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THE OUTER CAPACITY OF AN INTERNAL SET FUNCTION

by LeoroLpo E. Bertossi in Santiago (Chile)

1. Introduction

In [5], Loes showed how to obtain a classical probability space via a standard part mapping
starting from an internal probability space in a nonstandard universe. In this work we follow
Loes’s approach in order to obtain a classical capacity by taking the standard part of a very
simple set function defined on an internal paving. We give here the necessary background on
capacities, but only a few facts on nonstandard extensions of superstructures. Good exposi-
tions of the later subject can be found in [1], 4], [6].

Let F be a family of subsets of a set F. If F is closed with respect to finite unions and inter-
sections, and, furthermore, contains the empty set 2, then we say that F is a paving over F.
A function C: 2(F)—R, where P(F) is the power set of F, is an F-capacity if
(i) C is increasing, i.e. A € B implies C(4) = C(B),

(ii) for every increasing sequence (4,)x of subsets of F,

C(Un4,) =supnC(4,),
(iii) for every decreasing sequence (4,)n of elements of ,
C(NnA4n) = infyC(4,).

Under certain conditions it is possible to extend a function C defined originally only on a
paving F to an F-capacity defined on P (F): Let C: 7 —R, be increasing and strongly sub-
additive (i.e. forevery 4, Be §, C(AuB)+ C(4n B) = C(A4) + C(B)). Let us suppose in ad-
dition that C is upper-continuous, that is, for every increasing sequence (4,)n of elements of
F whose union | Jy4, also belongs to F, one has C(UnA4,) = supn C(4,). For every 4€ 5,
(the closure of F with respect to enumerable unions), we define

C*(A):=supgey, sca C(B),
and, for every D e P (F), we define
C*(D):=infpc 4c5,C*(4),

where inf @ 1= + oo,
The theorem of construction of capacities [2] says that C* is an F-capacity (the outer capac-
ity associated with C) if and only if, for every decreasing sequence (A4,)x of elements of 7,

@ C*(Nn4,) = infy C(4,).

In what follows, we will work in an %,-saturated, nonstandard extension V(*S) of the su-
perstructure V(S) of a set S which contains the real numbers. V(S) consists of all relations
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over S, of any finite arity and any finite level, e.g. #(S) and P(P(S)) belong to V(S). Let us
recall that an extension V(*S) contains *R (the set of hyperreal numbers) and *IN (the set of
hyperintegers) as elements. *R is a proper extension of R and N is a proper initial segment of
*N. *N and *N — N are external elements of V(*S). The mapping °: *R—R, which asso-
ciates to every finite hyperreal d the unique real c that is infinitely close to it (c =°d), is
called the standard pars. Finally, we recall that V(*S ) is 8;-saturated iff, for every sequence
(an)nen of internal objects of V(*S), there is an internal sequence (b,),.-n Which extends it
(b, = a,, for every n € N). The existence of nonstandard extensions with these properties is
proved in [3].

2. Non-standard capacities with non-standard pavings

Let F be an internal set and 7, an internal paving over F. Using the x;-saturation of the ex-
tension V(*S), Loes 5] proved the following proposition for the case where F is an internal
algebra of sets. However, the same proof works when ¥ is an internal paving.

2.1. Proposition. For every n=0,neN, let A,¢c 7. If AgS Ui<nenA,, then, for some
meN,

4,cU_ 4,0
2.2. Lemma. If (A,)1<qen is @ strictly increasing sequence of elements of F, then
Ul =neN An (13 ‘7

Proof. If Ay =, < nen 4, € F, then, by proposition 2.1, 4, U:': 4, for some n € N. This
contradicts the hypothesis that the original sequence is strictly increasing. O

Now, let J: F— *R, be internal, increasing and strongly subadditive. Then, we have in our
nonstandard extension an internal triple (F, 7, J ) that satisfies very simple hypothesis. We
point out that it is easy to verify, using ®)-saturation, that the paving F is semi-compact. We
will not use this property of . In a second step, starting from this triple, we can obtain a clas-
sical capacity based on paving F in a very natural way. In order to do this, let us define
I(4):=°(J(4)), for every 4 € 7.

23. Lemma. I: ¥R, is increasing, strongly subadditive, and upper-continuous.
Proof. The upper-continuity follows trivially from lemma 2.2. O
2.4. Proposition. The mapping I*: P(F)—R, associated with I is an F-capacity.

Proof. By lemma 2.3, it suffices to verify condition (1), that is to say, for every decreasing
sequence (4,)n of elements of 7,

I*(ﬂNA,,) = ian I(A,,)

This condition can be reformulated [2] directly in terms of /, the original mapping: if (4,)n,
(B,)n are respectively decreasing and increasing sequences of elements of 7, such that
M4, S UnB,, then infy1(4,) < supyI(B,). We will show that this condition is satisfied
by L

Let A:=nxA,, B'=nB, As 4,, B,e Fand ¥ is internal, we know that A,, B, are inter-
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nal. By the saturation condition on the nonstandard extension, there are internal extensions
(A,)n, (B,)«w of (4,)n, (B,)x, respectively. Let us define

Ki={ie*N|Vjsit 4 €F A4 24},
K,={ie*N|Vj=i:Bje I A B, S B},

K, and K, are internal sets because they are defined by conditions expressed in terms of inter-
nal parameters and bounded quantifiers. Furthermore, K;, K, 2 N. Since N is external, there
are y, w € *N — N, such that y € K, w € K,. Thus,

A24,2...24,.124,¢F and B,€£B,S...€B,_.,SB,eF.
For n:=min {y, w} (¢ *N —N),
A124,2...24,.124, and B, £ B,c...&£B, 1S B,

In addition, Vne N, Vj=#,je*N~N: 4,2 4; and B, & B, Since | JnB,2( \~n4, We have
Vi=n,je*N—N: B2 4, Thus, Vj=7,je*N—N: J(B) = J(4;). The set

K={je*N|jsqrl(4)sI(B))

is internal and satisfies {1,...,7} 2K 2{1, ..., n} n (*N — N). This last set is external, so
that there is an me N, such that me K. For this m we have J(4,) =J(B,). Thus,
1(A4,,) = I(B,,). Therefore, we finally obtain

infx1(4,) = I(A,,) = I(B,,) = supx1(B,). O
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