM
killer, however that resulted in other critical processes (e.g.,
vold) being killed instead. Disabling the OOM Kkiller en-
tirely (by setting /proc/sys/vm/overcommit_memory to 2),
generally resulted in a kernel panic or system hang. To pro-
tect against plaintext recovery from RAM dumps, Deadbolt
should be used with a kernel based secure page deallocator.
Grsecurity’s PaX extensions provide the capability to wipe
all memory pages as soon as they are freed with minimal
overhead (roughly 3% performance impact during the task of
kernel compilation®). All Android framework and user apps
are killed when Deadbolt is enabled, hence all private data
should be erased from RAM.

When disabling the Deadbolt environment, plaintext frag-
ments from logs and activities in the tmpfs may be retrieved
from a memory dump in FDE mode. Since the tmpfs is a
finite size, we were able to successfully wipe the tmpfs using
Android’s dd tool, before unmounting and returning to FDE
mode. On average, wiping the 128 MB tmpfs required 2.4
seconds.

Security of imported data. If the user has not set a
Deadbolt PIN (see Section 3.3) data imported into Deadbolt
may be trivially retrieved by an adversary with access to the
device. An adversary may obtain a list of imported Wi-Fi
access points/passwords as well as contacts etc. if the device
is stolen (See Section 3.4).

In summary Deadbolt protects against theft of data that
is encrypted and locked, but offers no additional protection
for data available to the user and system while in Deadbolt
mode. This data may be susceptible to compromise through
malware or physical device theft. Deadbolt does not protect
against off-line password guessing attacks, so a strong FDE
password is still recommended.

S. DISCUSSION

This section describes the trade-offs of including certain
enhancements in Deadbolt. We then discuss limitations of
the system as implemented.

5.1 Adding functionality to Deadbolt

In its default configuration, Deadbolt includes a base set of
applications providing basic smart-device functionality. Users
can optionally access certain types of data (e.g., contacts
and Wi-Fi passwords; see Section 3.4), but they may wish

Shttp://en.wikibooks.org/wiki/Grsecurity/Appendix/
Grsecurity_and_PaX_Configuration_Options#Sanitize_
all_freed_memory

to have other types of data accessible within the Deadbolt
environment.

Applications with Notifications. Mobile devices today
are often used to receive alerts of various types (e.g., email,
tweets, social network messages, etc.). Since most such
notification-enabled apps are not launched while the device
is in Deadbolt mode, users may need to configure notifications
over SMS if supported by the service. Alternatively, installing
the app in Deadbolt and entering user credentials (see below)
is possible, but this is inconvenient, and the credentials and
received data will remain unencrypted and at risk. To limit
exposure, some providers offer finer granularity in access
to cloud data. For example, Google’s application-specific
passwords” could allow an application to retrieve unread
email counts, but not sign in to Gmail.

Other Apps and User Data. Users may require addi-
tional apps beyond those included in the base Android in-
stall (see Section 2.2) while in Deadbolt mode (e.g., a secure
SMS application or a different browser). We are considering
adding a feature where users can optionally specify which
user-installed apps should be copied from FDE mode and
made available in Deadbolt mode. This can be achieved by
copying the apk package file from the FDE volume to the
tmpfs volume, and invoking the package manager to install
the app after the Deadbolt mode has been initialized. To
address the lack of a uniform storage location or format (e.g.,
settings databases, flat files, content providers), a Deadbolt-
specific data storage API could be implemented. This API
would allow developers to store specific, non-private data
that could be used safely within Deadbolt.

5.2 Comparison to Existing Encryption
Techniques

This section compares the security properties of Deadbolt
to other existing encryption techniques (see Section 2.1).
Table 1 provides a non-exhaustive list of vendor solutions
to data encryption (separated by either per-file encryption
or full disk encryption). For each column, we assume the
device has been configured to enable secure data storage
(e.g., turning on full disk encryption or file based encryption)
as well as a screen lock. Columns 1 and 2 (resilience to lock-
screen bypass and cold boot attacks, respectively) assume
the device data is secure even if obtained by an adversary
while powered-on but locked. Column 3 refers to the need to
include an additional hardware component on the device, or,
alternatively, to modify (e.g., burn in cryptographic material)
the device at manufacturing time. The app notifications
column describes the ability for a device in powered-on but
screen-locked mode to receive and display app notifications
to the user.

As Table 1 shows, Deadbolt offers the security benefits of
using file-based encryption without the need to use special-
ized hardware or drastically re-engineer Android’s full-disk
encryption approach. While Deadbolt loses the generic abil-
ity to receive notifications for all third party applications,
it gains the advantage of offering an incognito mode (see
Section 3.1).

5.3 Limitations

"https://support.google.com/accounts/answer/1858337
hl=en
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Table 1: Comparison of Deadbolt to existing device
encryption techniques.

“Deadbolt itself does not preclude receiving notifications
(e.g., over SMS), however, these types of notifications must
be offered by the service provider (see Section 5.1).

This section discusses some of the limitations of Deadbolt
including system requirements, and precautions that must
be taken when using the system.

Usability considerations. The required time to enter the
Deadbolt environment is non-negligible, and thus may dis-
courage users from frequently enabling Deadbolt. We note,
however, that devices are typically not required for use im-
mediately after enabling the lock-screen (or Deadbolt) so we
see this as only a minor inconvenience. The absence of some
user applications and app notifications is a more significant
usability challenge. App notifications through SMS (which
are available from some service providers; e.g., Twitter) is a
viable solution. Alternatively, services may provide a privacy
preserving meta-notification without requiring the user’s lo-
gin password (e.g., notifying the user that unread emails
exist, without disclosing contents). To alleviate the user
from the burden of manually enabling Deadbolt, automatic
policies may be enabled to activate Deadbolt after a period
of device inactivity or based on the user’s behavior (e.g.,
location, time of day etc.; cf. [25]).

Root access. Deadbolt requires a modified vold binary,
which exists in the system partition. On Android, root
access is required to modify files on the system partition,
and therefore is also required to install Deadbolt. Patches
to vold will be submitted for inclusion in AOSP, which in
the future may allow users to install Deadbolt by way of a
userspace app download.

Memory requirements. RAM allocated to temporary
filesystems is unavailable for use as regular memory for ap-
plications. Thus, it is important to find the right balance
between performance and functionality such that there is
enough reserved space for user created content, but also
enough RAM to prevent Android from killing processes and
slowing down the system.

On first use, system apps (i.e., Android’s base set of appli-
cations) are unpacked into the /data partition. We observed
that for AOSP 4.2.2, /data required a minimum of 44-81 MB
(depending on tablet or phone). Mounting this partition in
RAM and allocating memory for apps necessitates at least

128 MB of RAM.® This memory requirement may preclude
lower-end devices with less than 256 MB of RAM from run-
ning Deadbolt. However, Deadbolt works with the Android
storage encryption mechanism which was made available for
both smartphones and tablets in version 4.0. According to
the Android 4.0 Compatibility Definition Document (CDD),
all 4.0 capable devices must have at least 340 MB of memory
available to the kernel and userspace.’ Thus Deadbolt is com-
patible with any device that supports encryption. During
testing, we found a safe minimum amount of RAM is 128 MB
for the tmpfs, but assigning half of available RAM to the
tmpfs provides balance between performance and available
space.

6. RELATED WORK

Several academic proposals exist to protect encrypted data
at rest from attack. In general, related research falls under
three main categories which we discuss in this section.

Cold boot attacks and defenses. The cold boot at-
tack [12] aims to retrieve encryption keys from RAM when
security mechanisms such as lock-screens are in use, by ex-
ploiting data remanence properties of DRAM. Unlike mag-
netic and Flash storage, DRAM is not persistent. Never-
theless, it will retain data for a short time after power has
been removed [11]. The cold boot attack is executed by
rebooting the machine into a custom bootloader or OS to
retrieve encryption keys from memory (or by transplanting
the RAM into a custom device to do the same). DRAM has
better remanence properties at lower temperatures, so the
attack often involves freezing the physical memory [12]. The
cold boot attack has been demonstrated for Android’s FDE
implementation to successfully capture the FDE key from
RAM [20].

Defenses against the cold boot attack often rely on keeping
encryption keys, and intermediate state, outside of RAM
(e.g., in CPU cache, registers [19, 18, 29|, or external de-
vices [5, 32]). This technique has recently been demonstrated
for ARM based Android devices by Gétziried et al. [10].
These methods tend to have non-negligible performance im-
pacts, as the CPU registers or cache must be reserved for the
encryption key and other processes will not have access to
them. To minimize the performance impact, these techniques
could be employed only while the screen is locked. However,
even if such defenses are in place, data is only as secure as
the lock-screen, since the encrypted volume is still unlocked.
In that respect, Deadbolt could be combined with such a
technique to provide additional protection when needed.

Deadbolt does not attempt to maintain key material outside
of RAM, but rather ensures the userdata partition is locked
and the keys are securely deallocated when the device enters
this state. This gives a device in Deadbolt mode the security
properties of being powered off, while retaining some of the
usability benefits of being powered on.

DMA attacks and defenses. Direct memory access (DMA)
techniques can be used to access physical RAM and attempt
to search for cryptographic keys [26]. Furthermore, DMA
attacks can be used to manipulate a running kernel to read

8Strictly speaking, only 82 MB of RAM are required, but
users would run into “out of space” messages as soon as a
few photos are taken or as browser history grows.
%http://source.android.com/compatibility/4.0/
android-4.0-cdd.pdf
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CPU state [4]. ARM CPUs expose debug commands which
can be used to access RAM and CPU state [3]. These com-
mands can be used to compromise an ARM-based Android
device with a debug interface such as JTAG [29].

Current defenses against DMA attacks tend to rely on
virtual machine monitors (VMM) (see e.g., [21]). Deadbolt’s
design goals are to avoid the need for additional hardware,
and overhead required by a VMM. Our technique is not
susceptible to DMA attacks, since the key material is neither
in RAM nor the CPU registers. We also ensure that the
encrypted volume is locked, and optionally attempt to flush
plaintext fragments from RAM, when entering Deadbolt mode
(see Section 4.2).

VM based protection. The use of virtual machines (VM)
has also been suggested for performing privacy-sensitive ac-
tivities (see e.g., [16]). These proposals require hardware
virtualization support which (as of writing) is uncommon in
mobile devices. Additionally, vulnerabilities in the hypervi-
sor may lead to compromise of the FDE key, if it is still in
RAM when the VM is running. Deadbolt re-launches the
Android framework from a running kernel, instead of from
within another instance (¢f. switching Linux runlevels). This
greatly reduces the time and resource overhead required for
Deadbolt, as explained in Section 4.

7. CONCLUSION

The always-on mobile computing paradigm presents a new
set of challenges for robust, software-only full-disk encryp-
tion. Even when FDE is enabled, data tends to remain
unlocked when devices are powered-on. In this paper, we
have proposed a first step towards providing strong security
properties while allowing basic functionality of smart-devices
to remain enabled. Our proposal, Deadbolt, allows security-
conscious users to enable an additional level of security in
higher threat environments, helping secure their FDE key
and data. Deadbolt requires no additional hardware support,
and is implemented to be compatible with the modern An-
droid builds. For source code for the Deadbolt app and vold
patches, please contact the authors.
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