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Abstract

In data warehouses (DWs), summarizability is the key factor in query answering

optimization. This property allows re-using pre-computed aggregate queries or views,

to compute correct query results. In multidimensional (MD) modeling, a dimension

instance is called summarizable if and only if it is strict and homogeneous. In reality,

dimensions might not satisfy these two semantic conditions. In such cases, strictness

and homogeneity must be restored by repairing the non-summarizable dimension

instance.

This thesis addresses the issue of non-summarizability with a novel relational ap-

proach. Unlike existing direct MD repair mechanisms, we take advantage of the

relational repair approaches to integrity constraint (IC) satisfaction. Our method-

ology consists of three phases: 1) finding an expressive relational model for multidi-

mensional data models (MDMs), and translating the MD instance into a relational

instance, 2) repairing the inconsistent relational database (RDB) using relational re-

pair approaches wrt relational ICs, and 3) inverting the mapping used in the first

step, to obtain a repaired MD instance from a repaired relational instance.

In this process, our biggest challenge is to find an expressive and adequate re-

lational representation for multidimensional databases (MDDBs). To this end, we

first investigate the two well-known relational implementations of MDDBs, Star and

Snowflake. Our discussions show that, these schemas are not the best choice for our
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purpose. Hence, we propose a different relational reconstruction of the multidimen-

sional database. It takes into account the paths belonging to the dimension schema

and instance. Hence, the new relational representation of MDMs is referred to as path

schema. Our MD repair approach takes advantage of the unique properties of this

relational schema.

We show that using path schema, we can efficiently check strictness and homo-

geneity through relational integrity constraints, and can easily obtain minimal rela-

tional repairs. Moreover, the path-based mapping from MDDB to RDB is uniquely

invertible. Besides, as a new relational representation of MDDBs, the path schema

has some interesting properties, such as efficient query answering and IC checking,

compared to star and snowflake schemas.

We compare the dimension repairs obtained through our approach, with exist-

ing MD repair approaches. Our relational solution towards the non-summarizability

problem generates dimension repairs, that are minimal from both multidimensional

and relational perspectives. We manage to characterize our class of repairs in pure

MD terms.

Keywords: Multidimensional data model, Semantic constraints, Repairs
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Chapter 1

Introduction

Data warehouses (DWs) provide analytical information that can be used in decision

making process. They support multidimensional (MD) analysis of data, in which mul-

tiple perspectives are used to view quantitative data. Multidimensional data models

(MDMs) provide the logical foundation for this data organization and representation.

Dimensions and fact tables are the basic components in this type of data modeling.

In a MDM, a dimension is modeled by two hierarchies: a dimension schema and a

dimension instance. A dimension schema is a hierarchy composed of a number of

levels or categories, each of which represents a different level of granularity. Instanti-

ating the dimension schema by values at each level forms the dimension instance. An

instance or extension of the multidimensional data model is called a MD instance or

a multidimensional database (MDDB).

DWs are basically the implementation of MDDBs along with some tools for manip-

ulating the MD data. DWs implement/represent the MD instance either as relational

systems (ROLAP), proprietary multidimensional systems (MOLAP), or a hybrid of

both (HOLAP).

In ROLAP (relational online analytical processing) systems, the multidimensional

data model is a relational model and it is represented as a relational database (RDB)

instance. Although ROLAP uses a relational database to represent the MD instance,
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the database must be carefully designed for analytical processing.

Star and Snowflake are the two best-known relational schemas that are specifically

designed for ROLAP MD databases. ROLAP maps operations on multidimensional

data model to standard relational operations. An advantage of these systems is that

they can be easily integrated into other relational information systems [49, 50, 70].

If the MD instance is represented as a relational database, it can be viewed mul-

tidimensionally, but only by successively accessing and processing the tables cor-

responding to different dimensions. An alternative to this relational storage, is to

directly represent and manipulate the MDDB in the form of multidimensional arrays.

A MOLAP (multidimensional online analytical processing) system processes data

that is already stored in a multidimensional array, in which all possible combinations

of data are reflected, each in a cell that can be accessed directly. For this reason,

MOLAP is, for most uses, faster and more user-responsive than ROLAP. However, in

terms of storage efficiency, ROLAP systems are more preferred to MOLAP systems

[49, 50, 70].

A HOLAP (hybrid online analytical processing) system is a combination of RO-

LAP and MOLAP. In HOLAP, part of the MD instance is stored in a MOLAP system,

and another part of the MD instance in a ROLAP system. This storage strategy al-

lows a tradeoff of the advantages of both ROLAP and MOLAP architecture [49].

Based on [50], ROLAPs are the most common implementation of the MD in-

stance in DWs. The rich infrastructure of RDBs enables using standard, common

and established techniques [70].

Example 1.1. We want to analyze product sales in a company, considering different

factors, such as the customer who bought the product, the store location where the

product was sold, and the purchase date. In multidimensional modeling terms, Sales

is the fact, which is measured relative to dimensions Customer, Store and Date. The

table in Figure 1.1 shows the purchase data based on these dimensions.
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Figure 1.1: Sales fact table

The hierarchy of the Store location dimension is shown in Figure 1.2. In this

hierarchy, each Store belongs to a City , which itself belongs to a Country . Figure 1.3

shows a similar hierarchy for the Date dimension.

Figure 1.2: Store dimension schema Figure 1.3: Date dimension schema

The Customer dimension has a non-linear structure. Figure 1.4a shows the hierar-

chy for categorizing the customer data. An instance of this categorization is brought

in Figure 1.4b. Customers can be grouped based on different demographic informa-

tion, such as location and gender. On this basis, customers can be divided into groups

of individuals that are similar in specific ways that are relevant to marketing. This

segmentation allows companies to target groups effectively, and allocate marketing

resources to best effect.

In Figure 1.4a, Customer, Gender, Location, Segment and All are categories. The

given dimension instance represents three customers, C1, C2 and C3. The male and

female genders are denoted by M and F, respectively. Customers may reside in either

of the three locations, L1, L2 or L3. For marketing purposes, and based on the gender
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(a) Dimension

schema

(b) Dimension instance

Figure 1.4: Customer dimension

and location, each customer is grouped into either of the segments S1 or S2.

Parent-child relationships are denoted by edges in the dimension schema, and the

dimension instance. It can be seen in Figure 1.4a that, Segment is the parent category

for categories Gender and Location; and an ancestor of category Customer. A similar

parent-child relationship can be found in the dimension instance of Figure 1.4b. For

instance, element C2 of category Customer has S1 as an ancestor element in the Segment

category, and F and L2 as parents from categories Gender and Location, respectively. �

In ROLAPs, the fact table stores data associated to the elements of lowest category

of each dimension hierarchy. It can be seen in Figure 1.1 that, the Sales data is

stored based on the Customer, Branch and Day categories, which are all the bottommost

category of their dimension schemas. This linkage between the fact and dimensions

in ROLAPs enables the computation of fact data also at higher granularity levels of

the dimension hierarchies.

Cube views are simple aggregate queries used as basic component of an MD query.

They compute the fact data relative to a given granularity level in a dimension hier-

archy. Due to large volumes of data in MDDBs, aggregate query results should not

be computed from scratch. A key strategy for speeding up cube view processing is
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to reuse pre-computed cube views. To this end, a cube view should be rewritten as

another query, that refers to pre-computed cube views for lower levels of the hierar-

chy. A dimension instance that correctly supports this kind of accumulative query

computation is called summarizable.

The notion of summarizability was first introduced by [64], in the context of statis-

tical databases. A multidimensional database is summarizable if all of its dimensions

allow summarization. Non-summarizability results in incorrect query results because

of the wrong use of pre-computed views; or in inefficiency due to computation of the

query answers from scratch [64, 53, 52, 61, 43].

Example 1.2. (example 1.1 continued) The table in Figure 1.1 stores the fact data,

Sales, based on the base category of Customer, Store and Date hierarchies (Figures

1.4a, 1.2 and 1.3). Hence, this table is referred to as the base cube for our example,

BaseCubeSales(Customer, Branch, Day).

An example of a non-base cube view would be the case where we want to measure

the product Sales categorized by customer Gender, for each Month, and Branch, i.e.

CubeSales1 (Gender, Branch, Month). Notice that categories Gender and Month are the parent

categories of Customer and Day, respectively. Hence, this cube can be easily computed

using BaseCubeSales as shown in Figure 1.5.

Figure 1.5: The cube view CubeSales1 (Gender, Branch, Month)

Assume we want to compute the profitability of each customer segment by mea-

suring the total purchases made by the customers in the segment in each Year, and
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Branch, i.e. CubeSales2 (Segment, Branch, Year). Notice that both categories Segment and

Year are parent categories of Gender and Month , respectively. Consider using the pre-

computed cube view CubeSales1 for computing this cube view. Since gender M is not

related to any customer segment (see Figure 1.4b), the purchase data for male cus-

tomers will not be included in the final result. In other words, CubeSales2 will only

contain the purchase data of female customers as shown in Figure 1.6. This is an

example of missing data for cube view computation.

Figure 1.6: The cube view CubeSales2 (Segment, Branch, Year)

Now consider cube view CubeSales3 (Segment, Branch, Day), which we would like to

compute based on the base cube BaseCubeSales. Figure 1.7 represents this cube view.

Since, customer C3 is related to two customer segments (see Figure 1.4b), the purchase

data for this customer will be considered twice in computing CubeSales3 . This is an

example of double counting in cube view computation. �

Figure 1.7: The cube view CubeSales3 (Segment, Branch, Day)

A summarizable dimension must satisfy two conditions. The first one, strictness,

says that each element in a category should have at most one parent in each upper
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category [43, 61, 64]. The second condition, homogeneity, requires each element in a

category to have at least one parent element in each parent category [43, 50, 64]. We

refer to these two semantic conditions as summarizability constraints.

Example 1.3. (examples 1.1 and 1.2 continued) In the Customer dimension, strictness

is violated, since C3 has two ancestors, S1 and S2, in the Segment category. In other

words, this customer belongs to two different segments at the same time, which

represents data inconsistency in the MD instance. That is why we had the issue

of double counting in computing CubeSales3 in Example 1.2.

Moreover, the Customer dimension is non-homogeneous, i.e. heterogeneous, since

element M has no parent in category Segment. In fact, this hierarchy does not categorize

male customers into any segment, which suggests that some data is missing. The

missing data in computing CubeSales2 in Example 1.2 results from this fact. �

It is common to have dimension instances that are non-summarizable due to their

specific design [43]. In addition, a dimension instance may violate summarizability

constraints after some dimension updates [46]. In particular, non-strict and hetero-

geneous dimensions are common in MDDBs. In this case, the MDDB is said to

be inconsistent. Hence, for the sake of correct and efficient query answering, non-

summarizability must be resolved or restored.

In relational databases, forcing integrity constraints (ICs) is an approach for avoid-

ing data inconsistencies. By keeping the ICs satisfied all the time, the database in-

stance will never become inconsistent. On the other hand, database consistency can

be restored through what is usually called a database repair process [4]. Data in-

consistencies are detected through IC checking over the given relational instance. In

relational databases, a repair for database instance D, which is inconsistent wrt a

set of integrity constraints ICs, is a new instance D′ with the same schema, which

satisfies the ICs, and minimally departs from D (see [12, 26] for surveys).
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Similarly, in MDDBs, a few approaches have been proposed for keeping the MD

instance summarizable all the time. In [16, 25, 59], strictness and homogeneity are im-

posed through relational integrity constraints. In these studies, non-summarizability

is avoided by making sure that the aforementioned ICs are always satisfied. A simi-

lar approach is taken in [41, 42, 44], proposing some multidimensional constraints to

assure summarizability. In addition, multidimensional or relational normalization is

another approach for assuring summarizability in MDDBs [51, 52, 56, 50].

On the other hand, several approaches to directly repairing non-summarizable

MDDBs have been proposed recently. They restore strictness and/or homogeneity

by changing either the dimension schema [8, 41, 44, 42], or the dimension instance

[13, 18, 22, 24, 62]. The idea is to modify the dimension schema or the instance in a

minimal way, so that the resulting dimension instance satisfies the summarizability

constraints.

The aforementioned MD repair mechanisms focus solely on the multidimen-

sional data model, and its properties. More specifically, they do not take into ac-

count any relational/multidimensional implementation of the MDDB in addressing

non-summarizability. However, in the case of ROLAPs, the MD repair operations

have some side effects on the relational representation. Hence, the issue of non-

summarizability should be addressed by taking these side effects into account.

1.1 Problem Statement and Contributions

In this thesis, unlike existing direct MD repair approaches, we are interested in han-

dling non-summarizability by first considering a relational representation of MDDBs.

We take a novel relational approach to the problem of non-summarizability. Our

goal is to investigate the feasibility of using relational repair operations for dealing

with non-summarizability, i.e. to restore strictness and homogeneity by repairing the
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underlying relational database. We achieve this goal in three steps (see Figure 1.8):

1. We propose an expressive relational representation for MDDB: As a preliminary

step, we first formalize the MDM using the graph-based notation proposed in

[43, 40] (see Chapter 2). We refer to this formalization as the H-M model.

Next, we propose a mapping from MDDB to RDB, an MD2R mapping, which

translates the multidimensional data model into a relational model. We will

elaborate on the properties of this mapping later in this section.

Since our approach is based on relational repairs, we must also detect the case

of non-summarizability in the relational database. Hence, beside mapping the

dimension schema and the dimension instance, we also propose relational in-

tegrity constraints that correspond to the summarizability conditions, strictness

and homogeneity (see Chapters 3 and 4).

2. We introduce repairs for the inconsistent relational instance: Using the afore-

mentioned mapping, non-summarizability in the MD instance is reflected as

inconsistencies in the relational instance. In this phase, we use existing re-

lational repair approaches for restoring consistency at the relational level. In

particular, we define the repair operation and minimality criteria for obtaining

the set of minimal relational repairs. Much work has been done in the area of

relational repairs (see [12, 26] for a survey). We take advantage of this already

existing rich body of research, and apply it to the non-summarizability issue in

MDDBs (see Chapter 5).

3. We invert the mapping to obtain a summarizable dimension: The final step

is to obtain the set of repaired dimension instances from the set of minimal

relational repairs. To this end, we must translate back the relational instance

into a multidimensional instance. The feasibility of this phase depends on the

invertibility of MD2R mapping [29, 7] (see Chapter 6).



10

The whole process is described in Figure 1.8.

Figure 1.8: An overview of our proposed solution for non-summarizability

As shown in Figure 1.8, we start by translating the MD instance into an expressive

relational instance 1. This expressivity is reflected in the following properties:

(I) In order to take advantage of the relational repair approaches for handling

non-summarizability, we must be able to check the summarizability conditions

through a set of integrity constraints over the MDDB relational representation.

Checking summarizability through ICs should be as efficient as possible, since

these ICs are the basis for repairing the corresponding relational database.

(II) The inconsistent relational instance should be easily repairable. Otherwise, the

cost of repairing the relational database would overcome the benefit of using

this approach to deal with non-summarizability.

(III) The multidimensional database should be fully retrievable from the relational

database. To this end, there should be no information loss in mapping the

multidimensional database into a relational database, or the other way around.

Intuitively, any information loss in this mapping results in an incomplete re-

trieval of repaired dimension instance from repaired relational instance [29, 7].

1Notice that in this translation we are considering only a snapshot of the MD instance, i.e. we
do not consider slowly changing dimensions in the MD2R mapping and the historical changes in the
MDDB are not translated.
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According to [18], it is not feasible to use the relational repair techniques over the

existing ROLAP approaches like star or snowflake to obtain dimension repairs. Based

on the aforementioned study, it is either not possible to represent the summarizabil-

ity constraints with the relational constraints in star and snowflake databases, or the

minimal relational repairs obtained in these databases do not coincide with mini-

mal multidimensional repairs. That is why in this thesis, we propose a relational

reconstruction of MDDBs which enables the use of relational repairs for resolving

non-summarizability.

In order to identify a suitable relational representation of MDDBs to be used in

our approach, we first investigate the two best-known relational implementations of

MDDBs and DWs, Star and Snowflake. We show that none of these schemas meet

expressivity properties (I)-(III) mentioned above (cf. Chapter 3). This leads us to

define a new relational representation for the MD instances; a path-based approach for

mapping the multidimensional data model into a relational model. The new relational

schema is called a path relational schema. The path schema will be used as the basis

of our repair approach.

Example 1.4. (example 1.1 continued) Figure 1.9 shows how the Customer dimension

is represented in path schema. Each relational table represents a path from the bot-

tommost category to the topmost category in the dimension schema. The hierarchy

in Figure 1.4a contains two examples of the aforementioned path, and hence we have

two tables representing them. Each tuple in these tables resembles an instance of that

path in the dimension instance. Intuitively, a path instance is a sequence of elements

that reside on that path. In this figure, each category c of the Customer dimension is

associated to the relational attribute Ac.

Representing the Store and Date dimensions in path database is more straightfor-

ward. Due to the linear structure of these hierarchies, only one table is needed to

represent each of them in the path database. In case of Store dimension, the relational
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(a) Table RPCus
1 for the left

path PCus1 in the Customer di-

mension schema

(b) Table RPCus
2 for the right

path PCus2 in the Customer di-

mension schema

Figure 1.9: Customer dimension represented in path schema

table in path database contains attributes: ABranch , ACity , ACountry , AAll ; and the

table representing Date dimension has ADay , AMonth , AYear , AAll as its attributes. �

The contributions of this thesis are as follows:

1. We propose a new relational representation for MDDBs, the path schema (cf.

Chapter 4). This relational schema is expressive and adequate enough to be the

basis of our MD repair approach. In particular, path schema enables efficient

checking of strictness and homogeneity through ICs. Furthermore, it is easily

repairable compared to star or snowflake (cf. Chapter 5). The former requires

simple updates at the attribute level, while the latter cases might require tuple-

based operations. Finally, the invertibility of the proposed MD2R mapping

enables the generation of MD repairs from repaired path database (cf. Chap-

ter 6). In general, the path schema has the expressivity properties mentioned

before, and hence is a good choice to be used for tackling non-summarizability

through relational repairs.

Besides its virtues in MD repairing, path schema has some useful data-related

properties compared to star and snowflake schemas (cf. Chapter 8). Our exper-

iments reveal that, path has the second best performance in query answering,

with star schema being the first. The negligible difference between the path

schema and the star schema in this ranking comes from the fact that, in a path
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instance a dimension might be represented in more than one relational table,

while in the star schema, there is always a single relational table corresponding

to each dimension. This difference in MD data representation results in differ-

ent relational query structure. In the case of the star schema, this relational

query is more optimized compared to that for the path schema.

We also conduct some experiments around performance of star, snowflake and

path schemas in detecting violation of ICs corresponding to summarizability

conditions. Among these schemas, path schema is the only MDDB relational

representation that enables efficient and complete checking of the summarizabil-

ity constraints through ICs. Hence, it can be said that, the path schema is not

only a repair-oriented schema, but also an efficient implementation of MDDBs.

2. The MD repairs generated through our approach are a form of instance-based

repairs, as opposed to schema-based repairs. As discussed above, we obtain

the MD repairs by inverting the MD2R mapping. Since the relational repair

operations modify the data and leave the database schema unchanged, the new

MD instance obtained as a result of mapping inversion has the same schema as

the original instance.

We compare our MD repairs with repairs obtained from other instance-based

MD repair approaches. In particular, we analyze the correspondence between

our repairs and those generated by [18], as a well-known instance-based repair

mechanism. An interesting observation is that, our class of MD repairs and the

class of MD repairs proposed by [18] are disjoint. That is, in general there is

no correspondence between the set of minimal MD repairs produced through

our relational approach and those proposed in [18]. This is due to the fact that

we generate MD repairs that correspond to minimal relational repairs in the

MDDB relational layer. More specifically, we force the minimality of repairs on
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the relational side as well as multidimensional side, while in [18], minimal MD

repairs are obtained by performing minimum changes to the original dimension

instance.

We propose a pure MD characterization of the dimension repairs that are ob-

tained through our relational approach. Unlike existing approaches, our ap-

proach considers the effect of MD repair operations on the MDDB relational

implementation. In MD terms, this consideration is reflected in a prioritization

of dimension instance edges for modification during MD repair process.

This thesis is organized as follows. Chapter 2 presents a formalization of the

multidimensional data model which will be used throughout the thesis. In Chapter

3, we explain why star and snowflake schemas are not a perfect choice to represent

or restore summarizability through relational repairs. We propose the path schema

as a new relational representation for MDDB, and formalize the MD2R mapping in

Chapter 4 (first step of Figure 1.8). Chapter 5 provides the relational repair semantics

which is used in the second phase of our approach for restoring consistency in the

path database. As the third step of our solution, we obtain dimension repairs through

MD2R mapping inversion in Chapter 6. A pure MD characterization of the dimension

repairs generated by our relational approach is given in Chapter 7. Chapter 8 analyzes

the performance of the path schema in query answering and inconsistency detection,

compared to star and snowflake schemas. Finally, in Chapter 9, we conclude and

highlight some future research directions.



Chapter 2

Preliminaries

2.1 Basic Notions

Multidimensional data model is composed of logical cubes, facts and dimensions.

A data cube is a data structure that allows fast analysis of data. It can also be

defined as the capability of manipulating and analyzing data from multiple perspec-

tives. The arrangement of data into cubes in MDMs overcomes some limitations of

relational databases. Data cube consists of numeric facts called measures which are

categorized by dimensions.

Facts are business performance measurements, which are typically numeric and

additive. Measures populate the cells of a logical cube with the facts collected about

business operations.

In order to measure the facts at different granularity levels, each dimension is

represented by a hierarchy of categories. In other words, a dimension is a data element

that categorizes each item in a data set into non-overlapping categories. Dimensions

form the edges of a logical cube, and thus of the measures within the cube. They

provide structured labeling information to, otherwise unordered, numeric measures.

In multidimensional modeling, several categories at different granularity levels can

be defined for each dimension. These categories form a hierarchy, which is referred

15
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to as dimension schema. The hierarchy of elements belonging to these categories is

called dimension instance.

The key feature of multidimensional modeling is its simplicity, which allows read-

ability, and efficient database navigation. Beside that, multidimensional models are

known to be understandable, predictable and extendable [50, 47, 43].

2.2 Formalizing the Multidimensional Data Model

Several formalizations for MDMs have been proposed in literature. In some of these

works, the entity-relationship (ER) model in relational databases is extended, in

order to capture multidimensional semantics. Description logic (DL) can be used

to give a formal model-theoretic semantics to the resulting data model. Through

this semantics, one can employ reasoning to verify the multidimensional data model

specification [37, 38, 69].

Unified Modeling Language (UML) is another well-known modeling language, that

can be extended to represent multidimensional data models. Several studies extended

the UML Class Diagram in order to enhance its multidimensional expressivity [1, 68]

.

[35, 63] are among the studies in which a logic-based formalization for the multi-

dimensional data models is proposed. This formalization builds the basis of a logic-

based MD query language as well.

In [20, 45], a graph-based formalization of multidimensional data models is pro-

posed (cf. [43, 40] for precise details). Unlike other works, this formalization approach

does not require any complex modeling language. Due to its simplicity and readability,

this formalization approach is used in several works, including [13, 22, 24, 41, 42, 43].

In our case, it is not necessary to have a complex logic-based infrastructure, or

provide a reasoning engine for the multidimensional data model. Hence, among all of
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the above approaches, we will choose the MDM formalization proposed in [20, 45], for

modeling the non-summarizability problem. This formal model is explained in more

details in Section 2.2.1.

Since we are addressing non-summarizability, we also need to formalize the sum-

marizability conditions. Section 2.2.1 provides formal definitions for strictness and

homogeneity. This symbolic representation will be used throughout this thesis.

2.2.1 Hurtado-Mendelzon Model

A dimension schema, S, is a directed acyclic graph (DAG), formalized by a pair of

the form ⟨C, ↗⟩. In this pair, C is the set of all categories, and ↗ is the parent-child

relationship between these categories. The transitive and reflexive closure of this

binary relation is indicated with ↗∗. We make the usual assumption that there are

no shortcuts in an MD schema, i.e. if ci ↗ cj, then there is no (properly) intermediate

category ck with ci ↗∗ ck and ck ↗ cj.

As an standard, in every dimension schema, there is a distinguished top category

named All, which is reachable from every other category, i.e. for all categories c: c

↗∗ All holds. In addition, every dimension schema has a unique category, that does

not have any children. This category is referred to as base category.

Similar to the dimension schema, the dimension (also called dimension instance),

D, is represented by a pair of the form ⟨M, <⟩. In this pair, M represents the set of

all elements (ground atoms), and < (sometimes denoted by <D) is the parent-child

relationship between these elements. The transitive and reflexive closure of < is shown

by <∗. For the distinguished category All, the only element defined is all. Notice

that under this assumption and in a given instance, all may still not be reached by

elements of lower-level categories.

A function named δ: M 7→ C, is used to map each element to the category it

belongs to. If δ(e) = c, then we also say that e ∈ c. Consequently, ei < ej, if and only
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if, δ(ei) ↗ δ(ej).

A complete dimension instance is the one, in which elements that do not have

children, are all base elements. In an incomplete dimension, we have elements that

are not reachable from the base category. These elements are ignored in aggregate

query computation. In this thesis, we assume the dimension instances to be complete.

In this MDM formalization, we also have a roll up relation which can be built to

any pair of categories ci, cj in the schema, Rcj
ci (D). This relation returns a set of pairs

of the form (ei, ej), in which the first element belongs to ci, and the second element

is a member of cj. These two elements are related through the <∗ relation, i.e. ei <∗

ej. In general, this roll up relation is not necessarily a function, nor is it total.

Definition 2.1. The roll up relation Rcj
ci (D): M 7→ M is said to be a function, if it

maps every element of its domain (elements belonging to ci) to at most one element

in cj. �

Definition 2.2. The roll up relation Rcj
ci (D): M 7→ M is said to be total, if the set {a

∈ M | exists b, (a,b) ∈ R} is equal to the set of elements belonging to ci, i.e. δ−1(ci).

�

Example 2.1. (example 1.1 continued) Using the above notation, the Customer di-

mension schema, SCustomer, in Figure 1.4a is formalized as follows:

C = {Customer, Gender, Location, Segment, All}.

↗ = {(Customer, Gender), (Customer, Location), (Gender, Segment), (Location, Segment),

(Segment, All)}.

The Customer dimension instance, DCustomer is represented by the pair ⟨M,<⟩. The set



19

of elements, M, and the relationship between them, <, are as follows:

M = {C1, C2, C3, F, M, L1, L2, L3, S1, S2, all}.

< = {(C1, M), (C2, F), (C3, F), (C1, L1), (C2, L2), (C3, L3), (F, S1), (L1, S2), (L2, S1), (L3, S2),

(S1, all), (S2, all)

The set of elements belonging to each category can be determined by inverting the δ

function. For example, δ−1(Location) contains elements L1, L2 and L3. Similar approach

can be taken for the rest of categories in the Customer dimension schema.

δ−1(Customer) = {C1, C2, C3}

δ−1(Gender) = {F, M}

δ−1(Location) = {L1, L2, L3}

δ−1(Segment) = {S1, S2}

δ−1(All) = {all}

In order to find the parents and ancestors of dimension instance elements, we can

use the roll up relation. For instance, the grand parents of all base elements in the

Segment category, are as follows:

RSegment
Customer = {(C1, S2), (C2, S1), (C3, S1), (C3, S2)}.

It can be easily checked that RSegment
Customer is not a function. As explained before, by

default, the roll up relation in neither total, nor a function. An example of a partial

roll up relation is RSegment
Gender , which does not map element M to any element in the Segment

category:

RSegment
Gender = {(F, S1)}

However, it is possible to have a total roll up relation, which is also a function.

Consider RLocation
Customer as an example of such roll up relation:

RLocation
Customer = {(C1, L1), (C2, L2), (C3, L3)}
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�

A granularity over a list of dimension schemas, ⟨S1,· · · ,Sn⟩, is a list of categories of

the form ⟨ c1,· · · ,cn ⟩, in which each ci belongs to schema Si.

A fact table consists of a granularity and a measure. Measures are formalized by

a set of variables. Each variable has its specific domain of values. A base fact table is

the one, in which all of the categories in the granularity are base categories of their

corresponding dimension schema.

Example 2.2. (example 2.1 continued) In Example 1.1, Sales is the only measure

introduced. However, we can have other measures, such as the discount amount

offered for the purchase, the time customer spent on shopping the product and etc.

The granularity of the fact table in Figure 1.1 is ⟨Customer, Branch, Day⟩. This

granularity is defined over the list of dimension schemas ⟨Customer, Store, Date⟩.

It can be easily checked in Figures 1.4a, 1.2 and 1.3 that, the categories Customer,

Branch and Day are all base categories of their corresponding dimension schemas.

Hence, the fact table in Figure 1.1 is an example of base fact table. �

Summarizability Constraints

Similar to relational databases, several types of constraints have been proposed to

capture different kinds of semantics in MDDBs. Among these, strictness and homo-

geneity have received lots of attention, since they together can assure summarizability

in any dimension. These constraints are global conditions that can also be imposed

locally.

Definition 2.3. [18, 24] (a) For a dimension schema S = ⟨C, ↗⟩, a strictness constraint

is an expression of the form ci → cj, where ci, cj ∈ C, ci ̸= cj, and ci ↗∗ cj. This

constraint is satisfied by a dimension instance D, denoted D |= ci → cj, iff the roll up

relation Rcj
ci is a (possibly partial) function.
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(b) The dimension instance D is strict if it satisfies the full-strictness condition, namely

the set, FSS = {ci → cj — ci, cj ∈ C, ci ̸= cj, and ci ↗∗ cj}, of all strictness constraints.

�

Example 2.3. (example 2.1 continued) According to Example 2.1, the roll up relation

RSegment
Customer is not a function. Hence, based on Definition 2.3, the Customer dimension is

non-strict, i.e. DCustomer ̸|= Customer → Segment. �

Example 2.4. (example 2.1 continued) The Customer dimension is strict if it satisfies

the following local constraints:

FSS = {Customer → Location, Customer → Gender, Customer → Segment,

Customer → All, Location → Segment, Location → All,

Gender → Segment, Gender → All, Segment → All} (2.1)

Notice that, in a strict dimension, every roll up relation is a function. �

Definition 2.4. [18, 24] (a) For a dimension schema S = ⟨C, ↗⟩, a homogeneity con-

straint (also known as covering) is an expression of the form ci ⇒ cj, where ci, cj ∈ C,

ci ̸= cj, and ci ↗ cj. This constraint is satisfied by a dimension instance D, denoted

D |= ci ⇒ cj, iff the roll up relation Rcj
ci is total.

(b) The dimension instance D is homogeneous if it satisfies the full-homogeneity con-

dition, namely the set, FH S = {ci ⇒ cj — ci, cj ∈ C, ci ̸= cj, and ci ↗ cj}, of all

homogeneity constraints. �

Example 2.5. (example 2.1 continued) According to Example 2.1, the roll up rela-

tion RSegment
Gender is not total. Hence, based on Definition 2.4, the Customer dimension is

heterogeneous, i.e. DCustomer ̸|= Gender ⇒ Segment. �

Example 2.6. (example 2.1 continued) The Customer dimension is homogeneous if it
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satisfies the following local constraints:

FH S = {Customer ⇒ Location, Customer ⇒ Gender, Location ⇒ Segment,

Gender ⇒ Segment, Segment ⇒ All} (2.2)

Notice that, in a homogeneous dimension, every roll up relation is total.

It can be easily checked that, the set of roll up relations to check for homogeneity

is a subset of the relations that should be checked for strictness. �

Although we will use the null value, NULL , in the relational representation of the

original MD instance, we assume that NULL can not be an element in the dimension

instance, i.e. NULL /∈ M. The semantics of NULL will be as in SQL relational databases,

which is logically captured in [17].

The assumptions we made about the existence of a single base category, and com-

pleteness of dimension instance are just for simplifying the representation [40]. Obvi-

ously, our approach can be easily extended to address cases where these assumptions

are not met.



Chapter 3

ROLAP and MDDB Semantics

3.1 Introduction

In ROLAPs, MDDBs are mostly represented as a star or snowflake database. This

chapter studies the feasibility of using either of these relational representations in our

approach. We start by formalizing star and snowflake schema as a mapping from

MDDB to RDB. Next, we evaluate these mappings based on the criteria brought in

Chapter 1, for an expressive relational representation of MDDBs.

3.2 Star Schema Revisited

Star schema is the generic representation of a multidimensional instance as a relational

database [50]. In star schema, a fact table consisting of numeric measurements is

joined to a set of dimension tables containing descriptive attributes. This starlike

structure was referred to as star join schema in the earliest days of relational databases

[60]. In this schema, dimension tables have a simple primary key, while for the fact

tables a set of foreign keys makes up a composite key. This composite key consists of

the relevant dimension tables keys.

The main advantage of star schema is its simplicity. The query answering process

23
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is never complex in this schema. The only joins and conditions involve a fact table

and a single level of dimension tables. Query answering does not deal with indirect

dependencies to other tables, which are possible in a better normalized snowflake

schema (cf. Section 3.4). In general, it is not clear that, the overheads in further

normalizing the dimension tables of a star schema, in order to obtain a snowflake

schema, outweigh the simplicity of the star schema [54].

Star and snowflake have the same structure for storing the fact table [50]. An

example of this structure is shown in Figure 1.1. As a result, our major focus is on

how dimensions are represented by these schemas.

Star schema has a flat structure for storing the dimensions. Here, the whole

dimension is represented by a single table. In addition, the set of all categories

constitutes the attributes of that table. Star mapping requires the dimension schema

to have a single base category. Each base element along with its parents and ancestors

represent a tuple in the dimension table [50, 41]. A precise relational formalization

of star schema can be found in [54].

Based on the above discussions, mapping a dimension to a star database is for-

malized as follows. Part (I) specifies how star schema represents dimension schema,

and Part (II) is about translating the instances.

(I) For each c ∈ C, create an attribute Ac.

For the set of all categories C, create a relational predicate R[Ac1 , · · · , Acn ].

(II) For each e ∈ M, where δ(e) is a base category, create tuples of the form R(e, e1, · · · , en),

where ei = NULL , or e <∗ ei for 1 ≤ i ≤ n.

Applying the above rules to the Customer dimension results in the star database of

Figure 3.1. In this relational instance, the only table is R[ACustomer , AGender , ALocation ,

ASegment , AAll ]. The set of attributes of this table is generated using rule (I). Customer

is the base category for this dimension. Hence, for generating the tuples belonging to
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Figure 3.1: Customer dimension represented in star schema

R, we have to calculate the following roll up relations:

RGender
Customer = {(C1, M), (C2, F), (C3, F)}

RLocation
Customer = {(C1, L1), (C2, L2), (C3, L3)}

RSegment
Customer = {(C1, S2), (C2, S1), (C3, S1), (C3, S2)}

RAll
Customer = {(C1, all), (C2, all), (C3, all)}

Using the above roll up relations, we must find all of the parents and grand parents

for each base element, i.e. C1, C2 and C3 (rule (II)).

C1 : {M, L1, S2, all}

C2 : {F, L2, S1, all}

C3 : {F, L3, S1, S2, all}

The sets obtained for elements C1 and C2 are mapped to the first two tuples in

R[Customer, Gender, Location, Segment, All] using rule (II).

C1 ∈ M and δ(C1) = Customer : base category 7→ R(C1, M, L1, S2, all)

C2 ∈ M and δ(C2) = Customer : base category 7→ R(C2, F, L2, S1, all)

However, the third set can not be translated to a single tuple. We need two tuples

for representing multiple parents of element C3 in the Segment category. As a result,

although the Customer dimension contains three base elements, we have four tuples in

the dimension table of Figure 3.1.

C3 ∈ M and δ(C3) = Customer : base category 7→ {R(C3, F, L3, S1, all), R(C3, F, L3, S2, all)}
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Figure 3.2 shows the relation between the dimension tables Customer, Store and Date

and the Sales fact table in star database.

Figure 3.2: Example 1.1 implemented as star database

3.3 Why Star is not a Good Choice?

Now that star mapping is precisely formalized, we evaluate this MD2R mapping to

see if it can be used in our approach. Our discussions show that, star schema does

not have the properties of an expressive MDDB relational representation, mentioned

in Chapter 1.

3.3.1 Summarizability Constraints in Star Schema

In this section, we show that although star schema enables detecting non-strictness

through functional dependencies (FDs), it is not expressive enough to represent het-

erogeneity. This fact makes star schema an inappropriate choice for our approach.

Homogeneity in Star Schema

One of the problems with star schema is that checking homogeneity through ICs in

this relational schema is not straightforward. In fact, star schema is not expressive
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enough to capture heterogenous dimensions in general. In some cases, the condition of

having no parent in a specific category is reflected by a NULL value for the corresponding

attribute in the dimension table. However, there are situations in which heterogenous

instances can not be detected through inspecting NULL values.

Example 3.1. (example 2.6 continued) In Example 2.5, we showed that, due to the

missing parent for element M in category Segment, the Customer dimension is heteroge-

neous. However, the database instance in Figure 3.1 does not have any NULL value for

the ASegment attribute.

The reason is that, in star schema, we are storing the parents and grand parents

of each base element as separate tuples. In our case, since C1 rolls up to segment S2

through location L1, the ASegment attribute is not NULL . In star mapping, we do not

consider the fact that C1 does not have any ancestor in the Segment category, through

gender M.

Star failure in representing heterogeneous instances does not happen all the time.

For instance, in Customer dimension, if C1 had no parent in category Gender, hetero-

geneity would have been reflected by a NULL value for attribute AGender in the first

tuple of dimension table. �

It can be concluded that, in star schema, imposing NOT NULL constraint to dimension

table attributes, helps detecting some, but not all, heterogeneous dimensions.

Strictness

In star schema, a local strictness constraint between two categories in the dimension

schema is represented by a functional dependency between the mapped attributes

of the dimension table (rule (III)). In fact, functional dependency is the natural

translation of strictness into integrity constraints [13, 18, 22, 24, 41, 42] (see Section

4.5 for a detailed discussion on FD evaluation in presence of NULL values).
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(III) (FD Generation)

(ci → cj) 7→Star (R: Aci → Acj).

Example 3.2. (example 2.4 continued) In this example, we generate the set of in-

tegrity constraints needed for checking strictness in the Customer dimension, through

the star database of Figure 3.1. According to Definition 2.3, strictness should be

checked for every pair of categories that are related through the ↗∗ relation. Since

All is a special category, which has only one pre-defined element, all, there is no need

to check whether it is in a strict relation with other lower categories or not. Using

rule (III), and the set of constraints in Example 2.4 FSS , we obtain the following min-

imized set of functional dependencies for imposing global strictness to the Customer

dimension:

R : {ACustomer → AGender, ACustomer → ALocation, AGender → ASegment, ALocation → ASegment}

(3.1)

It can be easily checked that the database in Figure 3.1 is violating the FDs R :

{AGender → ASegment , ALocation → ASegment }. �

3.3.2 Invertibility of Star Mapping

Moving back from star database to dimension instance is not straightforward. In this

section, we show that, this MD2R mapping is not uniquely invertible. Due to the

information loss in mapping MDDB to RDB, we can not obtain a single MD instance

from a star database instance. For a complete discussion about invertibility of MD2R

mapping see Chapter 6.

Due to the flat structure of the star schema, we are losing some information in

mapping a dimension to a relational table. In other words, star schema does not store

every property of the multidimensional hierarchies. In fact, we might obtain several
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possible multidimensional instances from inverting a single star database. Hence, we

can say that, inverting this MD2R mapping is non-deterministic.

In the process of mapping inversion, the set of categories are re-generated from

the set of attributes of the dimension table (rule (IV)). However, the edges between

these categories can not be retrieved clearly from the star schema. That is why, we

might end up having several possible dimension schemas from inverting a single star

schema.

The aforementioned problem can also be seen from an instance-based perspective.

In star mapping, we store the roll up relations in each tuple, and ignore the direct

edges between the elements. As a result, we might have several dimension instances,

that have the same roll up relation but differ in the < members (rule (V)). The star

mapping inversion is formalized as follows.

(IV) For each attribute A appearing in some R ∈ R, create a category (name) cA ∈ C. The

set of so-created categories is denoted with C.

(V) For each relational tuple R(e1, · · · , en), with R[A1,. . ., An], add elements ei ̸= NULL ,

for 1 ≤ i ≤ n to the set of elements M, where δ(ei) = cAi .

Notice that, the above rules can only determine the sets C and M, and do not generate

the parent-child relations in the dimension schema and the dimension instance.

Example 3.3. (examples 3.2 and 3.1 continued) Consider the star database in Figure

3.1. Using rule (IV), we obtain a unique set of categories, C. This set is equal to what

we obtained in Example 2.1. However, the set of edges between these categories, ↗,

is not unique. In fact, each of the following sets is a potential candidate for the ↗

relation. In other words, C along with each of these sets is represented by the same

table as in Figure 3.1 in the star schema.

1. {(Customer,Gender), (Gender,Location), (Location,Segment), (Segment,All)}.
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2. {(Customer,Gender), (Gender,Location), (Gender,Segment), (Location,All),

(Segment,All)}.

3. {(Customer,Gender), (Customer,Location), (Gender,Segment), (Location,Segment),

(Segment,All)}.

4. {(Customer,Gender), (Customer,Location), (Location,Segment), (Gender,All),

(Segment,All)}.

5. {(Customer,Gender), (Customer,Location), (Gender,Segment), (Location,All),

(Segment,All)}.

6. {(Customer,Gender), (Customer,Location), (Customer,Segment), (Gender,All),

(Location,All), (Segment,All)}.

Notice that in generating these sets, we consider the order of attributes in the rela-

tional table. Without this consideration, the number of possible dimension schemas

would be much larger. It can be checked, that the third set is equal to what we had

in Example 2.1 for the Customer dimension. �

Based on our discussions, the weakness of star schema in representing heterogene-

ity at relational level, and the non-invertibility of the MDDB to star mapping make

star schema an inappropriate choice for our solution.

3.4 Snowflake Schema Revisited

While star schema represents the dimension in a flat relational structure, snowflake

provides a hierarchical relational representation for MDDB. In snowflake, the flat,

single-table dimension in star schema is decomposed into a tree structure with poten-

tially many nesting levels [50]. [54] considers star as a special case of the snowflake

schema, in which the height of the hierarchical structure is equal to one.
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Snowflake, is said to be the normalized version of the star schema. For the sake of

space saving, the dimensions are represented in third normal form (cf. [3] for various

normalization approaches in relational databases). However, this space saving is often

disadvantageous. The reason is that typically, dimension tables are geometrically

smaller than fact tables. Hence, improving storage efficiency by normalizing these

tables has virtually no impact on the overall database size [50].

Despite the above fact, there are some cases in which normalization is needed. In

dimensions with a huge number of base elements, repeating some values in each tuple

seems inefficient. In such cases, snowflake is more preferred to star schema. Based

on [50], we mostly trade off dimension table space for simplicity and accessibility.

The hierarchical structure of snowflake schema causes some complications in query

processing. In contrast to the star schema, in snowflake we need to execute several

join operations over the tables, in order to retrieve tuples for browsing and aggregate

query processing. Numerous tables and joins in this process translate into lower

query answering performance [50, 41] (cf. [54] for a more detailed evaluation of star

and snowflake schemas from relational databases aspect). The performance of query

answering in star and snowflake are analyzed in Chapter 8.

In the snowflake schema, each category c in a dimension schema is represented by a

separate table, with Ac as first attribute. The other attributes in that table correspond

to the parent categories of c. Each of these attributes points to or references the same

attribute in the parent table [50, 41]. A precise relational formalization of snowflake

schema is given in [54].

As mentioned in Section 3.2, the fact tables in both star and snowflake schemas are

identical (see Figure 1.1). Hence, we are more interested in comparing the relational

representation of dimensions in these two schemas. A formalization of snowflake

mapping is given below. In this set of rules, part (I) represents schema mapping

rules, and part (II) addresses instance mapping.
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(I) For each c ∈ C, create an attribute Ac.

For each c ∈ C, create a relational predicate Rc[A
c, Ac1 , · · · , Acn ], where c ↗ ci, for 1

≤ i ≤ n.

For all x (if Rc(· · · , x, · · · ), then (Rc1(x, · · · ) or Rc2(x, · · · ) or · · · or Rcn(x, · · · ))), where

c ↗ ci, for 1 ≤ i ≤ n.

(II) For each e ∈ M, where δ(e)=c, create a tuple Rc(e, e1, · · · , en), where ei = NULL , or

e < ei for 1 ≤ i ≤ n.

Figure 3.3: Customer dimension represented in snowflake schema

Applying the above rules to the Customer dimension results in the snowflake

database of Figure 3.3. The tables in this database instance are generated using
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rule (I):

(Customer ∈ C) 7→ (RCustomer[A
Customer, ALocation, AGender] where Customer ↗ Location

and Customer ↗ Gender).

(Location ∈ C) 7→ (RLocation[A
Location, ASegment] where Location ↗ Segment).

(Gender ∈ C) 7→ (RGender[A
Gender, ASegment] where Gender ↗ Segment).

(Segment ∈ C) 7→ (RSegment[A
Segment, AAll] where Segment ↗ All).

(All ∈ C) 7→ (RAll[A
All]).

Rule (I) also specifies the referential constraint between the child category table and

its parents tables. In snowflake schema, each tuple of table Rc stores the direct

parents of an element belonging to c. For the sake of database integrity, each attribute

representing a parent of the category c should refer to the first attribute in the parent

table. In our case, the following referential constraints must hold in the snowflake

database of Figure 3.3:

∀x, y, z (RCustomer(x, y, z) → (∃ w RLocation(y, w))).

∀x, y, z (RCustomer(x, y, z) → (∃ w RGender(z, w))).

∀x, y (RLocation(x, y) → (∃ z RSegment(y, z))).

∀x, y (RGender(x, y) → (∃ z RSegment(y, z))).

∀x, y (RSegment(x, y) → (RAll(y))).

The last step of MD2R mapping is translating the dimension instance. Here, we

must apply rule (II) to all of the members of the set M (see Example 2.1). Since the

methodology is the same for each element, we only demonstrate how the first tuple
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in each table is obtained:

(C1 ∈ M and δ(C1) = Customer) 7→ (RCustomer(C1, L1, M) where C1 < L1 and C1 < M)

(L1 ∈ M and δ(L1) = Location) 7→ (RLocation(L1, S2) where L1 < S2)

(M ∈ M and δ(M) = Gender) 7→ (RGender(M, NULL))

(S1 ∈ M and δ(S1) = Segment) 7→ (RSegment(S1, all) where S1 < all)

(all ∈ M and δ(all) = All) 7→ (RAll(all))

Notice the NULL value in the tuple generated for element M. Since this element has no

parent in category Segment, the attribute representing its parent ASegment is set to NULL

.

Figure 3.4 shows the hierarchical structure of the snowflake database for the

MDDB in Example 1.1. It can be seen that, the fact table structure in this Fig-

ure is similar to the one in Figure 3.2.

Figure 3.4: Example 1.1 implemented as snowflake database
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3.5 Why Snowflake is not a Good Choice?

Now that snowflake mapping is precisely formalized, we evaluate this MD2R mapping

to see if it can be used in our approach. Our discussions show that, snowflake schema

fails to meet the criteria introduced in Chapter 1 for an expressive MDDB relational

implementation.

3.5.1 Summarizability Constraints in Snowflake Schema

In this section, we show that although we can detect heterogeneity through NOT NULL

constraints over snowflake database, we can not check the case of non-strictness in

this database through ICs efficiently. This fact makes this schema an inappropriate

choice for our approach.

Strictness

The hierarchical structure of the snowflake schema results in some complications

in checking strictness through ICs. Since each category is mapped to a single table,

several joins must be executed in order to check strictness. Example 3.4 demonstrates

this complicated process.

Example 3.4. (example 2.4 continued) Assume that we want to check strictness

between categories Customer and Segment, i.e. Customer → Segment. Based on the

Definition 2.3, for each element of Customer category, there should be one grand parent

in the Segment category. In the snowflake schema of Figure 3.3, the only way to find

these grand parents is by joining the intermediate tables.

However, there are two ways to reach category Segment from category Customer.

One goes through Location, and the other passes Gender. Strictness implies that, no

matter how Customer rolls up to Segment, there should be one parent for each base

element.
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For finding the grand parents reached through Location category, we must execute

three join operations, RCustomer ◃▹ RLocation ◃▹ RSegment. The results of this query are {

(C1, L1, S2), (C2, L2, S1), (C3, L3, S2)}.

The same procedure must be applied, in order to find the grand parents reached

through Gender category. Here, the query is RCustomer ◃▹ RGender ◃▹ RSegment. The set of

tuples retrieved as the answer is { (C2, F, S1), (C3, F, S1)}.

Strictness implies that, after merging these query results, there should be at most

one distinct Segment value for each element of the Customer category. If we consider

each of these result sets as a separate temporary table, there should be an equality

generating dependency (EGD) [3] (cf. Section 4.5.1) between attributes Customer and

Segment of these two tables.

It can be checked that, in the merged set, C1 is related to S2, C2 corresponds to

S1, and C3 is related to both S1 and S2 in the Segment category. Here, element C3 is

violating the equality generating dependency, and hence the strictness constraint is

not satisfied. �

The aforementioned EGD can be expressed in the relational calculus by universally

quantified sentences of the form

∀x̄(φ(x̄) → x1j = x2j ), (3.2)

where φ is a formula that captures the required (and possible multiple) join, and

x1j , x
2
j ∈ x̄.

In general, there is no simple and unique mapping strategy for expressing strict-

ness in terms of relational ICs on top of snowflake database. As Example 3.4 shows,

checking strictness in snowflake schema might not be a straightforward process. In

fact, this complication depends on the structure of the dimension schema, and the cat-

egories between which strictness is imposed. For example, in order to check whether

the relation between categories Customer and Location is strict, we need to execute one
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simple join on the corresponding tables.

The general approach for checking strictness of a dimension is to perform the pro-

cedure elaborated in Example 3.4, for every pair of paths between any two categories.

An inefficiency of this process is that, if categories Customer and Location have strict

relationship, and the relation between Location and Segment is also strict, we can not

infer that Customer and Segment have a strict relation.

Based on the above discussions, we can not efficiently check strictness through ICs

over snowflake database, since the hierarchical structure of this schema causes some

complications in this process.

Homogeneity

Unlike strictness, homogeneity can efficiently be checked in snowflake schema. When

the relation between categories ci and cj is covering, ci ⇒ cj, the attribute Acj in table

Rci should not take any NULL value (rule (III)). Imposing this constraint is due to the

fact that, in snowflake schema, NULL references resemble missing parents (assuming

that the original MD instance does not contain null values). Hence, homogeneity

constraint between two categories can be checked using NOT NULL constraints over

snowflake database (cf. Section 4.5.2).

(III) (NOT NULL Generation)

(ci ⇒ cj) 7→Snowflake (NOT NULL Rci .A
cj).

The NOT NULL constraint can be expressed in relational calculus as follows:

∀x̄(ψ(x̄) → NotNULL(xj)), (3.3)

where xj ∈ x̄, and NotNULL is a built-in predicate that is true only when its argument

is (symbolically) different from NULL .
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Example 3.5. (example 2.6 continued) In this example, we generate the set of

integrity constraints needed for checking homogeneity in the Customer dimension,

through the snowflake database of Figure 3.3. According to Definition 2.4, homogene-

ity should be checked only for those pairs of categories that are directly connected to

each other through an edge.

Based on rule (III), the set of constraints in FH S is represented by the following

set of ICs:

NOTNULL {RCustomer.A
Gender, RCustomer.A

Location, RGender.A
Segment, RLocation.A

Segment,

RSegment.A
All} (3.4)

It can be easily checked that, the Customer dimension in Figure 1.4 is not homogeneous,

since the constraint NOT NULL RGender.Segment is violated in the snowflake database of

Figure 3.3. �

3.5.2 Invertibility of Snowflake Mapping

Re-generating a multidimensional instance from a snowflake database is an easy and

straightforward process. In fact, the hierarchical structure of the snowflake database

simplifies mapping inversion. Here, each relational table is mapped to a category in

the dimension schema. The edges between these categories can be retrieved from the

referential constraints between the attributes (rule (IV)).

Instance mapping inversion has a similar procedure. Each tuple stores an element

and its direct parents. Hence, the set of elements, and the links between them can

be easily generated from a snowflake database instance (rule (V)). Based on our

discussions, the snowflake mapping inversion is formalized as follows.

(IV) For each attribute A appearing in some R ∈ R, create a category (name) cA ∈ C. The

set of so-created categories is denoted with C.
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For each relational predicate Rc[A1, · · · , An], create an edge from cA1 to cAi , for 2 ≤

i ≤ n, in the dimension schema.

(V) For each relational tuple Rc(e1, · · · , en), with Rc[A1,. . ., An], add element e1 to the

set of elements M, where δ(e1)=cA1 , and insert an edge from e1 to ei, where ei ̸=

NULL , for 2 ≤ i ≤ n, in the dimension instance.

Let’s see how the relational tables in the snowflake schema of Figure 3.3 represent a

dimension schema:

RCustomer[A
Customer, ALocation, AGender] 7→ Customer ∈ C, Customer ↗ Location,

Customer ↗ Gender

RLocation[A
Location, ASegment] 7→ Location ∈ C, Location ↗ Segment

RGender[A
Gender, ASegment] 7→ Gender ∈ C, Gender ↗ Segment

RSegment[A
Segment, AAll] 7→ Segment ∈ C, Segment ↗ All

RAll[A
All] 7→ All ∈ C

Instance mapping inversion is achieved by applying rule (V) to all of the relational

tuples in snowflake database of Figure 3.3. Since the procedure for each tuple is the

same, we only show how the first tuple in each table is mapped to its multidimensional

counterpart:

RCustomer(C1, L1, M) 7→ C1 ∈ M, δ(C1) = Customer, C1 < L1, C1 < M

RLocation(L1, S2) 7→ L1 ∈ M, δ(L1) = Location, L1 < S2

RGender(M, NULL) 7→ M ∈ M, δ(M) = Gender

RSegment(S1, all) 7→ S1 ∈ M, δ(S1) = Segment, S1 < all

RAll(all) 7→ all ∈ M, δ(all) = All

It can be easily checked that by continuing the above procedure for all of the re-

lational tuples in the snowflake database, the Customer dimension is re-constructed.
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Despite this fact, due to its weakness in representing non-strictness at relational level,

snowflake is not the perfect choice for our approach.

3.6 Summary

In this chapter, we showed that neither star nor snowflake schema is the perfect

choice for our purpose. In particular, representing homogeneity through ICs and

invertibility are the two expressivity properties that star schema does not have. On

the other hand, snowflake does not allow efficient detection of non-strictness through

ICs. Although the weaknesses of these schemas have been discussed a lot, only

a few studies focused on alternatives for MDDB relational implementation [9], or

star/snowflake enhancement [48, 50]. None of these relational representations have

the expressivity properties mentioned in Chapter 1. This fact leads us to think of a

relational reconstruction of the MD instances.



Chapter 4

MDDBs as Path Instances

4.1 Introduction

Our discussions of Chapter 3 show that neither the star nor the snowflake schema is

the perfect choice for restoring summarizability through relational repairs. Hence, in

this chapter we propose a relational reconstruction of the MD instance that satisfies

our criteria, namely: a simple relational representation and verification of MD sum-

marizability conditions via relational ICs, invertibility of the MD2R mapping; and a

simple relational repair approach.

The hierarchical structure of dimensions in MDMs is similar to the tree-like struc-

ture of the XML documents. Hence, we start by studying the existing approaches for

mapping an XML document to a relational database. Inspired by these approaches,

we propose a new relational representation for MDDBs, path schema. We give precise

formalization for this MD2R mapping. As part of our relational schema proposal, we

explain how to translate the multidimensional queries to relational queries posed to

path database. We also evaluate the efficiency of checking summarizability constraints

through ICs over the new relational schema.

41
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4.2 Dimension Schemas as XML Trees

Due to the similarity between the hierarchical structure of the dimensions in mul-

tidimensional data models, and the tree-like structure of XML documents, it would

be interesting to study the existing mechanisms for representing an XML tree-like

structure as a relational model. According to [73], two main approaches exist for

storing an XML document in a relational database:

1. Structure-mapping approach: In this approach, database schemas are designed

based on the logical structure or the document type definition (DTD) of the

XML document. In [27, 2], a database table is created for each element type

in the XML document. In [65], a more sophisticated approach based on a

detailed analysis of DTD is presented. A separate relational table is created for

those elements that have in-degree 0, or can occur multiple times. Nodes with

in-degree 1 are in-lined in the parent nodes’ relation.

In MDDBs, the relationship between parent and child categories in the dimen-

sion schema is many-to-many. Hence, if we apply this mapping to MDDBs,

according to the approach proposed in [65], each child category should be rep-

resented in a single table. More specifically, the result of applying this mapping

to a dimension is very much similar to the hierarchical structure of snowflake

schema, since for each category in the hierarchy, a separate table is created.

2. Model-mapping approach: It generates a fixed database schema to store the

structure of every XML document. Here, the main problem is how to map basic

constructs in the tree model to relational model. In [34], separate relations are

used to store edges and leaves of the XML tree. This approach requires many

joins for querying the database.

In [66, 73], nodes receive the same treatment. Here, all paths in the XML tree
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are uniquely identified, and stored in a database table. Moreover, a table is

designed for storing all of the inner nodes in the graph, along with their path

identifiers. Although this approach is independent of the original XML docu-

ment structure, the XML tree can be easily reconstructed from the relational

database, using the stored path expressions.

Although this path-based approach works fine for storing XML data in rela-

tional databases, it is not applicable to our problem. The reason is that, having

a generic database schema for representing all of the dimensions in a MDDB

complicates the process of aggregate query answering. Moreover, checking sum-

marizability constraints in this generic relational schema is not a straightforward

process.

However, the idea of using path identifiers as in [66, 73], to store the tree structure

in a relational database, guarantees full reconstruction of the XML document, i.e. a

path-based mapping can assure invertibility. To us, this property seems interesting,

since we also expect our MD2R mapping to be invertible.

4.3 Path Schema

As discussed before, the optimal relational representation of MDDB must enable

efficient checking of summarizability conditions through ICs. In Section 2.2.1, we

explained that these constraints are defined on the basis of the roll up relation. This

binary relation itself contains elements in the dimension instance, that are connected

to each other through a sequence of edges. In other words, the occurrence of a pair

of elements in a roll up relation indicates the existence of a path between those two

elements in the dimension schema.

In order to better express the summarizability constraints as integrity constraints,

the optimal relational representation must store the aforementioned paths efficiently.
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Inspired by the XML-to-RDB mapping proposed in [66, 73], we suggest a path-based

mapping from multidimensional data model to relational model. In order to introduce

this mapping, we have to first define some preliminary terms.

Definition 4.1. Given a dimension schema S = ⟨ C, ↗ ⟩, a base-to-all path (B2A),

P , is an ordered list of categories ⟨ c1,. . .,cn ⟩, where c1 is a base category, and cn is

the All category, and ci ↗ ci+1 for 1 ≤ i ≤ n− 1. �

Definition 4.2. Given a dimension schema S = ⟨ C, ↗ ⟩, and a dimension instance D

= ⟨ M, < ⟩, a p-instance for a B2A path P = ⟨ c1,· · · ,cn ⟩, is an ordered list of elements

p = ⟨ e1,· · · ,en ⟩1. Each p-instance is characterized by the following conditions:

(a) δ(ei) = ci, or ei = NULL for 1 ≤ i ≤ n.

(b) Whenever ei and ei+1 are both different from NULL, ei < ei+1.

(c) There is no p-instance p′ that can be obtained from p by replacing NULL in positions

i by non-NULL eis, that satisfies the first two conditions above.

The set of all instances of the path P is denoted by InstD(P). �

In Definition 4.2, condition (c) enforces the use of non-null data elements whenever

possible; or, equivalently, the use of NULL only when strictly needed. As mentioned

before, we assume that NULL does not belong to M, hence, it is incomparable via <

with dimension instance elements (condition (b)). Notice that, if the base category is

non-empty (something natural to assume), then there will be no p-instance starting

with NULL.

Definition 4.3. A p-instance, p = ⟨ e1,. . ., en ⟩, is said to be broken, if there exists at

least one member ei such that ei = NULL for 2 ≤ i ≤ n.

1We use the term “p-instance”, because later on we will talk about “path instances”, which will
be instances of the relational path schema.
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Note that, based on Definition 4.2, the first element of a p-instance can not be

NULL. �

Example 4.1. (example 1.4 continued) The Customer dimension schema in Figure

1.4a has two B2A paths:

PCus1 = ⟨Customer, Gender, Segment, All⟩

PCus2 = ⟨Customer, Location, Segment, All⟩

The set of instances for these B2A paths are as follows:

InstD(PCus1 ) = {⟨C1, M, NULL, NULL⟩, ⟨C2, F, S1, all⟩, ⟨C3, F, S1, all⟩}

InstD(PCus2 ) = {⟨C1, L1, S2, all⟩, ⟨C2, L2, S1, all⟩, ⟨C3, L3, S2, all⟩}

As can be seen, the first p-instance of PCus1 is broken, since it contains two NULL

elements. �

For schema mapping, we consider all of the B2A paths in the dimension schema.

Each path is mapped to a single database table. The categories along each path are

mapped to attributes of the corresponding relational table. Hence, it is possible to

have a category mapped to more than one attribute in separate tables.

Similar to the schema mapping, instance mapping is performed by translating

each p-instance to a database tuple in the corresponding table. The following rules

formalize path mapping (transformation), T in two sections: part (I) specifies schema

mapping rules, and part (II) represents the rules for instance mapping.

(I) For each c ∈ C, create a relational attribute Ac.

For each B2A path P of the form ⟨c1, . . . , cn⟩, create a relational predicate

RP [Ac1 , . . . , Acn ].

(II) For each path instance p ∈ InstD(P ) of the form ⟨e1, . . . , en⟩, create the relational

tuple RP(e1, · · · , en).
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As presented before, Figure 4.1 is the result of applying path mapping rules to Customer

dimension. PCus1 is mapped to the table shown in Figure 4.1a, and the result of mapping

PCus2 is the table in Figure 4.1b. For each of these tables, the set of tuples shows the

set of p-instances obtained in Example 4.1 for the corresponding B2A path.

(a) Table RPCus
1 for the left path

PCus1 in the Customer dimension

schema

(b) Table RPCus
2 for the right

path PCus2 in the Customer dimen-

sion schema

Figure 4.1: Customer dimension represented in path schema

The active domain, Act(D), of the generated path instance D is contained in M ∪

NULL; and the domain, Dom(Ac), of the generated attribute Ac is δ−1(c) ∪ NULL. In other

words, Dom(Ac) ⊆ Act(D) ∪ NULL. Notice that the domain of the attribute corresponding

to base category does not include NULL, i.e. Dom(Abase) = δ−1(base).

For category All , we assume that all ∈ Dom(AAll ), since we have all ∈ M.

However, AAll might still contain NULL value, since category All might not be reached

by lower-level elements in the given MD instance.

Notice that, the relational schema generated depends only on the MD schema. In

particular, the number of path tables generated is equal to the number of B2A paths

in the MD schema, and not the MD instance.

Theorem 4.1. In each B2A path P of the form ⟨ c1,· · · ,cn ⟩, the set of first elements

of all p-instances F(P), is equal to the set of elements belonging to c1, which is the

base category.

{
∪
i

{ei,1|⟨ei,1, · · · , ei,n⟩ ∈ InstD(P )}} = δ−1(c1)

�
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Proof of Theorem 4.1: We discussed previously that NULL /∈ F (P ), and F (P ) ⊆

δ−1(c1). Now, we will prove by contradiction that F (P ) = δ−1(c1).

Assume there is an element e in set F(P), such that e does not belong to c1. So,

e might belong to categories other than c1, or it might be NULL . The first case is

in contradiction with the first property of p-instances in Definition 4.2. Moreover,

the second situation is not also possible, since according to Definition 4.3, the first

element of a p-instance can not be NULL .

On the other hand, assume that, there is an element e in c1, which is not a member

of F(P). This statement implies that, e is a base element, which does not belong to

any p-instance. This situation happens when there is no outgoing edge from the base

element in the dimension instance. However, according to Definition 4.3, this case is

considered as a broken p-instance, in which all of the elements except the first one is

equal to NULL. Since this situation is formalized as a broken p-instance, e must belong

to set F(P). This fact contradicts our initial assumption that e does not belong to

F(P). �

As can be seen in Example 4.1, for PCus1 or PCus2 , the set of first elements of all

p-instances is equal to {C1, C2, C3}. This set, itself, is equal to the set of elements

belonging to category Customer (see Example 2.1).

Figure 4.2 shows how path schema represents the dimensions Customer, Store and

Date, and the Sales fact table in Example 1.1. Theorem 4.1 implies that the the set

of values the attribute ACustomer takes in the two path tables RPCus
1 and RPCus

2 are

equal. Hence, the fact table can refer to either of these two attributes. For the sake

of database integrity, we also add a referential constraint between the ACustomer of the

path tables RPCus
1 and RPCus

2 , i.e. enforcing the constraint brought in Theorem 4.1.
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Figure 4.2: Example 1.1 implemented as path database

4.4 Query Answering in Path Schema

In ROLAP systems, queries posed to the MD instance are translated to queries posed

to the MDDB relational representation. In this section we start by a brief introduction

on the MDDB query language, and then elaborate on how in ROLAPs a MD query

is translated to a SQL query, considering star, snowflake and path schemas.

4.4.1 Multidimensional Expressions

Most commonly, the aggregate queries over MDDBs group the query results by the

values of a set of attributes (i.e. categories), and then calculate an aggregate function

(f) for each group. This function could be for example Min, Max, Sum or Count

[53]. The aggregation is achieved by upward navigation through a category path,

i.e. computing the roll up relation. The query conditions are imposed on the table

obtained from joining the fact table and some roll up relations. These aggregate

queries are also known as cube views.

SELECT Ai, · · · , Aj , f(A) FROM fact table,Rk, · · · ,Rm

WHERE conditions GROUP BY Ai, · · · , Aj

Multidimensional Expressions (MDX) is the query language commonly used for

processing data cubes in MDDBs, much like SQL is a query language for relational
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databases. SQL is designed to retrieve data in two dimensions: a column dimension

and a row dimension. Hence, it can not efficiently navigate the cubes of multidimen-

sional databases. In general, certain common forms of multidimensional data analysis

are difficult with SQL aggregation constructs [39]. That is why, MDDBs have their

own specific query language. MDX is also a calculation language, with syntax similar

to spreadsheet formulas. MDX was first introduced as part of the OLE DB for OLAP

specification in 1997 by Microsoft [58, 67].

The basic form of the two-dimensional query in MDX is as follows:

SELECT {member selection} ON AXIS(0), {member selection} ON AXIS(1) FROM [source cube]

The query syntax uses some keywords that are common in SQL, such as SELECT

and WHERE. Even though there are apparent similarities in the two languages, there

are also significant differences. A prominent difference is that the output of an MDX

query, which uses a cube as a data source, is another cube, whereas the output of an

SQL query (which uses a columnar table as a source) is typically columnar.

Each cube view is built upon a pre-computed cube. The keyword FROM is used to

specify the base cube for computing a cube view in MDX. A cube view consists of one

or more axes, each identified using the AXIS keyword. The query above defines two,

AXIS(0) and AXIS(1). Basically, each axis of a cube view contains a set of elements.

Normally, one of the axes of a cube view is used to represent the fact data (measure).

Besides, MDX allows us to place any dimension from the source cube onto any axis

of the query’s result cube.

We elaborate more on the MDX syntax in the following example.

Example 4.2. (example 1.2 continued) Consider the base cube in Example 1.2 (which

corresponds to the fact table in Figure 1.1) and the Store, Date and Customer dimen-

sions in Figures 1.2, 1.3 and 1.4a, respectively. Suppose we want to compare the

monthly purchases made by our female and male customers during year 2010 in our

Canadian stores. The following MDX query computes this cube view:
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SELECT {[Measures].[Sale]} ON AXIS(0),

{[Customer].[All].[Segment].[Gender].MEMBERS} ON AXIS(1),

{[Store].[All].[Country].[CANADA]} ON AXIS(2)

{[Date].[All].[Year].[2010].CHILDREN} ON AXIS(3),

FROM BaseCubeSales

The keyword Measures resembles the set of our fact data. In our running example

(Example 1.1), we introduced only one measure for our MDM, Sales. Hence, in our

case, the set [Measures] contains only one element. In the above MDX query, we

choose the only member of this set, Sales, for the first axis of the cube view.

The second axis of this cube view should represent the set of elements belonging

to Gender category in the Customer dimension, i.e. F and M. To this end, we have to

first navigate in the Customer dimension schema to reach the category Gender. MDX

provides a top-down navigation in the dimension hierarchy starting from the topmost

category, All. In the above query, the expression [Customer].[All].[Segment].[Gender]

resembles the navigation from category All to category Gender in the Customer dimen-

sion. The second step is to place the members of category Gender on the second axis.

In MDX, the keyword MEMBERS is used to retrieve the elements/members of a given

category. We use this keyword to put elements F and M on AXIS(1).

On the third axis of this cube view, we should represent a set with a sin-

gle member, the country CANADA. To achieve this, our first step is to navigate to

the category Country in the Store dimension. The expression [Store].[All].[Country]

on AXIS(2) performs this navigation. The term [CANADA] narrows down the el-

ements of category Country to country CANADA. In other words, the expression

[Store].[All].[Country].[CANADA] resembles the element CANADA in the Store dimension.

On the fourth axis, we need the set of months in year 2010. Similar to the previous

axes, we first use the expression [Date].[All].[Year] to reach the desired category in the

Date dimension. By applying the term [2010] to the expression [Date].[All].[Year], we
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obtain the element 2010 in the Date dimension. The months in year 2010 are simply

the children of this element, and they can be retrieved by using the CHILDREN keyword

on the element 2010.

Notice that, the above cube view is built upon BaseCubeSales(Customer, Branch, Day)

of Example 1.2, as the base data cube. The computation of this cube view involves

finding the roll up relations RGender
Customer, R

Country
Branch and RYear

Day , and calculating the aggregate

function SUM for the fact data, Sales. �

4.4.2 MD Queries as SQL Queries over Path Database

In ROLAP systems, MDX queries posed to a MDDB must be translated into SQL

queries to be posed to the MDDB relational representation. This translation depends

on the schema of the MDDB relational representation. Depending on the relational

schema used to represent the MDDB, the SQL query corresponding to a MD query has

different structures. In this section, we elaborate on how MDX queries are translated

to SQL queries over path database. We also provide a comparison between star,

snowflake and path schemas in this query translation. The experiments supporting

our discussions are brought in Chapter 8.

In the path database, the format of this SQL query varies depending on the cube

view. In other words, the structure of the SQL query depends on the categories used

in the MDX query. A category might belong to more than one B2A paths in the

dimension schema. This category is mapped to two or more attributes in separate

tables. So, depending on the category queried on each axis of the cube view, we might

have to search one or more path tables. This explains why, in the path schema, we

do not have a fixed SQL query structure for all MDX queries.

Example 4.3. (example 4.2 continued) Assume we want to find the total purchases

made by our female and male customers. The MDX query posed to the MDDB is
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shown in part (a) below. Based on Figure 4.1, Gender appears in only one table in

the path schema, RPCus
1 . Hence, we can retrieve MDX query results by simply joining

RPCus
1 with the fact table of Figure 1.1. Part (b) shows the translated query into SQL.

(a) SELECT {[Measures].[Sale]} ON AXIS(0),

{[Customer].[All].[Segment].

[Gender].MEMBERS} ON AXIS(1),

{[Date].[All].[all]} ON AXIS(2),

{[Store].[All].[all]} ON AXIS(3)

FROM BaseCubeSales

(b) SELECT AGender, SUM(Purchase)

FROM Sale-Fact-Table, RPCus
1

GROUP BY AGender

�

Example 4.4. (example 4.3 continued) In this example, we are interested in an-

alyzing the profitability of each of our customer segments. Through this analysis,

companies can set their marketing strategies more efficiently.

The MDX query for finding the total product sale for each customer segment is

shown in part (a) below. Based on Figure 1.4a, category Segment resides on two B2A

paths. As a result, it is mapped to two separate attributes in the path schema of

Figure 4.1.

Due to the fact explained above, the structure of the translated query is different

from what we had in Example 4.3. In order to find the element in Segment category

that each Customer rolls up to, we have to search both of the path tables. In

particular, we have to first find the union of tuples belonging to both path tables

on the selected attribute (ASegment ), and then join this result with the fact table of

Figure 1.1. The equivalent SQL query for our example is brought in part (b).
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(a) SELECT {[Measures].[Sale]} ON AXIS(0),

{[Customer].[All].[Segment].

MEMBERS} ON AXIS(1),

{[Date].[All].[all]} ON AXIS(2),

{[Store].[All].[all]} ON AXIS(3)

FROM BaseCubeSales

(b) SELECT ASegment, SUM(Purchase)

FROM Sale-Fact-Table, (

(SELECT ACustomer, ASegment

FROM RPCus
1 ) UNION

(SELECT ACustomer, ASegment

FROM RPCus
2 ) )

GROUP BY ASegment

�

It would be interesting to provide a generic structure for the SQL queries over

path database that correspond to MDX queries over MD database. In other words,

we would like to formulate the SQL equivalent of MDX queries in a path database.

For simpler representation, we assume only two-dimensional cube views in MDX.

This MDX-to-SQL formulation is shown below. Although there are other possible

options for the equivalent SQL query, the one in part (b) is the optimized version

of these alternatives. In this query, the multidimensional results for MDX query

are obtained by: 1) performing projection on each path table based on the queried

category, 2) finding the union of the selected columns, 3) joining the fact table and

the result of union operation, and 4) grouping the tuples based on the given category.

(a) SELECT {[Measures].[Measure]} ON AXIS(0),

{[Dimension].[All]· · · [Category].MEMBERS}

ON AXIS(1)

FROM [Base-Cube]

(b) SELECT ACategory , SUM (Measure)

FROM Fact-Table, (

UNIONi

(SELECT ABaseCategory , ACategory

FROM RPCus
i )

) GROUP BY ACategory

Now that we have precisely translated MD queries into SQL queries over path

databases, it is natural to ask how different is this translation in case of star or

snowflake schemas. In other words, we need to study the difference of star, snowflake
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and path database in terms of MDX-to-SQL query formulation (see Chapter 8 for

an experimental study on the query answering performance of these schemas).

Example 4.5. (example 4.4 continued) In this example, we show the SQL equivalent

queries for the MDX query given in Example 4.4 part (a), as posed to the star (part

(c)) and the snowflake (part (d)) schemas. As we can see, for the star schema, we

need to join the fact table Sale-Fact-Table) in Figure 1.1 with the table for the

Customer dimension RStar in Figure 3.1.

A comparison of query (b) in Example 4.4 and query (c) in this example reveals

that, the former requires an inner query for retrieving the specified roll up relation

RSegment
Customer, while this complication is avoided in the latter. For this reason, query (c)

is expected to execute faster than query (b).

We discussed in Section 3.4 that query answering in the snowflake schema requires

several joins. In relational databases, the join operation is known for being costly,

slowing down the query answering process. Hence, the snowflake schema is expected

to have the worst performance in query answering compared to the star and path

schemas.

The SQL version of query (a) in Example 4.4 over a snowflake database is

shown below (query (d)). In this case, in order to compute the roll up RSegment
Customer,

we have to traverse both of the paths that lead from Customer to Segment in the

dimension schema. Each path is traversed via a series of join operations, and

the results of each path are then merged together. It is clear that the number of

joins in query (d) is considerably higher than the number of joins in queries (b) or (c).
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(c) SELECT ASegment, SUM(Purchase)

FROM Sale-Fact-Table, RStar

GROUP BY ASegment

(d) SELECT ASegment, SUM(Purchase)

FROM Sale-Fact-Table, (

(SELECT ACustomer, ASegment

FROM RCustomer, RGender, RSegment)

UNION

(SELECT ACustomer, ASegment

FROM RCustomer, RLocation, RSegment) )

GROUP BY ASegment

�

4.5 Summarizability Constraints in the Path

Schema

In order to be able to take advantage of the relational repairs, we must express

the summarizability constraints in terms of relational integrity constraints. In this

section, we will show that, unlike star and snowflake, we can efficiently check strictness

and homogeneity in path database. Given an MD instance D and a set K of (local)

strictness and homogeneity constraints as those in Definitions 2.3 and 2.4, we will

define the set of corresponding ICs, Σ, such that the violation of K by D is reflected

by the violation of Σ in the underlying path database D.

4.5.1 Strictness

Assume we want to check strictness between categories ci and cj, that is ci → cj.

According to Definition 2.3, every element of ci should roll up to at most one element

in cj. In dimension schema, there might be more than one possible path for rolling

up the elements in ci to their parents in cj. Strictness implies that, no matter which
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path is taken, there should be no more than one parent for each element in ci.

Each local path between categories ci and cj belongs to a separate B2A path in the

dimension schema. Hence, it can be said that, checking strictness between categories

ci and cj in path database depends on the number of B2A paths these categories

reside in. In other words, strictness must be checked within each single path, and

also among all paths from ci to cj. Hence, we need separate integrity constraints for

each local path, and also a constraint to assure strictness among each pair of paths.

Strictness within each local path between categories ci and cj can be checked by a

functional dependency between the attributes, Aci and Acj in the corresponding path

table. In addition, in order to assure strictness among each pair of paths, we must

impose a functional dependency on the union of tuples in both path tables. More

specifically, in the set of tuples belonging to both of these path tables, each value

of Aci is related to exactly one value of Acj . This constraint can be expressed using

equality generating dependencies [3]. The EGDs we need here are much simpler than

those needed for snowflake schema (cf. Section 3.5.1).

Definition 4.4. [3, 10, 31] In relational databases, an equality generating dependency

between two relational tables is formalized as follows:

R1.X1 = R2.X2 = R1.Y1 = R2.Y2 (4.1)

In Equation 4.1, R1 and R2 are two relational tables. Xi and Yi are attributes of table

Ri (i=1,2). For these attributes, we have dom(X1) ∩ dom(X2) ̸= ∅, and dom(Y1) ∩ dom(Y2)

̸= ∅. A database instance satisfies the above constraint, if the following expression is

always true.

∀t1, t2((R1(t1) ∧R2(t2)) → ((t1[X1] = t2[X2]) → (t1[Y1] = t2[Y2])))

�
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Basically, equality generating dependencies say that, if a certain pattern of entries

appears, then a certain equality must hold. Functional dependencies are considered

as a special case of EGDs.

Based on the above discussion, the following rules map strictness to ICs in path

database. Rule (III) shows how to check strictness for each local path between cat-

egories ci and cj, using functional dependencies. Rule (IV) represents strictness for

every pair of these local paths with an equality generating dependency.

(III) (FD generation)

(ci → cj) 7→path {RP: Aci → Acj | P is a B2A path with ci, cj ∈ P}.

(IV) (EGD generation)

(ci → cj) 7→path {(RPm.Aci=RPn.Aci → RPm.Acj = RPn.Acj) | Pm, Pn is a pair of

B2A paths with ci, cj ∈ Pm ∩ Pn}. 2

Notice that rule (III) can be obtained as a special case of Rule (IV).

Example 4.6. (examples 1.4 and 2.4 continued) In this example, we generate the

set of integrity constraints needed for checking strictness in the Customer dimension,

through the path database of Figure 4.1. According to Definition 2.3, strictness should

be checked for every pair of categories in the dimension schema. As mentioned before,

we are not concerned with checking strictness between All and other categories. Using

rule (III), the set FSS is translated to the following set of functional dependencies:

RP Cus
1 : {ACustomer → AGender, ACustomer → ASegment, AGender → ASegment}.

RP Cus
2 : {ACustomer → ALocation, ACustomer → ASegment, ALocation → ASegment}.

The above set can be minimized to the following irreducible set of FDs:

RP Cus
1 : {ACustomer → AGender, AGender → ASegment}. (4.2)

RP Cus
2 : {ACustomer → ALocation, ALocation → ASegment}. (4.3)

2Slightly abusing notation, here we are treating paths as sets of categories.
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Except for (Customer,Segment) and (Customer,All), all pairs of category in the Customer

dimension reside in only one B2A path. Since All is a special category with only one

element, all, there is no need to check strictness between Customer and All through

different paths. Hence, Customer and Segment are the only categories that must be

applied to rule (IV).

RP Cus
1 .ACustomer = RP Cus

2 .ACustomer → RP Cus
1 .ASegment = RP Cus

2 .ASegment. (4.4)

�

According to mapping rule (II), a broken p-instance generates NULL values in the

path database. As a result, we might be faced with evaluation of the above ICs

against instances containing NULL . This is not a straightforward process, since several

semantics exist for relational database with null values. In this thesis, we use a single

null value, NULL , with similar behavior to the one in commercial database management

systems. In order to characterize IC evaluation in presence of such a null value, we

use the logic-based semantics proposed in [17].

In this study, a logical reconstruction of the relational database D is suggested.

The basis of this reconstruction is categorizing database attributes into relevant and

irrelevant groups. Attributes appearing in a given IC, ψ, are considered as relevant,

and others as irrelevant. By restricting D to its relevant attributes, a new relational

instance DRel , is obtained. The next step is to rewrite ψ as a new first-order sentence

ψN , that takes into account the possible occurrence of NULL . Based on this approach,

evaluating ψ against D is semantically equivalent to evaluation of ψN against DRel ,

where NULL is treated as any other constant 3.

D |=N ψ :⇐⇒ DRel |= ψN . (4.5)

3In particular, the unique names assumption applies to NULL , making it different from other
constants, and also equal to itself.
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(a) RPCus,Rel
1 (b) RPCus,Rel

2

Figure 4.3: DRel : Path database restricted to relevant attributes for evaluating EGD

Here, |=N denotes the (new) notion of IC satisfaction in databases in presence of NULL.

On the right-hand side of equation 4.5, we have usual first-order satisfaction, in which

NULL is considered as a constant.

Example 4.7. (example 4.6 continued) In this example, we demonstrate how to

evaluate EGD (4.4) against the path database D, in Figure 4.1. By rewriting this IC

as a usual first-order sentence, we obtain ψ:

∀c ∀g ∀s ∀a ∀l ∀s′ ∀a′((RP Cus
1 (c, g, s, a) ∧RP Cus

2 (c, l, s′, a′)) → s = s′). (4.6)

The above first-order expression does not take into account the presence of NULL with

its intended semantics. In order to logically reconstruct D, we have to restrict it to

attributes relevant for evaluating ψ. The following set contains these attributes for

our example:

Rel = {RP Cus
1 .ACustomer, RP Cus

1 .ASegment, RP Cus
2 .ACustomer, RP Cus

2 .ASegment} (4.7)

Figure 4.3 shows DRel for our example.

As the next step, ψ is rewritten as ψN , which is imposed to DRel . This transfor-

mation takes the relevant attributes into account, and the possible presence of NULL

in them.

∀c ∀s ∀s′((RP Cus,Rel
1 (c, s) ∧ RP Cus,Rel

2 (c, s′) ∧ NotNULL(c)

∧ NotNULL(s) ∧ NotNULL(s′)) → s = s′). (4.8)
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As explained before, the NotNULL is a built-in predicate, that is true only when its

argument is (symbolically) different from NULL . It is easy to check that, for c =C3,

s =S1 and s′ =S2, ψN is not true in DRel . In other words, the third tuples of tables

RPCus
1 and RPCus

2 are violating this rule. Due to the aforementioned violation and

based on rule (4.5), we have D 2N ψ, which is in line with the local non-strictness of

the Customer dimension.

On the other hand, since FDs are a special form of EGDs, it is easy to check that,

based on the given semantics, the set of FDs in 4.2 and 4.3 are not violated in our

example. �

4.5.2 Homogeneity

Assume we want to check homogeneity between category ci and its parent cj, that

is ci ⇒ cj. According to Definition 2.4, every element of ci should have at least one

direct parent in cj. If there is no parent for an element in ci , the p-instance to which

this element belongs to will be broken.

Using the path mapping rule (II), a broken p-instance (see Definition 4.3) in a

dimension results in NULL values for some attributes in the generated database tuple.

Now that we have characterized the evaluation of ICs corresponding to strictness

(FDs and EGDs) in presence of NULL, homogeneity can be checked in path database

through avoiding these NULL values.

Consider P as the B2A path that categories ci and cj belong to, P = ⟨

c1,· · · ,ci,cj,· · · ,cn ⟩. Based on Definition 4.2, in any instance of path P, p = ⟨ e1,· · · ,en ⟩,

ei+1 is the parent for element ei. If the roll up relation between categories ci and cj is

not total, ej will be equal to NULL in at least one of the instances of path P.

In order to check homogeneity between categories ci and cj, we must first find all

of the B2A paths that these categories belong to. If any of these paths has a broken

instance, the relation between these categories is heterogeneous. Rule (V) shows how
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to detect such heterogeneous relations using NOT NULL constraints.

(V) (NOT NULL generation)

(ci ⇒ cj) 7→ {NOT NULL RP.Acj | P is a B2A path with ci,cj ∈ P}.

Notice that all of the ICs introduced in (III)-(V) can be easily written as first-order

sentences of the forms (3.2) or (3.3) (as in Example 4.7).

Example 4.8. (examples 1.4 and 2.6 continued) In this example, we generate the set

of integrity constraints needed for assuring homogeneity in the Customer dimension,

through the path database of Figure 4.1. Unlike strictness, homogeneity should be

checked only for those pairs of categories that are directly connected to each other

through an edge.

According to Example 2.6, except for (Segment,All), all such pairs of categories

belong to one B2A path in the Customer dimension. For these pairs, the NOT NULL

constraint is imposed to either of the tables RPCus
1 or RPCus

2 . However, based on rule

(V), homogeneity between categories Segment and All should be checked in both tables

of Figure 4.1.

NOTNULL RP Cus
1 .{Gender, Segment, All}. (4.9)

NOTNULL RP Cus
2 .{Location, Segment, All}. (4.10)

According to Definition 4.2, the first element of p-instance never takes value NULL .

Hence, we do no need to impose the NOT NULL constraint to the first attribute of path

tables.

Based on the path database of Figure 4.1, the constraints NOT NULL {RPCus
1 .Segment,

RPCus
1 .All} are violated in the first tuple of table RPCus

1 . �
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4.6 Summary

This chapter showed that, path schema has the first property of an expressive re-

lational representation for MDDBs. Now that we have successfully translated the

multidimensional database and summarizability constraints into their relational coun-

terpart, we can move on to the second phase of our approach, which is repairing an

inconsistent path instance. We expect to repair path database via simple relational

repair operations.



Chapter 5

Repairing Path Instances

5.1 Introduction

In the previous chapter, we discussed how to represent dimension schema, dimension

instance and summarizability conditions in relational databases using path mapping.

This mapping assures that non-summarizability at multidimensional level causes some

inconsistencies in the path database. This is where the idea of relational repairs comes

into the picture. In this chapter, we aim at restoring the path database consistency

using conventional database repair approaches.

Problem Statement 5.1. Given a path relational schema R and an instance D,

which is inconsistent with respect to a set of integrity constraints Σ; what is the

appropriate semantics for obtaining a repaired path instance, D′, where D′ |= Σ. In

particular, what are the appropriate relational repair operations for the path instance;

and, how are the minimal repairs characterized (based on the notion of distance

between path instances). �

63
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5.2 Relational Repair Operation

Repairs of relational database instances have been systematically investigated (cf. [12,

26]). Generally, there are three main approaches for repairing inconsistent relational

databases:

• S-repair, which minimizes under set inclusion the set of insertions or deletions

of database tuples [4].

• C-repair, which minimizes the cardinality of the set of whole tuples, by which

the repaired instance differs from the original database instance [5].

• A-repair, which changes some attribute values in existing tuples. This repair

mechanism minimizes a numerical aggregation function over the differences be-

tween attribute values in the original tuples and their repaired versions [71].

Typically, this function represents the number of attribute value updates, and

hence, A-repair minimizes the number of attribute value changes [32].

The optimal repair semantics for a problem depends on several criteria, such as the

application domain and database properties. Here, we investigate the applicability

of the aforementioned relational repair strategies to an inconsistent path database.

The integrity constraints we introduced in Section 4.5 are particular cases of denial

constraints. For these constraints, consistency can be restored through tuple deletions

or attribute-level updates [12].

Deleting a tuple from an inconsistent path database is a feasible repair mecha-

nism, i.e. it can resolve the inconsistencies. However, this operation might not be

the best solution in all cases. As discussed in Chapter 4, tuples in path database

resemble p-instances in the dimension. Tuple deletion in path database implies re-

moving the corresponding p-instance from the dimension, which in some cases leads
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to a considerable amount of information loss at both relational and multidimensional

level.

From an attribute-based perspective, updating the value of an attribute in an

inconsistent path database is a feasible repair approach. This repair operation does

not have the information loss side effect corresponding to tuple deletion.

Example 5.1. (examples 4.6 and 4.8 continued) This example compares attribute-

based vs. tuple-based repairs for repairing a path database. Here, we are interested

in checking strictness and homogeneity between some, but not all, of the categories

in the Customer dimension. In other words, we want to have local summarizability, as

opposed to global summarizability.

Assume we want to check 1) strictness between categories Location and Segment

(Location → Segment), 2) homogeneity between categories Gender and Segment (Gender

⇒ Segment), and 3) strictness between categories Customer and Segment (Customer →

Segment).

Based on the discussions we had in Section 4.5, the following integrity constraints

must be checked to ensure the aforementioned summarizability conditions:

1. RPCus
2 :ALocation → ASegment .

2. NOT NULL RPCus
1 .ASegment .

3. RPCus
1 : ACustomer → ASegment .

4. RPCus
2 : ACustomer → ASegment .

5. RPCus
1 . ACustomer = RPCus

2 . ACustomer → RPCus
1 . ASegment = RPCus

2 . ASegment .

Checking the above ICs in the path database of Figure 4.1 reveals that, constraints

(2) and (5) are violated. In particular, the first tuple in table RPCus
1 is violating the

NOT NULL constraint, and the third tuples of tables RPCus
1 and RPCus

2 are violating the
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equality generating dependency. Now, we will discuss how to restore the database

consistency through attribute updates or tuple deletions.

At attribute level, constraint (2) can be satisfied by updating the ASegment attribute

in the violating tuple to S2. Notice that, changing the ASegment value to S1 will violate

the strictness constraint between Customer and Segment for element C1 (constraint (5)).

A C-repair or S-repair for this constraint violation would be to delete the violating

tuple (C1,M,NULL ,NULL ). As a result of this operation, at multidimensional level, the

pair (C1,M) will be removed from the set < of the dimension instance.

Constraint (5) is violated in tuples (C3, F,S1,all) and (C3, L3,S2,all). Updating the

ASegment value in the first tuple to S2, or changing the ASegment value in the second

tuple to S1 are the two possible attribute-based repair operations for this constraint

violation.

A tuple-based repair for this inconsistency would be to delete one of the afore-

mentioned violating tuples. Either of these two tuple-based repair operations implies

removing the corresponding p-instance from the Customer dimension. For instance,

deleting the first violating tuple results in removing the pairs (C3,F), (F,S1), (S1,all)

from the set < of the dimension instance. Obviously, we are losing a considerable

amount of data by performing this tuple-based repair. �

Based on the above discussions, A-repairs seem to be the most appropriate mech-

anism for restoring consistency in path database. This class of relational repairs

has been used and investigated before [36, 72, 15, 14, 55, 33], specifically for denial

constraints in [36, 14], and for FDs in [72, 15].

5.3 Minimality of Relational Repairs

As discussed before, in this thesis we aim at restoring summarizability through re-

lational repairs. An important factor in this process is to issue minimum number
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of changes to both relational and multidimensional databases. It is obvious that,

through MD2R mapping inversion, the updates made to the physical database are

reflected as changes to the multidimensional instance. Intuitively, a minimal mul-

tidimensional repair is obtained by a minimum number of changes to the original

dimension. Hence, the relational repair that causes the minimum number of updates

to the path database is preferred to other possible repairs. In our approach, we need

a cardinality-based repair semantics, as opposed to the set-inclusion-based, which is

more common in relational databases [12].

Definition 5.1. Consider a relational instance D, possibly containing NULL.

(a) An atomic update on D is represented by a triplet ⟨ R(t̄), A, v ⟩, where v is a new

value in Dom(A)r {NULL} assigned to attribute A in the database atom R(t) ∈ D.1

(b) An update on D is a finite set, ρ, of atomic updates on D (that does not assign

more than one new value to an existing attribute value t̄[A]). The instance that results

from applying ρ, i.e. simultaneously all the updates in ρ, to D is denoted with ρ(D).

(c) For a set Σ of denial constraints (for the schema of D), an update ρ on D is a

(minimal) repair if and only if: 1) ρ(D) |=N Σ, and 2) there is no ρ′, such that ρ′(D)

|=N Σ, and |ρ′| < |ρ|. �

In our case, the set Σ in Definition 5.1 is restricted to relational denial constrains

of the form (C), (D), or (E), i.e. just EGDs and NOT NULL constraints. In the rest of

this thesis, we will rely on this assumption.

According to the above definition, an atomic update changes an existing value

in the database by a new non-null value, that is already present in the database.

Obviously, this condition does not imply that, the repaired instances are NULL-free.

Example 5.2. (examples 4.6 and 4.8 continued) Consider the path database in Ex-

ample 1.4, and the integrity constraints obtained in Examples 4.6 and 4.8 for checking

1As usual in relational DBs, we denote the value for attribute A in a tuple R(t̄) with R(t̄)[A], or
simply t̄[A] when predicate R is clear from the context.
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Customer dimension summarizability in this database. The followings are candidates

to be repairs of D (for simplicity we use the tuple numbers(ids) shown in Figure 4.1):

ρPath
1 = {⟨RP Cus

1 (1 ), ASegment, S2⟩, ⟨RP Cus
1 (1 ), AAll, all⟩, ⟨RP Cus

2 (3 ), ASegment, S1⟩}

ρPath
2 = {⟨RP Cus

1 (1 ), ASegment, S2⟩, ⟨RP Cus
1 (1 ), AAll, all⟩, ⟨RP Cus

1 (3 ), AGender, M⟩,

⟨RP Cus
1 (3 ), ASegment, S2⟩}

ρPath
3 = {⟨RP Cus

1 (1), ASegment, S1⟩, ⟨RP Cus
1 (1 ), AAll, all⟩, ⟨RP Cus

2 (1), ASegment, S1⟩

⟨RP Cus
2 (3 ), ASegment, S1⟩}

ρPath
4 = {⟨RP Cus

1 (1), ASegment, S2⟩, ⟨RP Cus
1 (1 ), AAll, all⟩, ⟨RP Cus

1 (2), ASegment, S2⟩

⟨RP Cus
1 (3 ), ASegment, S2⟩, ⟨RP Cus

2 (2 ), ASegment, S2⟩}

ρPath
5 = {⟨RP Cus

1 (1), ASegment, S1⟩, ⟨RP Cus
1 (1 ), AAll, all⟩, ⟨RP Cus

1 (2), AGender, M⟩

⟨RP Cus
1 (3 ), ASegment, S2⟩, ⟨RP Cus

2 (1 ), ASegment, S1⟩}

ρPath
6 = {⟨RP Cus

1 (1), ASegment, S1⟩, ⟨RP Cus
1 (1 ), AAll, all⟩, ⟨RP Cus

1 (2), ASegment, S2⟩

⟨RP Cus
1 (3 ), ASegment, S2⟩, ⟨RP Cus

2 (1 ), ASegment, S1⟩, ⟨RP Cus
2 (2 ), ASegment, S2⟩}

All of these updates restore the consistency of the path database. However, ρPath
1

has the minimum cardinality among the above sets. Hence, according to Definition

5.1, ρPath
1 is the only minimal repair for restoring consistency in the path database

of Figure 4.1. This repair updates attribute ASegment in the third tuple of RPCus
2 from

S2 to S1. The effect of this update on the corresponding MD side is to change the

link from element L3 to category Segment. This repair also assigns element S2 as the

parent of element M, by updating the NULL values in the first tuple of table RPCus
1 . The

impact of relational repair operations at the MD level is discussed in more detail in

the next chapter.

Obviously, the aforementioned MD update is not the only possible approach for

repairing the Customer dimension. Another possible repair could be to modify the

parent of element C3 from F to M, and also create an edge from element M to S2. This
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MD update corresponds to relational repair ρPath
2 . It can be seen that, although this

repair is not minimal, it can restore summarizability at MD level.

Changing the parent of element C3 from L3 to L2 will also resolve non-strictness in

the Customer dimension. Together with the insertion of a link between elements M and

S2, this MD repair corresponds to the following relational update:

ρ′ = {⟨RP Cus
1 (1 ), ASegment, S2⟩, ⟨RP Cus

1 (1 ), AAll, all⟩, ⟨RP Cus
2 (3 ), ALocation, L2⟩,

⟨RP Cus
2 (3 ), ASegment, S1⟩}

Notice that ρ′ performs an unnecessary update on ALocation in the third tuple of

RPCus
2 , compared to ρPath

1 . Hence, based on Definition 5.1, ρ′ is not considered as a

relational repair. In other words, although the aforementioned MD update restores

summarizability in the Customer dimension, it does not have minimal effects on the

relational side. (cf. Section 7.3) �

As mentioned before, repaired path instances might not be necessarily NULL-free.

NULL values are updated as a result of NOT NULL constraint violation. Since we might

originally be interested in checking homogeneity between some, but not all, parent-

child categories, we might have attributes that are not restricted by the NOT NULL

constraint. Hence, the existence of NULL values in the repaired instance depends on the

scope of homogeneity constraint. That is, if the set Σ of relational denial constraints

is derived from a non-full set of homogeneity constraints on the corresponding MD

schema (cf. Definition 2.4(b)), a relational repair wrt Σ may still have NULLs.

Example 5.3. (example 4.8 continued) Unlike Example 4.8, here, we are interested

in checking homogeneity constraint only between categories Customer and Location,

i.e. Customer ⇒ Location. In other words, we want to impose local as opposed to global

homogeneity. In this case, according to mapping rule (V), the only NOT NULL constraint

generated is NOT NULL RPCus
2 .ALocation , but not all of the ICs in sets (4.9) and (4.10) of
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Example 4.8. This single NOT NULL constraint is satisfied in the path instance of Figure

4.1.

Assuming that the EGDs and FDs for checking strictness are the same as those

generated in Example 4.6, the path instance can be minimally repaired as shown in

Figure 5.1. The NULL values in the first tuple of table RPCus
1 are not updated, since

they do no violate any of the imposed NOT NULL constraints.

(a) Repaired RPCus
1 (b) Repaired RPCus

2

Figure 5.1: An example of a repaired path instance containing NULL

Consider the case where we want to impose the (non-official) homogeneity con-

straint between Customer and Segment. According to Definition 2.4, homogeneity con-

straints of the form ci ⇒ cj require that ci ↗ cj holds in the schema, i.e. a single link

connects ci to cj. Hence, in our case, we have to check the following local homogeneity

constraints: Customer ⇒ Gender, Gender ⇒ Segment, Customer ⇒ Location, Location ⇒

Segment. These local constraints would be translated to the following ICs: NOT NULL

{RPCus
1 .AGender , RPCus

1 .ASegment , RPCus
2 .ALocation , RPCus

2 .ASegment }. It can be easily

checked that, in this case, the first tuple of table RPCus
1 is violating the constraint

NOT NULL RPCus
1 .ASegment . Hence, the repaired instance would contain a non-null value

for attribute ASegment in this table. However, the NULL value for column AAll in table

RPCus
1 would remain unchanged in the repaired instance. �

Unlike homogeneity, ICs checking strictness are not violated by the NULL values.

The semantics introduced in Section 4.5.1 for evaluating FDs and EGDs in presence

of NULL values reveals that, NULLs are not a source of violation for these ICs. As a
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result, restoring strictness through relational repairs does not modify the NULL values

in the path database.

Example 5.4. (example 4.7 continued) In order to clarify the above discussion, con-

sider the EGD (4.4) obtained from the MD strictness constraint Customer → Segment,

and the first-order sentence (4.8), obtained in Example 4.7, for checking the satisfac-

tion of this IC in the presence of NULL.

In order to see the effect of NULL on the evaluation of strictness constraints, we

instantiate the universal sentence (4.8) on the first tuples of tables RPCus
1 and RPCus

2 ,

obtaining:

((RP Cus,Rel
1 (C1, NULL) ∧ RP Cus,Rel

2 (C1, S2) ∧ NotNULL(C1)

∧ NotNULL(NULL) ∧ NotNULL(S2)) → NULL = S2).

Due to the occurrence of NULL in relevant attributes, the antecedent of the above

implication has the false conjunct, NotNULL (NULL). Hence, the whole sentence becomes

true. In other words, although in the instance of Figure 4.1, C1 is associated to both

NULL and S2, the EGD (4.4) is not violated. This is due to the fact that NULL was

introduced as an auxiliary relational element to represent missing parents; and it

does not appear on the MD side.

In general, having NULL in the relevant attributes of rule (4.8) makes the NotNULL

predicate false, and hence the whole implication becomes true. So, it can be concluded

that, NULL values do not violate EGD (4.4). Since FDs are a special form of EGD, we

can generalize our statement; the ICs for assuring strictness in path database are not

violated by NULL values. Recall from Example 4.7 that, the aforementioned EGD is

violated in the third tuples of tables RPCus
1 and RPCus

2 . �

In general, the repairs introduced in Definition 5.1 do not generate any new NULLs,

either for satisfying constraint (III) or (IV). Every NULL value is counted as a source
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of heterogeneity in the dimension. By generating new NULL values, we are creating

another instance of homogeneity violation in the dimension. Obviously, generating

such instances is undesirable, even if imposing homogeneity to the whole dimension

is not our concern at the moment.

It should be clear by now that, in general, repairs of a relational path instance

associated to a MD instance will be NULL-free iff the homogeneity constraint is imposed

globally, i.e. to all pairs of parent-child categories. Since the violation of strictness

has nothing to do with NULL values (as shown in the previous example), the question

of occurrence of NULL in a repaired path instance depends only on the scope of the

homogeneity conditions.

Theorem 5.1. For a relational path instance D and a set Σ of relational ICs associated

to an MD instance D with a set K of MD strictness and homogeneity constraints, there

always exists a minimal repair wrt Σ. �

Proof: It suffices to build a path instance D′ obtained by an update ρ applied to D,

such that D′ |=N Σ. If such an update ρ exists, it immediately follows that there is a

minimal one.

For each attribute Ac, except the first column in each path table, select an arbitrary

value, vA
c ∈ Dom(Ac) r NULL. Assuming that every category c has at least one element

e for a given instance, the set Dom(Ac) r NULL is not empty.

The relational update ρ contains a set of atomic updates such that, in each table

RPCus
i that Ac appears, the value of this attribute is updated to vA

c
in all of the tuples.

We can show that, the instance resulted from applying ρ to D, D′ = ρ(D), satisfies ICs

of the form (C)-(E), i.e. the set Σ.

Since the values of all of the attributes (except the first one in each table) are

updated to non-null values, the NOT NULL constraints of the form (E) are all satisfied

(Note that according to Definition 4.2, the first attribute of a path table cannot be
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NULL). Moreover, because of the unique value selected for each attribute, the FDs and

EGDs of the form (C) and (D) cannot be violated. In particular, FDs are satisfied

because the value of each attribute (except the first one) in each table is the same

in all of the tuples. EGDs can not be violated since the attributes shared between

several path tables (except the first attribute) has the same value is all tables. As a

result,it holds D′ |=N Σ.

Since the set of repairs for D is finite, and there is a partial order for comparing

two repairs (see Definition 5.1), we can conclude that, there is always a minimal

relational repair for the inconsistent path instance D. �

Example 5.5. (example 5.2 continued) Figure 5.2 shows one possible repair obtained

as indicated in the proof of Theorem 5.1. In this example, we assign the following

values to each of the attributes in the path instance of Figure 4.1: vA
Gender

= M, vA
Location

= L3, vA
Segment

= S1 and vA
All

= all. Notice that, for the shared attribute ASegment , we

select one value to be applied to both tables. It can be easily checked that, the path

instance in Figure 5.2 satisfies the denial constraints defined in Examples 4.6 and 4.8.

(a) A repair for RPCus
1 (b) A repair for RPCus

2

Figure 5.2: A non-minimal repair according to Theorem 5.1

Comparing ρ to the minimal repair ρPath
1 obtained in Example 5.2 reveals that, the

former performs eight attribute updates while the latter executes only three updates.

As a result, according to Definition 5.1, ρ can not be considered as a minimal relational

repair. �
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5.4 Summary

This chapter provided the semantics for obtaining the set of minimal repairs for an

inconsistent path database. In particular, we defined attribute-based updates as the

relational repair operation, and used cardinality-based comparison in order to find

minimal repairs.

Now that we have successfully repaired the path database, it is natural to ask

about the kind of MD repairs obtained through this relational approach. We will

address this question in Chapter 7. Before that, we should propagate the relational

changes made to path database up to the multidimensional layer. In order to obtain

multidimensional repairs, our next step is inversion of path mapping. In other words,

we should translate back the repaired path instance into a new MD instance.



Chapter 6

Back to MD Instances: Inverting Path

Repairs

6.1 Introduction

In the previous chapter, we explained how to repair an inconsistent path database

based on the given integrity constraints for assuring summarizability. Now, it is the

time to retrieve a new summarizable dimension from the repaired relational instance.

To achieve this goal, we must study the invertibility of the MD2R mapping, T ,

introduced in Chapter 4. Any information loss in mapping the MDDB to the path

database results in an incomplete retrieval of a dimension from the repaired path

instance [30].

Problem Statement 6.1. Given a path schema R and a repaired path database

D, what are the mapping inversion rules for obtaining a dimension schema S and a

repaired dimension instance, D. �

75
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6.2 Schema Mapping Inversion

A schema mapping is a specification that describes how data structured under one

schema is to be transferred to another schema. The first schema is referred to as

source, and the second one is called target schema. Recently, a lot of attention has

been paid to the specification and manipulation of schema mappings [11, 57]. Merge,

composition and inverse are among the operators defined for manipulating the schema

mappings [11, 29].

An inverse of a schema mapping T −1 is an ideal mapping to bring the data ex-

changed through T back to the source. Intuitively, existence of such mapping depends

on whether or not information is lost through T [29, 30].

In general, in schema mapping, we do not assume to have a single source, or a single

target schema. In other words, there is a many-to-many relationship between the

source and target instances. This assumption complicates the semantics for inverse

operator.

The standard algebraic definition of inverse operator is given in [57]. According

to this definition, if a pair of instances (S1, S2) are related to each other through a

schema mapping, the inverse of this mapping contains the pair (S2, S1). However,

this definition was intended for a generic model management context, and it has some

weaknesses in the schema mapping context [29].

In [29], the notion of schema mapping inversion is based on another algebraic

property of inverses, that the composition of a function with its inverse is the identity

mapping. In particular, if a mapping T −1 is an inverse of a mapping T , then T ◦

T −1 should be the identity mapping. By identity mapping, we mean the one in which

every element is mapped to itself. A more precise formalization of this notion can be

found in [7].

In our case, the MD2R mapping T has two components, the schema and the
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instance transformations; the former also including a transformation of a set of con-

straints. We expect this mapping to have an inverse T −1 with the following properties:

1. The mapping T should be uniquely invertible. In MD2R mapping T , there

is a one-to-one relationship between the multidimensional instances and rela-

tional instances. In other words, for each source instance, there is only one

target instance. Hence, we expect to obtain a unique multidimensional instance

by applying T −1 to the relational instance. Recall from Chapter 3 that, one

of the weaknesses of star schema was its inability to meet this criterion, i.e.

the inversion of star database could generate more than one multidimensional

instance.

2. The composition of the MD2R mapping T with its inverse T −1 should generate

the identity mapping. In particular, it should hold that T −1 (T (S)) = S, where

S is the dimension schema, and T −1 (T (D)) = D, where D is the dimension

instance.

3. Inverting the path schema and instance, i.e. computing T −1 (R) and T −1 (D)

should be done in polynomial time in the sizes of the relational schema R and

the relational instance D.

4. If T −1 is applied to a repaired path instance, the resulting MD instance should

satisfy the original summarizability constraints K. More precisely, since for a

repair ρ, it holds ρ(D) |= Σ, where Σ is the set of ICs corresponding to K, we

expect that T −1 (ρ(D)) |= K.

In the next section, we will first determine the domain of T −1 , then specify the

transformation rules in T −1 , and finally show that T −1 meets the aforementioned

invertibility criteria.
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6.3 Inverting the Path Mapping

Inverting the path mapping T is a simple process. More precisely, the mapping T −1

is defined on a triples ⟨ R, Σ, D ⟩, where D is an instance over the path schema R,

and Σ is a set of ICs such that:

1. For every relation in R, such as R[Ac1 , · · · , Acn ] , it holds that Acn = AAll . In other

words, the last attribute of all of the relations in R is the same. In addition, the

relations in R also share the first attribute, Ac1 . This is due to the assumption

of a single base category in the MD instance. Notice that, relations in R may

share attributes other than Ac1 and Acn as well.

2. For every relation in R, such as R[Ac1 , · · · , Acn ], it holds that NULL /∈ Dom(Ac1),

NULL ∈ Dom(Aci) (2 ≤ i ≤ n), and Dom(Acn) = {NULL, all}.

3. For every tuple in D, such as R(e1, · · · , en), if ei = NULL, it holds that ej = NULL

for i < j ≤ n.

4. The ICs in Σ are of the form a) NOT NULL Ri.Aj or b) Ri.Ak = Rj .Al → Ri.Am =

Rj .An, where Ri and Rj are two not necessarily distinct relations in R.

5. The relational instance D does not necessarily satisfy Σ. Although, in our

approach, it holds that D |= Σ (since D is a repaired path instance); in general,

for the definition of T −1 , we do not assume that the constraints in Σ are all

satisfied by D.

Intuitively, inverting the path schema is a straightforward process. The set of at-

tributes of all path tables resembles the set of categories for the dimension schema.

Since the list of attributes in each table represents a B2A path in the dimension

schema, the edges between these categories can be retrieved according to Definition

4.1 (rule (VI) defining T −1 (R)).
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Similarly, the inversion of instance mapping, T −1 (D) can be done by considering

each tuple as a p-instance in the dimension instance. Each p-instance might add

new elements, or links to the dimension instance (rule (VII)). Obviously a unique

dimension is obtained as a result of this mapping inversion. In other words, there

is no uncertainty in any stage of path mapping inversion. This mapping inversion is

formalized as follows.

(VI) For each attribute A appearing in some R ∈ R, create a category (name) cA ∈ C. The

set of so-created categories is denoted with C.

For each relational predicate R[A1,. . ., An], create an edge from cAi to cAi+1 for 1 ≤

i ≤ n− 1, in the dimension schema.

(VII) For each relational tuple R(e1,. . ., en), with R[A1,. . ., An], if ei ̸= NULL , add ei to

the set of elements M for 1 ≤ i ≤ n, where δ(ei)=cAi , and insert an edge from ei to

ei+1 for 1 ≤ i ≤ n− 1, in the dimension instance, where ei,ei+1 ̸= NULL .

Example 6.1. (example 5.2 continued) Figure 6.1a shows the repaired path database

according to the minimal repair obtained in Example 5.2. Using the above inversion

rules, this repaired database instance is mapped to the summarizable dimension in

Figure 6.1b.

Inversion of schema mapping can be achieved by applying rule (VI) to the rela-

tional tables of Figure 4.11:

RP Cus
1 [ACustomer, AGender, ASegment, AAll] 7→ {Customer, Gender, Segment, All} ⊆ C,

Customer ↗ Gender, Gender ↗ Segment, Segment ↗ All.

RP Cus
2 [ACustomer, ALocation, ASegment, AAll] 7→ {Customer, Location, Segment, All} ⊆ C,

Customer ↗ Location, Location ↗ Segment, Segment ↗ All.

1Naturally, identifying the generated category cA
c

simply with c.
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By applying rule (VII) to the set of tuples in each path table, the dimension instance

in Figure 6.1b is generated.

RP Cus
1 (C1, M, S2, all) 7→ {C1, M, S2, all} ⊆ M, δ(C1) = Customer, δ(M) = Gender,

δ(S2) = Segment, δ(all) = All, C1 < M < S2 < all.

RP Cus
1 (C2, F, S1, all) 7→ {C2, F, S1, all} ⊆ M, δ(C2) = Customer, δ(F) = Gender,

δ(S1) = Segment, δ(all) = All, C2 < F < S1 < all.

RP Cus
1 (C3, F, S1, all) 7→ {C3, F, S1, all} ⊆ M, δ(C3) = Customer, δ(F) = Gender,

δ(S1) = Segment, δ(all) = All, C3 < F < S1 < all.

RP Cus
2 (C1, L1, S2, all) 7→ {C1, L1, S2, all} ⊆ M, δ(C1) = Customer, δ(L1) = Location,

δ(S2) = Segment, δ(all) = All, C1 < L1 < S2 < all.

RP Cus
2 (C2, L2, S1, all) 7→ {C2, L2, S1, all} ⊆ M, δ(C2) = Customer, δ(L2) = Location,

δ(S1) = Segment, δ(all) = All, C2 < L2 < S1 < all.

RP Cus
2 (C3, L3, S1, all) 7→ {C3, L3, S1, all} ⊆ M, δ(C3) = Customer, δ(L3) = Location,

δ(S1) = Segment, δ(all) = All, C3 < L3 < S1 < all.

This example shows that, path instance is uniquely invertible to a MD instance using

rules (VI) and (VII). In other words, there is a one-to-one relationship between the

relational (source) instance and multidimensional (target) instance (property (1) of

invertibility).

Furthermore, it can be easily checked that the generated dimension in Figure 6.1b

is summarizable, i.e. globally strict and homogeneous. Since it holds D |= Σ for the

path instance of Figure 6.1a, it follows that D |= K for the repaired Customer dimension.

This fact is in compliance with property (4) of invertibility mentioned in the previous

section. �

Theorem 6.1. For a relational instance D over a path schema R, computing T −1

(R) and T −1 (D) takes polynomial time in the sizes of the path schema and instance
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(a) Repaired path database (b) Repaired Customer dimen-

sion

Figure 6.1: Retrieving a summarizable dimension from the repaired path schema

(dashed lines resemble inserted edges)

(property (3) of invertibility).

Proof: We need to show that T −1 (R) and T −1 (D) are computable through rules

(VI) and (VII) in polynomial time in the sizes of the path schema and instance. In

particular, for rule (VI), assuming that arity(Ri) denotes the number of attributes

for relation Ri, the total cost of inverting the schema is equal to 2 ∗Σiarity(Ri). Here,

generating the set of categories C, and converting the attributes of relation Ri to a

B2A path in dimension schema have the same cost, which is Σiarity(Ri). In case of

instance mapping (rule (VII)), the total cost would be equal to Σicard(Ri) ∗ arity(Ri),

where the number of tuples for relation Ri is denoted by card(Ri). The term

card(Ri) ∗ arity(Ri) is equal to the total time needed for creating the p-instances in the

dimension instance from the set of tuples belonging to Ri. In general, the total time

needed for inverting a path instance is 2 ∗ Σiarity(Ri) + Σicard(Ri) ∗ arity(Ri). Hence,

it can be concluded that, the MD model is generated in polynomial time in size of

the relational schema and instance. �
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Example 6.2. (example 6.1 continued) In this example, we verify property (2) men-

tioned at the beginning of this section for invertibility. Consider the schema of the

Customer dimension, S = ⟨C,↗⟩ as formalized in Example 2.1. In order to simplify the

calculations, we introduce a smaller dimension instance for this schema, D = ⟨M, <⟩:

M = {C1, F, L1, S1, all}

< = {(C1, F), (C1, L1), (F, S1), (L1, S1), (S1, all)}

As elaborated in Example 4.1, the Customer dimension is transformed to the relational

database of Figure 1.9 via path mapping (rules (I) and (II)):

T (S) = T (⟨C,↗⟩) = {RP Cus
1 [Customer, Gender, Segment, All],

RP Cus
2 [Customer, Location, Segment, All]}

T (D) = T (⟨M, <⟩) = {RP Cus
1 (C1, F, S1, all), RP

Cus
2 (C1, L1, S1, all)}

Now, applying rules (VI) and (VII) to the path database of Figure 1.9 would re-

generate the Customer dimension:

T −1(T (S)) = T −1({RP Cus
1 [Customer, Gender, Segment, All],

RP Cus
2 [Customer, Location, Segment, All]}) = S

T −1(T (D)) = T −1({RP Cus
1 (C1, F, S1, all), RP

Cus
2 (C1, L1, S1, all)}) = D

As a result, we have T −1 (T (S)) = S and T −1 (T (D)) = D. In other words, compo-

sition of path mapping and its inverse would result in the identity mapping. It can

be easily checked that, this property holds for the dimension instance of Figure 1.4b

as well. More specifically, the inverse of path mapping introduced by the set of rules

(VI) and (VII) is in compliance with the notion of mapping inversion proposed by

[29, 7] (property (2)). �
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6.4 Summary

This chapter showed that, the mapping from the MD instance to the path database

is uniquely invertible. In other words, the path-based approach in moving from

multidimensional to relational layer assures no information loss.

Now that we have obtained new summarizable dimensions, we have to talk about

the characteristics of these MD repairs that are obtained going through the relational

route. Our hypothesis is that, the relational repair semantics proposed in Chap-

ter 5 results in repairs that are minimal from both multidimensional and relational

perspectives. We will investigate on this hypothesis in the next chapter.



Chapter 7

A Purely MD Repair Semantics

7.1 Introduction

So far, we have defined a repair semantics for MD databases wrt summarizabil-

ity constraints. However, our approach is indirect, i.e. we do not address non-

summarizability at MD level. In particular, we introduced a mapping T to translate

a non-summarizable dimension instance D over a schema S wrt summarizability con-

straints K, to its relational counterparts, i.e. a path instance D over relational schema

R which is inconsistent wrt the set of ICs Σ. We introduced the relational repair se-

mantics for obtaining the set of minimal attribute-based repairs for D, i.e. Rep(D,Σ).

In the previous chapter, we showed that, through applying T −1 to Rep(D,Σ), we get a

set of MD instances D′ that satisfy K. Here, we will talk about the properties of D′.

In particular, we will discuss the kind of repairs that are obtained going through the

relational route.

7.2 MD Repair Semantics

Definition 7.1. Let D be an MD instance, K be a set of local summarizability con-

straints, D be the relational instance T (D), and Σ be the class of relational ICs

84
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obtained from K. An MD instance D′ is a path repair of D wrt K, iff there is D′ ∈

Rep(D,Σ), such that D′ = T −1 (D′). Rep(D,K) denotes the class of path repairs of D

wrt K. �

In our approach, non-summarizability is tackled by repairing the underlying rela-

tional database. The relational repairs used here are those that update the database

tuples, and leave the database schema unchanged. As a result, the new dimen-

sion obtained from inverting the MD2R mapping has the same schema as the non-

summarizable original dimension. More specifically, since we do not introduce any

new virtual element or category for repairing the dimension, the database repair op-

erations are reflected only as insertion or deletion of edges in the dimension instance.

In particular, the relational repairs that address the NOT NULL constraint violation, i.e.

heterogeneity, result in insertions of edges in D, and those that tackle non-strictness

(EGD violation), might cause both insertions and deletions of links. Hence, it can be

said that, our approach is a special type of instance-based (data-based) repair mech-

anism. In the next section, we will compare our dimension repairs with results from

existing instance-based MD repair approaches like [13, 18, 22, 24, 62].

7.3 Correspondence to Other MD Repairs

In [62, 41], non-summarizability is tackled by adding new virtual elements to the di-

mension instance. This approach creates virtual parents for elements causing hetero-

geneity. On the other hand, non-strictness is resolved by combining multiple parents

belonging to a single element. For the Customer dimension, inserting element S′ as

the virtual parent for element M, restores homogeneity. Regarding non-strictness, we

can merge elements S1 and S2 into one virtual element, to resolve the issue of mul-

tiple parents. Obviously, this repaired dimension is not comparable to our results;

since in our approach, we do not introduce any virtual value either at relational or
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multidimensional level.

In order to address non-strictness, [22] introduced an approach for repairing the

dimension instance through minimal deletion of edges between the elements. This

study suggests a level-based deletion of edges starting from the lowest level in the

dimension instance. In other words, the removal priority is given to edges that are in

the lower levels of the hierarchy. Although this approach resolves non-strictness, it

might create a heterogenous dimension, which itself violates summarizability.

Example 7.1. (example 6.1 continued) Figure 7.1 shows one possible repair suggested

by [22] for the Customer dimension. Since this approach assumes the original dimension

to be homogeneous, it does not resolve heterogeneity between categories Gender and

Segment. As can be seen in Figure 7.1, removing the link between C3 and L3 creates

another partial roll up relation, RLocation
Customer, and also makes the Customer dimension

incomplete. From a path-based perspective, this approach changes the p-instance

⟨C3,L3,S2,all⟩ to the broken p-instance ⟨ C3,NULL,NULL,NULL⟩. Propagating this change to

the underlying path schema violates the NOT NULL constraints obtained in Example 4.8

for checking homogeneity. This simple example shows that, in general there might be

no correspondence between the minimal repairs obtained in [22], and those generated

by our approach. �

Figure 7.1: Minimal repair obtained in [22] for the Customer dimension
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Deletion or insertion of edges between the elements in the dimension instance

is another repair mechanism suggested by [13, 18, 24]. [13] uses this approach to

restore strictness, assuming that the original dimension is homogeneous. [18] (cf.

[24]) proposes a more general repair mechanism without making any assumption

about the original dimension. Here, a minimal repair is defined as a new dimension

that is consistent with respect to the summarizability constraints, and is obtained by

applying a minimal number of updates (edge insertions or deletions) to the original

dimension. In these studies, edges are deleted or inserted in an iterative manner, until

summarizability is satisfied in the dimension instance.

Definition 7.2. [18, 24] Let D be an MD instance over schema S and K be a set of

local summarizability constraints. An MD instance D′ over schema S is said to be a

repair for D wrt K iff D′ |= K.

A minimal repair for D wrt K is a repair D′, such that the distance between D

and D′, dist(D,D′), is minimum among all of the repairs for D, where the distance

dist(D,D′) is the size of the symmetric difference between the child/parent relations

of the two dimensions. �

In consequence, the class of repairs in [18], denoted by Repbch(D,K), is compared

to our class Rep(D,K).

Example 7.2. (examples 5.2 and 6.1 continued) Figure 7.2 shows the set of minimal

repairs generated by [18], for the Customer dimension in Figure 1.4.

Dimension repair D1 in Figure 7.2a is similar to the dimension we obtained in

Example 6.1. This dimension corresponds to the only minimal relational repair we

found in Example 5.2, ρPath
1 . However, our approach does not generate repairs D2 and

D3 for the Customer dimension.

Consider repair D3 in Figure 7.2c. It can be checked that using repair ρPath
2 in

Example 5.2, and the inversion rules (VI) and (VII) in Chapter 6, we can obtain the
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(a) D1 (b) D2 (c) D3

Figure 7.2: Minimal repairs obtained in [18] for the Customer dimension, Repbch(D,K)

(dashed lines resemble inserted edges)

same dimension as D3. However, since ρPath
2 is not a minimal relational repair, we

don’t generate D3 as a repair for the Customer dimension.

For D2 the situation is the same. This MD repair corresponds to the relational

update ρ′ obtained in Example 5.2. Recall from this example that, ρ′ can not be

considered as a relational repair for path database, since it performs unnecessary

updates. As a result, D2 is not generated by our approach as a minimal MD repair.

Although repairs D2 and D3 are obtained through a minimum number of changes

to the Customer dimension, their effect on the underlying path schema is not minimal.

In fact, D1 is the only repair that is minimal from both multidimensional and relational

perspectives. �

So far, we have compared the relational effects of MD repairs D1, D2 and D3 on

the path schema. However, it would be interesting to consider these repairs effects

on star and snowflake as well.

Due to the flat structure of the star schema, the multidimensional repair operations

may have no effect on the underlying database. For example, the insertion of an edge

between elements M and S2 does not change the star schema shown in Figure 3.1. As

discussed before (see Section 3.3.1), star schema is not expressive enough to check
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heterogeneity through ICs. An obvious outcome of this property is that, star can

not properly reflect the repair operations for restoring homogeneity. However, star

schema might be affected by some multidimensional repair operations. In general,

insertion of a new edge may result in column updates, and the deletion of an edge can

cause tuple deletion or column updates.

Example 7.3. (example 7.2 continued) Dimension repairs D1, D2 and D3 result in

the following relational repairs for the star schema of Figure 3.1. It can be checked

that, based on Definition 5.1, ρStar1 is the minimal relational repair for this database.

D1 ⇒ ρStar1 = {⟨R(4 ), ASegment, S1⟩}

D2 ⇒ ρStar2 = {⟨R(3 ), ALocation, L2⟩, ⟨R(4 ), ALocation, L2⟩, ⟨R(4 ), ASegment, S1⟩}

D3 ⇒ ρStar3 = {⟨R(3 ), AGender, M⟩, ⟨R(4 ), AGender, M⟩, ⟨R(3 ), ASegment, S2⟩}

�

In the snowflake schema, the columns with referential constraint resemble the

edges in the dimension instance. Generally, adding a new edge, results in a reference

update, and deleting an edge, causes either tuple deletion or reference update.

Example 7.4. (example 7.2 continued) Dimension repairs in Figure 7.2 correspond

to the following relational repairs for the snowflake database of Figure 3.3. According

to Definition 5.1, all of these relational repairs are minimal.

D1 ⇒ ρ
Snowflake
1 = {⟨RLocation(3 ), A

Segment, S1⟩, ⟨RGender(1 ), A
Segment, S2⟩}

D2 ⇒ ρSnowflake
2 = {⟨RCustomer(3 ), A

Location, L2⟩, ⟨RGender(1 ), A
Segment, S2⟩}

D3 ⇒ ρSnowflake
3 = {⟨RCustomer(3 ), A

Gender, M⟩, ⟨RGender(1 ), A
Segment, S2⟩}

�

The above discussions suggest that, Definition 7.2 introduces MD repairs that

might not have minimal effects on the underlying path database. We showed that,
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this statement can be generalized to the star schema as well, i.e. not all of the MD

repairs in Repbch(D,K) result in minimal changes to the star database.

This fact implies a difference between the properties of MD repairs in [18] and

our approach. The next example shows that, in general, the classes of Rep(D,K) and

Repbch(D,K) are disjoint.

Example 7.5. (example 7.2 continued) Consider the dimension schema for the

Customer dimension shown in Figure 1.4a. In this example, we introduce an alter-

native instance for this schema, D, which is brought in Figure 7.3. For simplicity,

bold edges are used to denote multiple edges, connecting each element at the bottom

end to the single and same element at the top end. The same set of ICs obtained in

Examples 4.6 and 4.8 will be used here for checking global strictness and homogeneity.

It can be easily checked that D is non strict, since D ̸|= Customer → Segment. Notice

that elements C1, · · · , C5 have two grand parents, S1 and S2 in the Segment category.

Figure 7.3: A non-strict instance for the Customer dimension

The corresponding path database for D is shown in Figure 7.4. Notice that, the

number of tuples in both RPCus
1 and RPCus

2 is 20, but for simplicity, we demonstrate

the tables in a somehow compact mode.

According to Definition 5.1, there are two minimal repairs for the path relational
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(a) Table RPCus
1 (b) Table RPCus

2

Figure 7.4: Path database D

instance D:

ρ1 = {⟨RP Cus
1 (1, · · · , 5), ASegment, S2⟩, ⟨RP Cus

1 (1, · · · , 5), AGender, M⟩}

ρ2 = {⟨RP Cus
2 (1, · · · , 5), ASegment, S1⟩, ⟨RP Cus

2 (1, · · · , 5), ALocation, L1⟩}

It holds |ρ1| = |ρ2| = 10. Using inversion rules (VI) and (VII), the corresponding MD

repairs, D1 and D2, respectively, are those in Figure 7.5. Notice that, each of these

MD repairs performs 10 edge insertions/deletions to the original dimension instance

of Figure 7.3.

(a) D1 (b) D2

Figure 7.5: Minimal repairs in Rep(D,K) for the Customer dimension

On the other hand, the MD repairs belonging to Repbch(D,K) are shown in Figure

7.6.

Each of these MD repairs is obtained by performing 4 edge insertions/deletions.

Hence, the repairs in Figure 7.5, D1 and D2, can not be considered as minimal based
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(a) Dbch
1 (b) Dbch

2

Figure 7.6: Minimal repairs in Repbch(D,K) for the Customer dimension

on [18], because they modify more links in the dimension instance.

On the other hand, the effect of repairs Dbch
1 and Dbch

2 on the underlying path

instance is not minimal:

Dbch
1 ⇒ ρbch1 = {⟨RP Cus

1 (1, · · · , 5), ASegment, S2⟩, ⟨RP Cus
1 (6, · · · , 11), ASegment, S2⟩,

⟨RP Cus
2 (6, · · · , 11), ASegment, S2⟩}

Dbch
2 ⇒ ρbch2 = {⟨RP Cus

1 (12, · · · , 20), ASegment, S1⟩, ⟨RP Cus
2 (1, · · · , 5), ASegment, S1⟩,

⟨RP Cus
2 (12, · · · , 20), ASegment, S1⟩}

It can be easily checked that |ρbch1 | = 17, and |ρbch2 | = 23. Hence, these relational

updates can not be considered as minimal relational repairs for the instance in Figure

7.4. Thus, in this example, the classes Rep(D,K) and Repbch(D,K) are disjoint. �

Although the repair classes Rep(D,K) and Repbch(D,K) are incomparable under set

inclusion, it is still worth comparing these two classes for our ongoing example, in

order to be able to characterize our MD repairs in pure MD terms.
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7.4 Modified Notion of Minimality for Dimension

Repairs

In this section, we would like to find the difference between D1, and the other two

repairs in Figure 7.2. By characterizing this difference in multidimensional terms, we

can propose a new definition for MD repairs.

Example 7.6. (example 7.2 continued) In this example, we investigate on the edges

inserted or deleted by each of the repairs in Figure 7.2. In all of these repairs, an

edge is inserted between elements M and S2 for resolving heterogeneity. However, each

of these repairs resolve non-strictness in its own unique way. Notice that, the edges

modified by repairs D2 and D3 belong to the first level of the dimension instance,

while in repair D1 the modified links belong to the second level of the hierarchy.

Dimension repair D2 changes the link between element C3 and category Location. In

path mapping terms, this repair modifies the p-instance ⟨C3,L3,S2,all⟩ to ⟨C3,L2,S1,all⟩.

On the other hand, MD repair D1, updates the same p-instance to ⟨C3,L3,S1,all⟩.

In other words, repair D2 causes more changes to the p-instances of the Customer

dimension, compared to D1. For dimension repair D3 the story is the same. �

The above example suggests that, modifying different edges in dimension instance

might have different effects on the underlying database. More specifically, edges

should be prioritized for modification in a repair process. The notion of minimality

should not only include the number of edges modified, but also the effect of that edge

on the relational side. So, we need some a mechanism to measure this relational effect

with MD parameters.

Definition 7.3. Let D and D′ be dimension instances over the same MD schema S

and active domain M and category association function δ.
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(a) The sets of insertions, deletions and modifications as a result of updating D into

D′ are, respectively:

ins(D,D′) = { (e1, e2) ∈ (<D′ r <D) | thereisnoe3with(e1, e3) ∈ (<D r <D′)}.

del(D,D′) = { (e1, e2) ∈ (<D r <D′) | thereisnoe3with(e1, e3) ∈ (<D′ r <D)}.

mod(D,D′) = { (e1, e2, e3) | (e1, e2) ∈ (<D′ r <D) and(e1, e3) ∈ (<D r <D′)}.

(b) The cost of updating D into D′, denoted ucost(D,D′) is given by:

ucost(D,D′) =
∑

(e1,e2) ∈ (ins(D,D′)∪del(D,D′))

|α(e1, e2)| × |β(e2)| +
∑

(e1,e2,e3) ∈ mod(D,D′)

|α(e1, e2)| × |γ(e2, e3)|,

with:

α(e1, e2) = {p | p ∈ InstD(P ), {δ(e1), δ(e2)} ⊆ P, e1 ∈ p},

β(e) = { e′ ∈ M | e <∗
D e′}, and γ(e2, e3) = {e′ ∈ M | e2 <∗

D e′, but not e3 <∗
D e′}. �

Intuitively, the cost of updating D to D′ can be interpreted as the number of

changes made to the elements of p-instances belonging to D. In relational terms, this

value is equal to the number of attribute updates, as a result of the MD updates. To

calculate this value, we consider each edge change separately, as described in the next

paragraph. The sum of the number of attribute modifications for all changed edges

(e1, e2) equals the total number of attribute value updates needed for updating D to

D′, which is captured by ucost.

For computing the number of attribute updates resulted from each edge modi-

fication (e1, e2), we consider two parameters: the number of tuples affected by this

edge change, and the number of attribute values in each of these tuples that will be

updated. In Definition 7.3, α(e1, e2) represents the former parameter, and β and γ

capture the latter.

In particular, α reflects the set of p-instances that will be updated by changing

edge (e1, e2). The size of this set shows the number of tuples that will be affected as a
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result of this edge change. Now, for measuring the number of changes made to each p-

instance, we take into account the discussion in Example 7.6; based on the level of the

edge being modified, the amount of changes made to the p-instances varies. Hence,

Definition 7.3 introduces two factors β and γ such that, for each aforementioned p-

instance in α(e1, e2), |β| and |γ| represent the number of changes made to the elements

proceeding e2 in the p-instance, depending on whether the edge is inserted/deleted

or modified. Thus, ucost(D,D′) shows the total number of changes made to the set of

p-instances, i.e. the total number of attribute value updates that are needed on an

underlying path instance for updating D into D′.

Example 7.7. (example 7.6 continued) In this example, we will calculate the cost of

updating the Customer dimension to each of the dimensions D1, D2 and D3 in Figure

7.2. The first step in this process is to find the set of edge changes, namely, insertions,

deletions and modifications:

ins(D,D1) = {(M, S2)}, del(D,D1) = ∅, mod(D,D1) = {(L3, S1, S2)},

ins(D,D2) = {(M, S2)}, del(D,D2) = ∅, mod(D,D2) = {(C3, L2, L3)},

ins(D,D3) = {(M, S2)}, del(D,D3) = ∅, mod(D,D3) = {(C3, M, F)},

Now, ucost for each of these MD repairs can be calculated as follows:

ucost(D,D1) = |α(M, S2)| × |β(S2)|+ |α(L3, S1)| × |γ(S1, S2)|

ucost(D,D2) = |α(M, S2)| × |β(S2)|+ |α(C3, L2)| × |γ(L2, L3)|

ucost(D,D3) = |α(M, S2)| × |β(S2)|+ |α(C3, M)| × |γ(M, F)|
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So, we need to compute the sets α, β and γ for each of the specified edge changes:

α(M, S2) = {⟨C1, M, NULL, NULL⟩},

α(L3, S1) = {⟨C3, L3, S2, all⟩},

α(C3, L2) = {⟨C3, L3, S2, all⟩},

α(C3, M) = {⟨C3, F, S1, all⟩}

β(S2) = {S2, all}

γ(S1, S2) = {S1}

γ(L2, L3) = {L2, S1}

γ(M, F) = {M, S2}

With these elements, we can compute the update costs for each case:

ucost(D,D1) = |α(M, S2)| × |β(S2)|+ |α(L3, S1)| × |γ(S1, S2)| = 1× 2 + 1× 1 = 3,

ucost(D,D2) = |α(M, S2)| × |β(S2)|+ |α(C3, L2)| × |γ(L2, L3)| = 1× 2 + 1× 2 = 4,

ucost(D,D3) = |α(M, S2)| × |β(S2)|+ |α(C3, M)| × |γ(M, F)| = 1× 2 + 1× 2 = 4.

We can see that D1 provides the least update cost for the original instance D, i.e. the

minimum number of changes to the relational database. This fact is consistent with

the observations made in Example 6.1: D1 is the only minimal MD repair for D that

also corresponds to a minimal relational repair.

Notice that, the update cost for each of the MD repairs D1, D2 and D3 is the

same as the number of changes made to the p-instances belonging to D, and also

the same as number of attribute-value (column) updates (the |ρ|s) performed by the

corresponding relational repairs (see Example 5.2). �

Lemma 7.1. Let D be an instance for the MD schema S, and K be a set of local

summarizability constraints over S. Let D and Σ be the corresponding elements on

the path relational side, and ρ an update of D. For the MD instance D′ for S with D′

= T −1(ρ(D)), it holds: ucost(D,D′) = |ρ|.
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Proof: The number of attribute value updates caused by ρ is equal to the number

of changed tuples multiplied by the number of attribute values updated in each of

them. In the following, we verify that the ucost function computes these values.

Obviously, attribute values change only as a result of inserting/deleting/modyfing

an edge in the MD instance (cf. Definition 7.3). ucost considers each edge change

separately, computes the aforementioned values for it and then sums up the computed

values for all edge changes occurred in the MD update.

Now, for every such edge change, the number of p-instances containing that edge

represents the number of tuples that will be modified in the path database. The

set α for a given edge in Definition 7.3 contains those p-instances. For each affected

tuple, we need to compute the number of attributes in the path database that will

be updated as a result of such edge change. This computation depends on whether

the edge was inserted, deleted or modified. Multiplying this value by the number of

affected tuples (those in its |α|-set) equals the total number of changed columns for

such edge change.

In case of inserting or deleting an edge (e1, e2), the number of attribute value

updates for each tuple is equal to the number of ancestors of element e2, which is

represented through |β|. On the other hand, for the case of an edge modification,

say (e1, e2) to (e1, e3), we need to exclude common ancestors of e2 and e3 from the

computation, which is taken care of by function |γ|.

Finally, ucost(D,D′) represents the sum of all of the above values computed for all

edge changes, and is therefore equal to the total number of column updates needed

to update dimension D into D′. �

From this lemma, we easily obtain a characterization of the MD repairs generated

by our relational approach, in pure MD terms.

Theorem 7.1. Let D be an instance for the MD schema S, and K be a set of local
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summarizability constraints over S. For every instance D′ of S, it holds: D′ ∈ Rep(D,K)

iff D′ |= K and ucost(D,D′) is minimum (among the consistent S-instances). �

Proof: In one direction, we have to prove that, for an MD instance D′ satisfying K with

minimum ucost, there exists D′ ∈ Rep(D,Σ), such that D′ = T −1(D′) (cf. Definition

7.1). From Lemma 7.1 we have that, for any MD update D′, ucost = |ρ|, where

T −1(ρ(D)) = D′. So, a minimum ucost implies a minimum |ρ|, which itself leads to

ρ(D) ∈ Rep(D,Σ). In other words, minimizing ucost implies minimizing the number of

atomic updates performed at relational level.

In the other direction, we need to show that, for any MD repair D′ ∈ Rep(D,K),

ucost(D,D′) will be minimum. According to Definition 7.1, for every D′ ∈ Rep(D,K),

there exists a D′ ∈ Rep(D,Σ), such that D′ = T −1(D′). From Definition 5.1, it holds

that D′ corresponds to a relational repair ρ which performs a minimum number of

attribute value updates on D, i.e. |ρ| is minimum. Hence, based on Lemma 7.1, the

ucost must also be minimum. �

Based on the above discussion, the proposed characterization of MD repairs im-

plicitly takes into consideration the effect of MD repair operations (edge insertions

and deletions) on the underlying relational layer. We discussed that, our approach

and the one in [18] generate two disjoint classes of MD repairs. The reason is that,

in the latter edges are treated the same for modification, while the former considers

priority of change on edges. In particular, in our repair process, edges with fewer

connections to the base elements are considered as good candidates for modification,

since they affect fewer tuples in the underlying database. Among these edges, those

that reside at the higher levels of the hierarchy are optimal choices for change during

MD repair, since they update fewer attribute values in the affected tuples.
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7.5 Summary

In this chapter, we studied the correspondence between our results and other direct

MD repair approaches. In particular, we compared our dimension repairs with those

obtained from [18], as the most generic instance-based repair mechanism. Our results

showed that, in general, there is no correspondence between the our repairs and

those generated by [18]. Through this comparison, we were able to propose an MD

characterization of our MD repairs.



Chapter 8

Experiments

8.1 Introduction

Our discussions in the previous chapter show the conceptual and theoretical advan-

tages of our relational repair approach, clearly. However, as a new relational imple-

mentation for MDDBs, path schema should still be analyzed in more detail. In other

words, an in-depth comparison of path with the existing star and snowflake schemas

is crucial.

Consider the case where the original MD instance is not implemented as a path

relational database. In order to apply the proposed repair mechanism, we need to

translate the MD instance into a path instance. This translation introduces a non-

negligible cost. Such common situations lead us to investigate on the possibility of

using upfront path relational schemas as the basis for the implementation of MD

databases. We claim that, the path relational schema is an interesting alternative to

consider for a ROLAP approach to MDDBs, and this advantage is independent from

its virtues in relation to MD repairing.

In order to support our claim, we demonstrate several experiments comparing

path, star and snowflake schemas. In particular, these schemas are analyzed based

on their performance at aggregate query answering, and inconsistency detection. We

100
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use SQL Server 2008 for running our experiments.

These experiments are based on our running example about product sales (cf.

Example 1.1). We consider dimensions Customer, Store and Date for measuring the

Sales amount. The schema for these dimensions can be found in Figures 1.4a, 1.2

and 1.3, respectively.

To achieve our goal, we needed three independent representations of the MDDB

in Example 1.1, as a star, snowflake and path databases. Figures 3.1, 3.3 and 4.1

show the representation of the Customer dimension in these schemas, respectively. In

case of Store and Date dimensions, the MD2R mapping is more straightforward, and

is done as described in Sections 3.2, 3.4 and 4.3. The relational tables representing

these two dimensions in star, snowflake and path databases are as follows:

Star:

• SStore 7→Star {RStore[ABranch, ACity, ACountry, AAll]}

• SDate 7→Star {RDate[ADay, AMonth, AYear, AAll]}

Snowflake:

• SStore 7→Snowflake {RBranch[A
Branch, ACity], RCity[A

City, ACountry], RCountry[A
Country, AAll],

RAll[A
All]}

• SDate 7→Snowflake {RDay[A
Day, AMonth], RMonth[A

Month, AYear], RYear[A
Year, AAll],

RAll[A
All]}

Path:

• SStore 7→Path {RPStore[ABranch, ACity, ACountry, AAll]}

• SDate 7→Path {RPDate[ADay, AMonth, AYear, AAll]}
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8.2 Query Answering

In this section, we analyze the query answering time of star, snowflake and path

schemas, based on the category used in the aggregate query. More specifically, we

investigate how the query answering time changes as the level of the category used in

the query increases in the dimension hierarchy. This criterion shows how much the

query answering performance is dependant on the category used. Obviously, if the

query answering performance changes significantly as the category used in the query

varies, the average query answering time for the relational schema increases.

Our primary goal in this experiment was to define the MDDB of Example 1.1 in

SQL Server 2008. To this end, we needed three MD instances, with the same set of

dimensions (Customer, Store and Date dimensions), each implemented differently, i.e.

as a star, snowflake or path instance. Due to some limitations in SQL Server for

mapping the MD instance to the relational instance, we could not achieve this goal.

SQL Server 2008 only supports a one-to-one mapping from a category in dimension

schema to an attribute in relational table. Despite this restriction, star and snowflake

schemas can be defined as the MDDB relational implementation. However, path

mapping might map a category to more than one attribute in the relational schema

(like Segment and All in the Customer dimension). As a result, due to this SQL Server

limitation, we could not define path schema as the underlying relational layer of the

MDDB in Example 1.1.

Based on the above discussions, we could not analyze the query answering perfor-

mance of the star, snowflake and path schemas by posing MDX queries to the upper

MD layer. So, we decided to run our experiments on the relational layer, i.e. posing

SQL queries to these databases and analyzing their performance in query answering.

After defining the dimension tables in star, snowflake and path databases, we

needed to load these instances with test data. Since we aim at testing the performance
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of these schemas, the database instance must be initiated with a sizable amount of

data. To this end, we implemented a data generator in Java.

Since the data generator program fills the star, snowflake and path databases with

random values, it must be given the relational schema of these databases. Hence, the

program takes as input the set of tables along with their attributes for each of the star,

snowflake and path schemas. Based on the given input, the program generates random

values for each attribute and inserts the generated tuples to the database tables. In

order to simulate the real cases, this data generator program takes into account the

hierarchy levels. In reality, the number of elements belonging to a category decreases

as the level of the category in the dimension schema increases. Hence, the number

of the values generated for an attribute depends on the level of the corresponding

category in the dimension schema.

We designed a data structure representing a relational table which contains the

table name and its attributes. For each attribute, we specify its name and the level

of the corresponding category in the dimension schema. For example, the set of

attributes of table RPCus
1 in Figure 4.1 are defined for the data generator program as

{(ACustomer , 1), (AGender , 2), (ASegment , 3), (AAll , -1)}. Notice that, for attribute

AAll the level is defined as -1. The reason for this setting is that, we do not want to

generate any value for this attribute, except for the pre-defined element all. Hence,

the value -1 is used as an indicator to skip the data generation phase for an attribute.

In general, the maximum number of values generated for an attribute with level l

is equal to 100,000
3l−1 . For an attribute representing the base category of the dimension

hierarchy, the number of generated values is equal to 100,000. Table 8.1 shows the

size of the generated values for an attribute based on the level of its corresponding

category.

As discussed above, the query answering performance of star, snowflake and path

schemas is analyzed using several queries. In this section, we start by explaining one
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Level of Category c in Hierarchy Number of Generated Values for Attribute Ac

1 100,000

2 33,333

3 11,111

-1 (category All) 1

Table 8.1: The size of the generated values for a category based on its level

of the aggregate queries used in our experiments.

In this query, Q, we are interested in retrieving the total amount of product Sales

for each Canadian store in year 2010, based on customer Segment . This query takes

3 different forms in SQL depending on the relational schema (cf. Section 4.4). The

equivalent SQL queries for the aforementioned query Q is shown in Table 8.2.

Section 4.4 explains the difference between the structure of the above queries.

Notice that, queries (a) and (b) have the same number of join operations. However,

query (b) has an additional inner query compared to query (a). Hence, it is expected

to take more time for execution than query (a). On the other hand, query (c) requires

11 number of join operations, while in case of queries (a) or (b) this number is equal

to 3. Obviously, this difference implies a considerably longer execution time for query

(c).

We executed each of the above SQL queries on their corresponding relational

schemas. Our experiment results support the above statements. More specifically,

the response times obtained are 155.2 ms for query (a), 193.8 ms for query (b), and

427.3 ms for query (c). Notice the non-negligible difference between execution times

of query (c) and the first two queries.
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(a) Star schema:

SELECT RCustomer.ASegment , SUM(F.Purchase) FROM

Sale-Fact-Table F, RCustomer, RDate, RStore WHERE

RDate.AYear = 2010 AND RStore.ACountry = Canada

GROUP BY RCustomer.ASegment ;

(b) Path schema:

SELECT RPCus.ASegment , SUM(F.Purchase) FROM

Sale-Fact-Table F, RPDate, RPStore,

((SELECT ACustomer , ASegment FROM RPCus
1 ) UNION

(SELECT ACustomer , ASegment FROM RPCus
2 )) as RPCus

WHERE RPDate.AYear = 2010 AND RPStore.ACountry = Canada

GROUP BY RPCus.ASegment ;

(c) Snowflake schema:

SELECT RCus.ASegment , SUM(F.Purchase) FROM

Sale-Fact-Table F, RDay, RMonth, RYear, RBranch, RCity, RCountry,

((SELECT ACustomer , ASegment FROM RCustomer, RGender, RSegment ) UNION

(SELECT ACustomer , ASegment FROM RCustomer, RLocation, RSegment ) ) as RCus

WHERE RYear.A
Year = 2010 AND RCountry.A

Country = Canada

GROUP BY RCus.ASegment ;

Table 8.2: Equivalent SQL query for Q in star, path and snowflake schemas, resp.
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As discussed before, the MD query Q involves the computation of the roll up

relations RSegment
Customer, RYear

Day and RCountry
Branch . However, this example is not a strong support

for our original claim. We need to extend our experiment to include other queries. We

are interested in analyzing the effect of the roll up relations used in the MD query on

the answering time of the equivalent SQL query. More specifically, we would like to

try other roll up relations than those mentioned above, in our sample queries as well.

To this end, we considered the roll up relations of the Customer dimension, namely

RCustomer
Customer, RGender

Customer, RLocation
Customer and RAll

Customer in the following MD queries, QCustomer,

QGender, QLocation and QAll, respectively. Due to the linear structure of the Date and

Store dimensions, the equivalent SQL queries for these dimensions would be simpler.

That is why, we tried different roll up relations of the Customer dimension, rather than

Date or Store dimensions, in our experiments.

• QCustomer: Return the sum of product Sales made in the Canadian stores during

year 2010 for each Customer .

• QGender: Return the sum of product Sales made in the Canadian stores during

year 2010 for female and male customers.

• QLocation: Return the sum of product Sales made in the Canadian stores during

year 2010 for each Location, namely L1, L2 and L3.

• QSegment: Return the sum of product Sales made in the Canadian stores during

year 2010 for each customer Segment, namely S1 and S2.

• QAll: Return the sum of product Sales made in the Canadian stores during year

2010 for All of the customers.

Notice that QSegment is the same as Q, which we already used in our experiment.

Tables 8.3, 8.4, 8.5 and 8.6 represent the equivalent SQL queries for the above

MD queries over star, snowflake and path database.
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(a) Star schema:

SELECT RCustomer.ACustomer , SUM(F.Purchase) FROM

Sale-Fact-Table F, RCustomer, RDate, RStore WHERE

RDate.AYear = 2010 AND RStore.ACountry = Canada

GROUP BY RCustomer.ACustomer ;

(b) Path schemaa:

SELECT RPCus
1 .ACustomer , SUM(F.Purchase) FROM

Sale-Fact-Table F, RPDate, RPStore, RPCus
1

WHERE RPDate.AYear = 2010 AND RPStore.ACountry = Canada

GROUP BY RPCus
1 .ACustomer ;

(c) Snowflake schema:

SELECT RCustomer.A
Customer , SUM(F.Purchase) FROM

Sale-Fact-Table F, RDay, RMonth, RYear, RBranch, RCity, RCountry, RCustomer

WHERE RYear.A
Year = 2010 AND RCountry.A

Country = Canada

GROUP BY RCustomer.A
Customer ;

aFor path schema, the values for attribute RPCus
1 .ACustomer is equal to

RPCus
2 .ACustomer . So in this query, we can either choose RPCus

1 or RPCus
2 (cf.

Section 4.3).

Table 8.3: Equivalent SQL query for QCustomer in star, path and snowflake schemas,

resp.
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(a) Star schema:

SELECT RCustomer.AGender , SUM(F.Purchase) FROM

Sale-Fact-Table F, RCustomer, RDate, RStore WHERE

RDate.AYear = 2010 AND RStore.ACountry = Canada

GROUP BY RCustomer.AGender ;

(b) Path schema:

SELECT RPCus
1 .AGender , SUM(F.Purchase) FROM

Sale-Fact-Table F, RPDate, RPStore, RPCus
1

WHERE RPDate.AYear = 2010 AND RPStore.ACountry = Canada

GROUP BY RPCus
1 .AGender ;

(c) Snowflake schema:

SELECT RGender.A
Gender , SUM(F.Purchase) FROM

Sale-Fact-Table F, RDay, RMonth, RYear,

RBranch, RCity, RCountry, RCustomer, RGender

WHERE RYear.A
Year = 2010 AND RCountry.A

Country = Canada

GROUP BY RGender.A
Gender ;

Table 8.4: Equivalent SQL query for QGender in star, path and snowflake schemas,

resp.



109

(a) Star schema:

SELECT RCustomer.ALocation , SUM(F.Purchase) FROM

Sale-Fact-Table F, RCustomer, RDate, RStore WHERE

RDate.AYear = 2010 AND RStore.ACountry = Canada

GROUP BY RCustomer.ALocation ;

(b) Path schema:

SELECT RPCus
2 .ALocation , SUM(F.Purchase) FROM

Sale-Fact-Table F, RPDate, RPStore, RPCus
2

WHERE RPDate.AYear = 2010 AND RPStore.ACountry = Canada

GROUP BY RPCus
2 .ALocation ;

(c) Snowflake schema:

SELECT RLocation.A
Location , SUM(F.Purchase) FROM

Sale-Fact-Table F, RDay, RMonth, RYear,

RBranch, RCity, RCountry, RCustomer, RLocation

WHERE RYear.A
Year = 2010 AND RCountry.A

Country = Canada

GROUP BY RLocation.A
Location ;

Table 8.5: Equivalent SQL query for QLocation in star, path and snowflake schemas,

resp.



110

(a) Star schema:

SELECT RCustomer.AAll , SUM(F.Purchase) FROM

Sale-Fact-Table F, RCustomer, RDate, RStore WHERE

RDate.AYear = 2010 AND RStore.ACountry = Canada

GROUP BY RCustomer.AAll ;

(b) Path schema:

SELECT RPCus.AAll , SUM(F.Purchase) FROM

Sale-Fact-Table F, RPDate, RPStore,

((SELECT ACustomer , AAll FROM RPCus
1 ) UNION

(SELECT ACustomer , AAll FROM RPCus
2 )) as RPCus

WHERE RPDate.AYear = 2010 AND RPStore.ACountry = Canada

GROUP BY RPCus.AAll ;

(c) Snowflake schema:

SELECT RCus.AAll , SUM(F.Purchase) FROM

Sale-Fact-Table F, RDay, RMonth, RYear, RBranch, RCity, RCountry,

((SELECT ACustomer , AAll FROM RCustomer, RGender, RSegment, RAll ) UNION

(SELECT ACustomer , AAll FROM RCustomer, RLocation, RSegment, RAll ) ) as RCus

WHERE RYear.A
Year = 2010 AND RCountry.A

Country = Canada

GROUP BY RCus.AAll ;

Table 8.6: Equivalent SQL query for QAll in star, path and snowflake schemas, resp.
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As previously discussed, the queries over star database are very similar to each

other, in the sense that, they all join the fact table to the relevant dimension tables

(see part (a) of Tables 8.3, 8.4, 8.5 and 8.6).

On the other hand, the queries over path database has different structure based

on the roll up relation used in the MD query. Notice that, queries in part (b) of

Tables 8.4 and 8.5 have the same structure. While the query for path database in

Table 8.6 looks totally different.

In case of snowflake schema, the number of joins in the SQL query depends on the

roll up relation used in the MD query. It can be easily checked that, the query in part

(c) of Table 8.3 executes 7 join operations, while the snowflake queries in Tables 8.4

and 8.5 perform 8 number of joins. In case of the query in Table 8.6(c), the number

of joins required is equal to 12.

The result of executing these queries over the star, snowflake and path databases,

is shown in Figure 8.1.

Figure 8.1: Comparison of query answering for path, star and snowflake schemas

An interesting phenomenon that can be observed from the graph in Figure 8.1 is

that, the queries corresponding to QCustomer, QGender and QLocation over path database
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have almost the same response time as their counterpart for star database. This is due

to the fact that, queries over path database in Tables 8.3, 8.4 and 8.5 do not contain

an inner query as the one in Table 8.2(b). In these queries, only one B2A path has

to be considered, and there is no need to merge the tuples of several path tables. In

other words, the aforementioned queries have similar structure as the queries over star

database. Hence, in these cases, the query answering time for path and star schemas

are the same. Here, the negligible difference between the query answering time under

these two schemas is due to different dimension table schemas and number of tuples

belonging to each of these table.

Also notice that, as the level of the category used in the aggregate query increases,

the query answering time for the snowflake schema increases significantly. However,

the performance for the star and path schemas is not considerably dependant on this

factor. This is an expected property of the snowflake hierarchical structure, which

requires more number of joins for rolling up to higher levels of the hierarchy. However,

for the star and path schemas, the number of joins in a query does not change by the

level of the category used in the aggregate query.

In general, Figure 8.1 shows that, as expected, the star schema has the best query

answering performance compared to path and snowflake schemas. In this ranking,

path schema is in the second place with a slight difference to the star schema. This

shows that, the new MDDB implementation shows some useful properties regarding

the query answering performance, compared to the existing relational representations

of MDDBs, namely star and snowflake schemas.
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8.3 Inconsistency Detection

Relational databases are repaired when integrity constraints are violated. Hence,

when it comes to repairs, an important property of a relational schema is its effi-

ciency in capturing these violations. The performance of the relational schema in

inconsistency detection depends on several factors such as the relational schema de-

sign, the type of ICs and the size of the relational instance.

We discussed that one of the important properties of an expressive MDDB re-

lational representation is its efficiency in checking the summarizability conditions

through ICs. In this section, we will investigate the time it takes to check strictness

and homogeneity of the Customer dimension in each of the star, snowflake and path

instances.

We use the data generator program to generate random p-instances for the

Customer dimension instance. The number of p-instances is limited to 70,000. Around

600,000 cases of non-strictness can be found in the generated data. On the other

hand, 20,000 of these p-instances resemble a case of heterogeneity, i.e. they contain

a NULL in one of their elements. Recall from Section 3.2 that the star schema is not

expressive enough to capture all cases of heterogeneity. In the first phase of our exper-

iment, only half of these can be detected in star schema using NOT NULL constraints. In

this phase, we are simulating a common situation, in which the sample MD instance

contains heterogeneity cases that might not be detectable in the star schema.

We generated a considerable number of non-strictness instances, so that we can

clearly observe the difference between evaluating FDs and EGDs in star or path

schema, and observing the impact of performing a series of join operations in snowflake

schema. In the case of homogeneity, the types of ICs used in star, snowflake and

path schemas are all the same, i.e. NOT NULL constraints. Hence, our only concern

in checking homogeneity is to verify the weakness of the star schema in capturing
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heterogeneous instances completely. In other words, we would like to see the difference

in performance of the star schema compared to the path or snowflake schemas in

detecting heterogeneity cases.

Chapters 3 and 4 described the mechanism for translating summarizability con-

ditions to ICs over star, snowflake and path databases, respectively. We defined a

stored procedure for each of these databases, to check the aforementioned ICs by

using SQL queries. More specifically, for each of these ICs, we wrote an SQL query

which returns the tuples violating that IC.

The ICs in Example 3.2 detect non-strictness of the Customer dimension in the

star schema. We can also use NOT NULL constraints to detect some of the heterogeneity

cases. The stored procedure for checking summarizability of the Customer dimension

in star database is shown below.

In general, a functional dependency A → B can be checked by searching for tu-

ples in which the value for attribute A is the same, but the values for attribute B

differ. This idea is used for detecting non-strictness in the star schema. On the other

hand, heterogeneity can be detected by searching for tuples that have NULL value for

attributes that are restricted by NOT NULL constraint.

CREATE PROCEDURE checkStarSchema

AS

BEGIN

--CUSTOMER

-- cus -> gen

select * from dbo.CustomerStar as c1, dbo.CustomerStar as c2

where (c1.CustomerCol = c2.CustomerCol and c1.GenderCol <> c2.GenderCol)

--cus -> loc

select * from dbo.CustomerStar as c1, dbo.CustomerStar as c2

where (c1.CustomerCol = c2.CustomerCol and c1.LocationCol <> c2.LocationCol)
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--cus -> seg

select * from dbo.CustomerStar as c1, dbo.CustomerStar as c2

where (c1.CustomerCol = c2.CustomerCol and c1.SegmentCol <> c2.SegmentCol)

--gen->seg

select * from dbo.CustomerStar as c1, dbo.CustomerStar as c2

where (c1.GenderCol = c2.GenderCol and c1.SegmentCol <> c2.SegmentCol)

--loc->seg

select * from dbo.CustomerStar as c1, dbo.CustomerStar as c2

where (c1.LocationCol = c2.LocationCol and c1.SegmentCol <> c2.SegmentCol)

--gen not null

select * from dbo.CustomerStar where GenderCol Is NULL

--loc not null

select * from dbo.CustomerStar where LocationCol Is NULL

--seg not null

select * from dbo.CustomerStar where SegmentCol Is NULL

--all not null

select * from dbo.CustomerStar where AllCol Is NULL

END

The ICs for checking strictness and homogeneity of the Customer dimension over

the path schema can be found in Examples 4.6 and 4.8, respectively. The following

stored procedure searches for any tuple that violates these ICs in the path instance.

The procedure for checking FDs, EGDs and NOT NULL constraints are similar to the

one explained for the star database.

CREATE PROCEDURE checkPathSchema
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AS

BEGIN

--CUSTOMER

--cus->gen

select * from dbo.CustomerPath1 as c1, dbo.CustomerPath1 as c2

where (c1.CustomerCol = c2.CustomerCol and c1.GenderCol <> c2.GenderCol)

--gen->seg

select * from dbo.CustomerPath1 as c1, dbo.CustomerPath1 as c2

where (c1.GenderCol = c2.GenderCol and c1.SegmentCol <> c2.SegmentCol)

--cus->loc

select * from dbo.CustomerPath2 as c1, dbo.CustomerPath2 as c2

where (c1.CustomerCol = c2.CustomerCol and c1.LocationCol <> c2.LocationCol)

--loc->seg

select * from dbo.CustomerPath2 as c1, dbo.CustomerPath2 as c2

where (c1.LocationCol = c2.LocationCol and c1.SegmentCol <> c2.SegmentCol)

--cus->seg

select * from dbo.CustomerPath1 as c1, dbo.CustomerPath1 as c2

where (c1.CustomerCol = c2.CustomerCol and c1.SegmentCol <> c2.SegmentCol)

select * from dbo.CustomerPath2 as c1, dbo.CustomerPath2 as c2

where (c1.CustomerCol = c2.CustomerCol and c1.SegmentCol <> c2.SegmentCol)

select * from dbo.CustomerPath1 as c1, dbo.CustomerPath2 as c2

where (c1.CustomerCol = c2.CustomerCol and c1.SegmentCol <> c2.SegmentCol)

--gen not null

select * from dbo.CustomerPath1 where GenderCol Is NULL
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--loc not null

select * from dbo.CustomerPath2 where LocationCol Is NULL

--seg not null

select * from dbo.CustomerPath1 where SegmentCol Is NULL

select * from dbo.CustomerPath2 where SegmentCol Is NULL

--all not null

select * from dbo.CustomerPath1 where AllCol Is NULL

select * from dbo.CustomerPath2 where AllCol Is NULL

END

For the snowflake schema, the ICs in Examples 3.4 and 3.5 are used to check

summarizability of the Customer dimension. The satisfaction of these ICs are checked

by the following stored procedure. Notice that, as explained in Example 3.4, non-

strictness can be detected by performing a series of join operations in the snowflake

database. More specifically, for checking strictness between categories ci and cj, we

first have to join the tables to obtain the roll up relation Rcj
ci , and then join the roll

up relation with itself in order to find those tuples in which Aci is the same but Acj

is different. The process for checking homogeneity is similar to what we had for the

star and path schemas.

CREATE PROCEDURE checkSnowflakeSchema

AS

BEGIN

--CUSTOMER

--cus -> loc

select * from

(select c.CustomerCol,l.LocationCol from

dbo.CustomerSnowflake as c inner join dbo.LocationSnowflake as l

on c.LocationFk = l.LocationCol ) as t1 ,

(select c.CustomerCol,l.LocationCol from
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dbo.CustomerSnowflake as c inner join dbo.LocationSnowflake as l

on c.LocationFk = l.LocationCol ) as t2

where t1.CustomerCol = t2.CustomerCol and t1.LocationCol <> t2.LocationCol

--cus -> gen

select * from

(select c.CustomerCol,g.GenderCol from

dbo.CustomerSnowflake as c inner join dbo.GenderSnowflake as g

on c.GenderFK = g.GenderCol ) as t1 ,

(select c.CustomerCol,g.GenderCol from

dbo.CustomerSnowflake as c inner join dbo.GenderSnowflake as g

on c.GenderFK = g.GenderCol ) as t2

where t1.CustomerCol = t2.CustomerCol and t1.GenderCol <> t2.GenderCol

--cus -> seg

select * from

((select c.CustomerCol,s.SegmentCol from dbo.CustomerSnowflake as c

inner join dbo.GenderSnowflake as g on c.GenderFK = g.GenderCol

inner join dbo.SegmentSnowflake as s

on g.SegmentFK = s.SegmentCol) union

(select c.CustomerCol,s.SegmentCol from dbo.CustomerSnowflake as c

inner join dbo.LocationSnowflake as l on c.LocationFk = l.LocationCol

inner join dbo.SegmentSnowflake as s

on l.SegmentFK = s.SegmentCol)) as t1,

((select c.CustomerCol,s.SegmentCol from dbo.CustomerSnowflake as c

inner join dbo.GenderSnowflake as g on c.GenderFK = g.GenderCol

inner join dbo.SegmentSnowflake as s

on g.SegmentFK = s.SegmentCol) union

(select c.CustomerCol,s.SegmentCol from dbo.CustomerSnowflake as c

inner join dbo.LocationSnowflake as l on c.LocationFk = l.LocationCol

inner join dbo.SegmentSnowflake as s

on l.SegmentFK = s.SegmentCol)) as t2
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where t1.CustomerCol = t2.CustomerCol and t1.SegmentCol <> t2.SegmentCol

--loc -> seg

select * from

(select l.LocationCol,s.SegmentCol from

dbo.LocationSnowflake as l inner join dbo.SegmentSnowflake as s

on l.SegmentFK = s.SegmentCol) as t1 ,

(select l.LocationCol,s.SegmentCol from

dbo.LocationSnowflake as l inner join dbo.SegmentSnowflake as s

on l.SegmentFK = s.SegmentCol) as t2

where t1.LocationCol = t2.LocationCol and t1.SegmentCol <> t2.SegmentCol

--gen -> seg

select * from

(select g.GenderCol,s.SegmentCol from

dbo.GenderSnowflake as g inner join dbo.SegmentSnowflake as s

on g.SegmentFK = s.SegmentCol) as t1 ,

(select g.GenderCol,s.SegmentCol from

dbo.GenderSnowflake as g inner join dbo.SegmentSnowflake as s

on g.SegmentFK = s.SegmentCol) as t2

where t1.GenderCol = t2.GenderCol and t1.SegmentCol <> t2.SegmentCol

--loc not null

select * from dbo.CustomerSnowflake where LocationFk Is NULL

--gen not null

select * from dbo.CustomerSnowflake where GenderFK Is NULL

--seg not null

select * from dbo.GenderSnowflake where SegmentFK Is NULL

select * from dbo.LocationSnowflake where SegmentFK Is NULL
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--all not null

select * from dbo.SegmentSnowflake where AllFK Is NULL

END

The times obtained for retrieving cases of non-strictness in star, snowflake and

path database are 17.007 sec, 1200 sec and 15.686 sec, respectively. These results are

in line with our discussions on the efficiency of checking strictness in these schemas,

in Sections 3.2, 3.4 and 4.5. Notice the huge difference between the execution time

for snowflake compared to the star and path schemas. Recall that the hierarchical

structure of the snowflake database complicates the process of checking strictness.

Unlike simple constraints for star and path databases, here we have to perform a series

of join operations between different tables to detect non-strictness. The negligible

difference between the execution times of star and path database is due to different

dimension table schemas and number of tuples belonging to each of these table. Notice

that the additional EGDs used for the path schema for detecting non-strictness do

not considerably affect the performance of inconsistency detection.

The time taken for detecting cases of heterogeneity is 510 ms for the star schema,

866 ms for the path schema and 686 ms for the snowflake schema. The difference

between the first number and the last two cases is due to the fact that the queries

executed over star schema can return only half of the heterogeneity instances, because

the star schema cannot completely represent heterogeneity. On the other hand, since

in path schema a category might be represented by more than one table (like Segment

and All in the Customer dimension as represented by the path schema of Figure 4.1),

we need more NOT NULL constraints for the path compared to the snowflake schema.

That is why, in the snowflake schema, cases of heterogeneity are retrieved faster than

for the path schema.

The previous results are somehow unfair, in the sense that they do not reflect the

weakness of the star schema in capturing heterogeneity. In other words, we would
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like to see the performance of star, snowflake and path schemas when equal number

of heterogeneity cases are represented in these databases. Hence, on the second phase

of our experiment, we narrowed down the heterogeneity cases of our data set to

those that are detectable in a star database. More specifically, we generated 20,000

cases of heterogeneity, which could all be captured using NOT NULL constraints in star

schema. At this phase, we are only interested in checking heterogeneity in star,

snowflake and path instances. As a result, we expect to have more realistic results.

The time measured for detecting heterogeneity instances in this phase is 750 ms for

star schema, 962 ms for path schema, and 758 ms for snowflake schema. As expected,

the performance of the star schema deteriorated. Notice that the difference between

the execution time in path and the execution time in star or snowflake schemas

comes from the fact that we need more NOT NULL constraints for the path schema when

capturing heterogeneity, compared to star and snowflake schemas.

In general, it can be said that the path schema is a MDDB relational representation

that can be used for checking summarizability constraints through ICs completely and

efficiently.

8.4 Summary

This chapter studied the path schema as a relational implementation of MDDBs. We

showed that it has an acceptable query answering performance compared to the star

and snowflake schemas. In particular, it in in the second best place, with a negligible

difference behind star schema. We also investigated the performance of path schema

in checking summarizability constraints through ICs. In particular, we compared the

times it takes to detect IC violations in star, snowflake and path instances. The

experimental results showed that the path approach can efficiently find all cases of

non-strictness and heterogeneity through relational ICs.



Chapter 9

Conclusions

In this thesis, we were concerned with using relational repairs for restoring summa-

rizability in multidimensional databases. Our methodology was to represent the MD

instance as a relational instance, repair the inconsistent relational database in case of

non-summarizability, and then retrieve a new dimension instance from the repaired

relational database.

The feasibility of our approach depends heavily on how a multidimensional

database is represented as a relational database. Summarizability constraints were

captured through relational integrity constraints which can be efficiently checked.

Moreover, our MD2R mapping has no information loss when translating the multi-

dimensional database into the relational database.

We studied the two well-known relational implementations for MDDBs, star and

snowflake. Our discussions showed that, based on the aforementioned criteria, star

and snowflake are not the perfect choice for our purposes. As a result, we proposed a

relational reconstruction of the multidimensional database via path relational schema.

We argued that the dimension schema, dimension instance, and summarizability con-

ditions can all be efficiently represented in this new relational representation. In

particular, we ran some experiments on the performance of the path schema in de-

tecting non-summarizability through ICs. The results showed that, unlike star or
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snowflake, path can completely and efficiently find cases of inconsistencies at the

relational level.

As part of our proposal for a new relational implementation of MDDBs, we stud-

ied query answering performance of the path schema. In particular, we ran several

experiments comparing query answering time in star, snowflake and path databases.

Our results revealed that path comes second closely after star in query answering

performance.

In the future, we would like to study path schema in more details. In particular, we

are interested in comparing the star, snowflake and path schemas using data-related

metrics, such as database size.

Based on the aforementioned studies, we can propose different optimization tech-

niques for the path schema, such as normalization. Due to the specific design of

the path schema, we might have data redundancy in the relational database. The

B2A paths of a dimension schema might have several categories in common. In the

best case, they only share the first and last element in a path, i.e. base category

and category All. In the relational side, these common categories are mapped to at-

tributes that are common between more than one path table. Due to these common

attributes, we might have data redundancy in the path database. For instance, it

can be easily checked that, if the number of base elements in a dimension instance

is huge, this data redundancy can become a serious issue. Notice that, this problem

does not occur in star or snowflake databases.

A possible solution to the aforementioned data redundancy problem would be to

keep the shared attributes in separate tables. For instance, we can keep the attribute

representing the base category in a separate table, and relate the path tables to this

attribute with referential constraints. However, we might have some complications in

the summarizability checking process due to this specific database design.

Having found a good relational representation for MDDBs, we focused on repairing
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the inconsistent path database in case of non-summarizability. We introduced the

repair semantics used in our methodology for obtaining the set of minimal relational

repairs. To this end, we took advantage of the numerous works done in the area of

relational database repairs (see [12, 26] for a survey). The new MDDB relational

implementation is proved to be easily repairable via attribute updates.

The feasibility of using relational repairs for restoring MD consistency depends

on the invertibility of MD2R mapping, since a repaired database instance must be

translated back to a multidimensional instance. The existence of such inverse mapping

was determined by the fact that, no information is lost when mapping the MD instance

into the relational instance. We argued that, path mapping is uniquely invertible.

This fact assures that the repair process could be implemented directly on relational

platforms.

By comparing the MD repairs obtained through our approach with those generated

by [18], we showed that the proposed relational approach produces MD repairs that

correspond to minimal relational repairs. We managed to characterize these repairs in

pure MD terms. This characterization shows that, unlike [18], we somehow prioritize

the dimension instance edges for modification during the repair process.

Most of the existing MD repair approaches address only non-strictness or hetero-

geneity, assuming that the other summarizability condition is satisfied in the original

dimension [13, 22, 41, 42, 44]. Instead, we proposed a general solution to handle

non-summarizability, without making any initial assumptions.

The concept of local summarizability constraints was introduced in [18, 24]. The

idea is that, in some cases, we want to check strictness and homogeneity between

certain categories, and not necessarily in the whole dimension. Fortunately, our

approach is not restricted to global constraint satisfaction, since the path mapping

translates each local constraint separately. In fact, our methodology is flexible enough

to be used for restoring summarizability both locally and globally.
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Notice that, although the proposed instance-based repair process performs some

changes to the dimension instance, it does not invalidate all of the pre-computed

aggregate query results on the dimension. Inserting/deleting a number of edges in

the dimension instance during the MD repair process, affects a set of roll up relations

in the dimension instance. Hence, only those pre-computed aggregate query results

that depend on the affected roll up relations should be re-computed. In other words,

the proposed MD repair approach does not cause any inefficiency in maintaining

aggregate query results.

One interesting problem in non-summarizable MDDBs is consistent query answer-

ing (CQA). CQA was first introduced by [4], in the context of relational databases.

It refers to the process of retrieving query results that are consistent with respect to a

given set of integrity constraints; although the relational database as a whole may be

inconsistent. CQA for aggregate queries with scalar functions under the range seman-

tics was introduced and analyzed in [6]. These queries are similar to the aggregate

queries posed to ROLAP systems.

In order to adopt this concept in MDDBs, [13] proposed the notion of canonical

instance; a dimension which is obtained by somehow merging the minimal repairs of

a dimension. This dimension is used for finding consistent answers to queries in a

non-summarizable MDDB.

For future work remains the study of consistent query answering in MDDBs. Un-

like [13], we are interested in taking advantage of the notions of repair and consistent

query answering in relational databases, to solve this problem. In particular, we can

apply the CQA techniques to the set of minimal relational repairs for an inconsistent

path database, and then translate the consistent relational query answers into con-

sistent multidimensional results. In the context of CQA and inspired by [13], we are

also interested in characterizing a canonical instance for the set of minimal relational
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repairs obtained for an inconsistent path database. It would be interesting to com-

pare the dimension instance representing this relational canonical instance with the

MD canonical instance proposed in [13].

Updating the dimension instances is very common in MDDBs. An outcome of this

process is that, the computed MD repairs can no longer be used in the CQA process.

Obviously, it is not efficient to frequently re-compute the MD repairs. One of our

future goals is to maintain the MD repairs under dimension updates. In particular,

we would like to study how we can update the MD repairs, based on the original

dimension instance update operation.

It would be interesting to consider aggregation constraints in the MD scenario, in

addition to summarizability constraints. To this end, we can take advantage of the

existing results on attribute-based repairs under aggregation constraints [33].

Currently, we are also running experiments in relation to the repair aspects of

our approach. On the repair computation side, we have two alternative ways to go,

and comparing them would be interesting. One of them consists in using answer

set programs (ASP) similar to those in [18, 24]. They work directly with the MD

representation. In our case, given the different MD repair semantics (the one in

Theorem 7.1), our program would include weak constraints with weights, that extend

the ASP paradigm [19]. They are used to minimize numbers of violations of program

constraints. For that reason, they can be used to capture our numerical MD distance.

(The distance in [18, 24] is set-theoretical, not numerical).

The other way to go is based on the repairing of the relational instances obtained

via the MD2R mapping wrt relational integrity constraints. ASP have been also

successfully used to compute relational repairs and do consistent query answering (cf.

[23] and references therein). In this case, the ASP would also require the use of weak

constraints, since we would be minimizing the number of changes of attribute values.

ASPs of this kind have been used in [36].
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A problem with the proposed solution is that, it creates a new relational layer on

top of the MDDB. In other words, it can not be applied to MDDBs that are already

implemented, either as a star or snowflake database. Due to the large number of

dimensions, re-creating the relational layer of MDDB using path schema seems to be

costly. In particular, migrating the data from the star or snowflake tables into the

path tables is not a straightforward process. So, we would like to see if the proposed

path schema can be defined as a virtual view on top of the existing star or snowflake

schema. This view is somehow similar to the logical layer proposed in [21], where the

logical layer separates the MDDB from its physical implementation.

The aforementioned goal can be formalized as a schema evolution problem [7, 28].

In this problem, we know how to map schema S1 to schemas S2 and S3 separately, and

we are interested in finding the mapping rules for moving from S2 to S3. According

to our discussions in Chapters 3 and 4, we already have the rules for mapping the

multidimensional database to a star, snowflake or path database. In order to have

the aforementioned virtual view, we must figure out how to map a star or snowflake

database to a path database.

We believe that a deeper investigation of the relationship between our MD repairs

and other existing approaches to MD repairs is still crucial. In particular, we are inter-

ested in comparing our data-based repair mechanism to schema-based MD repairs [8].

One interesting aspect of this comparison can be the application of these MD repairs

in the CQA process. In particular, it would be interesting to compare the consistent

answers obtained using our instance-based repairs and those generated based on ex-

isting schema-based repairs. In addition, the combination of both instance-based and

schema-based approaches for restoring summarizability should also be investigated.
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