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Abstract—Bitcoin users are directly or indirectly forced to deal
with public key cryptography, which has a number of security
and usability challenges that differ from the password-based
authentication underlying most online banking services. Users
must ensure that keys are simultaneously accessible, resistant to
digital theft and resilient to loss. In this paper, we contribute an
evaluation framework for comparing Bitcoin key management
approaches, and conduct a broad usability evaluation of six
representative Bitcoin clients. We find that Bitcoin shares many
of the fundamental challenges of key management known from
other domains, but that Bitcoin may present a unique opportunity
to rethink key management for end users.

I. INTRODUCTION

In all of the excitement surrounding Bitcoin [21], it is
easy to forget that the decentralized currency assumes a
solution to the longstanding problem of usable public key
cryptography for user authentication. Studies of the usability
of key management [14]–[16], [27] have shown that there are
numerous usability issues that prevent public key cryptography
from being effectively leveraged by end users. Managing,
controlling, and using cryptographic keys are complex tasks,
and no clear solution has been proposed.

Despite the known complexity in creating and managing
cryptographic keys, the Bitcoin network and software clients
use such keys extensively for many operations. For example,
digital signatures, which require the Bitcoin software to read
private keys into memory, are used to assert ownership over
a specific set of Bitcoins. Thus, managing the same coins on
multiple devices (e.g., a desktop and a phone) requires the
corresponding private keys to be copied to and made accessible
on these devices.

The consequences of losing exclusive control over an
account containing monetary value connects the threat of
losing a Bitcoin private key to that of losing an online banking
password. However, consumers in many countries are legally
protected from any liability of banking credential loss. Further-
more, most bank transactions are traceable and reversible, mak-
ing it difficult to extract value from stolen banking credentials
(most techniques involve a mule [13]). Bitcoin transactions
are also traceable, however they are not reversible. Stolen

Bitcoins can thus not be centrally or automatically recovered.
Bitcoin users typically have no legal protection against loss or
theft, and while stolen Bitcoins could be traced as they change
ownership,1 several mechanisms exist for laundering Bitcoins
and similar digital currencies [8], [19].

In an effort to address some of the complexities of key
management, developers of Bitcoin software have created a
variety of innovative technologies ranging from password-
derived keys to air-gapped computers to physical printouts of
private keys in the form of 2D barcodes. However, since none
of these proposals have been evaluated in the Bitcoin context,
it remains unclear which techniques have usability advantages.

For Bitcoin to flourish, adoption must expand beyond de-
velopers and tech-savvy enthusiasts to novice users. Expansion
solidifies the need for a usable, comprehensible approach to
Bitcoin. If users cannot safely manage Bitcoin keys, it may
result in the users’ loss of funds and/or a poor reputation for
Bitcoin, both of which could dissuade further user adoption.

In this paper, we aim to investigate the usability challenges
surrounding key management in Bitcoin. To do this, we survey
and categorize the most prominent Bitcoin key management
proposals. Next we conduct an expert usability inspection
technique known as a cognitive walkthrough [30] on popular
examples of each proposal. Our goal is to identify overarching
usability issues as well as advantages of specific proposals,
allowing us to propose design recommendations for future
Bitcoin clients.

Specifically, the contributions of the paper are as follows:

• We perform a broad survey of six Bitcoin key man-
agement techniques which cover the vast majority of
deployed Bitcoin software.

• Using the results from our survey, we propose an
evaluation and comparison framework for Bitcoin key
management techniques. The framework is based on
10 security, usability and deployability criteria, and
enables direct comparison of current and future key
management proposals. Using our framework we find
that certain properties, such as trust in a central party
enable additional beneficial properties. We also find
that the disadvantages of certain properties, such as
malware protection, outweigh the relative benefits.

• We perform a cognitive walkthrough of six distinct
Bitcoin clients and tools to identify usability issues
while performing basic Bitcoin tasks (e.g., viewing
account balance, sending funds, etc.). We find that

1Public keys associated with specific Bitcoins are publicly available in the
Bitcoin blockchain, but the identities of users who control those keys are not.
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the metaphors and abstractions used in the surveyed
clients are subject to misinterpretations, and that the
clients do not do enough to support their users.

II. BACKGROUND

A. Bitcoin

Bitcoin is a cryptographic currency deployed in 2009 [21]
which has reached a level of adoption unrealized by decades
of previously proposed digital currencies (from 1982 [11]
onward). Unlike many previous proposals, Bitcoin does not
distribute digital monetary units to users. Instead, a public
ledger maintains a list of every transaction2 made by all Bitcoin
users since the creation of the currency. A transaction in
its simplest form describes the movement of some balance
of the Bitcoin currency (XBT or BTC) from one or more
accounts (called input addresses) into one or more accounts
(called output addresses). Bitcoin addresses are indexed by the
fingerprint of a public key from a digital signature scheme.3
They are not centrally allocated or registered in any way—
the addresses become active when the first transaction moving
money into them is added to the ledger.

In Bitcoin, every transaction must be digitally signed using
the private signing key associated with each input address in
the transaction. In order to spend Bitcoin, users require access
to the signing key of the account holding their Bitcoin. Thus
users do not maintain any kind of units of currency; they
maintain a set of keys that provide them signing authority over
certain accounts recorded in the ledger.

The ledger (known as the blockchain) is maintained and
updated by a decentralized network using a novel method
to reach consensus that involves incentivizing nodes in the
network with the ability to generate (known as mining) new
Bitcoin and collect transaction fees. The details of the Bitcoin
consensus model are not relevant to this paper, but we note
that clients in the network participate in the consensus model
by downloading and cryptographically verifying the integrity
of the blockchain. As of writing, the Bitcoin blockchain is
roughly 25 GB in size.4

One subtlety of Bitcoin’s transaction architecture is that in
order to spend Bitcoins, the entire value of unspent outputs
(i.e., from previous transactions) must be spent. To accommo-
date this, Bitcoin clients automatically spend the full amount
of unspent outputs and create multiple components in the
transaction: one component will send part of the unspent coins
to the intended recipient, and the other component will send the
remaining inputs back to the sender as change. It is technically
possible (and some clients behave this way) to send change
back to the sending address. However, to enhance anonymity,
the reference client generates fresh addresses (and correspond-
ing private keys) to receive the remaining transaction amount.

2Technically, a transaction specifies a short script that encodes how the
balance can be claimed as the input to some future transaction.

3Elliptic Curve Digital Signature Algorithm (ECDSA) [29].
4Due to the large size of the blockchain, full download is infeasible for

thin clients running on mobile devices, as well as some desktop clients. These
clients connect to a semi-trusted node and only request transactions relevant to
keys in their wallet. This technique, known as Simplified Payment Verification
(SPV), eliminates the need to download and verify the entire blockchain but,
when implemented incorrectly, can create privacy risks [17].

As more transactions are made, Bitcoin clients must keep
track of multiple private keys for use in future transactions.
Many clients prominently display a Bitcoin balance on the
main screen, which represents the sum of all unspent outputs
for which private keys are available.

B. Usability of Key Management

Passwords remain the most common form of user authen-
tication [18]. Private key-based authentication is rarely used
by non-experts, and is typically never used as the default
configuration in applications which support this authentication
method. Transport Layer Security (TLS) client-side certificates
have failed to reached wide-spread deployment. Secure shell
(SSH) uses passwords by default, and allows certificates.

Password managers, when configured to generate or store
system-chosen random passwords, share at least one property
of cryptographic keys: such passwords become something you
have instead of know. However, if access to such a password
is lost, online services generally offer account recovery mech-
anisms (e.g., based on email). No such recovery mechanism
exists for self-managed cryptographic keys.

The use of public key systems by non-experts that is
closest to Bitcoin is arguably encrypted/authenticated email,
in particular Pretty Good Privacy (PGP) and its open-source
alternatives (i.e., GPG and OpenPGP). Beginning with Why
Johnny Can’t Encrypt [31], the usability of public key tech-
nology has been well-studied from a usability perspective [14]–
[16], [27]. The findings of this literature are diverse but
relevant observations include the following: (1) the metaphor
and terminology behind public and private keys is confusing;
(2) it is difficult to correctly obtain other users’ public keys;
(3) key migration between devices is difficult. This literature
tends to focus primarily on encryption and not signatures, but
we find some overlap to the work presented here.

III. BITCOIN KEY MANAGEMENT APPROACHES

Before turning to a detailed usability evaluation, we eval-
uate from a systems perspective each category of tool for
managing Bitcoin private keys. We highlight security and
deployability issues, and note relevant details of the Bitcoin
protocol that create complexities and potential discrepancies
with users’ mental models.

A. Keys in Local Storage

One way in which Bitcoin software manages several private
keys is by storing these keys on the device’s local storage,
typically in a file or database in a pre-configured file system
path. When a new transaction is created, the Bitcoin client can
read the keys and immediately (possibly without any further
user input) broadcast the transaction over the network. The
reference Bitcoin client (Bitcoin Core), as well as certain mo-
bile wallets (e.g., Android Bitcoin Wallet) use this approach,
storing private keys in a file (referred to as a wallet) inside the
user’s home or application directory.

Storing keys in a locally accessible file has several advan-
tages. First, there is no additional cognitive load on users, since
only the software must access the file. Second, a practically
unlimited number of keys can be stored on disk due to the
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small size of keys. Third, the Bitcoin software can automati-
cally generate keys and create transactions without additional
input or actions from the user.

Storing keys locally also creates several threats, which the
user must consider. For example, the file storing private keys
can be read by any application with access to the user’s appli-
cation folder. Malware authors may be particularly interested
in exploiting this key management approach, since access to
the local file results in the adversary gaining immediate access
to the victim’s funds. One of the first examples of private key-
stealing malware was discovered by Symantec in 2011 [28],
with many other similar malware examples following suit.

Users must be cautious to not inadvertently share their
Bitcoin application folder (e.g., through peer-to-peer file shar-
ing networks, off-site backups or on a shared network drive).
Physical theft, especially in the case of portable computers or
smartphones must also be considered. Similar to the storage of
other sensitive files, threats to digital preservation [2] should
be taken into account. Examples include general equipment
failure due to natural disasters and electrical failures; acts of
war; mistaken erasure (e.g., formatting the wrong drive or
deleting the wrong folder); bit rot (i.e., undetected storage
failure); and possibly others. If storing private keys for a long
period of time (e.g., a trust fund or long-term savings), users
must also preserve a specification of the file format to ensure
the keys can continue to be read.

The reference Bitcoin client pre-generates keys in a batch
of 100 (these keys are known as the keypool). When a
transaction is made, the next available key is selected from the
keypool for receiving change. The keypool is then periodically
refilled with a new batch of keys as necessary. This key churn
requires users to periodically create new backups of their key
storage file to ensure that new keypool keys are stored.

B. Password-protected (Encrypted) Wallets

Certain Bitcoin clients allow a locally stored wallet file to
be encrypted with a key derived from a user-chosen password
or passphrase. Password-protected wallets appear to address
only physical theft of the underlying storage device, requiring
brute-force of the password if the file containing private keys
is stolen. Password protection seems less useful in the case
of digital theft; if malware can be installed on to the device
storing the wallet, it is reasonable to assume a keystroke-
logging module would be present, limiting or nullifying the
benefits of the password protection.

Password-protected wallets share the advantages and dis-
advantages of non-encrypted wallets (see Section III-A), with
a few subtle differences. Password-protected wallets trade
recoverability and usability for the mitigation of physical
theft. If the password is forgotten, users lose the balance of
their password-protected wallet since no mechanism exists for
recovery5. For day-to-day use, users must unlock the wallet by
entering their password when new transactions are made.

Password-protected wallets may mislead the user to be-
lieve that the password itself provides access to their funds
regardless of the location of the device storing the wallet,

5Of course, exhaustive search of the password space is theoretically possi-
ble, and is available as a service: http://www.walletrecoveryservices.com

Fig. 1. Bitcoin paper wallet generated using https://bitcoinpaperwallet.com.
The printout is designed to be folded such that the private key (right) remains
hidden while the public component (left) remains visible.

as would be congruent with a traditional mental model for
web-based online banking. Users may be surprised to discover
that they cannot access their funds at a new device by simply
entering their encryption password; the wallet file must also
be transferred to the new device.

C. Offline Storage of Keys

To further protect Bitcoin private keys from malware-based
threats, wallets can be stored offline on some form of portable
media, such as a USB thumbdrive. Keeping keys offline
enables the use of traditional physical security techniques (e.g.,
storing the drive in a fire-proof safe) to protect the wallet.
However, offline storage has the drawback of making the wallet
inaccessible for immediate use by software, preventing users
from spending funds unless the offline storage media is nearby.
As expected, offline storage can be used for backup, but all
copies of the wallet must be kept offline for the full benefits of
theft-protection to be realized. Prior to offline storage (wallet
creation) and after storage (future transactions), the wallet will
be exposed on a computational device, potentially to malware.

An interesting case of offline key storage is paper wallets
(see Figure 1) where private keys are printed onto paper
typically in the form of a 2D barcode (e.g., a QR code) or as a
long sequence of characters. Barcodes facilitate reading the key
back into a Bitcoin client by, for example, scanning the code
with a smartphone camera. Securing a paper wallet is similar
to securing cash, which most users should be comfortable with.
However, funds can be stolen from a paper wallet by simply
observing the QR code (e.g., on live television6), which is not
possible with physical money. Thus transporting a paper wallet
securely requires that the printed contents remain unobservable
at all times. Users must remember that a paper wallet does not
contain the funds itself, but rather enables signing authority
over a set of Bitcoins. For example, if a paper wallet is
discarded after funds are spent, the paper wallet still provides
access to any future funds that may be sent to that address.7

As with any long-term storage, users must preserve soft-
ware capable of decoding the QR code in the event that the pa-
per wallet generation service is unavailable when attempting to
reload keys onto a device. As of writing, many Bitcoin clients
as well as offline storage solution use a common “wallet import
format”, which involves manipulating an ECDSA private key

6“A Bloomberg TV Host Gifted Bitcoin On Air And It Immediately Got
Stolen,” Business Insider, 10/23/2013.

7“Five Ways to Lose Money with Bitcoin Change Addresses,” Bitzuma
(Blog), 17/03/2014.
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by performing cryptographic hashes, adding a checksum for
integrity, and encoding the resulting string into Base58.8

D. Air-gapped Key Storage

In offline storage, we assume the device or media holding
private keys cannot perform computations such as creating
digital signatures. We distinguish this type of storage from air-
gapped storage, where wallets are stored on a secondary device
that generates, signs, and exports transactions, but this sec-
ondary device is never connected to a network. When spending
Bitcoins using an air-gapped device, a transaction is created
from the air-gapped device and the resulting signed output
transported (usually through portable media) to an Internet-
enabled device for transmission onto the Bitcoin network.

An air gap improves theft-resistance by never directly using
a private key on an Internet-connected device. However, air
gapped devices are capable of actually executing malware
if infected. Malware may jump the air gap by infecting the
portable media used to export signed transactions.

While not literally an air gap, hardware security modules
(HSMs) emulate the properties of an air gap by isolating the
key material from the host device, and only exposing the
ability to sign transactions. Bitcoin-specific HSMs are under
active development at the time of writing and a few have been
recently released (e.g., Trezor9).

Note that the consequences of obtaining access to the pri-
vate keys are not much different from accessing a transaction-
signing oracle for the wallet—both allow the current balance of
Bitcoin to be stolen. However, future funds may be protected
if access to the signing oracle is non-persistent.

E. Password-derived Keys

Thus far, all key management solutions have required users
to maintain cryptographic keys. The remaining two solutions
enable users to access their Bitcoin with a password instead.

The first approach is to derive cryptographic keys from a
user-chosen password (e.g., using PBKDF2 [26], manipulat-
ing the output to produce a valid Bitcoin private key). The
disadvantage of using this approach directly is that only one
resulting keypair is created, requiring the user to select a new
(different) password for a new keypair.

A more robust approach is described in the Bitcoin Im-
provement Proposal 32 [24], and is known as a Hierarchical
Deterministic (HD) Wallet. HD wallets deterministically derive
a set of private keys from a master secret (a randomly chosen
passphrase). These keys can derive new private keys. The
deterministic nature allows the password holder to view the
balance, as well as spend the funds, of any sub-account derived
from the password. However, if the private key on one of the
sub-accounts is compromised, only the funds sent to that sub-
key (or sub-keys derived from it) may be stolen.

Password-derived wallets are targeted at loss-prevention
and simpler cross-device access. The challenges of preserving

8Base58 avoids the use of characters such as “0, O, I, and l” which may
look visually similar, and also avoids punctuation characters which may trigger
software (e.g., e-mail clients) to perform line breaks.

9http://www.bitcointrezor.com

access to a digital file are no longer necessary as long as
the wallet can be re-generated from a memorized password.
The primary drawback of a password-derived wallet is that
weak user-chosen passwords can be found through unthrottled
exhaustive search since a fingerprint of the associated public
key will be in the global public ledger if the account holds
any amount of Bitcoin. Rainbow tables [23] for password-
derived keys have been developed.10 Finally, it remains unclear
whether memorization poses an advantage over maintaining a
digital file when preventing loss—a forgotten password will
orphan all funds in the account.

F. Hosted Wallets

A final approach to key management is to host user
accounts on a third-party web service. In this case, the service
maintains possession of the private keys. Hosted wallet web
services provide the user with access to transactional function-
alities through standard web authentication mechanisms, such
as a password or two-factor authentication, and may also offer
password recovery mechanisms. Bitcoin smartphone applica-
tions that act as clients to hosted wallets benefit from reduced
application complexity (i.e., no need to perform cryptographic
operations on the device) and brick and mortar bank-like user
interfaces. Currency exchange services that allow Bitcoin to be
exchanged with fiat currency effectively provide this service,
as do web services deployed specifically to host wallets.

It is natural to expect hosted wallet services will become
primary targets of attack since these services typically hold
large amounts of Bitcoin. Offloading the task of key manage-
ment to a third-party requires users to assume the risk that the
service could be breached and funds lost, in exchange for a
traditional online banking-style user experience.

As a counter-measure to theft, hosted wallet providers often
keep only a small float of their holdings online (called hot
storage) and store the majority of their holdings offline in
cold storage. This has the drawback of causing delays in
transactions for users if the hot storage amount is exhausted.
Hosted wallet services may also allow audits, where they
cryptographically prove possession of sufficient Bitcoin to
match their liabilities.

Another approach that falls under the hosted wallet cate-
gory is a hybrid hosted wallet. Hybrid wallets use client side
encryption (typically in Javascript) to encrypt all private keys
and sensitive data. The web service is then only used for broad-
casting transactions to the network and for displaying the user’s
balance (which requires inspecting the entire blockchain).

IV. EVALUATION FRAMEWORK

In this section, we systematize the major category-wide
issues we have uncovered in describing the various key man-
agement approaches used by Bitcoin clients. We present an
evaluation framework based on 10 criteria as shown in Table I
and discussed in the following subsections. This framework
both summarizes the advantages and disadvantages of the
various approaches we have evaluated, while also providing a
benchmark for evaluating future key management proposals.

10D. Martyn. “Bitcoin ‘Brainwallets’ and why they are a bad idea,”
Insecurety Research (sic) (Blog), 26 Mar 2013.
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Keys in Local Storage Bitcoin Core • • • • •
Password-protected Wallets MultiBit ◦ • ◦ • • •
Offline Storage Bitaddress ◦ • • • •
Air-gapped Storage Armory ◦ • • • • •
Password-derived Keys Brainwallet • • ◦ • • • •
Hosted Wallet (Hot) Coinbase.com • • • • •
Hosted Wallet (Cold) ◦ • • • • •
Hosted Wallet (Hybrid) Blockchain.info ◦ ◦ • • • • •
Cash • • • • • • • • •
Online Banking • • • • •

TABLE I. A COMPARISON OF KEY MANAGEMENT TECHNIQUES FOR BITCOIN (CONTRASTED WITH TRADITIONAL FINANCIAL SERVICES). • INDICATES
THE CATEGORY OF CLIENT IS AWARDED THE BENEFIT IN THE CORRESPONDING COLUMN. ◦ PARTIALLY AWARDS THE BENEFIT. DETAILS PROVIDED INLINE.

The framework is adapted from a similar framework for
evaluating password replacement schemes [7].

A. Evaluation Criteria

We briefly enumerate the criteria used to evaluate each
proposal in the framework below.

Malware Resistant. Malware designed to steal Bitcoin wallets
and related passwords has been observed in the wild. Wallets
that are not stored on an Internet-connected device, or devices
capable of performing computations are considered malware
resistant (•), unless creating a transaction involves transferring
to a computational device (◦).

Key Stored Offline. For archival storage of infrequently used
keys, keys not directly accessible from an Internet-connected
device—either due to being offline (•) or online but password-
protected (◦)—are preferable.

No Trusted Third Party. All Bitcoin key management tools
are trusted to a certain extent. This criteria considers the
absence of a persistent trusted third party (•) that maintains
direct signing authority over a user’s Bitcoin.

Resistant to Physical Theft. If the cryptographic keys are
stored on some media or device that can be physically stolen,
we do not consider the tool to be resistant to physical theft.
Within our framework, the only tools meeting this requirement
rely on a human memorized password being necessary for key
recovery. These are awarded (◦) since passwords tend to be
weak and may not adequately resist unthrottled guessing.

Resistant to Physical Observation. Physical observation,
such as observing key strokes or capturing QR codes with
a camera, may result in access to a user’s Bitcoin account.

Resilient to Password Loss. If passwords are used (◦), the
loss of a password could result in some Bitcoin becoming
unrecoverable if it is a necessary authentication factor in ob-
taining access to the signing key. For solutions where funds are
held by third parties, these entities could provide a password
recovery/reset mechanism (•).

Resilient to Key Churn. Assuming the client sends change
from transactions to a newly created change addresses, a tool
is resilient to key churn if it can maintain access to the funds
even after exhausting the initial keypool (•). Tools not awarded
this benefit are not guaranteed to maintain persistent access to
new change addresses, and any balance sent to these addresses
may be lost.

Immediate Access. Key management mechanisms that main-
tain direct access to the wallet enable Bitcoin to be transacted
immediately (•). We award this benefit to techniques that
require a user to enter a password. We omit the benefit for
techniques that require data to be obtained from external
storage medium or secondary device.

No New User Software. Some approaches require users to
install new software on their system, for which the user may
not have suitable permission, or software may not be developed
for their specific platform (e.g., some mobile platforms). By
contrast, some tools can be executed from widely available
software such as any standards-compliant web browser (•).

Cross-Device Portability. A key management technique is
cross-device portable (•) if it allows easy sharing of the a
Bitcoin address across multiple devices with minimal config-
uration or usability issues due to complexities like key churn.

B. Discussion

Table I demonstrates that key management approaches pro-
vide varying levels of security and convenience, with no single
approach being obviously superior to others. One possible
takeaway from our evaluation and comparison is that users
can benefit heavily by offloading key management to a trusted
party (e.g., hosted wallets). The lower right side of the chart
focuses on usability properties that are already present in
traditional financial services (i.e., resilient to password loss, no
new software, cross-device portability). These properties are
difficult to obtain if users independently manage their keys
through one of the local storage techniques. Of course, the
disadvantage of trusting a third party is that Bitcoin funds
are now bound by a contractual agreement between users
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and the hosted wallet provider, negating one of the primary
features of Bitcoin: a fully decentralized currency. Users in
countries lacking regulatory maturity for digital currencies
should exercise caution when trusting a third party with large
amounts of Bitcoin.

Based on our analysis, users can be given the concrete
advice of treating digital currency much like they would treat
fiat currency: keeping small amounts in ready-to-spend form
(e.g., local storage or online hosted walled) mimicking cash,
and keeping larger sums in more difficult to access but more
secure storage (e.g., air-gapped or offline storage) mimicking
a savings account or trust fund. Barber et al. [3] suggest
the use of “super wallets” where users essentially run their
own personal bank. A super-wallet keeps keys across multiple
devices and requires all (or a subset using a threshold scheme)
to be present to transfer funds to sub-wallets. Pre-configured
transfers of small amounts can be authorized to move funds to
sub-wallets that can be used for day-to-day spending. While
the idea of super-wallets is intuitive, the implementation of
such a scheme could introduce high levels of complexity.

V. USABILITY EVALUATION OF BITCOIN CLIENTS

A. Methodology

We used a series of cognitive walkthroughs [30] to evaluate
the usability of six Bitcoin clients. Cognitive walkthrough is a
form of expert evaluation where an expert (or group of experts)
steps through the design to evaluate aspects of its usability. The
focus of the walkthrough is on the novice user and emphasizes
learnability. At each step, the evaluators ask three questions:
Will the user see what to do? Will the user see how to do it?
And once it is done, will the user know if they have performed
the correct action?

We chose to use cognitive walkthroughs for several reasons.
First, it allowed us to choose and compare standard tasks on
disparate tools, and gave us easily compared insight into the
common problems and successes of different Bitcoin clients.
The cognitive walkthrough also allowed us to keep the focus
on the novice user. The goal of our evaluation was to uncover
problems specific to key management within Bitcoin software
rather than to evaluate the usability of the clients themselves.

For our cognitive walkthrough, we defined a set of core
tasks involving key management that a typical user needs to
perform. We compared the results of each walkthrough against
a standard set of evaluation guidelines, combining aspects of
an heuristic evaluation [22] with the walkthrough in order to
interpret our results.

Each of the following four tasks was independently per-
formed by 2 experts to evaluate each tool:

T1 Configure a new Bitcoin address and obtain its bal-
ance. This task involves launching the Bitcoin client
(or logging into one if hosted online) for the first
time. After a new address has been generated (either
explicitly or transparently in the background), the
user should be confident that the address’ balance is
XBT 0.00000000. The user should also be able to find
their receiving Bitcoin address.

T2 Spend Bitcoin. Send some amount of Bitcoin to an
arbitrary (but valid) Bitcoin address. This task requires

the user to create a new transaction, entering relevant
information such as recipient, amount, etc.

T3 Spend Bitcoin from the same address as above, but
on a secondary device. This task may require copying
private keys to the secondary device, entering pass-
words on multiple devices, or logging in to a hosted
wallet provider on a different browser.

T4 Recover from the loss of the main credential. In the
case of locally stored keys, this task involves restor-
ing a file from backup. Otherwise this task involves
recovering from password loss.

Since the focus of our walkthrough was on configuration
and learnability, we used a set of heuristics first developed
for a usability evaluation of Tor [12]. We chose to use
these guidelines because like the anonymity software, success-
fully managing Bitcoin involves the application of complex
cryptographic knowledge in an everyday activity. The set of
guidelines, from [12], are:

G1 Users should be aware of the steps they have to
perform to complete a core task.

G2 Users should be able to determine how to perform
these steps.

G3 Users should know when they have successfully com-
pleted a core task.

G4 Users should be able to recognize, diagnose, and
recover from non-critical errors.

G5 Users should not make dangerous errors from which
they cannot recover.

G6 Users should be comfortable with the terminology
used in any interface dialogues or documentation.

G7 Users should be sufficiently comfortable with the
interface to continue using it.

G8 Users should be aware of the application’s status at
all times.

B. Evaluated Clients

Real-world evaluation of the general approaches detailed
in Section III is difficult. Thus, we select six distinct Bit-
coin clients or utilities that implement the key management
approaches described. For the purposes of our usability evalu-
ation, each client was evaluated in its default configuration on
OS X unless otherwise stated.

Keys in Local Storage. The reference Bitcoin client, Bitcoin
Core [5], is a cross-platform client that stores keys locally
(optionally encrypted with a password). Bitcoin Core is the
first recommended client on the bitcoin.org website.

Password-protected (Encrypted) Wallet. We use the Multi-
Bit [20] client (also recommended on bitcoin.org) since it
provides a more convenient way to encrypt with a user-chosen
password.

Offline Storage. We use paper wallets as offline storage. While
paper wallets can be as simple as printing private keys on to
paper, we select the paper wallet creation website Bitaddress.
org [25]. Bitaddress allows users to generate new randomized
keys in their web browsers, and then print QR encoded keys.

Air-gapped Storage. We select the Bitcoin Armory [1] client
which includes functionality for creating an offline wallet that
can be used to sign and export transactions.
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Password-derived Keys. One of the simplest ways to create
a password-derived key is on the Brainwallet [9] website. The
site allows users to enter a passphrase which is converted into
a private key.

Hosted Wallets. We use Blockchain.info [6] as our hosted
wallet provider. As of writing, Blockchain.info advertises the
management of over 2.5 million user wallets.

VI. RESULTS

For space reasons, we summarize the results of each task
for each client. Detailed walkthroughs can be found in our full
technical report.11

A. Keys in Local Storage (Bitcoin Core)

T1: Configure. Bitcoin Core transparently generates a new set
of addresses on first run, but shows no notification to the user
that this has occurred (fails G3). The receiving address can
be found under the Receive coins tab, but this could be easily
confused with the Addresses tab which contains a contact list
of other user addresses (fails G2).

To retrieve the account balance, Bitcoin Core must be
online and the user must wait until a full copy of the blockchain
has been downloaded. Due to the size of the blockchain,
this can take days to complete, which may lead users to
think that the client is dysfunctional. A status bar displaying
“Synchronizing with network” shows the progress of the
blockchain download (achieves G8), but the terminology may
be too technical for novice users (fails G4 and G6). Once the
blockchain has been downloaded, the balance is displayed on
the Overview tab (achieves G3).

T2: Spend. Spending Bitcoin is straightforward since the keys
are readily available to the Bitcoin Core client. Users spend
Bitcoin by navigating to the Spend tab (achieves G1 and G2).
Since our focus is on key management, we do not evaluate the
actual completion of transactions (which may have additional
usability issues). We focus on ensuring the key is available to
the software tool (which is not so straightforward with e.g.,
offline storage).

T3: Spend from Secondary Device. Installing Bitcoin Core
on a secondary device creates a new set of keys. Users may
not understand that the keys must be copied to the secondary
device (fails G1), and if so, what file must be copied (fails G2).
No information is provided regarding the potential threats of
transferring the key through an insecure channel (fails G5).
After transferring the key file, there is no user facing menu
to import the file (fails G2). The only way to import keys is
to use an advanced debug menu, or to overwrite the key file
on disk (fails G6 and G7), then a blockchain re-scan might be
needed in order to show the correct balance (fails G3)

T4: Recovery. If only one device is used, there is no way to
recover from loss of the key file (e.g., due to a disk failure, file
corruption, or loss of the device itself; fails G5). If the user
backed-up the key file, the process for recovering from loss is
equivalent to that of T3 above.

11http://users.encs.concordia.ca/∼clark/papers/2015 usec full.pdf

B. Password-protected Wallets (MultiBit)

T1: Configure. On first run, a welcome page contains an
explanation of common tasks that can be performed with
MultiBit—where the send, request and transaction tabs are and
how to password protect the wallet file (achieves G1 and G2).
The client provides help options for other functionalities with
direct and non-technical guides (achieves G6).

MultiBit automatically generates a new receiving address
on first run, but does not notify the user (fails G3). Reading
the newly generated address requires navigation to the Request
tab, which displays “Your address” (partially achieves G2).

T2: Spend. The user must navigate to the tab labeled Send,
as instructed on the welcome screen (achieves G1 and G2). If
the client is not synced, the send button is disabled (achieves
G4). when synced, the user fills out the destination address and
amount and clicks send. The client prompts the user for the
decryption password (achieves G2). An incorrect password dis-
plays the error ‘The wallet password is incorrect’ but otherwise
allows immediate and unlimited additional attempts. Entering
the correct password authorizes the transaction (achieves G3).

T3: Spend from Secondary Device. On the primary device,
the user must navigate to the Options menu, and select Export
private keys under tools (fails G1 and G2). The interface
displays a wizard requesting an export password as well as
a file system path for the exported file to be saved. On the
secondary device, the user must select Import private keys from
the Options menu. After selecting the previously exported file,
the wizard confirms the completion of the import (achieves
G4) and the balance is updated to reflect the newly imported
keys. The user can then create a new transaction as in T2.

T4: Recovery.. As with Bitcoin Core, recovery is not possible
if no backup of the wallet file was made. Creating a backup
and importing it follows the same procedure as T3. Both the
password and the backed up wallet are necessary for recovery.

C. Air-gapped Key Storage (Armory)

T1: Configure. On first run, Armory displays a welcome
page offering the option to ‘Import Existing Wallet’ and
‘Create Your First Wallet!’ (achieves G1 and G2). Passphrase-
protection is mandatory in Armory, and the user is warned
about the importance of not forgetting the passphrase (achieves
G5). Armory then displays a wizard to create a paper wallet
or create a digital backup of the wallet (achieves G6). The
user can then click on Receive Bitcoins to display the Bitcoin
address as well as balance (achieves G3 and G4). Armory is
dependent on Bitcoin Core to show the account’s balance from
the blockchain. While the blockchain is being downloaded,
status is displayed (achieves G6 and G8). A message is shown
when the blockchain download has completed (achieves G6).

T2 & T3: Spend. The distinction between primary and
secondary devices is less clear given that the basic setup itself
includes two devices: one online and one offline, but autho-
rization of transactions uses the offline device. To authorize a
transaction, the user may begin from Armory on the online or
offline device (may not fully achieve G2). On either device,
the user should click on ‘Offline Transactions’ in the main
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window which displays a very detailed description of the steps
involved (achieves G1, G2, and G6). On the online computer,
the user clicks the option: Create New Offline Transaction. The
user will be asked to enter the transaction details to generate
an unsigned transaction as a file to be transferred to the
offline computer. As mentioned in this step’s documentation,
the unsigned transaction data has no private data (the exact data
will ultimately be added to the public blockchain) and no harm
can be done by an attacker who captures this file (achieves G5)
other than learning the transaction is being prepared.

On the offline computer, the user clicks on Offline Transac-
tions and then Sign Offline Transaction which prompts the user
for the unsigned transaction data file. Armory asks the user to
review all the transaction information, such as the amount and
the receiving addresses (achieves G5). By clicking on the sign
button signed transaction data can be saved to a file. Text at
the top of the window describes the current state of the file
(signed) and what must be done (move to online device) to
complete the transaction (achieves G1 and G2).

The signed file should be transferred to the online computer
and be loaded through the same offline transaction window.
When a signed transaction is detected, the Broadcast button
becomes clickable. By clicking on broadcast, the user can once
more review transaction details, and receive confirmation that
the Bitcoins have been sent (achieves G3 and G8).

T4: Recovery. Like Bitcoin Core and MultiBit, Armory re-
quires a backup of the wallet to be made, and without it,
recovery is impossible. Armory encourages backups at many
stages (achieves G1 and G2). Importing a backup is straight-
forward by using the Import or restore wallet menu and then
following the wizard depending on what type of backup was
made (paper or digital). The restore wallet menu also allows
users to verify the integrity of backups to ensure that files were
correctly backed up or printouts have no inconsistencies.

We note that despite scoring positively on most guidelines
during the execution of tasks in air-gapped approach, Armory
supports a multitude of features (e.g., Message signing, Offline
transactions) which novices would typically not need to use.
These features, along with their corresponding menus and
descriptions, may be the source of confusion while performing
simpler tasks, However, evaluating this aspect of Armory and
other clients was beyond our scope.

D. Offline Storage (Bitaddress)

T1: Configure. Upon visiting the bitaddress.org, the user
is asked to move the mouse or enter random characters in
a text box to generate a high-entropy random seed to be
used to generate a private key associated with the Bitcoin
address (achieves G1 and G2). Once enough entropy has been
collected, the site redirects the user to a page that shows
the Bitcoin key pair(achieves G3). The public key (Bitcoin
address) is labeled Share in green and the private key Secret in
red (helping achieve G5). The web site documentation provides
link to 2 different services to obtain the balance of the newly
generated address (achieves G2). In general Bitaddress uses
non-expert terminology and simple instructions (achieves G6).

T2 & T3: Spend. Since the keys are printed on paper, there is
no difference between authorizing from a primary or secondary

device so we collapse the analysis of core tasks 2 and 3.

To send funds from a Bitcoin address that has been stored
on a paper wallet, the user must import the private key into one
of the wallet clients such as Armory or Blockchain.info hosted
wallet. Importing the private key may require scanning the
QR code or typing in the private key, depending on the client.
Once the key has been imported, the user can proceed to spend
Bitcoins by the particular client. We note that if the client
returns change to newly generated addresses, and the user does
not spend the full amount on the paper wallet, subsequently
importing the paper wallet onto a different device will likely
display no funds (partially fails G5).

T4: Recovery. Loss of a paper wallet makes the funds
unrecoverable (fails G5). Bitaddress prompts the user to ac-
knowledge this fact (also mentioned in its short documentation)
when creating a paper wallet (achieves G1).

E. Password-Derived Keys (Brainwallet)

T1: Configure. The Brainwallet website displays by default a
pre-generated address corresponding to an empty passphrase.
The passphrase input field displays “Long original sentence
that does not appear in any song or literature. Never use empty
passphrase. (SHA256)”, but no corresponding documentation
explains the purpose of the passphrase or how it relates to the
generated key (fails G1, G2, G6). Users may not notice that
generation of keys is happening dynamically as they type in
the characters, possibly preventing the user from noticing that
the task is complete (fails G3). Once the address has been
generated, retrieving the balance of that address requires an
external service, but no suggestions are provided on the site
(fails G1 and G2). The interface displays a number of other
fields (e.g., additional encodings of the public key) which may
not be meaningful to novice users (fails G6 and G7).

T2 & T3: Spend. Spending Bitcoins from a password-derived
wallet requires the user to import the private key into another
client. The user should experience similar usability challenges
as those detailed in the Offline Storage client above.

T4: Recovery. Forgetting the password of a password-derived
key leads to funds becoming unrecoverable (fails G5). Users
will typically return to the same website (i.e., the Brainwallet
website) to extract private keys, but this may not be possible
if the site is inaccessible (fails G5).

F. Hosted Wallets (Blockchain.info)

T1: Configure. The user navigates to the Blockchain.info site
and creates a new wallet by providing an email address and a
(min) 10 character password (achieves G1 and G2). A message
warning the user about the importance of not forgetting the
password is displayed during registration (achieves G5). Next,
a Wallet Recovery Mnemonic is shown to the user as a backup
in case the password is forgotten. The balance and address are
immediately displayed (achieves G3).

T2 & T3: Spend. Hosted wallets are accessible from any
web browser, so creating transactions from many devices is
straightforward. The user logs in to the site, clicks Send
money (achieves G1 and G2). After filling in the required
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fields, the user is informed that the Bitcoins have been sent
(achieves G3). Some of Blockchain.info’s error messages may
be too technical for novice users. For example, No free outputs
to spend is displayed when transactions are created without
sufficient funds (fails G6).

T4: Recovery. To recover from a forgotten password, a wallet
recovery mnemonic may be provided on the login page. By
clicking on the Recover Wallet button, the site will ask for
the mnemonic phrase and the email address to send the new
credentials (achieves G1 and G2). Another recovery option
is to proactively make backups and import them in case
recovery is needed. To do so, in the main wallet page, user
has to click Import/Export and exporting either an encrypted
or unencrypted backup.

VII. DISCUSSION

A. Metaphors

Bitcoin naturally invites a metaphor to traditional currency.
This metaphor is often used in the clients (e.g., send coins,
receive coins, wallet), but does not always support their
usability. The coin metaphor fails in both of the ways that user
interface metaphors traditionally fail [10]: aspects of Bitcoin
transactions do not easily fit the coin metaphor, and conversely,
encourages users to overextend the metaphor. Both of these
lead to confusion on the part of users.

One way in which the metaphor of physical coins fails is
in the sending and receiving of Bitcoin. In the physical world,
the same physical token is almost always used to represent
the same unit of currency (i.e., giving money to a friend
involves handing them the coin). However, when Bitcoins are
exchanged, the private key is not transferred along with the
balance. Private keys remain in possession of the sender, and
can be reused and associated with new coins at a later time.

Many of the evaluated clients use the word “Send” to de-
scribe authorizing (digitally signing) a transaction, and private
keys are not mentioned in any of the evaluated clients at the
moment of transaction. It may appear counter-intuitive that this
is a bad thing, but never mentioning the existence of keys may
cause further confusion. The password-protected wallets, (e.g.,
Multibit) require the user to input their password, but do not
clarify the reason for the password.

Addresses are another metaphor that relate to the issue of
transacting. The evaluated clients use the word “Address” to
refer to the public key associated with a private key held by
some user. This seems to be a relatively successful metaphor:
it emphasizes the public nature of the public key, and also
divorces the user’s perception of a relationship between the
public and private keys. To momentarily extend the metaphor,
a user is accustomed to the idea that they will need to share
their address in order to receive an item. However, the private
key is more akin to the key to their mailbox, and a user would
never think that they should share their mailbox key in order
to receive mail to an address.

Another pervasive metaphor in the evaluated clients is the
Bitcoin “wallet”, where the user’s Bitcoins are stored. The
wallet metaphor is deeply entrenched in the foundations of
Bitcoin. The reference client, Bitcoin Core, stores private keys
in a file named wallet.dat and the MultiBit client invites users

to “create your first wallet!” on first launch. The hosted clients
also use the metaphor; Blockchain.info prominently shows
a Wallet tab, under which users are invited to “Create My
Free Wallet”. The wallet metaphor is descriptive for users,
but fails to encompass the complexity of a user’s collection
of keys. In reality, the Bitcoin wallet contains private keys,
but the term wallet is used to describe both the file storing
the private keys, and the main interface of Bitcoin clients (as
in Blockchain.info). This main interface sometimes includes
a variety of other information, such as transaction history,
address book, currency exchange rates, etc.

B. Abstractions

Abstraction and automation are complex issues for security
software. Often, security is too complex to be completely
automated, and the problem cases are often punted to the user
(e.g., in the case of TLS certificates [4]).

On first run, all of the evaluated clients transparently
generate keypairs without informing the user. This behaviour
continues as new transactions are made, where clients generate
new addresses with no user notification (e.g., for receiving
change). It is unclear how well this abstraction works: while
users do not need to be burdened with the knowledge of each
private key, there are still situations in which a user might need
to manage those keys, and the abstraction prevents users from
doing so. Recovery from key loss depends on the existence
of an up-to-date backup. While backup sounds like a simple
task, in many of the evaluated clients, it involves finding the
right menu (MultiBit), or the right file (Bitcoin Core). Some
clients do prompt the user to back up their wallets (e.g., Bitcoin
Armory), but with the private keys so completely abstracted
away, users may not even understand what they are backing up,
or why. Key churn, and the consequent need for semi-regular
backups complicate the issue even farther.

The abstractions made in Bitcoin clients are sometimes
beneficial for users, such as in the case of displaying a user’s
balance. A user’s Bitcoin balance is typically made up of
many small amounts corresponding to many private keys.
However, most of the evaluated clients abstract these balances
into a single figure. This highlights a usability disadvantage of
paper wallets – the user must manage these multiple balances
manually, and there is no method of seeing an aggregate
balance when multiple paper wallets are in use.

C. Technical Language and Content

(a) Bitcoin Core

(b) MultiBit

Fig. 2. Screenshots of technical language displayed by two different clients.

When performing our evaluation, we identified multiple
occurrences of highly specialized or technical language used
in the Bitcoin clients. These instances of technical language
are confusing, particularly to novice users who are unlikely
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to be aware of either the jargon, and for whom the language
will not help clarify the issues. The language itself highlights
the complexity of the tasks associated with Bitcoin, and the
difficulty of explaining them simply.

Examples of such language included messages in MultiBit
and Bitcoin Core that referenced the client being “out of sync”
or “synchronizing with network” (see Figure 2a) referring
the process of downloading a full copy of the blockchain
or retrieving relevant blocks from a trusted peer. A related
message in MultiBit (Figure 2b) and Armory displayed the
number of blocks that had been downloaded, as well as the
number of connections to the Bitcoin network. These messages
are intended to communicate that clients may benefit from
faster transaction notifications when connected to more peers,
but since peer connectivity is difficult for users to control,
there is little benefit in communicating these ideas with the
user. Similarly, the number of blocks independently has little
significance to most tasks performed by an end user. We
suggest that not only could this language be clarified, but that
the interfaces could also streamline the amount of information
that is presented to the user on every screen.

We also noticed that some clients used highly technical
language when they could have used the metaphor to provide
a simpler explanation to users. When attempting to authorize a
new transaction on Blockchain.info with insufficient funds, the
web interface displayed “no free outputs to spend”. This error
message is confusing, and would be more easily understood if
it referred to the lack of coins instead of the lack of outputs.
Similarly, essential actions such as importing or exporting keys
were often buried behind advanced or debug menus.

In the evaluated clients, there were often few resources to
which users could turn for help. In the cognitive walkthroughs,
the answer to the question “will the user know what to do?”
was almost always unclear. Interface cues and features such as
tool tips, wizards, or other contextual help were almost entirely
lacking. Some actions were guided (e.g., Multibit’s prompted
backups or create your first wallet), but many actions such as
obtaining the balance of a paper or password-derived address
were unsupported by help or documentation.

VIII. CONCLUSION

Bitcoin’s usability limitations, particularly those related to
key management, pose challenges to its rising popularity. In
our evaluation, we found that developers in the Bitcoin ecosys-
tem are making innovative attempts at solving the decades-
old problem of usable key management. While some of these
techniques seem promising, we find that tasks involving key
management can be mired in complex metaphors and confus-
ing abstractions.

Further investigation is needed to better understand and
address these issues. A user study would give insight into
exactly how these problems are affecting users and it would
be interesting to investigate how expert users are (apparently
successfully) handling these challenges. Bitcoin presents a
new opportunity for public key cryptography to become main-
stream, and our evaluation is a first step towards achieving
usable key management in decentralized cryptocurrencies.
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