
UNIVERSIDAD ADOLFO IBAÑEZ

MASTER’S THESIS

The Generalized Causal-Effect Score in Databases

Autor:
Felipe Azúa Z.

Thesis Supervisor:
Leopoldo Bertossi D.

Universidad San Sebastián, Chile

Thesis Defense Committee:
Miguel Romero O. (PUC)

Gonzalo Ruz H. (UAI)

Thesis carried out in accordance with the requirements for the degree of
Master of Science in Data Science

of the

Faculty of Engineering and Science

July 24, 2024

https://www.uai.cl/
https://ingenieria.uai.cl/

i

UNIVERSIDAD ADOLFO IBAÑEZ

Abstract

Faculty of Engineering and Science

Master of Science in Data Science

The Generalized Causal-Effect Score in Databases

by Felipe Azúa Z.

The Causal Effect is a numerical measure used to uncover and analyze causal
relationships between variables. In particular, it deals with interventions on variables
and their effects in the broad areas of observational studies and structural causality.
So far, only preliminary attempts have been made to use causal effect as an attribution
score in data management, to measure the causal strength of tuples for query
answering in databases. In this work, we introduce, generalize and investigate
the so-called Causal-Effect Score as a numerical measure of explanatory relevance for
database tuples in relation to queries posed to classical and probabilistic databases.

Keywords: Causality, Explainability, Probablistic Databases, Databases.

Acknowledgements: Felipe Azúa Z. has been supported by the SKEMA Business
School Canada, and the Millennium Institute for Foundational Research on Data
(IMFD, Chile). Leopoldo Bertossi D. has been financially supported by the SKEMA
Business School Canada, the IMFD, and NSERC-DG 2023-04650. Part of this work
was done while Felipe Azúa Z. was visiting the “Laboratory of Informatics, Modelling
and Optimization of the Systems” (LIMOS), at U. Clermont-Ferrand, France.

HTTPS://WWW.UAI.CL/
https://ingenieria.uai.cl/

ii

Contents

Abstract i

1 Introduction 1

2 Problem Definition 5

3 Background 6
3.1 Databases . 6
3.2 Actual Causality and Responsibility in Databases 7
3.3 Probabilistic Databases . 8
3.4 Query Lineage . 9
3.5 Related Work . 10

4 Research Context 12
4.1 Objectives . 12
4.2 Methodology . 12

5 The Causal-Effect Score in Databases 13
5.1 Tuple-Interventions on a PDB . 13
5.2 The Generalized Causal Effect Score . 14

6 Revisiting Explanation Scores for Non-Probabilistic Databases 18

7 Score Alignments for Non-Probabilistic Databases 24
7.1 CES vs Responsibility Alignment . 25
7.2 CES vs Responsibility Alignment in Absence of Exogenous Tuples . . . 35
7.3 Summary of Results in Sections 7.1 and 7.2 39
7.4 Non-Alignment of CES and Responsibility with the Shapley Value . . 40

8 Complexity of Computing CES and GCES 43

9 Axiomatization of the GCES 47

10 Discussion and Conclusions 53
References . 55

1

Chapter 1

Introduction

Explanations belong to what users could expect from a data management system, for
example, for the answers to a query, for a violation of an integrity constraint, etc. The
same applies to results from automated systems as found in artificial intelligence (AI),
and machine learning (ML). Explanations may come in different forms, in particular,
as an attribution score, that is, a quantitative degree of relevance of a piece of data in a
database (Bertossi, 2023d), or feature values in input entities in the case of AI and ML
(Bertossi, 2023a).

Usually, these kinds of explanations are provided at a local level, e.g. for individual
tuples in a database (DB) to which a query has been posed, or for features values for
a particular entity under classification. This work concentrates on local attribution
scores as explanations in data management.

Several scores have been proposed and investigated in data management. Some of
them, such as Responsibility and Causal-Effect, are explicitly based on the notions of
counterfactual intervention and actual causality (Halpern & Pearl, 2005; Halpern, 2015,
2016). Counterfactual intervention can be seen as hypothetical changes performed on
a (causal) model, to identify other changes. By doing so, one can detect cause-effect
relationships.

In DBs, Responsibility (Chockler & Halpern, 2004) has been applied to quantify the
relevance of individual tuples, and attribute values in them, for a query result (Meliou,
Gatterbauer, Moore, & Suciu, 2010; Meliou, Gatterbauer, Halpern, et al., 2010; Bertossi
& Salimi, 2017b, 2017a; Bertossi, 2021). Responsibility has been extended as the Resp-
score, and applied to provide explanations in ML (Bertossi, Li, Schleich, Suciu, &
Vagena, 2020; Bertossi, 2023a, 2023c).

Another score that has been applied in data management is the Shapley value of
Coalition Game Theory (Shapley, 1953; Roth, 1988), as a measure of contribution of
individual players to a shared wealth or game function. In the case of DBs, the players
are the tuples and the game function is the Boolean or aggregate query (Livshits,
Bertossi, Kimelfeld, & Sebag, 2021b, 2021a; Deutch, Frost, Kimelfeld, & Monet, 2022;
Bertossi, Kimelfeld, Livshits, & Monet, 2023). The Shapley value emerges as the
only measure that satisfies a given set of desired properties (Roth, 1988). A related
measure, also used in coalition game theory, is the Banzhaf Power Index (Banzhaf III,
1964), which has also been applied in data management, as the Banzhaf Score (Livshits
et al., 2021b; Abramovich, Deutch, Frost, Kara, & Olteanu, 2024).

The Causal-Effect Score (CES) can be traced back to causality in observational studies
(Rubin, 1974; Holland, 1986), where one usually cannot predefine and build control

Chapter 1. Introduction 2

groups, but they have to be recovered from the available data (Gelman & Hill, 2007;
Pearl, 2009; Roy & Salimi, 2023).

In (Salimi, Bertossi, Suciu, & Van den Broeck, 2016), a particular version of the CES
was first used in data management as an alternative to the responsibility score, when
the latter did not provide intuitive results. In order to use CES to assess the relevance
of tuples in a database (DB) D for the result of a query, D is first transformed into
a tuple-independent probabilistic database (TID) Dp (Suciu, Olteanu, Ré, & Koch, 2011)
under the uniform distribution on tuples. Next, the CES is defined on the basis of
Dp, and is computed by appealing to the lineage of the query (Suciu et al., 2011). This
definition and construction can accommodate both endogenous and exogenous tuples,
which also appear with actual causality, Responsibility, and the Shapley value in DBs
(Meliou, Gatterbauer, Moore, & Suciu, 2010; Bertossi & Salimi, 2017b; Livshits et al.,
2021b).

The application of the CES to aggregate queries was shown in (Salimi et al., 2016) only
with an example, and a more complete investigation remains open. Actually, the CES
seems to be much more appropriate for explaining results for aggregate queries than
the responsibility score, which would only detect, under a counterfactual intervention,
e.g. a tuple deletion, if there is a change or not of a numerical value, no matter how
small (an issue also mentioned in (Meliou, Gatterbauer, Halpern, et al., 2010)). The
CES would take, by definition, the amount of the change into consideration.

In our research, we propose and investigate an extension of the CES in DBs to the case
where the probability distributions on tuples is arbitrary. Actually, it can be applied
to general probabilistic DBs. This so-called Generalized Causal-Effect Score (GCES) is
interesting in several situations, e.g. when: (a) One cannot assume independence or a
uniform distribution on tuples, in particular block-independent PDBs (Suciu et al., 2011).
(b) Additional domain semantics or domain knowledge is available and should be
taken into account, e.g. integrity constraints on the underlying relational DB (Bertossi
& Salimi, 2017a). (c) There are explicit correlations among database tuples (Sen
& Deshpande, 2007; Kanagal & Deshpande, 2010). (d) There are quantitative or
qualitative stochastic (in)dependencies among attributes provided by a Bayesian or
causal network (Sen, Deshpande, & Getoor, 2009).

The application and analysis of attribution scores in the case of stochastic
dependencies among variables (e.g. DB tuples, features in ML, etc.) is a relevant
problem. In this case, each tuple can be seen as an instance of a joint distribution
which is determined by the stochastic dependencies among attributes.1

Along this line, sometimes integrity or application constraints can be compiled into
an updated joint distribution that may not be uniform anymore (Bertossi, 2023c;
Cifuentes et al., 2024). It is worth mentioning that the behavior of the Responsibility
score changes when it is defined and computed in the presence of integrity constraints
(Bertossi & Salimi, 2017a). Furthermore, it could be the case that the initial DB is a
probabilistic one at the very start; or one where different weights are assigned to its
tuples.

In our work, we investigate the GCES in terms of its alignment with other scores,
its general properties, its computational complexity. We also consider the case of

1A particular stochastic version of the Shapley value is SHAP (Lundberg & Lee, 2017), that is used
in ML to quantify the relevance of a feature value for a classification outcome. Dependencies among
feature values could be considered (Aas, Jullum, & Loland, 2021; Cifuentes et al., 2024).

Chapter 1. Introduction 3

aggregate queries. All the results can be applied to the original CES in (Salimi et al.,
2016).

We also investigate some connections of CES and GCES with the other previously
mentioned scores. More specifically, taking inspiration from the general properties
of the Shapley value (Roth, 1988), we analyze the general properties of the CES, and
compare them, in the context of DBs, with those of the Shapley and Banzhaf values,
and Responsibility. Notice that an analysis of the properties of the latter (as applied to
DBs) has not been carried out yet. Accordingly, we also make a contribution in this
direction.

It is worth mentioning that, in (Livshits et al., 2021b), it is shown that the Banzhaf
score and the CES as defined in (Salimi et al., 2016) coincide for Boolean and
aggregation queries. This is used as a starting point for the analysis of general
properties of the CES.

More specifically, our work makes the following main contributions:

A. From the Causal-Effect Score (CES) introduced in (Salimi et al., 2016) via an
auxiliary uniform and tuple-independent probabilistic database (PDB), we give
rise to the “Generalized Causal-Effect Score” (GCES), that can be applied to an
arbitrary PDB. In doing so, we introduce a precise definition of a probability
distribution modified by a counterfactual intervention.

The PDB could we given right at the start, or could be auxiliary, created to
define a non-uniform case of the CES applied to a relational DB. This latter
case can be useful when there are stochastic or relational dependencies among
database tuples (Suciu, 2020).

B. We motive and justify the use of the CES as an attribution score for query
answering in DBs on the basis that it provides more intuitive results in
comparison with, e.g. the Shapley Value and Responsibility. We show that the
rankings provided by all these scores are not aligned.

C. We thoroughly investigate the alignment of CES with Responsibility and the
Shapley value in terms of the query and the database at hand.

D. We investigate the data complexity of computing the GCES for an individual
tuple given a fixed query and a tuple-independent PDB (TID). The complexity
of this problem is shown to coincide with the complexity of computing the
probability of a fixed query over a TID (Dalvi & Suciu, 2012). A particularly
relevant case is that of the GCES on a non-uniform TID, which we simply call
“Causal-Effect Score” (CES).

E. We also provide an axiomatic characterization of GCES. The axioms are inspired
by those for the Banzhaf Power Index (BPI), which was shown to coincide with
the CES when applied to DBs (Livshits et al., 2021b). We show that, for every
fixed query and its associated game function, the GCES is the only real-valued
function that satisfies the axioms. As a main difference with the classical setting
of BPI, each subinstance of the database instance (i.e. subteam of players) may
have a different weight.

Chapter 1. Introduction 4

This thesis is structured as follows. Chapter 2 establishes the problems to be studied.
Chapter 3 provides background on databases, causality, and probabilistic databases;
and describes related work. Chapter 4 establishes the research context, such as
objectives and methodology. Chapter 5 introduces the Generalized Causal Effect
Score (GCES). Chapter 6 recalls the Responsibility score, the Banzhaf Power Index, and
the Shapley value as used in databases, and introduces some notation and basic results
that facilitate their comparison. Chapter 7 investigates the alignment of the (non-
generalized) Causal Effect Score with Responsibilty and the Shapley value depending
on the query and the database at hand. Chapter 8 investigates the computational
complexity of computing the GCES. Chapter 9 analyzes the general properties of the
GCES, and the other scores, in the light of those of the Shapley value (Roth, 1988). We
finalize with Chapter 10, drawing some conclusions and discussing open problems.

5

Chapter 2

Problem Definition

The goal of explanation scores in data management is to quantify the relevance of
individual tuples in a particular instance. Known approaches, like Responsibility
(Meliou, Gatterbauer, Moore, & Suciu, 2010), Shapley Value (Livshits et al., 2021b),
and the Causal-Effect Score (CES) (Salimi et al., 2016), focus on providing local
explanations for individual tuples. However, these scores assume independence and
uniform distribution on them, which limits their applications to scenarios where there
may exists some dependency or non-uniform distribution in the instances at hand.

This thesis addresses the problem of providing explanations in the context of
probabilistic databases by introducing the Generalized Causal-Effect Score (GCES).
GCES extends CES to accommodate arbitrary probability distributions over all
possible subsets of the database instance at hand, namely, all possible worlds. This
scores is more suited for context where there may exists some tuple dependency or
no uniformity of the tuples.

Additionally, as previously presented, Shapley Value and Responsibility are also
scores used in the context of non-probabilistic databases. It can be easily checked that
the exact values provided by each are different. However, it could be the case that
the rankings of all tuples by each of the scores are the same for some class of queries.
This problem is addressed in this work, being refer as the score alignment.

Another problem addressed in this work is the computational complexity with respect
to the size of the database (data complexity) associated with GCES and CES. In
(Livshits et al., 2021b), the complexity of the latter was studied for a particular class
of Boolean queries. Here, the complexity of both, GCES and CES is studied for a
broader range of Boolean queries.

Lastly, this thesis tackles the problem of providing a set of properties for the GCES
that uniquely defines it, that is, a set of properties that only the GCES satisfies. This is
a common studied problem in the context of coalition game theory. For instance, there
exists some set of properties that uniquely defines the Shapley Value (Shapley, 1953)
and the Banzhaf Value (Banzhaf III, 1964), two well known values for this context.

As a summary, four problems are being studied in this thesis: (1) explanation score for
probabilistic databases, (2) alignment of explanation scores for non-probabilistic
databases, (3) complexity of the computation of GCES and CES, and (4) set of
properties that defines the GCES.

6

Chapter 3

Background

3.1 Databases

Consider S = ⟨R1, ..., Rk⟩ be a database (DB) schema with Ri a relational predicate
with arity ri. Dom(U) denotes the domain of an attribute U in a relation schema,
i.e. the set of constants the attribute could potentially take. A relation is a finite
extension for a relational predicate. It consists of tuples of constants, more precisely
atoms or facts of the form R(c1, . . . , cn), where R is a relational predicate, and the ci
are constants. A database (instance) D is a collection of finite relations for the given
schema. We denote with Adom(D) the set of all constants appearing in tuples in
tuples in D. Then, Adom(D) is a finite subset of the union of the attribute domains,
and can go beyond the set of constants appearing in D. We commonly use universal
tuple identifiers (tids), as in the first column of Table 3.1, and refer to whole tuples by
using only their tids.

Queries are formulas written in the language of first-order predicate logic (FOPL),
L(S), associated to schema S . A conjunctive query (CQ) is a formula Q(x̄) of this
language of the form ∃x̄′(A1 ∧ · · · ∧ Al), where: (a) x̄′ is a string of existentially
quantified variables. (b) x̄ is a string of free variables in the formula (i.e. different from
those in x̄′). (c) each A1, . . . , Al are predicates from S instantiated with variables (in
x̄ ∪ x̄′), or constants. The Ai are also called atoms of the query. A conjunctive query
does not have self-joins or is self-join-free if no predicate in the conjunction appears
more than once.

A Boolean query does not have free variables. In particular, we have Boolean
conjunctive queries (BCQs). Accordingly, we will usually write a BCQ as Q :
∃̄(A1, . . . , Al), indicating the existential closure of the conjunction, i.e. existentially
quantifying all variables. We will denote with Var(Q) the set of all variables in Q.
Another interesting class of queries is that of the unions of conjunctive queries (UCQs),
in particular, the unions of Boolean conjunctive queries (UBCQs).

If Q is a Boolean query, D |= Q denotes that DB D satisfies the query. If the query
is open, i.e. with free variables, say Q(x̄), and ā is a sequence of constants from the
domain, D |= Q[ā] denotes satisfaction of the query with the variables replaced by
the constants ā. In this case, ā is an answer to the query. With Q[D] we denote the
set of answers to the query from D. If the query is Boolean, then Q[D] is the empty
set (when the query is false) or {yes}, when the query is true. (Later on we will
sometimes write Q[D] = 0 or Q[D] = 1, depending of whether the query is false or
true, resp.)

Chapter 3. Background 7

A queryQ is monotone when, for every D1 ⊆ D2, it holdsQ[D1] ⊆ Q[D2]. Conjunctive
queries and unions thereof are monotone. In this work, we will consider by
default only monotone queries, mostly CQs, and numerical aggregations on CQs.
Furthermore, all the computational complexity considerations refer to data complexity,
i.e. in terms of the size of the database at hand.

For a BCQ Q and a variable v in it, Atoms(v) will denote the set of atoms in Q where
v appears; and Atoms(Q) denotes the set of all atoms in Q.

A special sub-class of BCQs, namely hierarchical queries (Suciu et al., 2011), is now
recalled. A BCQ query Q is hierarchical if, for any two (existential) variables x and y
in it, one of the following holds: (a) Atoms(x) ⊆ Atoms(y), (b) Atoms(y) ⊆ Atoms(y)
or (c) Atoms(x) ∩Atoms(y) = ∅. Otherwise, the query is called non-hierarchical. This
classification has turned out to be relevant in different situations, most prominently,
and for the first time, for query answering in tuple-independent probabilistic
databases (TIDs). For queries without self-joins, hierarchical queries can be evaluated
in polynomial time, but for non-hierarchical queries, the problem is #P-hard (Suciu et
al., 2011).

3.2 Actual Causality and Responsibility in Databases

For causality purposes, some of the tuples in a DB D are considered to be endogenous.
They can be subject to causal (more precisely, counterfactual) interventions, in this
case, deletions, insertions, or value updates. The other tuples are exogenous, and are
taken as given. They may participate in query answering, but they are not subject
to interventions. Den, Dex denote the subinstances containing the endogenous, resp.
exogenous tuples.

We usually want to explain why a given query becomes true or returns a particular
answer. A tuple τ ∈ Den is a counterfactual cause for a BCQ Q if: D |= Q, and
(D ∖ {τ}) ̸|= Q. A tuple τ ∈ Den is an actual cause for a BCQ Q if there is Γ ⊆ Den,
such that: D |= Q, (D ∖ Γ) |= Q, and (D ∖ (Γ ∪ {τ})) ̸|= Q (Meliou, Gatterbauer,
Halpern, et al., 2010). The set Γ is called a contingency set for τ, denoted Γτ.

The responsibility of τ as an actual cause for Q is defined by ρ(τ) := 1
1+|Γτ | , where

|Γτ| is the cardinality of a minimum-size contingency set for τ (Chockler & Halpern,
2004; Meliou, Gatterbauer, Halpern, et al., 2010). When τ is not an actual cause, its
responsibility is defined as 0. Notice that every counterfactual cause is an actual cause
with an empty contingency set, in which case the responsibility takes the maximum
value 1.

Responsibility is an explanation (or attribution) score that quantifies the causal
contribution of a tuple to a query answer. The data complexity of responsibility
in DBs has been investigated in (Meliou, Gatterbauer, Halpern, et al., 2010; Bertossi &
Salimi, 2017b, 2017a). This score was adapted and used in (Bertossi, 2023c) to provide
explanations for results from binary classifiers with binary features, and extended in
(Bertossi et al., 2020) for possibly non-binary features (see also (Bertossi, 2023a)).

The Causal-Effect Score (CES) is another explanation score that has been applied in
data management. It was used in (Salimi et al., 2016) as an alternative to responsibility
when the latter does not provide the most intuitive results. This will be introduced in
more detail in Chapter 5, and is the main subject of this work. The complexity of CES
has been partially studied in (Livshits et al., 2021b).

Chapter 3. Background 8

R A B C P
τ1 a1 b1 c1 p1
τ2 a2 b2 c2 p2
τ3 a3 b3 c3 p3
τ4 a4 b4 c4 p4
τ5 a5 b5 c5 p5

R A B C P
τ1 a1 b1 c1 p1
τ2 a2 b2 c2 p2
τ3 a3 b3 c3 p3
τ4 a4 b4 c4 p4
τ5 a5 b5 c5 p5

TABLE 3.1: (a) TI PDB and (b) BI PDB

3.3 Probabilistic Databases

We recall here what we need about probabilistic databases (PDBs). See (Suciu et al.,
2011) for a deeper treatment. We can conceive a PDB as a regular relational database
where relations have an extra attribute accommodating probability values associated
to the corresponding tuples. Table 3.1 shows two PDBs. For example, the first tuple
in the relation R in Table 3.1(a) indicates that tuple τ1 is in the DB with probability p1.

The semantics of a PDB, Dp, is a possible world semantics, in this case a collectionW
of regular DBs, W, whose relations, RW , do not have a probabilistic attribute, but a
global associated probability, p(RW). Different semantics differ on how the instances
D are built and how probabilities are assigned to their relations.

The most common case is that of a tuple-independent PDBs (TIDs). In Table 3.1(a),
each tuple is in the DB independently from the other tuples, including tuples in other
relations. Each tuple has a probability assigned. In a possible world W ∈ W , the
corresponding (non-probabilistic) relation RW will contain only some of the tuples
in R, and the probability associated to RW is defined by: p(RW) := Π

τi∈RW
pi ×

Π
τj∈(R∖RW)

(1− pj). For example, if in a possible world W relation RW contains only

tuples τ1 and τ3, it will have the probability p1 × (1− p2)× p3 × (1− p4)× (1− p5).
Tuple independence beyond the single-relation level leads to the overall probability
assigned to a possible world: p(W) := ΠRW

p(RW).

A more general case is that of block-independent PDBs (BIDs). Tuples (of a same
relation) are separated in blocks of mutually exclusive tuples. We will assume by
default, unless otherwise stated, that, within a block, the tuples’ probabilities add up
to 1. Table 3.1(b) shows a BID with a block with 2 tuples, and next one with 3. The
semantics is similar to the previous one, but now the blocks are independent. When a
regular relation RW is built from the probabilistic relation R, only one tuple is chosen
from each block. The probability associated to RW is defined by: p(RW) := Π

τi∈RW
pi,

i.e. the product of the probabilities of the tuples chosen from the blocks. For example,
if tuple τ2 is chosen from the first block, and τ4 from the second, p(RW) = p2 × p4.
Similar to the TID case, an overall probability can assigned to a possible world:
p(W) := ΠRW

p(RW).1

Remark 1. More generally, and for the purpose of this work, given a relational instance
D, a PDB associated to D, usually denoted with Dp, can be identified with a discrete
probability space ⟨W(D), pD⟩, whereW(D) is a collection of possible worlds W that are
subinstances of D, pD is defined onW(D), and ∑W∈W(D)

pD(W) = 1. When D is clear
from the context, we simply writeW and p. Unless otherwise stated, if there is a partition
(Den, Dex) of D, we assume that, for every W ∈ W with Dex ̸⊆ W, it holds pD(W) = 0.

1We could relax the conditions by choosing at most one tuple per block, B, and having the sum of
probabilities pB for B possibly smaller that 1. In case no tuple is chosen, B contributes with (1− pB) to
the product.

Chapter 3. Background 9

Since, D is finite,W(D) and the W are finite. ■

A query on a PDB becomes a random variable. If it is Boolean, it takes the values 0 or
1 on the outcomes W ∈ W . There are several query-answering semantics that have
been considered in the literature. We briefly mention those that become relevant in
our work. Let Q be a query for schema S .

(a) Probabilistic Answer: If Q is a BCQ, the probability of Q (being true) is P(Q) :=
∑W∈W : W|=Q p(W). IfQ(x̄) is an open query, and ā, a sequence of constants, P(ā) :=
P(Q[ā]). Under this semantics, each answer comes with a probability (of being an
answer). Notice that for a Boolean query, P(Q) = E(Q), which invites us to define,
for an aggregate query Q: Q[D] := E(Q) = ∑W∈W p(W)×Q[W].

(b) Most Probable Answer: A sequence of constants ā⋆ is a most probable answer to
Q iff ā⋆ = argmaxā P(Q[ā]), denoted ā⋆ = MPA(Q). In this case, we obtain all the
answers to Q that have the same maximum probability. If the query is Boolean, 0 or 1
become MPAs.

(c) Answers from Most Probable DB (Gribkoff, Van den Broeck, & Suciu, 2014):
AnsW (Q) := {ā | W⋆ |= Q[ā]}, where W⋆ := argmaxW∈W p(W). In this case,
we obtain fully classical answers if there is a single most probable database (MPD). If
there are several MPDs, we may choose those that are certain, that is in common to all
the MPDs, or those that are possible if they come from some MPD.

3.4 Query Lineage

We introduce the notion of lineage (Suciu et al., 2011; Salimi et al., 2016) and its
notation by means of an example.

Example 1. Consider the database instance D consisting only of endogenous tuples,
i.e. Dex = ∅, and the Boolean CQ Q : ∃x∃y(S(x) ∧ R(x, y) ∧ S(y)). Q is true in D:
D |= Q.

D R
⟨c, b⟩
⟨a, d⟩
⟨b, b⟩
⟨e, f ⟩

S
⟨a⟩
⟨b⟩
⟨c⟩

The lineage of query Q on D is the
propositional formula:

L(Q, D) := (XS(c) ∧ XR(c,b) ∧ XS(b)) ∨
(XS(b) ∧ XR(b,b)).

Here, each Xτ is a propositional variable associated to a ground atom τ of the first-
order language associated to the database schema (that includes the finite attribute
domains); i.e. a tuple that can be or not be in a database instance D. We could built a
query lineage using all these atoms τ, even those not in the instance at hand D.

In this example, given that the query is monotone, we have kept only those atoms Xτ

that are true in that τ ∈ D′. So, it is the query lineage instantiated on D. ■

More generally, the query lineage L(Q, D) is a propositional formula for which D
and each of its subinstances D′ act as (or determine) a truth assignment: σD′(Xτ) =
1 iff τ ∈ D′. L(Q, D′) is true (under assignment σD′) iff D′ |= Q. L(Q, D′) is true

Chapter 3. Background 10

under assignment σD′ iff D′ |= Q. With monotone queries we are only interested in
subintances of D since only they may switch the query from true to false.

When D is partitioned into Dex ∪ Den, we will consider only subintances D′ of D that
contain Dex. Then, σD′(Xτ) = 1, for every τ ∈ Dex.

Notice that the lineage of a Boolean CQ is always a propositional formula in MON-
DNF, i.e. a formula in disjunctive normal form where all atoms appear positively.

3.5 Related Work

The use of the Shapley value in AI can be traced back at least to its application to
measure the contribution of individual formulas to the inconsistency of a knowledge
base (Hunter & Konieczny, 2010).

The Shapley value as an attribution or explanation score has been used, more recently,
in machine learning (ML), most commonly as the SHAP score (Lundberg & Lee,
2017) (see (Bertossi, 2023b) for more results and references on SHAP). It quantifies the
contribution of feature values in an input entity to an ML-based system. There is a
vast literature on the use of (diverse variants of) SHAP in ML. There has been some
criticism to the SHAP score, see, e.g. (Huang & Marques-Silva, 2024).

The use of the Shapley value and the Banzhaf-Power-Index (BPI) in data management
started with the conference version of (Livshits et al., 2021b), where it was used to
quantify the contribution of individual tuples to a query answer. This works has
attracted the attention of several researchers and has become an active area of research.
Along this line of research, in (Deutch et al., 2022), the efforts have been concentrated
on computational aspects of the Shapley value as applied to query answering.

In (Arad, Deutch, & Frost, 2022), the research is about the computation of the rankings
induced by the Shapley values rather than on the values themselves. In (Davidson et
al., 2022) the interest is placed on the combination of data provenance and the Shapley
values, for the computation of the latter. In (Abramovich et al., 2024) similar research
has delved more deeply into experimental results around the application of the BPI
to query answering.

In (Kara, Olteanu, & Suciu, 2024), the problem of computing the Shapley value of
variables in Boolean circuits (but not in its SHAP version as in (Arenas, Barcelo,
Bertossi, & Monet, 2023)) is connected with query evaluation in probabilistic
databases, obtaining dichotomy results (similar to those in (Dalvi & Suciu, 2012))
for the complexity of Shapley value computation for query answering in classical
databases.

Applications of the responsibility score in data management (DM) and ML have
been less explored than those of the Shapley value. The main articles on the use of
responsibility in DM are (Meliou, Gatterbauer, Halpern, et al., 2010; Bertossi & Salimi,
2017b, 2017a; Bertossi, 2021); and (Bertossi, 2023c; Bertossi et al., 2020) in ML. In all
those papers, semantic and computational problems were addresses, but no analysis
of its general properties has been done. Close to responsibility as used in DM, we
find the notion of resilience, whose computational aspects have been investigated (see
(Makhija & Gatterbauer, 2023) and references therein).

Despite its widespread and general use in causality, particularly in observational studies,
the causal effect, as a measure of causal strength -and the best of our knowledge- had

Chapter 3. Background 11

not been explored in DM apart until it was used in (Salimi et al., 2016), in its simplest
form, as an alternative to responsibility. The connection with the BPI was first
established in (Livshits et al., 2021b). Its general properties when used as attribution
score for query answering in DBs have not been investigated yet.

12

Chapter 4

Research Context

4.1 Objectives

The general objective of this thesis is to develop and analyze the Generalized Causal-
Effect Score (GCES) for probabilistic databases, and thus provide an explanation score
that accounts for dependencies and non-uniform distributions. In particular, this
research specific objectives are:

• Extend the Causal-Effect Score (CES) to accommodate arbitrary probability
distributions over possible worlds in a database.

• Investigate the alignment of CES with other explanation scores, such as Shapley
Value and Responsibility, in non-probabilistic databases.

• Analyze the computational complexity (w.r.t. the size of the database instance)
of computing GCES and CES.

• Define a set of properties for GCES that uniquely defines it.

4.2 Methodology

The research methodology mainly consisted in reviewing the existing results (in
conjunction with the methodology by which they were obtained) of the research
topics, and then establish, by mathematical proofs, the results for each. In particular,
the following methodology was used for each research topic: (a) Definition of GCES:
The formal definition of this new score is obtained starting by first identifying that
the CES induces a probability distribution on the set of possible worlds of the instance
at hand, and then allowing the use of any arbitrary probability distribution on
said set; (b) Alignment of scores: some of the proofs of these results are based on
techniques used in (Livshits et al., 2021b) and (Dalvi & Suciu, 2007), which can be
found in the respective chapter; (c) Complexity of GCES and CES: These results were
obtained by applying one-to-one reductions (Karp reductions) between the problem
of computing GCES and CES with a well studied problem in probabilistic databases:
the query evaluation problem; and (d) Properties of GCES: based on the axiomatic
characterization given for the Banzhaf Power Index in (Dubey & Shapley, 1979), a
new set of properties is given for the GCES. The proof that shows the existence and
uniqueness of the GCES is also inspired by techniques used in the cited work.

13

Chapter 5

The Causal-Effect Score in
Databases

In the context of databases (DBs), the Causal-Effect Score of a tuple was introduced
in (Salimi et al., 2016) as a measure of its contribution to the answer to a query. This
quantity is defined through a the effect of a counterfactual intervention in a causal
model, which involves the query and the DB.

5.1 Tuple-Interventions on a PDB

In the context of a database D and its subinstances, and for our purposes, interventions
will be of the form do(τ in) and do(τ out), with the intuitive meaning that tuple τ is
made true, i.e. it is inserted into the database at hand (if it is not already in it). Similarly,
do(τ out) means that τ is made false, i.e. removed from the database. We will apply
interventions only with endogenous tuples. In principle, τ could be outside D, but it
is declared as potentially endogenous. Interventions are commonly applied in the
context of a query, to detect if making tuples true or false affect the answer. They can
also be applied with sets of tuples T , e.g. do(T in).1

In the following we will have expressions of the form P(Q = 1 | do(τ in)), where P is
the distribution of a PDB associated to an instance D, and Q is a BCQ. Intuitively, it
means “the probability of the query being true given that tuple τ is true”. However,
this notation, despite its omnipresence, may be misleading in that it suggests a
conditional probability, which strictly speaking is not. More precisely, and as every
conditional probability, that redefines a given probability distribution, P(· | do(τ in))
can be seen as a modification of distribution the original P. Similar considerations
apply to the notation P(· | do(τ out)). Definition 1 makes all this precise, by building
on Remark 1.

Definition 1. Given an instance D, an associated PDB Dp = ⟨W(D), pD⟩, and τ ∈ D:
(a) Dp(do(τ in)) := ⟨W+τ, p+τ⟩, with W+τ := {W ∪ {τ} | W ∈ W}; and, for
W ′ ∈ Wτ+, p+τ(W ′) := ∑W∪{τ}=W ′ p(W).
(b) Dp(do(τ out)) := ⟨W−τ, p−τ⟩, with W−τ := {W ∖ {τ} | W ∈ W}; and, for
W ′ ∈ Wτ−, p−τ(W ′) := ∑W∖{τ}=W ′ p(W).

(c) For a Boolean query Q:

1It is common to apply interventions on variables of a causal model (Pearl, 2009). In the case of
databases, to the lineage of the query with the random propositional variables Xτ , which are made true or
false via do(Xτ = 1) or do(Xτ = 0) (see Section 3.4).

Chapter 5. The Causal-Effect Score in Databases 14

P(Q = 1 | do(τ in)) := p+τ({W ′ ∈ W+τ |W ′ |= Q}) (5.1)
P(Q = 0 | do(τ in)) := p+τ({W ′ ∈ W+τ |W ′ ̸|= Q})
P(Q = 1 | do(τ out)) := p+τ({W ′ ∈ W−τ |W ′ |= Q})
P(Q = 0 | do(τ out)) := p+τ({W ′ ∈ W−τ |W ′ ̸|= Q}).

■

Remark 2. (a) On the RHS of (5.1), it holds (and similarly for the other cases):

p+τ({W ′ ∈ W+τ |W ′ |= Q}) = ∑
W∈W , W∪{τ}|=Q

pD(W).

(b) In (5.1), P is the probability induced by p+τ on the range of the query, in this case, {0, 1}.

(c) Given a PDB Dp associated to an instance D, and a tuple τ, one can always compute the
probability of τ being in D (seen through the PDB Dp), namely:

P(τ) := ∑
W∈W(D),τ∈W

pD(W). (5.2)

(d) It is easy to verify that, for an endogenous tuple τ:

P(τ | do(τ in)) := ∑
W ′∈W+τ ,τ∈W ′

p+τ(W ′) = 1; and

P(τ | do(τ out)) := ∑
W ′∈W−τ ,τ∈W ′

p−τ(W ′) = 0,

which captures the original intuition.

(e) For a TID D and two tuples τ, τ′ ∈ Den, the following holds:

P(τ′ | do(τ in)) = P(τ′ | do(τ out)) = pD({τ′})

That is, an intervention do(τ in) (do(τ out), resp.) in a TID translates in changing the
probability of τ to 1 (0, resp.) and leave all other probabilities unchanged. ■

The same definitions can be applied to a scalar aggregate queryQ, which also becomes
a random variable over a PDB. Using (slightly extended) Datalog notation, they are of
the form: AnsQ(aggr(x))← Body(x, x̄), with Body(x, x̄) a conjunction of atoms, x /∈ x̄,
and aggr an aggregation function, such as sum, max, etc. Here, AnsQ is an auxiliary
answer-collecting predicate.2

5.2 The Generalized Causal Effect Score

It is not clear how to sensibly apply the responsibility score to aggregate queries
(Meliou, Gatterbauer, Halpern, et al., 2010, sec. 3.3). In contrast to Boolean queries,
where one switches the value of the query to 1 or 0, with an aggregate query we
have the issue of deciding what is a reasonable margin of change in the aggregated
amount. If we blindly apply the definition of the responsibility score (see Section
3.1), we would only check if there is a counterfactual change in the aggregated value,
no matter how small, and every tuple would have the same responsibility.

2All this applies “componentwise” to aggregate queries with group-by, but we do not treat them.

Chapter 5. The Causal-Effect Score in Databases 15

E A B
τ1 a b
τ2 a c
τ3 c b
τ4 a d
τ5 d e
τ6 e b

S A C
τ7 a 1
τ8 a 2
τ9 b 0
τ10 a 3
τ11 b 1
τ12 b 10

TABLE 5.1: A DB D with two relations.

Example 2. Consider the DB D in Table 5.1, and the scalar aggregate query Q defined
by: AnsQ(sum(y)) ← S(x, y). Its answer is 17. When Dom(B) ⊆ R+, this is a
monotone query.

If the interventions are tuple deletions, all the tuples but τ9 would have the same
responsibility of 1

6 . Tuple τ9 would have responsibility 0 since it does not contribute
to the answer. However, if interventions were updates of attribute values, specially
numerical ones, even τ9 could have a non-zero resposibility. ■

CES was first applied to DBs in (Salimi et al., 2016), showing that it provides
more intuitive and sensible results than the Responsibility Score (see Example 3).
Furthermore, the use of CES for aggregate queries makes perfect sense. We will retake
the responsibility score and the CES in Chapter 6.

In (Salimi et al., 2016), in order to apply the CES, the original DB was converted
into a uniform TID. However, the CES can be generalized by consider any PDB
associated to the relational instance D at hand, as in Remark 1. Accordingly and for
the following, we start considering a general PDB Dp = ⟨W(D), pD⟩.

Definition 2. Let D be a relational instance with PDB Dp = ⟨W(D), pD⟩, and Q
a Boolean or scalar aggregate query. The generalized causal effect score (GCES) of
T ⊆ Den on Q is:

CEp(D,Q, T) := E(Q | do(T in))−E(Q | do(T out)). (5.3)

■

Notice that, for a Boolean query, from (5.3) it holds:

CEp(D,Q, T) = P(Q = 1 | do(T in))− P(Q = 1 | do(T out)).

Remark 3. Special cases and notation. We denote with CEp(D,Q, τ) the GCES, for a
single tuple τ, and based on an arbitrary PDB Dp associated to an instance D. When the Dp

corresponds to a TID associated to D, we write CEI(D,Q, τ). If, in addition, the tuples in D
are uniformly assigned a probability 1

2 , we write CEUI(D,Q, τ), which is the particular case
considered in (Salimi et al., 2016; Livshits et al., 2021b). ■

Example 3. (ex. 2 cont.) Let D be a database instance with the relations E and S in
Table 5.1 (used in (Salimi et al., 2016), see also (Bertossi, 2023d) for more details), with
their tuples endogenous. Build a uniform TID by defining p(τ) := 1

2 for every tuple
τ. Consider the Boolean query Q1 asking if there exists a path from a to b according
to relation E. It can be expressed in Datalog (and as a disjunction of CQs for a fixed
instance), which makes it monotone.

Chapter 5. The Causal-Effect Score in Databases 16

It holds: CEUI(D,Q1, τ1) = 0.65625, CEUI(D,Q1, τ2) = CEUI(D,Q1, τ3) =
0.21875, and CEUI(D,Q1, τ4) = CEUI(D,Q1, τ5) = CEUI(D,Q1, τ6) = 0.09375.

As noticed in (Salimi et al., 2016), these scores significantly differ from the
responsibility scores, which are all 1

3 , despite the fact that they make the query
true through paths of different lengths. We will retake this example in more detail in
Example 6 in Section 6.

Consider now the aggregate query Q in Example 2. The CES for a tuple τ ∈ S
is computed using Definition 2. We need to compute the expected value of the
query when intervening the tuple τ. Denote τ[C] the restriction of a tuple τ
to attribute C; in this case, the numerical value. Consider that, for any τ′ ∈ D
with τ ̸= τ′, it holds the probability of τ′ is the same when intervening τ, i.e.
P(τ′ | do(τ in)) = P(τ′ | do(τ out)) = pD({τ′}), and for τ, it holds P(τ | do(τ in)) = 1
and P(τ | do(τ out)) = 0. Now, and since the aggregate query Q is just adding the
value of the attribute C from each tuple, the CES can be computed as follows:

CEUI(D,Q, τ7) = E(Q | do(τ7 in))−E(Q | do(τ7 out))

= ∑
τ′∈S

τ′[C]× P(τ′ | do(τ7 in))− ∑
τ′∈S

τ′[C]× P(τ′ | do(τ7 out))

=

(
∑

τ′∈S∖{τ7}
τ′[C]× pD({τ′})

)
+ τ7[C]× 1

−
[(

∑
τ′∈S∖{τ7}

τ′[C]× pD({τ′})
)
+ τ7[C]× 0

]
= τ7[C] = 1.

This result is inline with the intuition: the average expected contribution of tuple τ7
for a query that is adding up all tuples in the relation would be the attribute value of
the tuple itself, τ7[C]. ■

In (Salimi et al., 2016) its was established that, for a Boolean monotone query Q, a
database D, and τ ∈ Den, an endogenous tuple, τ is an actual cause of Q in D iff
CEUI(D,Q, τ) > 0. We will now illustrate the definition and computation of the
GCES.

Example 4. (ex. 3 cont.) Consider query Q1 on relation E. All tuples in the database
instance are considered to be endogenous. In order to create a PDB Dp, let’s assign
the following probabilities to the possible worlds (restricted to relation E): For
W1 = {τ1, τ3, τ4, τ6}, p(W1) := 0.20; for W2 = {τ1, τ2, τ3}, p(W2) := 0.25; for
W3 = {τ2, τ3, τ6}, p(W3) := 0.15; for W4 = {τ2, τ6}, p(W4) := 0.40; and for any other
W ⊆ E, p(W) := 0.

Notice that we are starting directly with a probability distribution over the possible
worlds, as opposed to starting with probabilities assigned to individual tuples. As
in Remark 2(c), we can compute their probabilities: For τ ∈ E, P(τ) := P({W ∈
W | τ ∈ W}). We obtain: P(τ1) = 0.2 + 0.25 = 0.45, P(τ2) = 0.8, P(τ3) =
0.8, P(τ4) = 0.2, P(τ5) = 0, P(τ6) = 0.75. Now, if we compute the probabilities
of the possible worlds using these tuple probabilities assuming independence, we

Chapter 5. The Causal-Effect Score in Databases 17

obtain, e.g. for W1: P′(W1) := 0.2× (1− 0.8)× 0.8× 0.2× (1− 0)× 0.75 = 0.00288,
which shows that Dp we started with is not a TID.

Now, consider the new probability distribution P(· | do(τ3 in)). In this case,W+τ3 =
{W ′1, W ′2, W ′3}, with W ′1 = W1, W ′2 = W2 and W ′3 = {τ2, τ3, τ6}. Notice that the number
of worlds with non-zero probability is smaller, because W3 ∪ {τ3} = W4 ∪ {τ3} = W ′3.
Then, the probability of W ′3 is given by p+τ3(W ′3) = p(W3)+ p(W4) = 0.55. Something
similar happens when we make τ3 false, removing it from the worlds. Let us show
how to compute the causal effect of tuple τ3.

CEp(D,Q1, τ3) := E(Q1 | do(τ3 in))−E(Q1 | do(τ3 out))

= P(Q1 = 1 | do(τ3 in))− P(Q1 = 1 | do(τ3 out))

= ∑
W∈W , W∪{τ3}|=Q

p(W) − ∑
W∈W , W∖{τ3}|=Q

p(W).

= (p(W1) + p(W2) + p(W3) + p(W4))− (p(W1) + p(W2))

= p(W3) + p(W4) = 0.55.

The GCES can also be computed using the new distributions p+τ3 and p−τ3 that are
obtained through the interventions:

CEp(D,Q1, τ3) = E(Q1 | do(τ3 in))−E(Q1 | do(τ3 out))

= ∑
W ′∈W+τ3 , W ′|=Q1

p+τ3(W ′) − ∑
W∗∈W−τ3 , W∗|=Q1

p−τ3(W∗).

=
(

p+τ3(W ′1) + p+τ3(W ′2) + p+τ3(W ′3)
)
−
(

p−τ3(W∗1) + p−τ3(W∗2)
)

= p+τ3(W ′3) = p(W3) + p(W4) = 0.55.

where W∗1 = W1, p−τ3(W∗1) = p(W1) and W∗2 = W2 = p−τ3(W∗2) = p(W2).

Notice the difference between CEUI(D,Q1, τ3) and CEp(D,Q, τ3). ■

Remark 4. (a) Definition 2 starts with a relational DB D, which is transformed into a PDB
with the purpose of defining the GCES for D. However, nothing in that definition prevents us
from starting right away with a PDB, for which the GCES could be defined in the same terms.
This is despite the fact that QA semantics for PDBs are as described at the end of Section 3.3.

(b) In this work, we only consider tuple-based interventions, as opposed to interventions on
attribute values. Interventions of this latter kind were investigated in the context of actual
causality and responsibility in (Bertossi, 2021). ■

18

Chapter 6

Revisiting Explanation Scores for
Non-Probabilistic Databases

As already mentioned in Chapter 1, there are other attribution scores as explanations
for query answering: Responsibility and the Shapley Value. We believe that the CES
provides more intuitive explanations than the former, and we show an example later
in this section.

However, a precise comparison has to be made, which we attempt in Chapter 7. With
that goal, We start by recalling the definitions of Responsibility and Shapley Value for
query answering, for which we first introduce some concepts and notation that will
be useful for their definitions and the score comparisons. After that, we establish an
interesting connection between the contingency sets for Responsibility and CES and
Shapley Value (Corollary 6). Finally, we motivate the notion of score alignment, that
we develop in Chapter 7.

In this section, unless otherwise stated, we consider only the uniform and independent case of
CES, i.e. CEUI, to which we simply refer with CES.

Definition 3. For an instance D, a monotone Boolean queryQ, assume Dex ⊆W ⊆ D.

(a) W is a swinging set for the tuple τ ∈W andQ ifQ[W] = 1, andQ[W ∖ {τ}] = 0.
Swin(D,Q, τ) denotes the set of swinging sets of τ.

(b) W is a minimal satisfiable set if Q[W] = 1 and Q[W ∖ {τ}] = 0 for every τ ∈W.
MSS(D,Q) denotes the set of all minimal satisfiability sets for D and Q.

(c) W is a minimal alternating set if Q[D ∖ W] = 0 and, for every τ ∈ W, Q[D ∖
(W ∖ {τ}))] = 1. MAS(D,Q) denotes the set of all minimal alternating sets
for D and Q. ■

Notice that if, for every τ ∈ W, W ∈ Swin(D,Q, τ), then W ∈ MSS(D,Q).
Sometimes, when the query or the database are clear from the context, we will
simply omit the parameters, e.g. if the query is clear from context we will write
Swin(D, τ), MSS(D) and MAS(D), respectively.

Example 5. (ex. 2 cont.) Consider the database with relation E given in Table 5.1; and
the query Q1 asking if there is a path from a to b. W = {τ2, τ4, τ5} is a swinging set
for τ6. Moreover, for τ6: Swin(D,Q, τ6) = {{τ4, τ5}, {τ2, τ4, τ5}, {τ3, τ4, τ5}}.

Now, W ′ = {τ4, τ5, τ6} is a minimal satisfiability set since if any of the tuples are
removed, the query is false. The set of all minimal satisfiability sets is MSS(D,Q) =

Chapter 6. Revisiting Explanation Scores for Non-Probabilistic Databases 19

{{τ1}, {τ2, τ3}, W ′}, with each world in it built with the tuples that form a path from
a to b.

It is easy to check that a minimal alternating set is W⋆ = {τ1, τ2, τ4}. The set of
all minimal alternating sets is MAS(D,Q1) = {{τ1, τ2, τ4}, {τ1, τ3, τ4}, {τ1, τ2, τ5},
{τ1, τ3, τ5}, {τ1, τ2, τ6}, {τ1, τ3, τ6}}. ■

Responsibility. The Responsibility Score was introduced in Section 3.2. Here we
introduce useful notation to be be used in this Section.

For a database D, a query boolean Q, and a tuple τ ∈ D: (a) Cont(D,Q, τ) denotes
the set of all contingency sets Γ ⊆ Den ∖ {τ} for τ. (b) τ is an actual cause when
Cont(D,Q) ̸= ∅. and (c) ρ(D,Q, τ) := 1

1+min |Γ| is the responsibility of τ for the
query answer Q[D], with min |Γ| taken over all contingency set for τ, i.e. Γ ∈
Cont(D,Q, τ).

We will omit some of the parameters when are clear from context, for example, if the
query is clear from context, we will simply write Cont(D, τ) and ρ(D, τ).

The following proposition helps to explain the non-informative result obtained in
Example 3 (that will be revisited in Example 6).

Proposition 1. Let D be a database instance and Q a Boolean monotone query. Let
MSS(D,Q) be the collection of minimal satisfiability sets (c.f. Definition 3). If, for
every W and W ′ ∈ MSS(D,Q), W ∩W ′ = ∅, then, the Responsibility of a tuple
τ ∈ Den is:

ρ(D,Q, τ) =

1

|MSS(D,Q)| , if τ ∈W for some W ∈ MSS(D,Q)

0 , otherwise

Proof. Note that, if there is no W ∈ MSS(D,Q) such τ ∈W, no contingency set exists
for τ, and therefore ρ(D,Q, τ) = 0.

Now, consider τ ∈ W, for some W ∈ MSS(D,Q). Let Γ⋆(τ) denote the collection
of set Γ that selects one endogenous tuple from each W ′ ∈ MSS(D,Q)∖ W. The
cardinality of any of those sets is: |MSS(D,Q)| − 1.

It is clear that any set Γ ∈ Γ⋆(τ) is a contingency for the tuple τ, and if any tuple is
removed from Γ, then it would not be a contingency of τ. It follows that any of such
sets has the minimal cardinality, since for any other contingency Γ′ ̸∈ Γ⋆(τ), Γ′ is a
superset of some contingency in Γ⋆(τ). Therefore, ρ(D,Q, τ) = 1

|MSS(D,Q)| .

The following proposition about responsibility will be used in Proposition 11 from
Chapter 7, when comparing CES with Responsibility for a particular BCQ.

Proposition 2. Let Q be a BCQ, and D, D′ two instances (for the same schema) for
which MSS(D ∪ D′,Q) = MSS(D,Q) ∪MSS(D′,Q). For every tuple τ ∈ D, it
holds:

ρ(D ∪ D′,Q, τ) =
1

1 + min
Γ∈Cont(D,Q,τ)

|Γ|+ min
Γ∈ MAS(D′ ,Q)

|Γ| .

Chapter 6. Revisiting Explanation Scores for Non-Probabilistic Databases 20

Proof. Consider a tuple τ ∈ D. Its Responsibility for the answer of Q in D ∪ D′ is:

ρ(D ∪ D′,Q, τ) =
1

1 + min
Γ∈Cont(D∪D′ ,Q,τ)

|Γ|

Note that each Γ ∈ Cont(D ∪ D′,Q, τ) can be written as Γ = ΓD ∪ ΓD′ , where Γ ∈
Cont(D,Q, τ), ΓD′ ⊆ D′

en
(being D′

en
the endogenous tuples from D′) and ΓD ∩ ΓD′ =

∅. Now, since the minimum size of Γ is required, ΓD and ΓD′ have to have the
minimal possible cardinality. This is achieved by minimizing both sets: (a) for ΓD,
minΓ∈Cont(D,Q,τ) |Γ|, and (b) for ΓD′ we have that it must satisfyQ[D′∖ ΓD′] = 0, since
τ ∈ D. Therefore ΓD′ must belong to MAS(D′,Q). It follows that

min
Γ∈Cont(D∪D′,Q,τ)

|Γ| = min
ΓD∈Cont(D,Q,τ)

|ΓD|+ min
ΓD′∈MAS(D′,Q)

|ΓD′ |,

which, by replacing in the previous expression, is equivalent to the proposition.

Shapley Value and Banzhaf Power-Index. The Shapley Value (Shapley, 1953) is
well-known in Coalition Game Theory as a measure of the contribution of individual
players to a shared wealth or game function. In (Livshits et al., 2021b), it was adapted
and used in databases, to quantify the contribution of tuples to a query answer. For
that application, it was defined as follows:

Shapley(D,Q, τ) = ∑
S⊆(Den∖{τ})

|S|! · (|Den| − |S| − 1)!
|Den|! · ∆(Q, S, τ), (6.1)

where
∆(Q, S, τ) := Q[S ∪ Dex ∪ {τ}]−Q[S ∪ Dex]. (6.2)

Here, Q[S] is 0 or 1 when Q is Boolean and false, resp. true in S. Q can also be a
numerical aggregation, and Q[S] is its numerical value. The Bahnzhaf Power-Index
(BPI) (Banzhaf III, 1964) is defined, in the case of databases and queries, by:

BPI(D,Q, τ) := ∑
S⊆Den∖{τ}

1
2|Den|−1

· ∆(Q, S, τ), (6.3)

is also popular in game theory. It is defined similarly to the Shapley value, but
without considering, for subinstances S of Den ∖ {τ}, the numbers of permutations
of S and Den ∖ (S ∪ {τ}). For the BPI, only the number of subsinstances S matter.

In (Livshits et al., 2021b), it was shown that the CES coincides with the Banzhaf
Power-Index (BPI). Accordingly:

CEUI(D,Q, τ) = ∑
S⊆Den∖{τ}

1
2|Den|−1

· ∆(Q, S, τ), (6.4)

This fact will be important when comparing the CES to the Shapley Value. It is
worth mentioning that the definition of the Shapley value guarantees that it is the only
measure of contribution that satisfies certain desirable properties (Shapley, 1953; Roth,
1988). Although the definition of the BPI may look more intuitive than that of the
Shapley value (considering all permutations of a subteam and its complement may
not look immediately obvious), the BPI is bound to miss some of the properties of the
Shapley value. Actually, that of Efficiency, as will see in more detail in Chapter 9.

Chapter 6. Revisiting Explanation Scores for Non-Probabilistic Databases 21

The following proposition will be used in Chapter 7.

Proposition 3.1 LetQ be a monotone Boolean query, D and D′ two database instances
such: (a) D ∩ D′ = ∅ and (b) the set of minimal satisfiable sets (MSS, see Def. 3) of
their union, that is, D ∪ D′, is:

MSS(D ∪ D′,Q) = MSS(D,Q) ∪MSS(D′,Q),

Then, for given endogenous tuples τ ∈ D and τ′ ∈ D′, it holds:

CEUI(D ∪ D′,Q, τ) = CEUI(D,Q, τ) · (1− PDp ′(Q)) , and

CEUI(D ∪ D′,Q, τ′) = CEUI(D′,Q, τ′) · (1− PDp(Q))

Where Dp and Dp ′ denote the TID instances from D and D′ with uniform distribution,
and PDp(Q) and PDp ′(Q) denotes the probability of the query Q of being true when
evaluated over each.

Proof. Let Q be a Boolean monotone query and D and D′ denote two (non-
probabilistic) instances such D ∩ D′ = ∅ and MSS(D ∪ D′,Q) = MSS(D,Q) ∪
MSS(D′,Q).

Now, we compute CES for an endogenous tuple τ ∈ D for the query Q in D⋆

according to Eq. 5.3:

CEUI(D ∪ D′,Q, τ) = E(Q | do(τ in))−E(Q | do(τ out))

= PD∪D′(Q = 1 | do(τ in))− PD∪D′(Q = 1 | do(τ out))

Here, PD∪D′(Q = 1) denotes the probability of Q being true in the TID instance built
from the the (non-probabilistic) instance D ∪ D′ and the uniform distribution. Note
that, since τ ∈ D and the instances D and D′ satisfies conditions (a) and (b), then

PD∪D′(Q = 1 | do(τ in)) = PD(Q = 1 | do(τ in)) · PD′(Q = 1 | do(τ in))

+ PD(Q = 0 | do(τ in)) · PD′(Q = 1 | do(τ in))

+ PD(Q = 1 | do(τ in)) · PD′(Q = 0 | do(τ in))

= PD(Q = 1 | do(τ in)) · (1− PD′(Q = 1 | do(τ in)))

= PD(Q = 1 | do(τ in)) · (1− PD′(Q = 1))

This also applies for PD∪D′(Q = 1 | do(τ out)). Then, by factoring the terms, we obtain
the desired result. This process is analogous for an endogenous tuple τ′ ∈ D′.

Additionally, the following proposition relates ∆(Q, S, τ) in (6.2) with the the
swinging worlds (see Def. 3); and swinging worlds with the contingencies of a
tuple τ ∈ Den.

Proposition 4. Let D be a database instance with τ ∈ Den andQ a Boolean monotone
query.

(a) For S ⊆ (Den ∖ {τ}): ∆(Q, S, τ) = 1 iff (S ∪ {τ} ∪ Dex) ∈ Swin(D,Q, τ).
(b) For every Dex ⊆W ⊆ D: W ∈ Swin(D,Q, τ) iff (D ∖W) ∈ Cont(D,Q, τ).

1This proposition can be easily generalized for a TID with an arbitrary probability distribution.

Chapter 6. Revisiting Explanation Scores for Non-Probabilistic Databases 22

Proof. (a) Each swinging world W ∈ Swin(D,Q, τ) satisfies Q[W] = 1 and
Q[W ∖ {τ}] = 0, and since Dex ⊆W, we can write S = (W ∖ Dex)∖ {τ}, obtaining
∆(Q, S, τ) = 1.

(b) (⇒) Assume that W ∈ Swin(D,Q, τ). Then, it holds that Q[W] = 1 and Q[W ∖
{τ}] = 0. Denote Γ = D∖W. Note that W = D∖ Γ. Then, it holds thatQ[D∖ Γ] = 1
and Q[(D ∖ Γ)∖ {τ}] = 0, which means that Γ ∈ Cont(D,Q, τ).

(⇐) Denote Γ = D ∖ W. Assume that Γ ∈ Cont(D,Q, τ), which means that Q[D ∖
Γ] = 1 and Q[(D ∖ Γ)∖ {τ}] = 0. Note that W = D ∖ Γ. It follows that, Q[W] = 1
and Q[W ∖ {τ}] = 0, which means that W ∈ Swin(D,Q, τ).

From this proposition, we immediately obtain: For an instance D, a monotone Boolean
query Q, and Dex ⊆W ⊆ D, it holds:

CEUI(D,Q, τ) =
|Swin(D,Q, τ)|

2|Den|−1

Shapley(D,Q, τ) = ∑
W∈Swin(D,Q,τ)

(|W| − |Dex| − 1)! · (|D| − |W|)!
|Den|! . (6.5)

CEUI(D,Q, τ) =
|Cont(D,Q, τ)|

2|Den|−1

Shapley(D,Q, τ) = ∑
Γ∈Cont(D,Q,τ)

(|Den| − |Γ| − 1)! · |Γ|!
|Den|! . (6.6)

■

A tuple τ ∈ Den ⊆ D is called a dummy tuple for a BCQ Q if ∆(Q, S, τ) = 0 for every
S ⊆ Den. We will often assume that no dummy tuples exist in the database at hand,
since the following proposition holds.

Proposition 5. Let Q be a BCQ, and D an instance containing a dummy tuple τd for
Q. Then, for every tuple τ ∈ (Den ∖ {τd}), it holds:

(a) CEUI(D,Q, τ) = CEUI(D ∖ {τd},Q, τ).

(b) ρ(D,Q, τ) = ρ(D ∖ {τd},Q, τ).

(c) Shapley(D,Q, τ) = Shapley(D ∖ {τd},Q, τ).

Proof. For (a), recall that we can compute the CES for a given tuple according to
Equation (6.4). Note that, for each S ⊆ (D∖ {τd}), ∆(Q, S, τ) = 1 iff ∆(Q, S∪ τd, τ) =
1. Therefore, adding the tuple τd to D ∖ {τd}, the number of ∆(Q, S ∪ τd, τ), which
are equal to one, doubles. This change is countered by the increasing in endogenous
tuples by one, leaving the CES unchanged for all endogenous tuples.
The proof for (b) is trivial, since, as the tuple τd does not change the value of the query,
it does not belong to any contingency set of τ for the answer of Q and, therefore, the
Responsibility is the same including or not said tuple.
For (c) we recall a property of Shapley Value in relation with dummy tuples: for a
given BCQ Q and a instance D, if τ is a dummy tuple, then Shapley(D,Q, τ) = 0
(Shapley, 1953). It follows that, if we remove the tuples from the instance, the Shapley
Value do not change.

Chapter 6. Revisiting Explanation Scores for Non-Probabilistic Databases 23

Tuples CES / BPI Responsibility Shapley Value
τ1 0.65625 1/3 0.5833

τ2, τ3 0.21875 1/3 0.1333
τ4, τ5, τ6 0.09375 1/3 0.05

TABLE 6.1: CES, Responsibility and Shapley Value for each tuple in D.

Now, as discussed in Example 3, we can compare the (original, non-generalized
version of the) CES with the last two scores we just introduced.

Example 6. (ex. 3 cont.) Consider the database instance D containing relation E in
Table 5.1, with all tuples considered endogenous, and query Q1. The results of the
computation of the CES, Responsibility and Shapley Value are shown in Table 6.1.

We can see, in this example, that the less informative score is Responsibility, which
assigns 1/3 for all the tuples in D, despite the fact that the numbers of tuples of each
path is different. Proposition 1 explains this result: (a) All paths are disjoint, and (b)
all tuples belongs to one path. This makes responsibility the same for all tuples. If,
for instance, one tuple belonged to two or more paths, then Responsibility would be
different for some tuples.

Now, we can compute CES and the Shapley Value using the set of swiging worlds or
the set of contingencies by using equations (6.5) and (6.6), respectively. For example,
if we compute the swinging worlds and contingencies for τ4, we obtain:

Swin(Q1, τ4) = {{τ3, τ4, τ5, τ6}, {τ2, τ4, τ5, τ6}, {τ4, τ5, τ6}}, and
Cont(Q1, τ4) = {{τ1, τ2}, {τ1, τ3}, {τ1, τ2, τ3}}.

Then, for CES and Shapley Value for τ4 we obtain:

CEUI(D,Q1, τ4) =
|Swin(Q1, τ4)|

2|Den|−1
=
|Cont(Q1, τ4)|

2|Den|−1
=

3
32

= 0.09375

Shapley(D,Q1, τ4) = ∑
W∈Swin(Q1,τ4)

(|W| − |Dex| − 1)! · (|D| − |W|)!
|Den|!

=
(4− 1)! · (6− 4)!

6!
+

(4− 1)! · (6− 4)!
6!

+
(3− 1)! · (6− 3)!

6!
= 0.05

Shapley(D,Q1, τ4) = ∑
Γ∈Cont(Q1,τ4)

(|Den| − |Γ| − 1)! · |Γ|!
|Den|!

=
(6− 2− 1)! · (2)!

6!
+

(6− 2− 1)! · (2)!
6!

+
(6− 3− 1)! · (3)!

6!
= 0.05.

In this example, CES and the Shapley Value return different scores, but produce the
same qualitative rankings for the tuples, i.e. they are equally ordered (according to
their scores). We will see in Example 8, that this may not always be the case. ■

24

Chapter 7

Score Alignments for
Non-Probabilistic Databases

Example 6 motivates deeper comparison of the attribution scores. In this section we
address the problem of alignment of scores, but for the basic case of CES, CEUI, which
starts with a non-probabilistic DB. To compare the orders of the tuples induced by
the scores, we first make precise the notion of alignment. Intuitively, the induced
orders have to be mutually compatible.

Definition 4. (rankings and score alignment) LetQ be a boolean query, D a relational
instance and τ, τ′ ∈ Den two endogenous tuples.

(a) Given a numerical attribution score sc(D,Q, ·), as a function of τ ∈ Den,
its ranking is the total preorder relation on Den defined by: τ ⪯sc τ′ iff
sc(D,Q, τ) ≤ sc(D,Q, τ′).

(b) Two numerical attribution scores sc1, sc2 are aligned if, for every τ, τ′ ∈ Den,
τ ⪯sc1 τ′ iff τ ⪯sc2 τ′ . ■

Notice that, according to Definition 4, if a score assigns the same value to all tuples in
the database, it will be aligned with any other score. In Example 6, Responsibility is
aligned with the CES and the Shapley Value. However, for monotone queries, these
three scores may not be pairwise aligned. That is, for every pair of scores, there is a
pair (D,Q) for which the rankings are incompatible, as the counterexamples below
show.

Example 7. (CES vs Responsibility) Consider the database D⋆ with the relations in
Table 7.1 (a), and the BCQ

QRST : ∃x∃y(R(x) ∧ S(x, y) ∧ T(y)). (7.1)

Consider that all tuples in D⋆ are endogenous. Now, the CES, Responsibility and
Shapley Value is computed for τ3, τ4 and τ11. The results are shown in Table 7.1 (b).

From this, and denoting with ⪯ρ the order associated to Responsibility, the induced
orders are: τ4 ⪯CEUI

τ3 ⪯CEUI
τ11 and τ4 ⪯ρ τ11 ⪯ρ τ3 . It follows that Responsibility is

not aligned with the CES. ■

Chapter 7. Score Alignments for Non-Probabilistic Databases 25

R A
τ1 a
τ2 b
τ3 e

S A B
τ4 a b
τ5 a c
τ6 a d
τ7 b b
τ8 b c
τ9 b d
τ10 e f

T A
τ11 b
τ12 c
τ13 d
τ14 f

τ CES Resp.
τ3 0.1292 1/3
τ4 0.0829 1/5
τ11 0.1868 1/4

TABLE 7.1: (a) Database D⋆ and (b) CES and Responsibility Value for
(D⋆,QRST).

R A B
τ1 a c1
τ2 b c2
τ3 b c3

S A B
τ4 a c4
τ5 a c5
τ6 b c6
τ7 b c7
τ8 b c8
τ9 b c9

τ CES Resp. Shapley
τ1 57/256 1/3 400/2520
τ4 19/256 1/4 151/2520
τ6 15/256 1/5 169/2520

TABLE 7.2: (a) Database D⋆ and (b) CES and Shapley Value for
(D⋆,QRS).

Example 8. (CES and Responsibility vs Shapley Value) Consider the database D⋆

given by the relations in Table 7.2 (a), and the BCQ

QRS : ∃x∃y(R(x, y) ∧ S(x, z)) (7.2)

CES, Responsibility and Shapley are computed for τ1,τ4 and τ6, as shown in Table 7.2
(b). It holds: τ6 ⪯CEUI

τ4 ⪯CEUI
τ1, τ6 ⪯ρ τ4 ⪯ρ τ1 and τ4 ⪯Shapley τ6 ⪯Shapley τ1. Then, the

Shapley is not aligned with neither CES nor Responsibility. ■

It is worth mentioning that the database instances provided for each counter example
are not the only databases where the pair of scores are not aligned for QRST.

In the following sections, we specify some syntactic classes of queries for which the
scores are always aligned, and also, other classes for which the scores are not always
aligned. We first compare CES with Responsibility in two scenarios: (a) instances with
exogenous tuples, and (b) instances that do not have them. For case (a), we fully
characterize the class of BCQs, that is, for every BCQ, we can determine if the scores
are always aligned or not according to the query’s syntax. For case (b), we exhibit
two classes of queries for which the scores are always aligned. Finally, we compare
both CES and Responsibility with the Shapley Value, exhibiting a class of queries for
which the scores are not always aligned.

7.1 CES vs Responsibility Alignment

In the present section we treat the problem of alignment for CES and Responsibility
in its more general way: the scores will be aligned for a query Q if, for all possible
database instances D for Q, the scores are aligned for (D,Q). We will refer to “all
possible database instances” for a given query Q as the collection of tuples built
from the atoms in Q, where each tuple can or not be exogenous. Actually, exogenous
tuples are needed for most of the counter-examples that follow.

Chapter 7. Score Alignments for Non-Probabilistic Databases 26

We start this section by providing some important notation, definitions and
preliminary propositions about the syntactic structure of the query at hand. Next, we
state the main result of this section, namely Theorem 1, which is proved by breaking
it down in different cases.

Definition 5. Let Q be a BCQ. (a) Consider the undirected graph G whose nodes
are the atoms of Q, and edges are the pairs of atoms, (Ai, Aj), that have at least one
variable in common. (a) The components ofQ are the connected components of graph
G. We will denote the components of Q by C1, . . . , Cn. Qi will denote the subquery
of Q formed by the (existentially quantified) conjunction of the atoms in Ci. (b) A set
of variables V ⊆ Var(Q) is coincident if all the sets Atoms(v), for v ∈ V, are the same.
The set of all coincident sets of variables is denoted by Coin(Q). ■

Notice that: (a) Coin(Q) is a partition of Var(Q); and (b) If Q contains only trivial
coincident sets, i.e. singletons, then |Coin(Q)| = |Var(Q)| (see Example 9).

Example 9. For the queryQ : ∃̄(R(x, y)∧ S(x)∧ T(z, w)∧U(z)), the undirected graph
G has as nodes the elements of Atoms(Q), and the edges are the pairs (R(x, y), S(x))
and (T(z, w), U(w)), which define also the two components: C1 = {R(x, y), S(x)}
and C2 = {T(z, w), U(w)}. The associated subqueries are Q1 : ∃x∃y(R(x, y) ∧ S(x))
and Q2 : ∃z∃w(T(z, w) ∧U(z)).

Coin(Q) = {{x}, {y}, {z}, {w}} contains only trivial coincident sets if variables,
they are singletons. However for the query Q : ∃̄(R(x, y) ∧ T(x, y, z) ∧ U(z)),
Coin(Q) = {{x, y}, {z}}, that contains a non-trivial coincident set of variables. ■

Notice that any two components of a query do not share any variable. Components
can be identified as “independent” sub-queries.

Intuitively, the variables in a coincident set can be treated as if they were only one.
More technically, this is done by mapping each unique combination of constants
that occurs in the database in the positions of the coincident variables to a new fresh
constant in a target database. The set of exogenous tuples is preserved, that is, a tuple
in the target database is exogenous iff its corresponding tuple in the original database
is exogenous. All this results in the same result for Boolean query evaluation. The
following result formalizes this claim. For simplicity, only for two variables in a
coincident set, but the result can be generalized iteratively to all the variables in a
coincident set.

Proposition 6. (Coincident Variables) Let Q be a BCQ for a schema S . Let
x, y ∈ Var(Q) be such that Atoms(x) = Atoms(y). Consider the BCQ query Q′ for
a new schema S ′ obtained by decreasing the arity of the relational predicates of
atoms in Atoms(x) by 1, and replacing the occurrences of x, y by a single occurrence
of a fresh variable v. It holds that, for every instance D for S , one can build an
instance D′ for S ′ via a transformation f of tuples in D, such that, for each S ⊆ D:
Q[S] = Q′[f (S)]. ■

Before proving the proposition, to convey the idea, we give an example.

Example 10. Consider the BCQ Q : ∃̄(R(x, y) ∧ T(y, z, x) ∧U(z)), and the instance
D in Table 7.3, with Dex = {τ1, τ2}. Tuple τ10 is a dummy tuple (see Proposition 5).

Chapter 7. Score Alignments for Non-Probabilistic Databases 27

R A B
τ1 a b
τ2 a c
τ3 a d
τ4 b b

S A B C
τ5 b a a
τ6 b b a
τ7 c a a
τ8 d a a
τ9 b a b
τ10 c a c

T A
τ11 a
τ12 b

TABLE 7.3: Instance D.

R′ A′

τ′1 c1

τ′2 c2

τ′3 c3
τ′4 c4

S′ A′ B′

τ′5 c1 a
τ′6 c1 b
τ′7 c2 a
τ′8 c3 a
τ′9 c4 a
τ′10 c5 a

T A′

τ′11 a
τ′12 b

TABLE 7.4: Instance D′.

The new query is Q′ : ∃̄(R(v) ∧ T(v, z) ∧U(z)). Notice that it does not have non-
trivial sets of coincident variables. Instance D′ has to be build from D, and be
compliant with the new schema. It is the instance in Table 7.4, which is obtained via
the mapping f : D → D′ defined by f (τi) := τ′i . Moreover, the set of exogenous
tuples of D′ is D′

ex
= {τ′1, τ′2}.

The transformation introduces fresh constants, the ci (in the domain of the new
schema). It holds: Q[S] = Q′[S′], for every S ⊆ D and S′ = { f (τ) : τ ∈ S}. ■

Remark 5. As already pointed out, we can iteratively decrease any coincident set until
its size is one, which motivates the following terminology and notation: Let Q be a BCQ
with non-trivial set of coincident variables (i.e. its elements are not all singletons), and
D a database instance. (a) The reduced form of Q, denoted by Qred is the result of
iteratively decreasing the number of coincident variables, until making each V ∈ Coin(Q)
collapse into a singleton. Qred does not have non-trivial sets of coincident variables.
As a consequence, Coin(Qred) = Var(Qred). In Example 10, Q′ is the reduced form
of Q. (b) Similarly, Dred denotes the reduced form of D, obtained at the end of the
iterative application (composition), denoted f red, of the one-step reduction transformation f . ■

Notice that for Proposition 6 the self-join-free condition is needed. We will use
Proposition 6 in Lemma 1.

Proof. (of Proposition 6) Let Q, Q′, D and D′ as in Proposition 6. We refer to them as
original and target, query or database, resp. Denote x, y the coincident variables and
v ̸∈ Var(Q) the new variable.

Now D′ is built, according to Q′, in the following way: (1) First, add all tuples from
D that are not from the relations of the atoms in Atoms(x). (2) Then, for each atom
U ∈ Atoms(Q), introduce a fresh atom U′, whose relational predicate’s arity is that of
the relational predicate of U minus 1, and it has the same variables as the atom U, but
x and y, which are replaced by a single variable v; (3) Lastly, for each tuple τ from the
relations of the atoms in Atoms(Q), create the tuple τ′ according to the following:

(a) Start from the new atom U′ and replace each variable in it, but v, with the
constant found in its position in the atom U from the tuple τ.

Chapter 7. Score Alignments for Non-Probabilistic Databases 28

(b) Replace the variable v in U′ with a unique fresh constant for each unique
combination of constants of τ in the x and y’s position in the atom U.

We exemplify step (2) and (3). Consider the atom U(x, y, z, w) with four variables,
being x and y two coincident variables, and consider the ground atom U(a, b, c, d),
being a, b, c and d constants. We first create the new atom U′(v, z, w), being v a fresh
variable. Note that the variables z and w are in both atoms, U and U′, and x and
y were replaced by v. After this, a new tuple is created, starting from the ground
atom U(a, b, c, d) by doing the following: (a) z and w are replaced by c and d (the
constants in the positions of each variable in the atom U(x, y, z, w), of the ground
atom U(a, b, c, d)), and (b) v is replaced by a fresh unique constant c′. This result in a
new ground atom U′(c′, c, d).

Now, consider the transformation f : D → D′: For a tuple τ ∈ D,

f (τ) :=

{
τ′ , if τ as a ground atom has the same predicate as someU ∈ Atoms(x),
τ , otherwise.

Here, τ′ is newly created tuple starting from τ.

By applying this transformation, any homomorphism that maps the atom U to the
tuple τ has its corresponding unique homomorphism h′ that maps from the new
atom U′ to the corresponding tuple f (τ).

We need to prove that Q[S] = Q′[S′] for every S ⊆ D and S′ = { f (τ) : τ ∈ S}. We
do this by showing that every tuple τ is mapped to a unique tuple in τ′, which is
equivalent to showing that f is bijective.

Consider two tuples τ, τ′ ∈ D. If (a, b) and (a′, b′) are pairs of constants in the
positions of x and y for τ and τ′ respectively, f (τ) = f (τ′) only if τ = τ′, which
means that f is injective. This occurs even when τ is not from a relation appearing in
Atoms(x), because f (τ) = τ in this case. Furthermore, by the way that D′ is created,
every tuple in it will have its correspondent tuple in D, implying that f is surjective.
Then, f is a bijection.

Since Q[S] = Q′[S′] for every S ⊆ D, the bijection also holds with a non-empty set of
exogenous tuples, since each subset of the original (and of the target) database now
needs to contain Dex (D′

ex
, resp.).

Now, we state the main result of this section.

Theorem 1. Let Q be a BCQ and C1, . . . , Cn, its components. Let Qi denote the query
built from the conjunction of all atoms in the component Ci. It holds:
(a) If n = 1 and |Coin(Q)| = 1, or if n ≥ 2 and |Atoms(Qi)| = 1 for all i = 1, . . . , n,
then the CES and the Responsibility are aligned for (D,Q) for every instance D with
or without exogenous tuples.
(b) Otherwise, there is an instance D with a non-empty set of exogenous tuples, such
that CES and Responsibility are not aligned for (D,Q). ■

Before proving this result, we illustrate it with an example.

Chapter 7. Score Alignments for Non-Probabilistic Databases 29

R1 A B
τ1 a a
τ2 b b

R2 A B C
τ3 a a a
τ4 a b a
τ5 b a b

R2 A B
τ6 a a
τ7 b b

τ CES Resp.
τ3 0.09375 1/3
τ5 0.03125 1/2

TABLE 7.5: (a) Database D. (b) CES and Responsibility for
τ3 and τ5.

Example 11. Consider the BCQs:

Q : ∃̄(R1(x, z) ∧ R2(x, y, z) ∧ R3(x, z)),
Q′ : ∃̄(R1(x, y) ∧ R2(z) ∧ R3(w, v)).

Query Q has one component, and query Q′ has three components: C′1 = {R1(x, y)},
C′2 = {R2(z)} and C′3 = {R3(w, v)}.

Since Q has only one component, the size of the set of coincident variables is
|Coin(Q)| = |{{x, z}, {y}}| = 2. By Theorem 1, there is a database D for which CES
and Responsibility are not aligned for (D,Q). Actually, in Proposition 8 we provide an
algorithm to built such a database. For now, Table 7.5(a) shows the relations from D.
Table 7.5(b) shows the CES and Responsibility scores for tuples τ3 and τ5: τ5 ⪯CEUI

τ3
and τ3 ⪯ρ τ5. The scores are not aligned for (D,Q).

Since for Q′ each component has only one atom, for every instance D, with or
without exogenous tuples, CES and Responsibility are always aligned for (D,Q). ■

Remark 6. In order to prove Theorem 1, we proceed as follows:

1. We start by restricting queries to those with a single component. For instance, query
Q : ∃̄(R(x, y) ∧ S(x, z)) satisfies this condition, but the queryQ′ : ∃̄(R(x, y) ∧ S(z)) not,
since it has two components.

For this class of queries, Propositions 7 and Proposition 8 establish Theorem 1(a) and (b),
resp., but assuming an additional condition of the queries.

After that, with Lemma 1, that can be used to address the extra condition, we manage to
establish Theorem 1 in its full generality (for single component queries).

2. Next, we investigate score alignment for multi-component queries. For this case,
Proposition 9 establishes Theorem 1(a); and Proposition 10, Theorem 1(b). ■

Proposition 7. Consider the query QRn :∃x(R1(x) ∧ R2(x) ∧ · · · ∧ Rn(x)). It does not
have a non-trivial coincident set of variables, and n ≥ 1. CES and Responsibility are
aligned for (D,QRn), for every instance D, with or without exogenous tuples.

Proof. Consider a database instance D without dummy tuples. Denote ri the number
of tuples of the relation Ri. The CES and Responsiblity for a tuple τi in relation Ri are:

CEUI(D,Q, τi) =

∏
rj=1,...,n

(2rj − 1)

2|D|−1
× 1

(2ri − 1)
, (7.3)

and ρ(D,Q, τ) = 1
ri

. Notice that the first factor on the RHS of (7.3) does not depend
on the tuple at hand. It follows that, for any two tuples τi and τj from relations Ri

Chapter 7. Score Alignments for Non-Probabilistic Databases 30

R A B
τ1 a a
τ2 a b
τ3 b a

S A
τ4 a
τ5 b

τ CES Resp.
τ1 0.375 1/3
τ3 0.125 1/2

TABLE 7.6: (a) Database D2. (b) CES and Responsibility for τ1
and τ3.

and Rj resp., if ri < rj, it holds:

CEUI(D,Q, τi) > CEUI(D,Q, τj) and ρ(D,Q, τi) > ρ(D,Q, τj).

Whereas, if ri = rj, CES and Responsibility for each tuples are the same.

Now, consider a non-empty set of exogenous tuples. Notice that if there is an
exogenous tuple in relation Ri, all endogenous tuples from that relation will have
CES and Responsibility equal to 0. This occurs because there is no possible subset of
tuples such that, removing an endogenous tuples from said relation, will produces a
change in the query’s answer. It follows that the scores will be also aligned for this
case.

Remark 7. In order to establish negative, i.e. non-alignment, results, for a given class, C, of
queries, we will use on several occasions a technique based on the following ideas:1 (a) Start
with a concrete example consisting in a particular query Q and a particular instance D0, for
which the negative result holds. The particular query belongs to C, and is, in some sense,

“contained” in the other queries in the class. (b) Given an arbitrary queryQ′ in C, queryQ is
reconstructed as a part of Q′. (c) In order to obtain an instance D for Q′, we start from D0,
making D an extension of D0 by adding exogenous tuples to the latter. In this way, every
tuple in D0 has a corresponding tuple in D. The new tuples in D will be endogenous only if
the original tuples in D0 are endogenous. Furthermore, the tuples in D that correspond to
tuples in D0, have the same CES and Responsibility scores as in D0. ■

We now proceed to establish and prove Proposition 8 by applying the general
technique just described, starting with a (counter-)example to be used in its proof.

Example 12. Consider the query Q2 : ∃x∃y(R(x, y) ∧ S(x)), and D2 the instance in
Table 7.6, and with Dex = {τ4} the set of exogenous tuples. It holds: τ3 ⪯CEUI

τ1 and
τ1 ⪯ρ τ3. So, CES and Responsibility are not aligned for (D2,Q2). ■

Proposition 8. Let Q be a BCQ with a single component, without non-trivial
coincident sets of variables, and with Var(Q) ≥ 2. There is an instance D with
exogenous tuples, such the CES and Responsibility are not aligned for (D,Q).

Proof. (of Proposition 8) Let x, y ∈ Var(Q) such Atoms(y) ⫋ Atoms(x). Now,
select two atoms Rx, Ry from Atoms(Q) such Rx ∈ (Atoms(x) ∖ Atoms(y)) and
Ry ∈ Atoms(y). We build a database D from D2 (as in Example 12) as follows:

(a) For each atom UR ∈ Atoms(y) and for each tuple τR from the relation R of D2, we
create a tuple from UR by putting in the x and y’s position the value of x and y in the

1A similar technique was used in (Livshits et al., 2021b; Dalvi & Suciu, 2007).

Chapter 7. Score Alignments for Non-Probabilistic Databases 31

R1 A B C
τ1 c′ a a
τ2 c′ a b
τ3 c′ b a

R2 A B
τ4 a c′

τ5 b c′

R3 A B C
τ6 a a c′
τ7 a b c′
τ8 b a c′

R4 A
τ9 c′

τ CES Resp.
τ6 0.375 1/3
τ8 0.125 1/2

TABLE 7.7: (a) Instance D built from D2 (Ex. 12). (b) CES and
Responsibility for τ6 and τ8.

tuple τS, and replacing by a constant c′ the rest of variables. Only the tuples created
from Ry are endogenous.

(b) For each atom US ∈ (Atoms(x)∖Atoms(y)) and for each tuple τS from the relation
S of D2, we create a tuple from US by putting in the x and y’s position the value of
x’s position the value of x in the tuple τR, and replacing by a constant c′ the rest of
variables. Only the tuples created from Rx are endogenous, with exception of the
tuple with a constant a in the position of x, which will be exogenous.

(c) For each atom U ̸∈ Atoms(x) a tuple is created by replacing all variables in U with
a constant c′. All tuples created in this way will be exogenous.

It follows that the CES and Responsibility are not aligned for (D,Q).

We now illustrate the construction of the database D of Proposition 8.

Example 13. Consider the BCQ Q : ∃̄(R1(x, y, z) ∧ R2(y, w) ∧ R3(y, z, w) ∧ R4(w)).

We select variables y and z, for which Atoms(z) ⫋ Atoms(y), and the atoms R2 and
R3. The variables and atoms selected are similar to the variables x, y and the atoms
Rx and Ry used in the proof of Proposition 8, resp. Next, we build an instance D as
in that proof, which results in the relations in Table 7.7.

The set of exogenous tuples in D is Dex = {τ1, τ2, τ3, τ4, τ9}. CES and Responsibility
are not aligned for (D,Q): τ8 ⪯CEUI

τ6 and τ6 ⪯CEUI
τ8. ■

The results so far are for queries with a single component and without non-trivial
coincident sets of variables. The extension to queries with a single component, but
possibly with non-trivial coincident sets of variables follows from the following
technical lemma.

Lemma 1. Let Q be a BCQ with a single component, and a non-trivial coincident set
of variables. For every instance D, CES and Responsibility are aligned for the pair
(Q, D) iff they are aligned for (Qred, Dred), where Qred and Dred are the reduced forms
of Q and D, respectively, as introduced in Remark 5.

Proof. Recalling Proposition 6, let f red be the transformation function that outputs
Dred. Since Q[S] = Qred[Sred] for every S ⊆ D, and Sred = { f red(τ) : τ ∈ S}, it follows,
for every τ ∈ Den, that CEUI(D,Q, τ) = CEUI(Dred,Qred, fR(τ)) and ρ(D,Q, τ) =
ρ(Dred,Qred, f red(τ)). Then, CES and Responsibility are aligned for (D,Q) iff they are
aligned for (Dred,Qred).

We now illustrate the use of Lemma 1 to obtain alignment and non-alignment results.

Chapter 7. Score Alignments for Non-Probabilistic Databases 32

Example 14. Consider the following BCQs Q and Q′ with their reduced versions, Qred

and Q′red
, respectively (see Remark 5):

Q : ∃̄(R(x, y, z) ∧ S(x, y, z) ∧ T(x, y, z)), Qred : ∃̄(R(v) ∧ S(v) ∧ T(v)),
Q′ : ∃̄(R(x, y, w) ∧ S(x, y) ∧ T(x, y)), Q′red

: ∃̄(R(v′, w) ∧ S(v′) ∧ T(v′)).

By Proposition 7, CES and Responsibility are aligned for (Dred,Qred), for every instance
Dred. From Lemma 1 it follows that the scores are aligned for (D,Q), for every
instance D.

Regarding Q′red
, by Proposition 8, there is an instance D′

red
, such that CES and

Responsibility are not aligned for (D′
red

,Q′red
). Again, by Lemma 1, there is an instance

D′, such that CES and Responsibility are not aligned for (D′,Q′). ■

According to Remark 6, we now address the case where the query has more than one
component.

Proposition 9. Let Q be a BCQ with components C1, . . . , Cn, with n ≥ 2. Let Qi be
the the subquery built as the conjunction of the atoms in Ci. If |Atoms(Qi)| = 1 for
i = 1, . . . , n, then CES and Responsibility are aligned for (D,Q), for every instance D,
with oe without exogenous tuples.

Proof. LetQ be a BCQ with two components, CR and CS, each with one atom, R ∈ CR
and S ∈ CS. We will prove first that the CES and Responsibility are always aligned for
Q and we will later generalize this fact for queries with more than one component.

First, consider that, for any τR from relation R, its Responsibility, if there are no
exogenous tuples in this relation, will be ρ(τR) =

1
r , where r corresponds the number

of tuples from R, and ρ = 0 if there exists some exogenous tuple in said relation.
Analogously, a tuple τS from relation S will have a Responsibility of ρ(τS) =

1
s , being

s is the number of tuples from relation S, if no exogenous tuples exists from this
relation, and ρ(τS) = 0 if there exists some.

Similarly, the CES for τR and τS will be CEUI(τR) = 1− 1
2s and CEUI(τS) = 1− 1

2r

if no exogenous tuples exists from R and S, respectively, and CEUI(τR) = 0 and
CEUI(τS) = 0 if there exists some exogenous tuples in R or S, respectively.

It is clear that the CES and Responsibility will be aligned for (D,Q), where D is any
possible database, with or without exogenous tuples.

Now, consider a query Q′ with one or more components that have only one atom
each, and consider the query Q⋆ as the conjunction of Q and Q′. The Responsibility of
τR and τS for Q⋆ and some database D⋆ will be the same as only the query Q and the
original database D, and thus, they are not altered. Regarding the CES, we have that

CEUI(D⋆,Q⋆, τR) = CEUI(D,Q, τR)× PD⋆(Q′)

CEUI(D⋆,Q⋆, τS) = CEUI(D,Q, τS)× PD⋆(Q′),

and therefore, the orders are not altered either. Now, note that the initial components
selected are arbitrary and therefore, we can perform the same pairwise comparison
with any other pair of components (or atoms) in the query Q⋆. By this, it follows
that the CES and Responsibility are aligned for (D⋆,Q⋆), where D⋆ is any possible
database with or without exogenous tuples.

Chapter 7. Score Alignments for Non-Probabilistic Databases 33

R A
τ1 a
τ2 b
τ3 c

S A
τ4 a
τ5 b

T A
τ6 a
τ7 b

τ CES Resp.
τ1 0.28125 1/3
τ4 0.125 1/2

TABLE 7.8: (a) Database D⋆. (b) CES and Responsibility for τ1
and τ3.

The next proposition, Proposition 10, will be proved by the technique described in
Remark 7. We start by providing the (counter)-example that will be later use in the
proof.

Example 15. Consider Q : ∃x∃y(R(x) ∧ S(y) ∧ T(y)), and the instance D⋆ in Table
7.8(a). CES and Responsibility of τ1 and τ4 are shown in Table 7.8(b). It holds:
τ4 ⪯CEUI

τ1 and τ1 ⪯ρ τ4. So, CES and Responsibility are not aligned for (D⋆,Q). ■

Proposition 10. LetQ be BCQ with two or more components, and at least one of them
with at least two atoms. Then, there is an instance D, such the CES and Responsibility
are not aligned.

Proof. First, two components, namely C1 and C2, are identify from the query Q
such: |C1| ≥ 1 (trivial condition) and |C2| ≥ 2. Note that we can always select the
component C2 from Q since there exists at least one of component that has at least 2
atoms.

Now, from C1, we select one atom that will be denoted by AR. It will be assumed
that AR ∈ Atoms(x). Similarly, from C2 we select two atoms, AS and AT, and, for a
variable y, AS, AT ∈ Atoms(y). We build a database D from D⋆ (from Example 15) as
follows:

(a) For each atom Ux ∈ Atoms(x) and for each tuple τR from the relation R of D⋆, we
create a tuple from UR by putting in the x’s position the value of x in the tuple τR,
and replacing by a constant c′ the rest of variables. Only the tuples created from AR
are endogenous.

(b) For each atom US, UT ∈ Atoms(y) and for each tuple τS and τT from the relations
S and T of D⋆, we create a tuple from US and UT by putting in the y’s position the
value of y in the tuple τS and τT, respectively, and replacing by a constant c′ the rest
of variables. Only the tuples created from AS and AT are endogenous, the rest will be
exogenous.

(c) For each atom U ̸∈ (Atoms(x) ∪ Atoms(y)) a tuple is created by replacing all
variables in U with a constant c′. All tuples created in this way will be exogenous.

By the construction of D we have that each endogenous tuple in it has its
corresponding tuple in D⋆, and the CES and Responsibility of each are the same.
It follows that both scores are not aligned for (D,Q).

We now illustrate the use of Proposition 10.

Example 16. Consider the BCQ Q : ∃̄(R1(x, y) ∧ R2(z) ∧ R3(z) ∧ R4(z) ∧ R5(w, v)).
It has three components: C1 = {R1(x, y)}, C2 = {R2(z), R3(z), R4(z)}, and C3 =
{R5(w, v)}. Since C2 has three components, by Proposition 10, there is an instance

Chapter 7. Score Alignments for Non-Probabilistic Databases 34

R1 A B
τ1 c′ c′

R2 A
τ2 a
τ3 b

R3 A
τ4 a
τ5 b

R4 A
τ6 a
τ7 b

R5 A B
τ8 a c′
τ9 b c′
τ10 c c′

τ CES Resp.
τ2 0.125 1/2
τ8 0.28125 1/3

TABLE 7.9: (a) Database D. (b) CES and Responsibility for τ2
and τ8.

D, such the scores are not aligned. This instance is built as in the proof of that
Proposition, which -in this example- leads us to select components C2 and C3. Next,
from C2, we select atoms R2(z) and R3(z); and atom R5(w, v) from C3. Only the
tuples from relations R2, R3, R5 become endogenous; and the rest, exogenous.

Table 7.9(a) shows instance D, with Dex = {τ1, τ6, τ7}. The CES and Responsibility
for τ2 and τ8 are also shown. It holds: τ2 ⪯CEUI

τ8 and τ8 ⪯ρ τ2. Then, CES and
Responsibility are not aligned for (D,Q). ■

Notice that, with Proposition 9 and 10, we have fully characterized the space of
multi-component queries, that is, for any query with two or more components, we
can determine if CES and Responsibility are aligned for any possible instance or there
exists one such they are not aligned. Following this, we can obtain: Let Q be a
multi-component query. Then, it holds that, if the scores are always aligned for Q, then the
scores are always aligned for each of the sub-queries built from its components.

Proof. Let Q be a multi-component BCQ such CES and Responsibility are aligned for
(D,Q), where D is any possible instance. By Proposition 9 and 10, the query Q has
all its components with a single atom. Then, by Lemma 1, the scores will be always
aligned for a query Qi with a single atom iff the scores are always for its reduced
version Qred

i , a query with the single atom and one variable. Then, by Proposition 7,
the scores are always aligned for each query Qred

i , which proves the statement.

The reversed not always holds, that is, there exists some multi-component query
Q, such the scores are always aligned for each sub-queries of Q, but there exists
some instance D were the scores are not aligned. In fact, we will provide a query in
Example 17 that constitutes a counter example for this.

We have established so far both the positive case of Theorem 1, i.e. alignment of
CES and Responsibility; and also the negative case, i.e. non-alignment of CES and
Responsibility, resp. In essence, these two cases correspond to two cases for the query
at hand: when it has a single component, and when it has more than one component.
Gathering all previous Propositions and Lemmas, we obtain the proof of Theorem1.
We conclude next with its formal proof.

Proof of Theorem 1. Consider a BCQ with a single component Q and its reduced
version Qred. Since |Coin(Q)| = |Var(Qred)|, Proposition 7 and Proposition 8 that
applies to Qred, also holds for Q, by Lemma 1. It follows that, if Q has a single
component, Theorem 1 holds.

Chapter 7. Score Alignments for Non-Probabilistic Databases 35

Now, for a query with more than one component, Proposition 10 and Proposition 9
holds. It follows that, if Q has more than one component, Theorem 1 holds. ■

Notice that the positive results given in this section also holds when the instance does
not have exogenous tuples, contrary to the non-alignment results, which requires the
existence of exogenous tuples. This fact will be investigated in the following section.

7.2 CES vs Responsibility Alignment in Absence of
Exogenous Tuples

In the preceding section, the (positive) alignment results, those in Theorem 1(a), do
not require the presence of exogenous tuples, and they hold with and without them.
However, for the non-alignment results, those in Theorem 1(b), exogenous tuples
were required, and used in the proof. So far, we do not know if the non-alignment
result still holds without exogenous tuples (and the same class of queries). Actually,
in this Section, we show that exogenous tuples are indeed required for the non-
alignment result for two particular subclasses of the queries considered in Theorem
1(b): for them, CES and Resposibility are always aligned. Accordingly, in this section,
we assume that database instances do not have exogenous tuples.

Proposition 11. Let Q be a BCQ with a single component, |Atoms(Q)| ≤ 2, and
|Coin(Q)| ≤ 3. Then, for every database D (without exogenous tuples), CES and
Responsibility are always aligned for (Q, D).

Proof. The case |Atoms(Q)| = 1 is included in Proposition 7. We first consider a query
Q with a single component and without non-trivial sets of coincident variables. We
will extend the result for such query using Lemma 1.

Consider the case |Atoms(Q)| = 2, and |Var(Q)| = 2 or 3. We do this by showing that
the CES and Responsibility is aligned for any pair (D,QRS), where D is any database,
with or without exogenous tuples, and QRS (also used in Example 8) is the following
query:

QRS : ∃x∃y∃z(R(x, y) ∧ S(y, z)), (7.4)

Note that |Atoms(QRS)| = 2 and |Var(QRS)| = 3. Moreover, if the CES and
Responsibility are aligned for this case, the scores will be also aligned for a query
Q′ such |Atoms(Q′)| = 2 and |Var(Q′)| = 2.

W.l.o.g, consider a database D as shown in Table 7.10. where n1 < n2 < m1 < m2.
For the moment, all tuples will be considered endogenous. We will denote ra = n1,
rb = n2 − n1, sa = m1 − n2 and sb = m2 −m1. Again, w.l.o.g., we will assume that
ra ≤ sa and rb ≤ sb. Also, denote Ra,Rb,Sa and Sb subsets of D such for all ci, the
tuple (if exists) R(ci, a) ∈ Ra, R(ci, b) ∈ Rb, S(a, ci) ∈ Sa and S(b, ci) ∈ Sb. Note that
Ra ∪ Rb ∪ Sa ∪ Sb = D and any pairwise intersection of the sets is empty, therefore
{Ra, Rb, Sa, Sb} can be seen as a partition of D. Note that |Ra| = ra, |Rb| = rb, |Sa| = sa
and |Sb| = sb. In addition, for the rest of the proof, τra, τrb, τsa and τsb will denote
tuples of Ra, Rb, Sa and Sb, respectively.

Note that the values of the CES and Responsibility are equal for any two tuples of a
particular subset, i.e. for any two tuples τ, τ′ in one of the following Ra, Rb, Sa and
Sb, ρ(D,Q, τ) = ρ(D,Q, τ′) and CEUI(D,Q, τ) = CEUI(D,Q, τ′). Therefore, in order

Chapter 7. Score Alignments for Non-Probabilistic Databases 36

R A B
τ1 c1 a
...

...
...

τn1 cn1 a
τn1+1 cn1+1 b
...

...
...

τn2 cn2 b

S A B
τn2+1 a cn2+1
...

...
...

τm1 a cm1
τm1+1 b cm1+1
...

...
...

τm2 b cm2

TABLE 7.10: Database with relations R and S.

to show that the scores are aligned, the following must hold: τi ⪯ρ τj iff τi ⪯CEUI
τj

for any τi ∈ A, τj ∈ B, with A, B ∈ {Ra, Rb, Sa, Sb} and A ̸= B.

We start by computing the Responsibility for each tuple, resulting in the following:

ρ(D,QRS, τ) =

1

ra+rb
, if τ ∈ Ra, Rb

1
rb+sa

, if τ ∈ Sa
1

ra+sb
, if τ ∈ Sb

Observe that: (a) τsa ⪯ρ τr for τr ∈ Ra ∪ Rb, and (b) τsb ⪯ρ τr for τr ∈ Ra ∪ Rb. It is
also worth noting that, since ρ(D,QRS, τr) is the same for all τ ∈ Ra ∪ Rb, the exact
value of the CES will be irrelevant.

For the CES, recall that it can be computed using the number of swinging worlds
or contingencies according to Equations (6.5) and (6.6). As an example, the CES of
τra ∈ Ra is computed. A set W ⊆ D will be a swinging world of τra if: (1) contains a
positive number of tuples in Sa and (2) there are only tuples of Rb or Sb. Then, the
CEUI(D,QRS, τra) =

(2sa−1)·(2rb+2sb−1)
2m2−1 . Analogously, the CES for the rest of tuples is

computed, resulting in the following:

CEUI(D,QRS, τ) =

(2sa − 1) · (2rb + 2sb − 1)
2m2−1 , if τ ∈ Ra

(2sb − 1) · (2ra + 2sa − 1)
2m2−1 , if τ ∈ Rb

(2ra − 1) · (2rb + 2sb − 1)
2m2−1 , if τ ∈ Sa

(2rb − 1) · (2ra + 2sa − 1)
2m2−1 , if τ ∈ Sb

Note that: (a) τsa ⪯CEUI
τra, and (b) τsb ⪯CEUI

τrb. This results coincide with the results
(a) and (b) of Responsibility.

Having these results, the remaining scenarios are proved: (1) τsa ⪯ρ τsb iff τsa ⪯CEUI

τsb, (2) τsb ⪯ρ τra iff τsb ⪯CEUI
τra and (3) τsa ⪯ρ τrb iff τsa ⪯CEUI

τrb.

For (1), note that τsa ⪯ρ τsb iff ra + sb ≤ rb + sa. Also, CEUI(D,Q, τsa) ≤
CEUI(D,Q, τsb) iff 2sb+ra − 2sb ≤ 2sa+rb − 2sa . For both, ra + sb = rb + sa and
ra + sb < rb + sa, the scores are aligned, since, in the first case, the Responsibility
is the same for τra and τsb (making the exact value of CES irrelevant) and, in the
second case, the induced orders are the same.

For (2), note that τsb ⪯ρ τra holds since rb ≤ sb. Regarding the CES , τra ⪯ τsb iff
2ra · (2rb − 1) + 2sa+rb ≤ 2sa+sb + 2sb · (2sa − 1). Then, for both, rb = sb and rb < sb, the

Chapter 7. Score Alignments for Non-Probabilistic Databases 37

R1 A B
a c1
...

...
a cra
b cra+1
...

...
b cra+rb

S1 A
a
b

S2 A
a
b

. . .
Sm A

a
b

TABLE 7.11: Database DR1,Sm with relations R1, S1, S2, . . . , Sm.

scores are aligned, since, in the first case Responsibility is the same for τra and τsb, and
in the second case the induced orders are the same.

The proof of (3) is analogous to (2), but considering τsa and τrb instead of τsb and τra,
respectively.

Now, consider a new database D′ with extra endogenous tuples. W.l.o.g. it is assumed
that Adom(D)∩Adom(D′) = ∅ and MSS(D∪D′,Q) = MSS(D,Q)∪MSS(D′,Q) =
∅. Then, by Proposition 2 and Proposition 3, the Responsibility and the CES for each
tuple τ ∈ D will be:

ρ(D ∪ D′,QRS, τ) =

(
(ρ(D,QRS, τ))−1 + min

Γ∈MAS(D′,Q)
|Γ|
)−1

CEUI(D ∪ D′,QRS, τ) = CEUI(D,QRS, τ) · PD′(QRS),

where PD′(QRS) is the probability of QRS on the PDB ⟨W(D′), pD′⟩ and pD′ the
uniform distribution overW(D′). It follows that all of the previously obtained results
would hold true also for D ∪ D′.

Proposition 12. Consider the BCQ QR1,Sm: ∃̄(R1(x̄, ȳ) ∧ S1(x̄) ∧ . . . ∧ Sm(x̄)), where
x̄ and ȳ are non-empty strings of variables. For it, CES and Responsibility are always
aligned for every database with an empty set of exogenous tuples.

Proof. Consider the queryQred
R1,Sm

the reduced version ofQR1,Sm (see Remark 5), which
is given by Qred

R1,Sm
: ∃̄(R1(x, y) ∧ S1(x) ∧ . . . ∧ Sm(x)), and consider the database

DR1,Sm described in Table 7.11.

Denote with Ra and Rb the set of tuples of the form R1(a, x) and R1(b, x), respectively,
where a and b are constants and x is any constant. Similarly, denote Sa and Sb the set
of tuples of the form Si(a) and Si(b), respectively, where 1 ≤ i ≤ m. Note |Ra| = ra,
|Rb| = rb and |Sa| = |Sb| = m. Moreover, the sets (Ra, Rb, Sa, Sb) forms a partition
of D. Also note that ρ(τ) = ρ(τ′) for any pair of tuples that belongs to the same set
Ra, Rb, Sa, Sb. Therefore, we need to prove that τ ⪯ρ τ′ iff τ ⪯CEUI

τ′ for: (a) τ ∈ Ra
and τ′ ∈ Sa; (b) τ ∈ Rb and τ′ ∈ Sb; (c) τ ∈ Ra and τ′ ∈ Rb; (d) τ ∈ Sa and τ′ ∈ Sb;
(e) τ ∈ Ra and τ′ ∈ Sb; (f) τ ∈ Rb and τ′ ∈ Sb.

Now, we compute the Responsiblity and CES for each tuple in D:

ρ(DR1,Sm ,QR1,Sm , τ) =

1/(ra + 1) , if τ ∈ Ra

1/(rb + 1) , if τ ∈ Rb

1/2 , if τ ∈ Sa, Sb

Chapter 7. Score Alignments for Non-Probabilistic Databases 38

R A B
τ1 a a
τ2 b a
τ3 b b
τ4 b c
τ5 b d
τ6 b e
τ7 c a
τ8 c b
τ9 c c
τ10 c d
τ11 c e
τ12 c f
τ13 c g

S A
τ14 a
τ15 b
τ16 c

T A B
τ17 a a
τ18 a b
τ19 a c
τ20 b a

U A
τ21 a
τ22 b

τ CES Resp.
τ1 0.0751 1/3
τ17 0.0754 1/4
τ21 0.5284 1/2

TABLE 7.12: (a) Database D and (b) CES and Responsibility τ1, τ17 and
τ21.

CEUI(DR1,Sm ,QR1,Sm , τ) =

(2rb ·(2m−1)+1)

2ra+rb+2m , if τ ∈ Ra
(2ra ·(2m−1)+1)

2ra+rb+2m , if τ ∈ Rb
(2ra−1)·(2rb ·(2m−1)+1)

2ra+rb+2m , if τ ∈ Sa
(2rb−1)·(2ra ·(2m−1)+1)

2ra+rb+2m , if τ ∈ Sb

Note that ρ(τ) ≤ ρ(τ′) and CEUI(τ) ≤ CEUI(τ′) for any τ ∈ Ra and τ′ ∈ Sa. The same
holds for τ ∈ Rb and τ′ ∈ Sb. This proves case (a) and (b). Moreover, ρ(τ) = ρ(τ′)
for τ ∈ Ra and τ′ ∈ Rb, and thus, case (c) holds.

Consider τ ∈ Sa and τ′ ∈ Sb. Then, ρ(τ) < ρ(τ′) iff ra > rb. Similarly, CEUI(τ) <
CEUI(τ′) iff ra > rb. Note that if ra = rb, then ρ(τ) = ρ(τ′) and CEUI(τ) = CEUI(τ′).
This proves case (d).

Consider τ ∈ Ra and τ′ ∈ Sb. Then, if ra = 1, ρ(τ) = ρ(τ′), and thus, the exact value
of CES is not important. Consider now ra > 1, then ρ(τ) < ρ(τ′). Then, we must show
that CEUI(τ) ≤ CEUI(τ′). This latter holds iff (2m − 1) · (2ra+rb − 2ra − 2rb)− 2 ≥ 0. If
we substitute rb = m = 1, which are the minimum values that both could take, the
following must holds: 2rb · 3− 6 ≥ 0, which is always true for rb ≥ 1. This proves
case (e).

Case (f) is analogous to case (e), but considering τ ∈ Rb and τ′ ∈ Sa.

Now, consider a multi-component query Q. As highlighted in (Dalvi & Suciu, 2012),
the probability of Q being true in a given probabilistic database is equal to the
multiplication of the probabilities of each of its components being true, that is, the
probabilities of the components are independent. Reasoning in the same way, one
may expect that CES and Responsibility are always aligned for every multi-component
query if the scores are also always aligned for all sub-queries built from the its
components. It turns out that this is not the case, as the following counter-example
shows.

Example 17. Consider the query Q : ∃x∃y∃z(R(x, y) ∧ S(x) ∧ T(z, w) ∧U(z)), and
the database with the relations in Table 7.12. It holds: τ1 ⪯CEUI

τ17 ⪯CEUI
τ21 and

τ17 ⪯ρ τ1 ⪯ρ τ21. This shows that CES and Responsibility are not aligned for (D,Q). ■

In this example, that query Q has the sub-queries: Qa : ∃x∃y(R(x, y) ∧ S(x)), and
Qb : ∃z∃w(T(z, w) ∧U(z)). By Proposition 12, CES and Responsiblity are always

Chapter 7. Score Alignments for Non-Probabilistic Databases 39

aligned for the pairs (D,Qa) and (D′,Qb) for any database D and D′, with or without
exogenous tuples. This fact highlights the alignment property is not preserved for
queries with multiple components.

7.3 Summary of Results in Sections 7.1 and 7.2

In order to have a global -and also more accurate view- of the results obtained so far
in this section, we summarize them next; highlighting, in particular, some open cases.

1. Positive Results for Alignment:

a. Proposition 7 and Lemma 1: If a query Q has a single component, and
|Coin(Q)| = 1, then CES and Responsibility are aligned for every possible
instance, with or without exogenous tuples.

b. Proposition 9: If a query Q has two or more components, and each component
has only one atom, then, the scores are aligned for every possible instance, with
or without exogenous tuples.

c. Propositions 11 and 12: If a query Q has a single component, with
|Atoms(Q)| ≤ 2, or is the query QR1,Sm (see Proposition 12), then the scores are
aligned for every possible instance that does not have exogenous tuples.

2. Negative Results, i.e. for Non-Alignment:

d. Proposition 8 and Lemma 1: If a query Q has a single component, and
|Coin(Q)| ≥ 2, then, there is an instance D, with exogenous tuples, such the
scores are not aligned for (D,Q).

e. Proposition 10: If a query Q has two or more components, with one of them
at least with two or more atoms, then, there is an instance, with exogenous
tuples, such the scores are not aligned.

Notice the following:

1. For instances with or without exogenous tuples, we are able to determine if the
scores are aligned or not for any BCQ based on its syntactic structure. The positive
side of this result applies to instances with or without exogenous tuples, however,
exogenous tuples were required for the proof of the negative side, which means
that this side cannot be extended to the setting where instances only contain
endogenous tuples.

2. If the instances in item 1.c. are not constrained to only have endogenous tuples,
then (by Proposition 8) for any query in a particular sub-class of BCQs, there
exists and instance, with exogenous tuples, where the scores are not aligned. This
particular sub-class of queries corresponds to all queries with exactly two atoms
and two or more coincident sets of variables. For instance, consider the query
QRS (see Ex. 8). If exogenous tuples are allowed, we can build an instance, with
exogenous tuples, such the scores are not aligned (Prop. 8). However, if the
instances only have endogenous tuples, then the scores are always aligned (Prop.
11).

3. The class of queries where the scores are always aligned increases when exogenous
tuples became not allowed. For instance, the class of queries from Proposition 7 is
included in the class of queries from Proposition 11.

Chapter 7. Score Alignments for Non-Probabilistic Databases 40

A complete characterization, in terms of the structure of the query, of the alignment
of the scores for instances without exogenous tuples remains open. In particular, the
following problems remain open:

4. Alignment for queries with a single component: We do not know whether the
scores are aligned or not for queries with three or more atoms (and instances
without exogenous tuples). A starting line of investigation on this matter is
studying the non-hierarchical queries (see Section 3.1) 2. For instance, for the
single-component and three-atom query QRST in Equation (7.1), it was shown
in Example 7, that there is an instance, without exogenous tuples, where the
scores are not aligned. We conjecture that, for any non-hierarchical query, there
is an instance, without exogenous tuples, where the scores are not aligned. This
could be possible since any other non-hierarchical query contains, in some way,
the query QRST. We speculate that a proof for this would be carried out along
the line of Remark 7, but without the use of exogenous tuples.

5. Alignment for multi-component queries: There is no characterization, in terms of
the structure of a multi-component query, for the alignment of scores, ith the
exception of multi-component queries where each component only has 1 atom
(Prop. 9).

6. Preservation of the alignment property for multi-component queries: As shown with
Example 17, the property of alignment is not preserved for multi-component
queries, that is, even if the scores are aligned for any possible instance (without
exogenous tuples) and for each individual component of a given query Q, it is
not guaranteed that the scores will be also aligned forQ. However, it may exists
some special class of multi-component queries where the scores are always
aligned. This fact, as shown in Corollary 7.1 for instances with exogenous
tuples, will immediately imply that the scores are aligned for any sub-query
built from its components.

7.4 Non-Alignment of CES and Responsibility with the
Shapley Value

In this section we present a negative result about the alignment of the Shapley Value
with CES (and also with Responsibility). Actually, we establish that, for every query
Q in a broad class of BCQs, there is instance D where each of the pairs of scores are
not aligned for (D,Q). As for the non-alignment result in Section 7.1, we require the
existence of exogenous tuples in D.

In order to prove this result, the technique given in Remark 7 is used. The base
(counter)-example to be used will be Example 8. We now state and prove the main
result of this section.

Proposition 13. Let Q be a BCQ, such that it contains two atoms AR and AS, with
predicates R, S, resp., satisfying: (a) Var(AR) ∩Var(AS) ̸= ∅, (b) Var(AR) ̸⊆ Var(AS),
and (c) Var(AS) ̸⊆ Var(AR). There is a database D containing exogenous tuples, such
that CES and Shapley Value; and Responsibility and Shapley Value are not aligned.

2The reduced versions of all non-hierarchical queries are included in the syntactic class given in
Proposition 8 and therefore, the exists some instance, with exogenous tuples, such the scores are not
aligned.

Chapter 7. Score Alignments for Non-Probabilistic Databases 41

R1 A B C
τ1 c1 a a
τ2 c2 b b
τ3 c3 b b

R2 A B
τ4 a a
τ5 b b

R3 A B C D
τ6 a a c4 c′
τ7 a a c5 c′
τ8 b b c6 c′
τ9 b b c7 c′
τ10 b b c8 c′
τ11 b b c9 c′

R4 A
τ12 c′

τ CES Resp. Shapley
τ1 57/256 1/3 400/2520
τ6 19/256 1/4 151/2520
τ8 15/256 1/5 169/2520

TABLE 7.13: (a) Database D. (b) CES, Responsibility and Shapley
Value for (D,Q).

Proof. Let Q be a BCQ such (a) Atoms(Q) ≥ 2 and (b) for two atoms AR and AS in Q,
Var(AR) ∩Var(AS) ̸= ∅, and Var(AR) ̸⊆ Var(AS) nor Var(AS) ̸⊆ Var(AR). Then, we
create a database D to recreate the query QRS and the database D⋆ from Example 8
with the query Q. W.l.o.g, we will assume that |Var(AR) ∩Var(AS)| = 1, which will
be denoted by x. Also, consider two different variables y ∈ Var(R) and z ∈ Var(AS).
We build the database D, starting from D⋆ (from Ex. 8), in the following way:

(a) For each atom Uy ∈ Atoms(y) and for each tuple τR from the relation R of D⋆, we
create a tuple from Uy by putting in the x and y’s position the value of x and y in the
tuple τR, and replacing by a constant c′ the rest of variables. Only the tuples created
from AR are endogenous.

(b) For each atom Uz ∈ Atoms(z) and for each tuple τS from the relation S of D⋆, we
create a tuple from Uz by putting in the x and z’s position the value of x and z in the
tuple τS, and replacing by a constant c′ the rest of variables. Only the tuples created
from AS are endogenous.

(c) For each atom Ux ∈ Atoms(x)∖ (Atoms(y)∪Atoms(z)), we create two tuples from
Uz by putting in the x’s position the constants a and b respectively, and replacing by
a constant c′ the rest of variables. All tuples created this way will be exogenous.

(d) For each atom U ̸∈ (Atoms(x) ∪ Atoms(y) ∪ Atoms(z)), a tuple is created by
replacing all variables in U with a constant c′. All tuples created this way will be
exogenous.

By the construction of D we have that each endogenous tuple in it has its
corresponding tuple in D⋆, and the CES, Responsibility, and Shapley Value of each are
the same. It follows that both scores are not aligned for (D,Q).

We now illustrate Proposition 13, in particular, the construction of the database where
the scores are not aligned.

Example 18. Consider the BCQ Q : ∃̄(R1(x, y, z) ∧ R2(y, z) ∧ R3(y, z, w, v) ∧ R4(v)).
Now, atoms R1(x, y, z) and R3(y, z, w, v) satisfy the conditions of Proposition 13. The
database D, for which CES and Shapley Value, so as Responsibility and Shapley Value,
are not aligned, is built according to the proof of the proposition.

Table 7.13(a) shows the resulting instance; and Table 7.13(b) shows CES, Responsibility
and Shapley Value for each of the tuples τ1, τ6 and τ8. It holds: τ8 ⪯CEUI

τ6 ⪯CEUI
τ1,

τ8 ⪯ρ τ6 ⪯ρ τ1 and τ6 ⪯Shapley τ8 ⪯Shapley τ1. Then, CES and Responsibility, so as CES
and Shapley Value, are not aligned for (D,Q). ■

Chapter 7. Score Alignments for Non-Probabilistic Databases 42

In order to obtain Proposition 13, we require the existence of exogenous tuples in the
database. We do not know if the result still holds without exogenous tuples. Actually,
this latter case already emerges as a problem in Game Theory, where commonly
no distinction between exogenous and endogenous players is made; namely as the
problem of the alignment (or not) of the (general) Shapley value and the Banzhaf
Power-Index (that in our database setting becomes CES). To the best of our knowledge,
this is still an open problem (Freixas, 2010).

43

Chapter 8

Complexity of Computing CES and
GCES

In this section we investigate the complexity of computing CES and GCES 1(for a TID)
for Unions of BCQs (UBCQs). The results take the form of a dichotomy: computing
CES and GCES, for a given query and tuple, is either in PTIME or #P-hard depending
on whether the query belongs to a subclass of UBCQs or not.

In (Livshits et al., 2021b), the complexity of computing the Shapley value and the
Banzhaf Power-Index (BPI) of a tuple for self-join-free BCQs (and aggregations on top
of them) was investigated. It was also established there, that for this class of queries,
BPI and CES (with tuple-independence and uniform distribution of 1

2) coincide. As
a consequence, the following dichotomy result was established: For BCQ without
self-joins: (a) If the query is hierarchical, then computing CES can be done in PTIME;
otherwise, (b) CES computation is FP#P-complete. As mentioned at the beginning of
this section, we extend this result to the cases of CES and GCES for UBCQs. Formally,
the result is the following:

Theorem 2. Let Q be a UBCQ, D a (non-probabilistic) instance, ⟨W(D), pD⟩ a TID
instance based on D, and τ ∈ D an endogenous tuple. Computing CEpD

(D,Q, τ)
and CEUI(D,Q, τ) is either PTIME or #P-hard. Moreover, there exists a syntactic
characterization of Q called safety such, if Q is safe, then the scores can be computed
in PTIME and if the query is unsafe, then the complexity of the scores is #P-hard. ■

The safety syntactic characterization mentioned in the theorem is not given by its
usual definition: queries that are independent from its domain, rather queries that
are accepted by the algorithm in (Dalvi & Suciu, 2012) that computes the probability of
a query being true. Regarding the present work, we are not interested in the formal
definition of this class. Moreover, thorough this section, we will refer to the safety
class of queries as this way.

We now introduce some useful notation regarding UBCQ. Let Q1,Q2, . . . ,Qk denote
a series of BCQ. Now, let Q be the disjunction of all Qi, which will be written as:

Q : (Q1 ∨Q2 ∨ . . . ∨Qk)

For any UBCQ, it will be assumed that no (existentially quantified) variable in Q
appears in two different BCQ, that is, Var(Qi) ∩Var(Qj) = ∅.

1The GCES was defined for an arbitrary distribution overW(D). All complexity results for the
GCES given in this section will be for a TID.

Chapter 8. Complexity of Computing CES and GCES 44

The following example illustrates the use of Theorem 2.

Example 19. Consider the UBCQs

Q : ∃̄(R1(x1) ∧ R2(x1, y1, z)) ∨ ∃̄(R2(x2, y2) ∧ R3(y2))

Q′ : ∃̄(R1(x1) ∧ R2(x1, y1)) ∨ ∃̄(R2(x2, y2) ∧ R3(y2)) ∨ ∃̄(R1(x3) ∧ R3(y3))

The query Q is unsafe and the query Q′ is safe (according to (Dalvi & Suciu, 2012)).
By Theorem 2, given a TID instance⟨W(D), pD⟩, with D a database instance, and a
endogenous tuple τ ∈ D, computing CEpD

(D,Q, τ) and CEUI(D,Q, τ) is #P-hard,
and computing CEpD

(D,Q′, τ) and CEUI(D,Q′, τ).

As we will later show, the problem of computing the GCES (for a TID) and CES is
closely related to the problem of computing the probability of a query in a probabilistic
database: Query Evaluation Problem (QEP). In fact, the proof of Theorem 2 relays on
two previous complexity results regarding this problem, which we now recall.

Remark 8. (Theorem 4.21 from (Dalvi & Suciu, 2012)) Consider Q a UBCQ and a TID
instance Dp = ⟨W(D), pD⟩. Then, one of the following holds:

(a) If Q is safe, then PDp(Q) can be computed in PTIME

(b) If Q is unsafe, then computing PDp(Q) is #P-hard.

where PDp(Q) denotes the probability of Q being true in the probabilistic database Dp.

Remark 9. (Theorem 2.2 from (Kenig & Suciu, 2021)) Consider Q a UBCQ. Then, for
any TID Dp = ⟨W(D), pD⟩ where pD({τ}) ∈ {0, 1

2 , 1}, if Q is unsafe, then computing
PDp(Q) is #P-hard.

The proof of the positive side of Theorem 2 is simply about computing the two
probability distributions, for the CES or GCES from their definitions. By Remark 8,
those probabilities can be computed in PTIME for safe queries, and therefore, the result
holds. To prove the negative side. we provide a reduction from Query Evaluation
Problem (QEP) (Dalvi & Suciu, 2007, 2012) to the problem of computing CES and
GCES. By Remarks 8 and 9, the complexity of the former is #P-hard, and thus, the
result also holds. This reduction is accomplished by the following proposition, which
relates the computation of both problems.

Proposition 14. Let Q be a UBCQ. For every TID Dp = ⟨W(D), pD⟩ associated
to a (non-probabilistic) database D, there is a TID Dp ′ = ⟨W(D′), pD′⟩ with an

endogenous tuple τ ∈ D′, such that PDp(Q) = 1− CEpD′
(D′,Q, τ), where PDp(Q)

denote the probability of Q being true in the TID Dp; and Dp ′ can be computed in
constant time from the original TID.

Proof. Let ⟨W(D), pD⟩ be a TID instance and Qd a UBCQ. Denote Q be one of the
BCQs that are part of Qd. Additionally, consider a mapping f : Var(Q)→ C, where:
(a) C is a set of fresh constants, that is, Adom(D) ∩ C = ∅ and (b) each variable is
mapped to a unique constant in C.

Now, we create the new TID instance ⟨W(D′), pD′⟩, being D′ an (non-probabilistic)
instance, starting from Dp, and adding additional tuples. These new tuples are
created as follows: for each U ∈ Atoms(Q), create a tuple τU by replacing each
variable v with f (v), and assigning it a probability of 1, that is pD ′({τU}) = 1. The
TID instance that includes D and all of these fresh tuples is denoted by D.

Chapter 8. Complexity of Computing CES and GCES 45

R1 A B P
τ1 a a 0.9
τ2 b b 0.3
τ3 c b 0.8

R2 A P
τ4 d 0.5

R3 A B P
τ5 a c 0.1
τ6 b d 0.3
τ7 e e 0.8
τ8 f f 0.5

R4 A B P
τ9 a a 0.9
τ10 a c 0.1
τ11 c b 0.1

TABLE 8.1: Database Dp.

Now, we compute the GCES for one of the created tuples τ⋆
U .

CEpD′
(D′,Qd, τ′U) = E(Qd|do(τ′U in))−E(Qd|do(τ′U out))

= PDp ′(Qd|do(τ′U in))− PDp ′(Qd|do(τ′U out)),

where PDp ′(Q) denotes the probability of Q being true in the TID Dp ′. Note the
following: (a) PDp ′(Qd) = 1, since the created tuples by themselves constitute a MSS
(see Def. 3). This probability will not change by the intervention do(τ′U in); and (b)
when computing PDp ′(Qd|do(τ′U out)), the before created tuples become dummy tuples,
since they only belong to one MSS. It follows that:

CEDp ′
(D′,Qd, τ′U) = PDp ′(Qd|do(τ′U in))− PDp ′(Qd|do(τ′U out))

= 1− PDp(Qd)

Then, by rearranging the terms, we obtain the expression in the proposition. Since the
new PDB Dp ′ was obtained from Dp with a number of additional tuples depending
on the size of the selected BCQ, then, Dp ′ can be obtained in constant time with
respect to Dp.

Notice that Proposition 14 does not make any assumption about the probability
distribution pD other that tuple-independence. It can be uniform or not. Remember
that CES uses the uniform distribution. Also, it is worth mentioning that the proof
for this proposition requires the existence of some exogenous tuples. We can remove
this requirement by using a technique also used in (Deutch et al., 2022) in relation to
the Shapley Value. The following example illustrates the use of the proposition.

Example 20. With the same query Qd and instance D, consider the TID Dp =
⟨W(D), pD⟩, where a distribution pD assigns probabilities to each world according to
the probabilities shown in Table 8.1.

According to Proposition 14, we can build a TID Dp ′ = ⟨W(D′), pD′⟩ with a tuple

τ ∈ D′, such that PDp(Qd) = 1− CEpD′
(D′,Qd, τ). This TID is built as follows: (a)

First, select one of the BCQs from Qd, say Q : ∃̄(R1(x, y) ∧ R2(x)). Next, (b) Map
each variable to a fresh constant. Here, x is mapped to c1, and y to c2. After that,
(c) Create two tuples: τR1 and τR2 , the first being the ground atom R1(c1, c2), and the
second, R2(c1). Each of these two tuples is assigned a probability 1.

It holds PDp(Qd) = 1− CEDp ′
(D′,Q, τR1). And since, CEpD ′

(D′,Q, τR1) = 0.991, it
follows PDp(Qd) = 1− 0.991 = 0.009. ■

It the previous example we created two tuples τR1 and τR2 . The first one is used to
compute the CES and GCES, and the second one is only used to generate a MSS, and
thus, make PDp ′(Q | do(τR1 in)) = 1. This would be the same if we have selected τR2

to compute the scores.

Chapter 8. Complexity of Computing CES and GCES 46

We now provide the proof of Theorem 2.

Proof. (of Theorem 2) Let Q be UBCQ and Dp = ⟨W , pD⟩ a TID instance. Proving the
positive side of this theorem is simple. If PDp(Q) can be computed in PTIME, then, for
a given endogenous tuple τ ∈ Den, computing CEpD

(D,Q, τ) and CEUI(D,Q, τ) can
also be computed in PTIME. Then, we simply compute Pτ(Q) and P¬τ(Q), where
Pτ and P¬τ are the same probability distribution as P, but changing the probability
of {τ} to 1 and 0, respectively. Now, by Remark 8(a), PDp(Q) can be done in PTIME
if the query is safe. It follows that CEpD

(D,Q, τ) can be computed in PTIME if Q is
safe. This result holds for any arbitrary probability distribution, and thus, computing
CEUI(D,Q, τ) is also in PTIME.

For the negative side, a reduction from the problem of computing each score to the
Query Evaluation Problem is made. This reduction is immediate using Proposition
14, since, having an oracle to compute GCES or CES, we can compute the probability
of a query being true in the respective probabilistic database. Then, according to
Remark 8(b) and 9, it follows that if Q is unsafe, then computing CEpD

(D,Q, τ) and
CEUI(D,Q, τ), respectively, is #P-hard.

47

Chapter 9

Axiomatization of the GCES

In this section we provide an axiomatic characterization of the GCES, that is, we
show that the score is the only function satisfying a given set of properties. The
GCES considered in this section is the most general one: for an arbitrary probability
distribution over all possible worlds of an instance. For the purpose of this section
we will consider the class of monotone Boolean queries, which includes that of all
UBCQs.

In (Dubey & Shapley, 1979), an axiomatic characterization was given for the well-
known Banzhaf Power Index (BPI). In (Livshits et al., 2021b), it was shown that,
in the context of query answering in DBs, CES for the case of independent tuples
with uniform distribution with parameter 1

2 coincides with BPI (see also Chapter
6). This implies that there is already an axiomatic characterization for this CES, as
a particular case of the GCES. We will show that some of the properties, or axioms,
given in (Dubey & Shapley, 1979) also hold for the GCES.

We will start by reviewing the properties of CES, continuing with main result in this
section, namely about the categoricity of the new set of properties for GCES (Theorem
3).1 First, we need a definition.

Definition 6. Let Q be a monotone Boolean query, D a relational instance, and
Dp = ⟨W(D), pD⟩ an associated PDB.

(a) The power of W ⫋ Den is: Power(D,Q, W) := ∑τ∈Den ∆(Q, W, τ), with ∆(Q, W, τ)
as in (6.2).

(b) The power of a tuple τ ∈ Den is: Power(D,Q, τ) := ∑W⊆Den∖{τ} ∆(Q, W, τ).

(c) The weighted power of τ ∈ Den is:

PowerpD
(D,Q, τ) := ∑W⊆Den∖{τ} ∆(Q, W, τ)× pD(W ∪ Dex ∪ {τ}).

(d) The total power of the pair (D,Q) is:
Power(D,Q) := ∑W⫋Den Power(D,Q, W),

or equivalently: Power(D,Q) := ∑τ∈Den Power(D,Q, τ).

(e) The weighted total power of the pair (Dp,Q) is:

PowerpD
(D,Q) = ∑W⊆Den,W ̸=∅ Power(Q, W, τ)× pD(W ∪ Dex). ■

1In logic, the notion of categorical theory is applied to one that has a single model (modulo
isomorphism).

Chapter 9. Axiomatization of the GCES 48

Example 21. Consider the instance D = {τ1 : R(a, b), τ2 : S(a), τ3 : S(b)} with the set
of exogenous tuples Dex = {τ2}. Consider the BCQ Q : ∃x∃y(R(x, y) ∧ S(x)); and
W1 = {τ1}. It holds:

Power(D,Q, W1) = ∑
τ∈{τ1,τ3}

∆(Q, W1, τ)

= ∆(Q, W1, τ1) + ∆(Q, W1, τ3) = 0 + 0 = 0.

The power of τ1 (the tuple, which is different than the set {τ1}) is:

Power(D,Q, τ1) = ∑
W⊆(Den∖{τ1})

∆(D,Q, τ1) = ∆(Q, {τ3}, τ1) = 1

Consider: W2 = {τ3}, W3 = {τ1, τ3}, and W4 = ∅. The total power of (D,Q) is:

Power(D,Q) = ∑
W⊆Den

Power(D,Q, τ)

= Power(D,Q, W1) + Power(D,Q, W2)

+ Power(D,Q, W3) + Power(D,Q, W4)

= 0 + 0 + 0 + 1 = 1.
■

In the following we will assume that we have a fixed relational instance D, and
possibly a PDB Dp associated to D. We will also consider the class of monotone
Boolean queries, MBQ, for the schema of D. Accordingly, for every Q ∈ MBQ, and
subinstance D′ of D, Q[D′] takes the values 0 or 1.

Now, we assume we have a “vectorial score function”, ψ that maps Q ∈ MBQ
to a vector in R|D

en|: ψ(Q) = ⟨ψτ1(Q), . . . , ψτN (Q)⟩, with Den = {τ1, . . . , τN} (so,
N = |Den|). The idea is that D, and possibly Dp, are used to compute the scores
ψτ(Q) for tuples τ ∈ Den. We will investigate the following properties for this
function:

DUM: (for “dummy”) If τ ∈ Den is a dummy tuple (see Chapter 6), then
ψτ(Q) = 0.

EFF: (for “efficiency”) ∑τ∈Den ψτ(Q) = Power(D,Q)/(2N−1).

SYM: (for “symmetry”) If Q[S ∪ Dex ∪ {τ}] = Q[S ∪ Dex ∪ {τ′}] for all sets
S ⊆ Den ∖ {τ, τ′}, then ψτ(Q) = ψτ′(Q).

LIN: (for “linearity”) For any two monotone Boolean queriesQ andQ′, ψ(Q∨
Q′) + ψ(Q∧Q′) = ψ(Q) + ψ(Q′).

In (Dubey & Shapley, 1979), adapted to our setting, it was shown that there is a
unique function ψ : MBQ→ RN that satisfies the properties DUM, EFF, SYM and LIN,
and it corresponds to the BPI (that is, CES under tuple-independence and uniform
distribution with parameter 1

2). The Shapley value also satisfies DUM, SYM and LIN,
but not EFF. However, it does satisfy slightly modified version of EFF, where the
sum of the value for all tuples is equal to Q[D] (Shapley, 1953; Aumann & Shapley,
2015).

Chapter 9. Axiomatization of the GCES 49

Regarding GCES, we will show that its satisfies only DUM and LIN. However, it does
satisfy a slightly modified versions of SYM and EFF. Example 22 below, illustrates
these issues.

Example 22. (ex. 21 cont.) Consider the PDBs Dp = ⟨W(D), pD⟩ and Dp ′ =

⟨W(D), pD ′⟩ associated to instance D in Example 21. They have the following
probability distributions pD and pD ′, resp.:

pD(W1 ∪ {τ2}) = 1/4, pD ′(W1 ∪ {τ2}) = 1/6,
pD(W2 ∪ {τ2}) = 1/4, pD ′(W2 ∪ {τ2}) = 1/3,
pD(W3 ∪ {τ2}) = 1/4, pD ′(W3 ∪ {τ2}) = 1/6,
pD(W4 ∪ {τ2}) = 1/4, pD ′(W4 ∪ {τ2}) = 1/3,

and pD(Wi) = pD ′(Wi) = 0, for i = 1, 2, 3, 4, because those Wi do not contain
Dex). Notice that pD entails tuple independence, and is a uniform probability with
parameter 1

2 ; in fact: (a) for each tuple τ ∈ Den, pτ = ∑W∈{W:τ∈W} pD(W) = 1
2 , and

(b) for W ⊆ Den, pD(W ∪ Dex) = ∏τ∈W pD({τ})×∏τ∈(Den∖W)(1− pD({τ})) (see
Section 3.3). However, pD ′ is not independent nor uniform.

Here, we will use GCES as a score function, and we compute the sum of the GCES of
τ1 and τ3 for the two PDBs, and check if the DUM and EFF properties hold: (here
N = |Den|)

CEpD
(D,Q, τ1) + CEpD

(D,Q, τ3) = 1/2 + 0 =
Power(D,Q)

2N−1 ,

CEpD ′
(D,Q, τ1) + CEpD ′

(D,Q, τ3) = 2/3 + 0 ̸= Power(D,Q)
2N−1 .

We can see that: (a) In both cases, property DUM is satisfied by the GCES, that is,

since τ3 is a dummy tuple, then CEpD
(D,Q, τ3) = CEpD ′

(D,Q, τ3) = 0; (b) GCES
satisfies EFF when using Dp, but it does not when using Dp ′. ■

The previous example, motivates us to modify the properties EFF and SYM,
proposing their generalized versions:

G-EFF: (for “generalized-efficiency”)

∑
τ∈Den

ψτ(Q) = PowerpD
(D,Q) + ∑

W⫋Den
∑

τ∈Den
∆(Q, W, τ)× pD(W ∪ Dex).

G-SYM: (for “generalized-symmetry”) For tuples τ, τ′ ∈ Den, if
∆(Q, W, τ) = ∆(Q, W, τ′), then

ψτ(Q)− PowerpD
(D,Q, τ) = ψτ′(Q)− PowerpD

(D,Q, τ′).

Notice that now both properties rely on the probability distribution pD for the PDB at
hand. It turns out that, if we set pD to be the independent and uniform distribution
with parameter 1

2 , both properties become their respective non-generalized versions.
Now we can state the main result of this section.

Chapter 9. Axiomatization of the GCES 50

Theorem 3. Let Dp = ⟨W(D), pD⟩ be a PDB associated to a (non-probabilistic)
instance D. There is a unique score function ψ from MBQ (the class of monotone
Boolean queries in the language associated to D’s schema) to a real vector in RN (with
N = |Den|) that satisfies the properties DUM, G-EFF, G-SYM and LIN. Moreover, this
function corresponds to GCES. ■

Notice that this theorem does not make any assumption on the distribution pD. In
particular, neither tuple-independence nor uniformity are required.

Before proving this theorem, we need one technical results. First, we need to
introduce a particular query and its notation. For a fixed instance D, and S ⊆ D, QS
denotes the following monotone Boolean query:2

QS[W] =

{
1 , if S ⊆W
0 , otherwise

(9.1)

Example 23. (ex. 21 cont.) Let D, Q and W3 be the instance, query and possible
world as in that example. Then, query QW3 is as follows:

QW3 [W] =

{
1 , if W3 ⊆W
0 , otherwise

This query can be expressed as the conjunction of the tuples, as ground atoms, in the
W3, namely as: QW3 : (R(a, b) ∧ S(b)). ■

Lemma 2. Let D denote an instance, and let Q be a Boolean monotone query.
Additionally, MSS(D,Q) will denote the set of minimal swinging sets. Then, this
query can be expressed by:

Q[W] = (QS1 ∨ · · · ∨ QSm)[W]

where each Si ∈ MSS(Q) for i ∈ {1, . . . , m} and QSi denote the query in Equation
(9.1). That is, all Boolean monotone queries Q can be written as a disjunction of its
minimal swinging sets.3

Proof. Consider the following problem as an equivalence of the previous lemma:
Q[W] = 1 iff there exists Si ∈ MSS(D,Q) such that Si ⊆ W, for i ∈ {1, . . . , m}. We
will prove this lemma by contradiction.
Let W∗ be a set such Q[W∗] = 1 and Si ̸⊆ W for all Si ∈ MSS(Q). Now two cases
arises: (a) if Q[W∗ ∖ {τ}] = 0 for all τ ∈ W∗, then W∗ ∈ MSS(D,Q) or (b) there
exists some tuple τ such Q[W∗ ∖ {τ}] = 1. If (a) is clearly a contradiction, if (b), we
can remove tuples from W∗ until case (a) happens, which will lead to a contradiction
too. Therefore, W∗ cannot exist.

We now proceed to prove Theorem 3. This proof is similar to the proof in (Dubey &
Shapley, 1979) for the BPI.

2Notice that, since S is fixed and finite, it can be expressed in the FO language of the schema. It can
be written as the conjunction of the tuples, as ground atoms, of the set S.

3This Lemma is inspired by results in (Dubey & Shapley, 1979).

Chapter 9. Axiomatization of the GCES 51

Proof. (of Theorem 3) First, we prove the uniqueness of the function ψ, and then,
that the GCES satisfies all properties.

Consider Dp = ⟨W(D), pD⟩ a PDB, with D an (non-probabilistic) instance and
a monotone Boolean query Q. Also, consider the set of minimal swinging sets,
say MSS(D,Q) = {S1, . . . , Sm}. By Lemma 2, any monotone Boolean query Q
can be decomposed in queries of the form of the query in Equation (9.1), that is ,
Q[W] = (QS1 ∨ · · · ∨ QSm)[W] for any W ⊆ D.

First, consider an individual query QSi . If an endogenous tuple τ ̸∈ Si, τ is dummy
tuple, and by property DUM, ψτ(QSi) = 0. Now, by property G-EFF the following
holds:

∑
τ∈Den

ψτ(QSi) = PowerpD
(D,QSi) + ∑

W⫋Den
∑

τ∈Den
∆(QSi , W, τ)× pD(W ∪ Dex)

Notice the following: (a) for any two tuples τ, τ′ ∈ Si and for any W ⊆ Den ∖ {τ, τ′},
QSi [W ∪ Dex ∪ {τ}] = QSi [W ∪ Dex ∪ {τ′}] = 0, and thus, by G-SYM, for all tuples
τ, τ′ ∈ S ∩ Den, the following holds

ψτ(QSi)− PowerpD
(D,QSi , τ) = ψτ′(QSi)− PowerpD

(D,QSi , τ′),

and (b) the weighted total power can be expressed as:

PowerpD
(D,QSi) = ∑

τ∈Den
PowerpD

(D,QSi , τ).

Then, for each tuple τ ∈ (S ∩ Den), ψτ(QSi) − PowerpD
(D,QSi , τ) = k, where k

corresponds to:

k = ∑
τ∈Den

∑
W⊆Den∖{τ}

∆(QSi , W, τ)× pD(W ∪ Dex)

|S ∩ Den| .

This expression uniquely defines the function ψτ for the query:

ψτ(QSi) =

{
k− PowerpD

(D,QSi , τ) , if τ ∈ S ∩ Den

0 , otherwise

Now, note that by property LIN, we can recursively obtain ψ(Q) by:

ψ(Q) = ψ(Ql ∨Qr) = ψ(Ql) + ψ(Qr)− ψ(Ql ∧Qr),

where Ql [W] = (QS1 ∨ · · · ∨ QSk)[W] and Qr[W] = (QSk+1 ∨ · · · ∨ QSm)[W], with
1 ≤ k < m and W ⊆ D. Then, as ψτ(QSi) is uniquely defined for any Si ∈ MSS(D,Q)
and τ ∈ Den, then ψτ(Q) is uniquely defined for each τ ∈ Den.

After showing the uniqueness, we show that GCES satisfies all the given properties
for a given PDB Dp = ⟨W(D), pD⟩.

First, note that, for a given Boolean monotone query Q and an endogenous tuple
τ ∈ D, the GCES for can be written as:

CEpD
(D,Q, τ) = ∑

W⊆Den∖{τ}
∆(Q, W, τ)× (pD(W ∪ Dex) + pD(W ∪ Dex ∪ {τ})).

(9.2)

Chapter 9. Axiomatization of the GCES 52

The property DUM is trivial, since if a tuple τ does not contribute to any tuple,
then ∆(Q, W, τ) = 0 for all worlds. Property G-EFF can be shown by algebraic
manipulation:

∑
τ∈Den

CEpD
(D,Q, τ) = ∑

τ∈Den
∑

W⊆Den∖{τ}
∆(Q, W, τ)× (pD(W ∪ Dex) + pD(W ∪ Dex ∪ {τ}))

= PowerpD
(D,Q, τ) + ∑

τ∈Den
∑

W⊆Den∖{τ}
+pD(W ∪ Dex ∪ {τ}))

Then, by re-arranging the order of the sums, GCES satisfies property G-EFF.

For property G-SYM, note that pD(W ∪ Dex) in Eq. 9.2 do not depend on the tuple
τ and therefore, if, for two tuples τ, τ′ ∈ Den, ∆(Q, W, τ) = ∆(Q, W, τ′) for any
W ⊆ D ∖ {τ, τ′}, then the sum of p(W ∪ Dex) will for both tuples will be also equal,
that is:

∑
W⊆Den∖{τ}

∆(Q, W, τ)× pD(W ∪ Dex) = ∑
W⊆Den∖{τ′}

∆(Q, W, τ′)× pD(W ∪ Dex),

and since, for a tuple τ ∈ Den we have that CEpD
(D,Q, τ) = PowerpD

(D,Q, τ) +

∑W⊆Den∖{τ} ∆(Q, W, τ)× pD(W ∪ Dex), GCES satisfies G-SYM. For LIN, let Q and
Q′ be two monotone Boolean queries and denote with Q ∧ Q′ and Q ∨ Q′ their
conjunction and disjunction, respectively. Notice that the expression pD(W ∪ Dex) +
pD(W ∪ Dex ∪ {τ}) does not depend on the query, only on the possible world W.
Then, it is immediate that, for a given PDB instance Dp and any given endogenous
tuple τ ∈ Den, the following holds:

CEpD
(Dp,Q∧Q′, τ) + CEpD

(Dp,Q∨Q′, τ) = CEpD
(Dp,Q, τ) + CEpD

(Dp,Q′, τ)

53

Chapter 10

Discussion and Conclusions

So far in this thesis, we addressed the problem of providing explanations in
the context of probabilistic databases by introducing the Generalized Causal-
Effect Score (GCES), This score extends the existing Causal-Effect Score (CES) to
accommodate arbitrary probability distributions, which is useful in scenarios where
tuple dependency or non-uniformity is present. This work also investigated the
alignment CES with other well-known scores, such as Responsibility and Shapley
Value, in non-probabilistic databases, establishing for each case some syntactic classes
of queries for which the scores are aligned or not.

Furthermore, we study the computational complexity of computing GCES and CES,
establishing in both cases a dichotomy: the computation of each can be done in
PTIME or is #P-hard. We also provide a set of properties that uniquely defines GCES,
similar to the existing one for the CES (BPI).

There are several research directions that have been left open by our work. They are
matter of ongoing and future investigation. In the following we mention some of
them.

Score Computation. Despite the intrinsic high complexity of computing the
CES and GCES, it is worth exploring efficient or approximate algorithms for their
computation, possibly for some interesting special cases of queries.

Aggregate Queries and Multidimensional DBs. In this work we have considered
conjunctive queries. A natural extension is dealing queries with aggregation on CQs.
We made early on the case for the convenience of CES for this kind of queries. Even
more interesting would be dealing with aggregations and the associated scores in
a multidimensional database, as in OLAP; at different levels of data and causality
abstraction.

Semantic Constraints. Responsibility has been introduced and investigated in the
presence of integrity constraints (Bertossi & Salimi, 2017a). This is something still to
be done for the CE score, in its basic or generalized versions. Particularly interesting
becomes dealing with constraints in probabilistic DBs (Suciu, 2020).

Alignment of the GCES. In Chapter 7 the alignment of CES with other scores was
investigated. However, the generalized CES was not considered, mainly due to the
presence of arbitrary distributions in GCES, that do not appear in Responsibility or

Chapter 10. Discussion and Conclusions 54

Shapley (as used so far in data management).1 However, we could naturally extend
Responsibility with a probabilistic component. Actually, this was done in (Bertossi et
al., 2020) for its application to counterfactual explanations for ML-based classification.
After doing that for DBs, an analysis of alignment could be attempted.

Attribute-Level GCES. We have defined and investigated the GCES at the tuple
level. It would be interesting to extend its definition and investigation in order to
quantify the causal effect of an attribute value in a tuple. This case is challenging
in that it is not only about making an attribute value true or false anymore. Making
the latter false may lead to consider multiple alternative values, as has been done for
Responsibility (Bertossi et al., 2020).

GCES of Missing Values. Missing values (MVs) in DBs have been investigated
from a causal point of view, leading to general PDBs (Bertossi, Buron, Moulay, &
Toumani, n.d.). However, no attempt has been made to quantify the effect of MVs
on query answering. The possible worlds semantics considered in (Bertossi et al., n.d.)
leads considering multiple (real) values for a MV, and a GCES defined at the attribute
level (see previous item).

GES Monotonicity. It would be interesting to investigate more deeply the
monotonicity properties (or the lack thereof) of the GCES. For example, under
what changes in the database, or in the tuple probabilities, the GCES of tuples change
accordingly (or the other way around).

GES Robustness. It would be interesting to analyze the robustness of the
Generalized CES, under small variations of different parameters, most prominently,
of the distribution of the probabilistic DB. Analysis of SHAP in this regard has been
attempted (Alvarez-Melis & Jaakkola, 2018), in particular, with changing underlying
distribution on the entity population (Cifuentes et al., 2024). For robustness in XAI,
see also (Huang & Marques-Silva, 2023).

Explanation Scores in Probabilistic DBs. The focus of our work has been the
Causal-Effect Score, including some comparisons with other scores used in data
management. However, problem of formalizing and investigating the use of
Responsibility and the Shapley value in probabilistic DBs naturally arises. For Shapley
in TIDs see (Karmarkar, Monet, Senellart, & Bressan, 2024).

1The SHAP version of Shapley as used in Explainable AI does have this probabilistic component
(Lundberg & Lee, 2017).

References 55

References

Aas, K., Jullum, M., & Loland, L. (2021). Explaining individual predictions when
features are dependent: More accurate approximations to shapley values.
Artificial Intelligence, 298, 103502. pages

Abramovich, O., Deutch, D., Frost, N., Kara, A., & Olteanu, D. (2024). Banzhaf values
for facts in query answering. In Proc. sigmod. pages

Alvarez-Melis, D., & Jaakkola, T. S. (2018). On the robustness of interpretability
methods. In 2018 icml workshop on human interpretability in machine learning (whi
2018). (arXiv 1806.08049) pages

Arad, D., Deutch, D., & Frost, N. (2022). Learnshapley: Learning to predict rankings
of facts contribution based on query logs. In Proc. cikm (p. 4788-4792). pages

Arenas, M., Barcelo, P., Bertossi, L., & Monet, M. (2023). On the complexity of
shap-score-based explanations: Tractability via knowledge compilation and
non-approximability results. Journal of Machine Learning Research, 24(63), 1-58.
pages

Aumann, R. J., & Shapley, L. S. (2015). Values of non-atomic games. Princeton University
Press. pages

Banzhaf III, J. (1964). Weighted voting doesn’t work: A mathematical analysis.
Rutgers L. Rev., 19, 31. pages

Bertossi, L. (2021). Specifying and computing causes for query answers in databases
via database repairs and repair programs. Knowledge and Information Systems,
63(1), 199-231. pages

Bertossi, L. (2023a). Attribution-scores and causal counterfactuals as explanations
in artificial intelligence. In Reasoning web: Causality, explanations and declarative
knowledge (Vol. 13759). Springer LNCS. pages

Bertossi, L. (2023b). Attribution-scores in data management and explainable machine
learning. In Proc. adbis’23 (Vol. 13985, p. 16-33). Springer LNCS. pages

Bertossi, L. (2023c). Declarative approaches to counterfactual explanations for
classification. Theory and Practice of Logic Programming, 23(3), 559-593. pages

Bertossi, L. (2023d). From database repairs to causality in databases and beyond.
Transactions on Large-Scale Data- and Knowledge-Centered Systems LIV (TLDKS),
14160, 119-131. pages

Bertossi, L., Buron, M., Moulay, I., & Toumani, F. (n.d.). Query answering in
incomplete databases under causal specifications of missingness mechanisms.
Forthcoming. pages

Bertossi, L., Kimelfeld, B., Livshits, E., & Monet, M. (2023). The shapley value in
database management. ACM Sigmod Record, 52(2), 6-17. pages

Bertossi, L., Li, J., Schleich, M., Suciu, D., & Vagena, Z. (2020). Causality-based
explanation of classification outcomes. In Proc. 4th international workshop on
“data management for end-to-end machine learning” (deem) at acm sigmod/pods (pp.
Article 6, pp 1-10). pages

Bertossi, L., & Salimi, B. (2017a). Causes for query answers from databases: Datalog
abduction, view-updates, and integrity constraints. International Journal of
Approximate Reasoning, 90, 226-252. pages

Bertossi, L., & Salimi, B. (2017b). From causes for database queries to repairs and
model-based diagnosis and back. Theory of Computing Systems, 61(1), 191-232.
pages

Chockler, H., & Halpern, J. (2004). Responsibility and blame: A structural-model
approach. J. Artif. Intell. Res., 22, 93-115. pages

References 56

Cifuentes, S., Bertossi, L., Pardal, N., Abriola, S., Martinez, M. V., & Romero, M.
(2024). The distributional uncertainty of the shap score in explainable machine
learning. ArXiv paper 2401.12731. pages

Dalvi, N., & Suciu, D. (2007). Efficient query evaluation on probabilistic databases.
VLDB J., 16, 523-544. pages

Dalvi, N., & Suciu, D. (2012). The dichotomy of probabilistic inference for unions of
conjunctive queries. Journal of the ACM, 59(30), 1-87. pages

Davidson, S., Deutch, D., Frost, N., Kimelfeld, B., Koren, O., & Monet, M. (2022).
Shapgraph: An holistic view of explanations through provenance graphs and
shapley values. In Sigmod conference (p. 2373-2376). pages

Deutch, D., Frost, N., Kimelfeld, B., & Monet, M. (2022). Computing the shapley
value of facts in query answering. In Proc. sigmod (p. 1570-1583). pages

Dubey, P., & Shapley, L. (1979). Mathematical properties of the banzhaf power index.
Math. Oper. Res., 4, 99-131. pages

Freixas, J. (2010). On ordinal equivalence of the shapley and banzhaf values for
cooperative games. Int. J. Game Theory, 39, 513-527. pages

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical
models. Cambridge Univ. Press. pages

Gribkoff, E., Van den Broeck, G., & Suciu, D. (2014). The most probable database
problem. In Proc. sigmod-ws buda (p. 1-7). pages

Halpern, J. (2015). A modification of the halpern-pearl definition of causality. In Proc.
ijcai (p. 3022-3033). pages

Halpern, J. (2016). Actual causality. MIT Press. pages
Halpern, J., & Pearl, J. (2005). Causes and explanations: A structural-model approach.

part i: Causes. The British Journal for the Philosophy of Science, 56(4), 843-887.
pages

Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical
Association, 81(396), 945-960. pages

Huang, X., & Marques-Silva, J. (2023). From robustness to explainability and back
again. ArXiv paper 2306.03048. pages

Huang, X., & Marques-Silva, J. (2024). A refutation of shapley values for explainability.
ArXiv paper 2309.03041. pages

Hunter, A., & Konieczny, S. (2010). On the measure of conflicts: Shapley inconsistency
values. Artif. Intell., 174(14), 1007-1026. pages

Kanagal, B., & Deshpande, A. (2010). Lineage processing over correlated probabilistic
databases. In Proc. sigmod (p. 675-686). pages

Kara, A., Olteanu, D., & Suciu, D. (2024). From shapley value to model counting and
back. In Proc. pods. pages

Karmarkar, P., Monet, M., Senellart, P., & Bressan, S. (2024). Expected shapley-
like scores of boolean functions: Complexity and applications to probabilistic
databases. In Proc. acm manag. data (Vol. 2, p. Article 92). pages

Kenig, B., & Suciu, D. (2021). A dichotomy for the generalized model counting
problem for unions of conjunctive queries. In Proc. pods (p. 312-324). pages

Livshits, E., Bertossi, L., Kimelfeld, B., & Sebag, M. (2021a). Query games in databases.
ACM Sigmod Record, 50(1), 78-85. pages

Livshits, E., Bertossi, L., Kimelfeld, B., & Sebag, M. (2021b). The shapley value of
tuples in query answering. Logical Methods in Computer Science, 17(3), 22.1-22.33.
pages

Lundberg, S., & Lee, S. (2017). A unified approach to interpreting model predictions.
In Proc. neurips (p. 4765-4774). pages

References 57

Makhija, N., & Gatterbauer, W. (2023). A unified approach for resilience and causal
responsibility with integer linear programming (ilp) and lp relaxations. In Proc.
sigmod (p. 228:1-228:27). pages

Meliou, A., Gatterbauer, W., Halpern, J., Koch, C., Moore, K., & Suciu, D. (2010).
Causality in databases. IEEE Data Eng. Bull., 59-67. pages

Meliou, A., Gatterbauer, W., Moore, K., & Suciu, D. (2010). The complexity of causality
and responsibility for query answers and non-answers. In Proc. vldb (Vol. 10,
p. 34-45). pages

Pearl, J. (2009). Causality: Models, reasoning and inference. Cambridge University Press.
pages

Roth, A. (Ed.). (1988). The shapley value: Essays in honor of lloyd s. shapley.
pages

Roy, S., & Salimi, B. (2023). Causal inference in data analysis with applications
to fairness and explanations. In L. Bertossi & G. Xiao (Eds.), Reasoning web.
causality, explanations and declarative knowledge (Vol. 13759, p. 105-131). Springer
LNCS. pages

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology, 66, 688-701. pages

Salimi, B., Bertossi, L., Suciu, D., & Van den Broeck, G. (2016). Quantifying causal
effects on query answering in databases. In Proc. 8th usenix workshop on the
theory and practice of provenance (tapp’16). pages

Sen, P., & Deshpande, A. (2007). Representing and querying correlated tuples in
probabilistic databases. In Proc. icde (p. 596-605). pages

Sen, P., Deshpande, A., & Getoor, L. (2009). Prdb: Managing and exploiting rich
correlations in probabilistic databases. VLDB Journal, 18, 1065-1090. pages

Shapley, L. (1953). A value for an n-person game. , 307-331. pages
Suciu, D. (2020). Probabilistic databases for all. In Proc. pods (p. 19-31). pages
Suciu, D., Olteanu, D., Ré, C., & Koch, C. (2011). Probabilistic databases. Synthesis

Lectures on Data Management, Morgan Claypool Pubs. pages

	Abstract
	Introduction
	Problem Definition
	Background
	Databases
	Actual Causality and Responsibility in Databases
	Probabilistic Databases
	Query Lineage
	Related Work

	Research Context
	Objectives
	Methodology

	The Causal-Effect Score in Databases
	Tuple-Interventions on a PDB
	The Generalized Causal Effect Score

	Revisiting Explanation Scores for Non-Probabilistic Databases
	Score Alignments for Non-Probabilistic Databases
	CES vs Responsibility Alignment
	CES vs Responsibility Alignment in Absence of Exogenous Tuples
	Summary of Results in Sections 7.1 and 7.2
	Non-Alignment of CES and Responsibility with the Shapley Value

	Complexity of Computing CES and GCES
	Axiomatization of the GCES
	Discussion and Conclusions
	References

